US 20190095401A1

a2y Patent Application Publication (o) Pub. No.: US 2019/0095401 A1

a9y United States

Tao et al.

43) Pub. Date: Mar. 28, 2019

(54) APPARATUS AND METHODS FOR VECTOR

Publication Classification

Controller Unit
106

124
’ /
/
/
(-I Instruction Queue | // —_——— —_— —
122

/ I Instruction Register
/ 126

OPERATIONS (51) Int. CL
icant: Cambricon Technologies Corporation)
) A Compio Ttioes orartn 1716 00601
Limited, Beijing (CN) (2006.01)
(52) US. CL
(72) Inventors: Jinhua Tao, Beijing (CN); Tian Zhi, CPC ...cccvnnee GOG6F 17/16 (2013.01); GO6N 3/04
Beijing (CN); Shaoli Liu, Beijing (CN); (2013.01); GO6F 9/3001 (2013.01); GO6F
Tianshi Chen, Beijing (CN); Yunji 9/30036 (2013.01)
Chen, Beijing (CN
en, Beijing (CN) (57) ABSTRACT
(21) Appl. No.: 16/172,649 Aspects for vector operations in neural network are
described herein. The aspects may include a vector caching
(22) Filed: Oct. 26, 2018 unit cgnﬁgured to store a first vector and a second vector,
wherein the first vector includes one or more first elements
L. and the second vector includes one or more second elements.
Related U.S. Application Data The aspects may further include one or more adders and a
(63) Continuation-in-part of application No. PCT/ combiner. The one or more adders may be configured to
CN2016/081107, filed on May 5, 2016. respectively add each of the first elements to a correspond-
ing one of the second elements to generate one or more
(30) Foreign Application Priority Data addition results. The combiner may be configured to com-
bine a combiner configured to combine the one or more
Apr. 26,2016 (CN) oevvevereeieeeene 201610266989.X addition results into an output vector.
Instruction Storage Device Memory
134 101
A
: Yy | 4 |
| \\\ DirectMem(l)g'ZAccess Unit — :
| Instruction Obtaining \\
| e Module \ A :
I 132 y \ Y I
| Decoding Module | \ [
| ¥ \\ Vector Caching Unit |
130 112
| Storage Queue | \\\ |
H s A J \) I
: Instruction Register | k Y |
| 126 Y Controller Unit - Computation Module l— !
(- Dependency Processing 106 il P 110 |
| Unit I
l |
l |
l |
l |
| |
l |
l |
I |

US 2019/0095401 A1

Mar. 28, 2019 Sheet 1 of 8

Patent Application Publication

011

s|npo uoneindwo)) Rl [

y

971 |
_ 10151897 UoTIONISU] _

—— — — B

901
U} JO][ONUO))

H

48!
1100 SuIyoR)) J0100A

q

T01
JU() SSR00Y AJO WA J001I(]

901
11U} JOJ[OTBUO)

anen() uonONISu]

7l

v

)

uny
Suisseooid souspuade(q

4!

X

19151897y uononnsu|

A

8C1

onang) a5eIolg

X

3[NPOJN Su1posa(]

3

S[NpON
Suturelq UoIOILISUY

¥el
901A3(] 25LI01S UONONISU]

US 2019/0095401 A1

Mar. 28, 2019 Sheet 2 of 8

Patent Application Publication

o JOIA V I0109A
llllllllllllllllll o T Rt et
I
g (@a | (na “ “ Wv @v | (v
_
_
_
S1010R1gNS “
_
_
_
(w)eppy ces (Dmeppy (1)50ppY _
_
_
_
_
_
JauIquio) “
_
011 9npow uoneindwo) _
llllllllllllllllllllllllllllllllllll «

US 2019/0095401 A1

Mar. 28, 2019 Sheet 3 of 8

Patent Application Publication

¢ JOIDQA Y JOI09A

IIIIIIIIIIIIIIIIII L R
I |
(g @a | g " “ (Wyv @v | (Dv "
| |
I |

|

|

|

|

|

(uprondynpy cee (Preydnmp (Dreydpmy _

|

|

|

|

|

J2UIqUIO)) “

|

011 9mpow uoneindwo)) _

llllllllllllllllllllllllllllllllllllll uJd

US 2019/0095401 A1

Mar. 28, 2019 Sheet 4 of 8

Patent Application Publication

201
U SS90V
AIOWAIA] 19911(T

90¢
nun SUIyOR) UOINON

:

Y0€
IU[) UONBUIULISID(
dysuoney Adcuspusdaq Bie(q

v

9Tl
1915159y B[R0S

¢ "1

901
U} JR[[ONU0))

(48!
1) Sunoe) J0I09A

91¢
SIAPIAICT
0z¢
uowmuozwmu 103109 >
pIg
s1oeINgng
4l
@ov?ﬂ
81¢
Isuiquio))
01¢
szardnyngy

T0¢
1) vonendwo))

011
s[poN uonendwo))

US 2019/0095401 A1

Mar. 28, 2019 Sheet S of 8

Patent Application Publication

80t

90y

124

[44i%

Vi "SI

101994 IdINO v O3uI SINSAI
uoneotjdy N 910w 0 U0 Y} ‘@[NpoL uo geINdwod dY) Jo JPUIqUOod B Aq ‘Buruiquos

s1ynsal uopedrjd gaw sJow
10 U0 31RISUSS 0] SIUSWA D PUODSS Y} JO U0 FUIPUOdsII0o B Yiim SIUS WSS IS11J oY) JO
yore ‘snpow vonendwod sy Jo sistjdnmu a1ow 1o duo Aq ‘BwAdnmuw Apansedsar

ssoIppe
PUODAS B} PUE SSIIPPE ISITJ O} UO PAsB] UONONISUT J0309A-A[d N N-101004 21} 0}
2su0dsa U1 J0109A PUOISS Y} PUL JOIOAA ISITf 9 ‘dnpow uoneINdwos B AqQ ‘SUIA]

IOJO3A PUOISS) YIM 101094 1811 913 A[dnnui 0] uoneiddo ue sajed1pul
18y} 9pod uoneIado UR puR ‘JOIOSA PUODAS B JO SSAIPPR PUOISS B JOIOIA JSII] B JO SSAUPPE
1811} B SOPNJOUI TRY] UOHINYSUI 101094~ A1d [[NUI-I01DA © “HUn IS[[0NU0D B AQ “BUIAIeaI

<
=4

US 2019/0095401 A1

Mar. 28, 2019 Sheet 6 of 8

Patent Application Publication

dp 81

8SY

1031294 IndIN0 U OJUI SI[NSI
uoneoidnjnuw 210w 10 9UO 2y} S [npow uopenduwiod Jy) JO JAUIqWI0D € Aq ‘Suluiquiod

oSy

S$)[N$91 uoTieoI[dn [Nt IO IO SUO 2)eIOUST 0] ON[BA JBTEOS O} [} IM SJUSTUO oY) JO
yoed ‘gmpow voneindwoo 2y Jo svrdinw 230w 10 U0 Aq ‘Surd[dujnur Apanoadsar

1434

SIUQUIRNS 2JOW JO SUO SIPN[OUT JOJIDA AU} UTAISYM
‘SSQIPPE PUODIS SU) PUB SSAIPPE IS11J OY] UO Paseq U0 BoNIsuL 1e[eos-A[dn[nw-10108A
2y} 01 asuodsal ul anjeA JBEDS dY} PUR J0109A 2 @[npow uonendwos e Aq ‘BulAe0a1

(444

aneA JRIRIS O YlM JOJORA Y} A[dnjnw 01 uonerado ue sa1ed1PUI
121} 9poo uoneIado U puL ‘OnfeA IB[EOS B JO SSOIPPE PUOOIS B “JOJOA E JO SSAUPpER
1SI1J © SOPN[OUT JBY} UOTIONISUT T8 [R0S- A[d I NW-I0I00A ® “JIUN JID[[ONUOD © AQ ‘SUIAIDISI

<

US 2019/0095401 A1

Mar. 28, 2019 Sheet 7 of 8

Patent Application Publication

V¢ "SI

80¢

J0309A IndIN0 TR OJUT $3[NSAT UOISTAIP SJOW JO SUO oY) ‘JOUIqUIOd € £qQ ‘FuIuIquod

90¢

S}{NSI UOISIAIP
2JOW JO QUO 3JRIOUAS 0] SJUSWIA[PUOIs 9y} Jo duo Furpuodseriod e AQ SJUsWLP 1511
oy} JO yora ‘gmnpowr uonedwos 9y} JO SIIPIAIP 10U 10 U0 AQ ‘BUIPIAIP A[panoadsal

P0$

SSOIPPE PUODIS S} PUE SSIIPPE IS Y] UO PIsBQ UONOINISUI P IAIP-IOIOAA J1f] 0]
2su0dsal ur J0J09A PUOSS Y} PUB JOI0IA 11 2 ‘o npow uoneindwod e Aq ‘BUIARO]

(44

101094 Pu0sas oy} £q 101004 ISIIJ Y1 9PIAIP 03 uoyeiado ue
S92 IpUI JeY) 9p0d uoneIado U puE JOJOSA PUODIS B JO SSOIPPE PUODAS © JOJO2A ISITJ €
JO SSIPPE ISITJ B SOPN[OUT JBY] UOTONISUT OPIAIP-IOIAA B JUN II[[OAU0D € Aq ‘BUIAI0AI

f
)|

US 2019/0095401 A1

Mar. 28, 2019 Sheet 8 of 8

Patent Application Publication

ds 8

86¢

J10300A Indino v ojur
SJINSAI UOISIAIP 210U JO SUO 91 ‘D [npowr voyeIndiuod oy Jo ILuUIquIod € £q ‘SuIuiquod

9s¢

S)NS31 UOISIAIP QIOW 10 3UO 3]LISULT 0} AN[BA IB[EDS AU} £q STUSWS [2
9y} JO YoBD ‘Opnpo i uoieIndios o1 JO SIOPIAIP 2IOW JO auo £q ‘BuIpIAIp ApAndedsar

23]

SHIUSTUD[S QIOW JO SUO SIPNIUI JOIIVA Y} UTRIOYM
‘SSQIPPE PUCOIS S} PUB SSAIPPE }SILJ S} UO PISEQG UONONASUL JOOIA-OPIAIP-IB[ROS
oy} 01 asuodsal ul anjea JBTEIS 9Y] PUL JOIDSA JU} Ompow uonendwos € Aq ‘Guiaeal

(439

INJeA JE[BOS 9} AQ JOIO2A AU} IPIAIP 03 uoneIado ue sejespul
10y} 2poo uonerado Ue PUB ‘ONBA JE[EDS JO SSAIPPE PUODAS B JOIO0A B JO SSRIppER
ISIT © SOPNIOUT 1B} UOTIONIISUT JOIDQA-OPTAIP-TBRIS B ‘IUN JO[JONUO0D B Aq ‘BUIAR00]

et

US 2019/0095401 Al

APPARATUS AND METHODS FOR VECTOR
OPERATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present invention is a continuation-in-part of
PCT Application No. PCT/CN2016/081107, filed on May 5,
2016, which claims priority to commonly owned CN appli-
cation number 201610266989 .X, filed on Apr. 26, 2016. The
entire contents of each of the aforementioned applications
are incorporated herein by reference.

BACKGROUND

[0002] Multilayer neural networks (MNN) are widely
applied to the fields such as pattern recognition, image
processing, functional approximation and optimal computa-
tion. In recent years, due to the higher recognition accuracy
and better parallelizability, multilayer artificial neural net-
works have received increasing attention by academic and
industrial communities. More specifically, operations
between two vectors may be performed frequently in deep
learning processes in MMNs.

[0003] A known method to perform operations for two
vectors in a multilayer artificial neural network is to use a
general-purpose processor. However, one of the defects of
the method is low performance of a single general-purpose
processor which cannot meet performance requirements for
usual multilayer neural network operations with respect to a
vector with a large number of elements.

[0004] Another known method to perform operations for
two vectors of the multilayer artificial neural network is to
use a graphics processing unit (GPU). Such a method uses
a general-purpose register file and a general-purpose stream
processing unit to execute general purpose single-instruc-
tion-multiple-data (SIMD) instructions to support the algo-
rithms in MNNs. However, since GPU only contains rather
small on-chip caching, then data of the vector elements may
be repeatedly moved from the off-chip, and off-chip band-
width becomes a main performance bottleneck, causing
huge power consumption.

SUMMARY

[0005] The following presents a simplified summary of
one or more aspects in order to provide a basic understand-
ing of such aspects. This summary is not an extensive
overview of all contemplated aspects, and is intended to
neither identify key or critical elements of all aspects nor
delineate the scope of any or all aspects. Its sole purpose is
to present some concepts of one or more aspects in a
simplified form as a prelude to the more detailed description
that is presented later.

[0006] One example aspect of the present disclosure pro-
vides an example apparatus for vector operations in a neural
network. The example apparatus may include a vector
caching unit configured to store a first vector and a second
vector, wherein the first vector includes one or more first
elements and the second vector includes one or more second
elements. Further, the example apparatus may include a
computation module that includes one or more adders and a
combiner. The one or more adders may be configured to
respectively add each of the first elements to a correspond-
ing one of the second elements to generate one or more

Mar. 28, 2019

addition results. The combiner may be configured to com-
bine the one or more addition results into an output vector.

[0007] Another example apparatus may include a vector
caching unit configured to store a first vector and a second
vector, wherein the first vector includes one or more first
elements and the second vector includes one or more second
elements. The example apparatus may further include a
computation module that includes one or more multipliers
and a combiner. The one or more multipliers may be
configured to respectively multiply each of the first elements
with a corresponding one of the second elements to generate
one or more multiplication results. The combiner may be
configured to combine multiplication results into an output
vector.

[0008] Another example aspect of the present disclosure
provides an example method for vector operations in a
neural network. The example method may include storing,
by a vector caching unit, a first vector and a second vector,
wherein the first vector includes one or more first elements
and the second vector includes one or more second ele-
ments; respectively adding, by one or more adders of a
computation module, each of the first elements to a corre-
sponding one of the second elements to generate one or more
addition results, and combining, by a combiner of the
computation module, the one or more addition results into an
output vector.

[0009] The example aspect of the present disclosure may
include another example method for vector operations in a
neural network. The example method may include storing,
by a vector caching unit, a first vector and a second vector,
wherein the first vector includes one or more first elements
and the second vector includes one or more second ele-
ments; respectively multiplying, by one or more multiplier
of' a computation module, each of the first elements with a
corresponding one of the second elements to generate one or
more multiplication results; and combining, by a combiner,
the one or more multiplication results into an output vector.

[0010] To the accomplishment of the foregoing and related
ends, the one or more aspects comprise the features herein
after fully described and particularly pointed out in the
claims. The following description and the annexed drawings
set forth in detail certain illustrative features of the one or
more aspects. These features are indicative, however, of but
a few of the various ways in which the principles of various
aspects may be employed, and this description is intended to
include all such aspects and their equivalents.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The disclosed aspects will hereinafter be described
in conjunction with the appended drawings, provided to
illustrate and not to limit the disclosed aspects, wherein like
designations denote like elements, and in which:

[0012] FIG. 1 illustrates a block diagram of an example
neural network acceleration processor by which vector
operations may be implemented in a neural network;

[0013] FIG. 2A illustrates an example vector addition
process that may be performed by the example neural
network acceleration processor;

[0014] FIG. 2B illustrates an example vector multiplica-
tion process that may be performed by the example neural
network acceleration processor;

US 2019/0095401 Al

[0015] FIG. 3 illustrates an example computation module
in the example neural network acceleration processor by
which vector operations may be implemented in a neural
network;

[0016] FIG. 4A illustrates a flow chart of an example
method for performing vector multiplication between two
vectors in a neural network;

[0017] FIG. 4B illustrates a flow chart of an example
method for performing vector multiplication between a
vector and a scalar value;

[0018] FIG. 5A illustrates a flow chart of an example
method for performing vector division between two vectors
in a neural network; and

[0019] FIG. 5B illustrates a flow chart of an example
method for performing vector division between a vector and
a scalar value in a neural network.

DETAILED DESCRIPTION

[0020] Various aspects are now described with reference
to the drawings. In the following description, for purpose of
explanation, numerous specific details are set forth in order
to provide a thorough understanding of one or more aspects.
It may be evident, however, that such aspect(s) may be
practiced without these specific details.

[0021] In the present disclosure, the term “comprising”
and “including” as well as their derivatives mean to contain
rather than limit; the term “or”, which is also inclusive,
means and/or.

[0022] In this specification, the following various embodi-
ments used to illustrate principles of the present disclosure
are only for illustrative purpose, and thus should not be
understood as limiting the scope of the present disclosure by
any means. The following description taken in conjunction
with the accompanying drawings is to facilitate a thorough
understanding to the illustrative embodiments of the present
disclosure defined by the claims and its equivalent. There are
specific details in the following description to facilitate
understanding. However, these details are only for illustra-
tive purpose. Therefore, persons skilled in the art should
understand that various alternation and modification may be
made to the embodiments illustrated in this description
without going beyond the scope and spirit of the present
disclosure. In addition, for clear and concise purpose, some
known functionality and structure are not described.
Besides, identical reference numbers refer to identical func-
tion and operation throughout the accompanying drawings.
[0023] Various types of vector operations between two
vectors may be performed in a neural network. A vector may
refer to one or more values formatted in a one-dimensional
data structure. The values included in a vector may be
referred to as elements. The number of the elements in the
vector may be referred to as a length of the vector.

[0024] FIG. 1 illustrates a block diagram of an example
neural network acceleration processor by which vector
operations may be implemented in a neural network.
[0025] As depicted, the example neural network accelera-
tion processor 100 may include a controller unit 106, a direct
memory access unit 102, a computation module 110, and a
vector caching unit 112. Any of the above-mentioned com-
ponents or devices may be implemented by a hardware
circuit (e.g., application specific integrated circuit (ASIC),
Coarse-grained reconfigurable architectures (CGRAs),
field-programmable gate arrays (FPGAs), analog circuits,
memristor, etc.).

Mar. 28, 2019

[0026] In some examples, a vector operation instruction
may originate from an instruction storage device 134 to the
controller unit 106. An instruction obtaining module 132
may be configured to obtain a vector operation instruction
from the instruction storage device 134 and transmit the
instruction to a decoding module 130.

[0027] The decoding module 130 may be configured to
decode the instruction. The instruction may include one or
more operation fields that indicate parameters for executing
the instruction. The parameters may refer to identification
numbers of different registers (“register ID” hereinafter) in
the instruction register 126. Thus, by modifying the param-
eters in the instruction register 126, the neural network
acceleration processor 100 may modify the instruction with-
out receiving new instructions. The decoded instruction may
be transmitted by the decoding module 130 to an instruction
queue module 128. In some other examples, the one or more
operation fields may store immediate values such as
addresses in the memory 101 and a scalar value, rather than
the register IDs.

[0028] The instruction queue module 128 may be config-
ured to temporarily store the received instruction and/or one
or more previously received instructions. Further, the
instruction queue module 128 may be configured to retrieve
information according to the register IDs included in the
instruction from the instruction register 126.

[0029] For example, the instruction queue module 128
may be configured to retrieve information corresponding to
operation fields in the instruction from the instruction reg-
ister 126. Information for the operation fields in vector
addition (VA) instruction may include a starting address of
a first vector, a length of the first vector, a starting address
of a second vector, a length of the second vector, and an
address for an output vector. As depicted, in some examples,
the instruction register 126 may be implemented by one or
more registers external to the controller unit 106.

[0030] Once the relevant values are retrieved, the instruc-
tion may be sent to a dependency processing unit 124. The
dependency processing unit 124 may be configured to
determine whether the instruction has a dependency rela-
tionship with the data of the previous instruction that is
being executed. This instruction may be stored in the storage
queue module 122 until it has no dependency relationship on
the data with the previous instruction that has not finished
executing. If the dependency relationship does not exist, the
controller unit 106 may be configured to decode one of the
instructions into micro-instructions for controlling opera-
tions of other modules including the direct memory access
unit 102 and the computation module 110.

[0031] For example, the control unit 106 may receive a
vector addition instruction that includes a vector addition
(VA) instruction that include a starting address of a first
vector, a length of the first vector, a starting address of a
second vector, a length of the second vector, and an address
for an output vector. According to the VA instruction, the
direct memory access unit 102 may be configured to retrieve
the first vector and the second vector from the memory 101
according to the respective addresses included in the VA
instruction. The retrieved vectors may be transmitted to and
stored in the vector caching unit 112.

[0032] In some examples, the controller unit 106 may
receive a vector-add-scalar (VAS) instruction that includes a
starting address of a vector, a length of the vector, a scalar
value, and an address for an output vector. According to the

US 2019/0095401 Al

VAS instruction, the direct memory access unit 102 may be
configured to retrieve the vector from the memory 101
according to the address. The vector may be transmitted to
and stored in the vector caching unit 112. The scalar value
included in the VAS instruction may be stored in the
instruction caching unit 104. The instruction caching unit
104 may be implemented as a scratchpad memory, e.g.,
Dynamic random-access memory (DRAM), embedded
DRAM (eDRAM), memristor, 3D-DRAM, non-volatile
memory, etc.

[0033] In some examples, the controller unit 106 may
receive a vector-subtraction (VS) instruction that includes a
starting address of a first vector, a length of the first vector,
a starting address of a second vector, a length of the second
vector, and an address for an output vector. According to the
VS instruction, the direct memory access unit 102 may be
configured to retrieve the first vector and the second vector
from the memory 101 according to the respective addresses
included in the VS instruction. The retrieved vectors may be
transmitted to and stored in the vector caching unit 112.
[0034] In some examples, the controller unit 106 may
receive a scalar-subtract-vector (SSV) instruction that
include a starting address of a vector, a length of the vector,
a scalar value, and an address for an output vector. Accord-
ing to the SSV instruction, the direct memory access unit
102 may be configured to retrieve the vector from the
memory 101 according to the address. The vector may be
transmitted to and stored in the vector caching unit 112. The
scalar value included in the SSV instruction may be stored
in the instruction caching unit 104.

[0035] In some examples, the controller unit 106 may
receive a vector-multiply-vector (VMV) instruction that
includes a starting address of a first vector, a length of the

Mar. 28, 2019

[0036] In some examples, the controller unit 106 may
receive a vector-multiply-scalar (VMS) instruction that
include a starting address of a vector, a length of the vector,
a scalar value, and an address for an output vector. Accord-
ing to the VMS instruction, the direct memory access unit
102 may be configured to retrieve the vector from the
memory 101 according to the address. The vector may be
transmitted to and stored in the vector caching unit 112. The
scalar value included in the VMS instruction may be stored
in the instruction caching unit 104.

[0037] In some examples, the controller unit 106 may
receive a vector-divide (VD) instruction that includes a
starting address of a first vector, a length of the first vector,
a starting address of a second vector, a length of the second
vector, and an address for an output vector. According to the
VD instruction, the direct memory access unit 102 may be
configured to retrieve the first vector and the second vector
from the memory 101 according to the respective addresses
included in the VD instruction. The retrieved vectors may be
transmitted to and stored in the vector caching unit 112.
[0038] In some examples, the controller unit 106 may
receive a scalar-divide-vector (SDV) instruction that include
a starting address of a vector, a length of the vector, a scalar
value, and an address for an output vector. According to the
SDV instruction, the direct memory access unit 102 may be
configured to retrieve the vector from the memory 101
according to the address. The vector may be transmitted to
and stored in the vector caching unit 112. The scalar value
included in the SDV instruction may be stored in the
instruction caching unit 104.

[0039] The above mentioned instructions may be format-
ted as follows and may be stored in the instruction caching
unit 104:

Register 0 Register 1 Register 2 Register 3 Register 4
VA Starting address Length of the first Starting Length of Address for
of the first vector vector address of the second output result
the second vector
vector
VAS Starting address Length of Address for Scalar value
of a vector the vector output result
VS Starting address Length of Starting Length of Address for
of the first vector the first address of the second output result
vector the second vector
vector
SSV Starting address Length of Address for Scalar value
of a vector the vector output result
VMV Starting address Length of Starting Length of Address for
of the first vector the first address of the second output result
vector the second vector
vector
VMS Starting address Length of Address for Scalar value
of a vector the vector output result
VD Starting address Length of Starting Length of Address for
of the first vector the first address of the second output result
vector the second vector
vector
SDV Starting address ~ Length of Address for Scalar value
of a vector the vector output result

first vector, a starting address of a second vector, a length of
the second vector, and an address for an output vector.
According to the VMV instruction, the direct memory
access unit 102 may be configured to retrieve the first vector
and the second vector from the memory 101 according to the
respective addresses included in the VMV instruction. The
retrieved vectors may be transmitted to and stored in the
vector caching unit 112.

[0040] Hereinafter, a caching unit (e.g., the vector caching
unit 112 etc.) may refer to an on-chip caching unit integrated
in the neural network acceleration processor 100, rather than
other storage devices in memory 101 or other external
devices. In some examples, the on-chip caching unit may be
implemented as a register file, an on-chip buffer, an on-chip
Static Random Access Memory (SRAM), or other types of
on-chip storage devices that may provide higher access

US 2019/0095401 Al

speed than the external memory. In some other examples, the
instruction register 126 may be implemented as a scratchpad
memory, e.g., Dynamic random-access memory (DRAM),
embedded DRAM (eDRAM), memristor, 3D-DRAM, non-
volatile memory, etc.

[0041] FIG. 2A illustrates an example vector addition
process that may be performed by the example neural
network acceleration processor.

[0042] As depicted, a first vector (“Vector A”) may
include one or more elements respectively denoted as A(1),
A(2), . .. A(n) and, similarly, a second vector (“Vector B”)
may include one or more elements respectively denoted as
B(1), B(2), . . . B(n). The elements in the first vector may be
referred to as first elements. The elements in the second
vector may be referred to as second elements.

[0043] The computation module 110 may include one or
more adders. In response to a VA instruction, each of the
adders may be configured to add a first element in the first
vector to a corresponding second element in the second
vector e.g., A(1) to B(1), A(2) to B(2), . . . A(n) to B(n). The
addition results generated respectively by the one or more
adders may be directly transmitted to a combiner. In other
words, the addition results may be transmitted to the com-
biner without being temporarily stored in the vector caching
unit 112. The combiner may be configured to combine the
addition results to generate an output vector. The output
vector may be represented as A(1)+B(1), A2)+B(2), . . .
A(n)+B(n).

[0044] Inresponse toa VAS instruction, the adders may be
configured to add a scalar value to each element in the first
vector. The output vector may be represented as A(1)+S,
A4S, . . . A(n)+S.

[0045] Inan example of a VS instruction, the computation
module 110 may include one or more subtractors configured
to subtract the second elements of the second vector from the
first elements in the first vector. The combiner may be
similarly configured to combine the subtraction results to
generate an output vector. The output vector may be repre-
sented as A(1)-B(1), A(2)-B(2), . . . A(n)-B(n).

[0046] In response to an SSV instruction, the subtractors
may be configured to subtract the scalar value from each
element in the first vector. The output vector may be
represented as A(1)-S, A(2)-S, . . . A(n)-S.

[0047] FIG. 2B illustrates an example vector multiplica-
tion process that may be performed by the example neural
network acceleration processor.

[0048] Similarly, a first vector (“Vector A”) may include
one or more elements respectively denoted as A(1), A(2), .
. . A(n) and, similarly, a second vector (“Vector B”) may
include one or more elements respectively denoted as B(1),
B(2), . . . B(n). The elements in the first vector may be
referred to as first elements. The elements in the second
vector may be referred to as second elements.

[0049] The computation module 110 may include one or
more multipliers. In response to a VMYV instruction, each of
the multipliers may be configured to multiply a first element
in the first vector with a corresponding second element in the
second vector, e.g., A(1) with B(1), A(2) with B(2), . . . A(n)
with B(n). The multiplication results generated respectively
by the one or more multipliers may be directly transmitted
to the combiner. In other words, the multiplication results
may be transmitted to the combiner without being tempo-
rarily stored in the vector caching unit 112. The combiner
may be similarly configured to combine the multiplication

Mar. 28, 2019

results to generate an output vector. The output vector may
be represented as A(1)*B(1), AQ2)*B(2), . . . A(n)*B(n).
[0050] In response to a VMS instruction, each of the
multipliers may be configured to multiply a first element in
the first vector with a scalar value. The combiner may be
similarly configured to combine the multiplication results to
generate an output vector. The output vector may be repre-
sented as A(1)*S, A(2)*S, . . . A(n)*S.

[0051] Inan example of a VD instruction, the computation
module 110 may include one or more dividers configured to
divide the first element by the second elements correspond-
ingly. The combiner may be similarly configured to combine
the division results to generate an output vector. The output
vector may be represented as A(1)/B(1), A(2)/B(2), . . .
A(n)/B(n).

[0052] Inresponsetoan SDV instruction, the dividers may
be configured to divide the first elements by a scalar value.
The combiner may be similarly configured to combine the
division results to generate an output vector. The output
vector may be represented as A(1)/S, AQ2)/S, . . . A@)/S.

[0053] FIG. 3 illustrates an example computation module
in the example neural network acceleration processor by
which vector operations may be implemented in a neural
network;

[0054] As depicted, the computation module 110 may
include a computation unit 302, a data dependency relation-
ship determination unit 304, a neuron caching unit 306. The
computation unit 302 may further include one or more
multipliers 310, one or more adders 312, an inverter 314, a
reciprocal calculator 316, a combiner 318, and a vector
generator 320.

[0055] The data dependency relationship determination
unit 304 may be configured to perform data access opera-
tions (e.g., reading or writing operations) on the caching
units including the neuron caching unit 306 during the
computation process. The data dependency relationship
determination unit 304 may be configured to prevent con-
flicts in reading and writing of the data in the caching units.
For example, the data dependency relationship determina-
tion unit 304 may be configured to determine whether there
is dependency relationship in terms of data between a
micro-instruction which to be executed and a micro-instruc-
tion being executed. If no dependency relationship exists,
the micro-instruction may be allowed to be executed; oth-
erwise, the micro-instruction may not be allowed to be
executed until all micro-instructions on which it depends
have been executed completely. The dependency relation-
ship may be determined when a target operation range of the
micro-instruction to be executed overlaps a target operation
range of a micro-instruction being executed. For example,
all micro-instructions sent to the data dependency relation-
ship determination unit 304 may be stored in an instruction
queue within the data dependency relationship determina-
tion unit 304. The instruction queue may indicate the relative
priorities of the stored micro-instructions. In the instruction
queue, if the target operation range of reading data by a
reading instruction conflicts with or overlaps the target
operation range of writing data by a writing instruction of
higher priority in the front of the instruction queue, then the
reading instruction may not be executed until the writing
instruction is executed.

[0056] The neuron caching unit 306 may be configured to
store the elements in the first vector and the second vector.

US 2019/0095401 Al

[0057] In some examples, the computation unit 320 may
receive a scalar value from the instruction caching unit 104.
The vector generator 320 may be configured to expand the
scalar value into the first vector or the second vector. In other
words, the vector generator 320 may overwrite the elements
in the first vector or the second vector with the scalar value.
Alternatively, the vector generator 320 may generate a
vector of a same length as the first vector or the second
vector. Elements of the generated vector may be assigned
with the scalar value.

[0058] Thus, with respect to a VAS, SSV, VMS, or SDV
instruction that involves a scalar value and a vector, the
vector generator 320 may convert the scalar value into a
vector. The operations may be performed between a vector
converted from the scalar value and a received vector.
[0059] The computation unit 302 may be configured to
receive the micro-instructions decoded from the vector
operation instruction from the controller unit 106. In the
example that the micro-instructions instruct the computation
module 110 to perform a vector addition operation to two
vectors, the one or more adders 312 may be respectively
configured to add a first element in the first vector to a
corresponding second element in the second vector. The first
vector and the second vector may be retrieved from the
vector caching unit 112 or may be expanded from the scalar
value from the instruction caching unit 104.

[0060] The addition results generated respectively by the
one or more adders may be directly transmitted to the
combiner 318 without being temporarily stored in the vector
caching unit 112 or the neuron caching unit 306. The
combiner 318 may be configured to combine the addition
results to generate an output vector. The output vector may
be represented as A(1)+B(1), A(2)+B(2), . . . A(n)+B(n).
[0061] In response to a VAS instruction, the adders 312
may be configured to add a scalar value to each element in
the first vector. The output vector may be represented as
AD)+S, AQ)+S, .. . A@)+S.

[0062] Inresponse to a VS instruction, the subtractors 314
may be configured to subtract the second elements of the
second vector from the first elements correspondingly. The
combiner 318 may be similarly configured to combine the
addition results to generate an output vector. The output
vector may be represented as A(1)-B(1), A2)-B(2), . . .
A(n)-B(n).

[0063] In response to an SSV instruction, the subtractors
314 may be configured to subtract the scalar value from each
element in the first vector. The output vector may be
represented as A(1)-S, A(2)-S, . . . A(n)-S.

[0064] In the example that the micro-instructions instruct
the computation module 110 to perform a vector multipli-
cation operation to two vectors, each of the multipliers 310
may be configured to multiply a first element in the first
vector with a corresponding second element in the second
vector, e.g., A(1) with B(1), A(2) with B(2), . . . A(n) with
B(n). The multiplication results generated respectively by
the one or more multipliers may be directly transmitted to
the combiner 318 without being temporarily stored in the
vector caching unit 112 or the neuron caching unit 306. The
combiner 318 may be similarly configured to combine the
multiplication results to generate an output vector. The
output vector may be represented as A(1)*B(1), A(2)*B(2),
.. . A(n)*B(n).

[0065] In response to a VMS instruction, each of the
multipliers 310 may be configured to multiply a first element

Mar. 28, 2019

in the first vector with a scalar value. The combiner may be
similarly configured to combine the multiplication results to
generate an output vector. The output vector may be repre-
sented as A(1)*S, A(2)*S, . . . A(n)*S.

[0066] In some examples, the dividers 316 may be con-
figured to divide the first elements by the second elements of
the second vector The combiner 318 may be similarly
configured to combine the division results to generate an
output vector. The output vector may be represented as
A(1)BQ1), A2)/B(2), . . . A(n)/B(n).

[0067] Inresponse to an SDV instruction, the dividers 316
may be configured to divide the first elements by a scalar
value. The combiner may be similarly configured to com-
bine the division results to generate an output vector. The
output vector may be represented as A(1)/S, AQ2)/S, . . .
A(n)/S.

[0068] FIG. 4A illustrates a flow chart of an example
method 400 for performing vector multiplication between
two vectors in a neural network. The method 400 may be
performed by one or more components the apparatus of
FIGS. 1 and 3.

[0069] At block 402, the example method 400 may
include receiving, by a controller unit, a vector-multiply-
vector instruction that includes a first address of a first
vector, a second address of a second vector, and an operation
code that indicates an operation to multiply the first vector
with the second vector. For example, the controller unit 106
may receive a vector-multiply-vector instruction that
includes a first address of a first vector, a second address of
a second vector, and an operation code that indicates an
operation to multiply the first vector with the second vector.
A first vector may include one or more elements respectively
denoted as A(1), A(2), . . . A(n) and, similarly, a second
vector may include one or more elements respectively
denoted as B(1), B(2), . . . B(n).

[0070] At block 404, the example method 400 may
include receiving, by a computation module, the first vector
and the second vector in response to the vector-multiply-
vector instruction based on the first address and the second
address. For example, the computation module 110 may be
configured to receive the first vector and the second vector
in response to the vector-multiply-vector instruction.

[0071] At block 406, the example method 400 may
include respectively multiplying, by one or more multipliers
of the computation module, each of the first elements with
a corresponding one of the second elements to generate one
or more multiplication results. For example, the one or more
multipliers 310 may be respectively configured to multiply
a first element in the first vector with a corresponding second
element in the second vector. The multiplication results
generated respectively by the one or more multipliers 310
may be directly transmitted to the combiner 318 without
being temporarily stored in the vector caching unit 112 or the
neuron caching unit 306.

[0072] At block 408, the example method 400 may
include combining, by a combiner of the computation mod-
ule, the one or more multiplication results into an output
vector. For example, the combiner 318 may be configured to
combine the multiplication results to generate an output
vector. The output vector may be represented as A(1)*B(1),
AQ2)*B(2), . . . A(n)*B(n).

[0073] FIG. 4B illustrates a flow chart of an example
method 401 for performing vector multiplication between a

US 2019/0095401 Al

vector and a scalar in a neural network. The method 401 may
be performed by one or more components the apparatus of
FIGS. 1 and 3.

[0074] At block 452, the example method 401 may
include receiving, by a controller unit, a vector-multiply-
scalar instruction that includes a first address of a vector, a
second address of a scalar value, and an operation code that
indicates an operation to multiply the vector with the scalar
value. For example, the controller unit 106 may receive a
VMS instruction that includes a first address of a vector, a
second address of a scalar value, and an operation code that
indicates an operation to multiply the vector with the scalar
value.

[0075] At block 454, the example method 401 may
include receiving, by a computation module, the vector and
the scalar value in response to the vector-multiply-scalar
instruction based on the first address and the second address.
For example, the computation module 110 may be config-
ured to receive a first vector A and a scalar value.

[0076] At block 456, the example method 401 may
include respectively multiplying, by one or more multipliers
of the computation module, each of the elements with the
scalar value to generate one or more multiplication results.
For example, the multipliers 310 may be configured to
multiply the scalar value with each element in the first
vector.

[0077] At block 458, the example. the example method
401 may include combining, by a combiner of the compu-
tation module, the one or more multiplication results into an
output vector. For example, the combiner 318 may be
configured to combine the multiplication results into an
output vector. The output vector may be represented as
AD*S, AQ2)*S, . . . A(n)*S.

[0078] FIG. 5A illustrates a flow chart of an example
method 500 for performing vector division between two
vectors in a neural network. The method 500 may be
performed by one or more components the apparatus of
FIGS. 1 and 3.

[0079] At block 502, the example method 500 may
include receiving, by a controller unit, a vector-divide
instruction that includes a first address of a first vector, a
second address of a second vector, and an operation code
that indicates an operation to divide the first vector by the
second vector. For example, the controller unit 106 may
receive a vector-divide instruction that includes a first
address of a first vector, a second address of a second vector,
and an operation code that indicates an operation to divide
the first vector by the second vector. A first vector may
include one or more elements respectively denoted as A(1),
A(2), . . . A(n) and, similarly, a second vector may include
one or more elements respectively denoted as B(1), B(2), .
.. B(n).

[0080] At block 504, the example method 500 may
include receiving, by a computation module, the first vector
and the second vector in response to the vector-divide
instruction based on the first address and the second address.
For example, the computation module 110 may be config-
ured to receive the first vector and the second vector in
response to the vector-divide instruction.

[0081] At block 506, the example method 500 may
include respectively dividing, by one or more dividers of the
computation module, each of the first elements by a corre-
sponding one of the second elements to generate one or more

Mar. 28, 2019

division results. For example, the dividers 316 may be
configured to divide the first elements correspondingly by
the second elements.

[0082] At block 508, the example method 500 may
include combining, by a combiner, the one or more division
results into an output vector. For example, the combiner 318
may be similarly configured to combine the division results
to generate an output vector. The output vector may be
represented as A(1)/B(1), AQ2)/B(2), . . . A(n)/B(n).

[0083] FIG. 5B illustrates a flow chart of an example
method 501 for performing vector division between a vector
and a scalar value in a neural network.

[0084] At block 552, the example method 501 may
include receiving, by a controller unit, a scalar-divide-vector
instruction that includes a first address of a vector, a second
address of a scalar value, and an operation code that indi-
cates an operation to divide the vector by the scalar value.
For example, the controller unit 106 may receive as SDV
instruction that includes a first address of a vector, a second
address of a scalar value, and an operation code that indi-
cates an operation to divide the vector by the scalar value.
[0085] At block 554, the example method 501 may
include receiving, by a computation module, the vector and
the scalar value in response to the scalar-divide-vector
instruction based on the first address and the second address.
For example, the computation module 110 may be config-
ured to receive a first vector A and a scalar value.

[0086] At block 556, the example method 501 may
include respectively dividing, by one or more dividers of the
computation module, each of the elements by the scalar
value to generate one or more division results. For example,
the dividers 316 may be configured to divide each element
in the first vector by the scalar value.

[0087] At block 558, the example method 501 may
include combining, by a combiner of the computation mod-
ule, the one or more division results into an output vector.
For example, the combiner 318 may be similarly configured
to combine the subtraction results to generate an output
vector. The output vector may be represented as A(1)/S,
AQ2)/S, ... An)/S.

[0088] The process or method described in the above
accompanying figures can be performed by process logic
including hardware (for example, circuit, specific logic etc.),
firmware, software (for example, a software being external-
ized in non-transitory computer-readable medium), or the
combination of the above two. Although the process or
method is described above in a certain order, it should be
understood that some operations described may also be
performed in different orders. In addition, some operations
may be executed concurrently rather than in order.

[0089] In the above description, each embodiment of the
present disclosure is illustrated with reference to certain
illustrative embodiments. Apparently, various modifications
may be made to each embodiment without going beyond the
wider spirit and scope of the present disclosure presented by
the affiliated claims. Correspondingly, the description and
accompanying figures should be understood as illustration
only rather than limitation. It is understood that the specific
order or hierarchy of steps in the processes disclosed is an
illustration of exemplary approaches. Based upon design
preferences, it is understood that the specific order or
hierarchy of steps in the processes may be rearranged.
Further, some steps may be combined or omitted. The
accompanying method claims present elements of the vari-

US 2019/0095401 Al

ous steps in a sample order, and are not meant to be limited
to the specific order or hierarchy presented.

[0090] The previous description is provided to enable any
person skilled in the art to practice the various aspects
described herein. Various modifications to these aspects will
be readily apparent to those skilled in the art, and the generic
principles defined herein may be applied to other aspects.
Thus, the claims are not intended to be limited to the aspects
shown herein but is to be accorded the full scope consistent
with the language claims, wherein reference to an element in
the singular is not intended to mean “one and only one”
unless specifically so stated, but rather “one or more.”
Unless specifically stated otherwise, the term “some” refers
to one or more. All structural and functional equivalents to
the elements of the various aspects described herein that are
known or later come to be known to those of ordinary skill
in the art are expressly incorporated herein by reference and
are intended to be encompassed by the claims. Moreover,
nothing disclosed herein is intended to be dedicated to the
public regardless of whether such disclosure is explicitly
recited in the claims. No claim element is to be construed as
a means plus function unless the element is expressly recited
using the phrase “means for.”

[0091] Moreover, the term “or” is intended to mean an
inclusive “or” rather than an exclusive “or.” That is, unless
specified otherwise, or clear from the context, the phrase “X
employs A or B” is intended to mean any of the natural
inclusive permutations. That is, the phrase “X employs A or
B” is satisfied by any of the following instances: X employs
A; X employs B; or X employs both A and B. In addition,
the articles “a” and “an” as used in this application and the
appended claims should generally be construed to mean
“one or more” unless specified otherwise or clear from the
context to be directed to a singular form.

We claim:

1. An apparatus for vector operations in a neural network,

comprising:
a controller unit configured to receive a vector-multiply-
scalar instruction that includes a first address of a
vector, a second address of a scalar value, and an
operation code that indicates an operation to multiply
the vector with the scalar value; and
a computation module configured to receive the vector
and the scalar value in response to the vector-multiply-
scalar instruction based on the first address and the
second address,
wherein the vector includes one or more elements, and
wherein the computation module includes:
one or more multipliers configured to respectively
multiply each of the elements with the scalar value to
generate one or more multiplication results, and

a combiner configured to combine the one or more
multiplication results into an output vector.

2. The apparatus of claim 1,

wherein the vector-multiply-scalar instruction further
indicates a first length of the first vector, and

wherein the computation module is configured to retrieve
the first vector based on the first address and the first
length.

3. The apparatus of claim 1,

wherein the vector-multiply-scalar instruction further
indicates a second length of the second vector, and

Mar. 28, 2019

wherein the computation module is configured to retrieve
the second vector based on the second address and the
second length.

4. The apparatus of claim 1, wherein the vector-multiply-
scalar instruction further includes one or more register 1Ds
that identify one or more registers configured to store the
first address of the first vector, a first length of the first
vector, the second address of the second vector, and a second
length of the second vector.

5. The apparatus of claim 1, wherein the controller unit
comprises an instruction obtaining module configured to
obtain the vector-multiply-scalar instruction from an instruc-
tion storage device.

6. The apparatus of claim 5, wherein the controller unit
further comprises a decoding module configured to decode
the vector-multiply-scalar instruction into one or more
micro-instructions.

7. The apparatus of claim 6, wherein the controller unit
further comprises an instruction queue module configured to
temporarily store the vector-multiply-scalar instruction and
one or more previously received instructions, and retrieve
information corresponding to operation fields in the vector-
multiply-scalar instruction.

8. The apparatus of claim 7, wherein the controller unit
further comprises an instruction register configured to store
the information corresponding to the operation fields in the
vector-multiply-scalar instruction.

9. The apparatus of claim 8, wherein the controller unit
further comprises a dependency processing unit configured
to determine whether the vector-multiply-scalar instruction
has a dependency relationship with the one or more previ-
ously received instructions.

10. The apparatus of claim 9, wherein the controller unit
further comprises a storage queue module configured to
store the vector-multiply-scalar instruction while the depen-
dency processing unit is determining whether the vector-
multiply-scalar instruction has the dependency relationship
with the one or more previously received instructions.

11. A method for vector operations in a neural network,
comprising:

receiving, by a controller unit, a vector-multiply-scalar

instruction that includes a first address of a vector, a
second address of a scalar value, and an operation code
that indicates an operation to multiply the vector with
the scalar value;

receiving, by a computation module, the vector and the

scalar value in response to the vector-multiply-scalar
instruction based on the first address and the second
address, wherein the vector includes one or more
elements;

respectively multiplying, by one or more multipliers of

the computation module, each of the elements with the
scalar value to generate one or more multiplication
results; and

combining, by a combiner of the computation module, the

one or more multiplication results into an output vector.

12. The method of claim 11, further comprising obtaining,
by an instruction obtaining module of the controller unit, the
vector-multiply-scalar instruction from an instruction stor-
age device.

13. The method of claim 12, further comprising decoding,
by a decoding module of the controller unit, the vector-
multiply-scalar instruction into one or more micro-instruc-
tions.

US 2019/0095401 Al

14. The method of claim 13, further comprising tempo-
rarily storing, by an instruction queue module of the con-
troller unit, the vector-multiply-scalar instruction and one or
more previously received instructions, and retrieve informa-
tion corresponding to operation fields in the vector-multiply-
scalar instruction.

15. The method of claim 14, further comprising storing,
by an instruction register of the controller unit, the infor-
mation corresponding to the operation fields in the vector-
multiply-scalar instruction.

16. The method of claim 15, further comprising deter-
mining, by a dependency processing unit of the controller
unit, whether the vector-multiply-scalar instruction has a
dependency relationship with the one or more previously
received instructions.

17. The method of claim 16, further comprising storing,
by a storage queue module of the controller unit, the
vector-multiply-scalar instruction while the dependency
processing unit is determining whether the vector-multiply-
scalar instruction has the dependency relationship with the
one or more previously received instructions.

#* #* #* #* #*

Mar. 28, 2019

