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APPARATUS AND METHODS FOR VECTOR 
OPERATIONS 

CROSS - REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] The present invention is a continuation - in - part of 
PCT Application No . PCT / CN2016 / 081107 , filed on May 5 , 
2016 , which claims priority to commonly owned CN appli 
cation number 201610266989 . x , filed on Apr . 26 , 2016 . The 
entire contents of each of the aforementioned applications 
are incorporated herein by reference . 

BACKGROUND 
[ 0002 ] Multilayer neural networks ( MNN ) are widely 
applied to the fields such as pattern recognition , image 
processing , functional approximation and optimal computa 
tion . In recent years , due to the higher recognition accuracy 
and better parallelizability , multilayer artificial neural net 
works have received increasing attention by academic and 
industrial communities . More specifically , operations 
between two vectors may be performed frequently in deep 
learning processes in MMNs . 
[ 0003 ] A known method to perform operations for two 
vectors in a multilayer artificial neural network is to use a 
general - purpose processor . However , one of the defects of 
the method is low performance of a single general - purpose 
processor which cannot meet performance requirements for 
usual multilayer neural network operations with respect to a 
vector with a large number of elements . 
10004 ] Another known method to perform operations for 
two vectors of the multilayer artificial neural network is to 
use a graphics processing unit ( GPU ) . Such a method uses 
a general - purpose register file and a general - purpose stream 
processing unit to execute general purpose single - instruc 
tion - multiple - data ( SIMD ) instructions to support the algo 
rithms in MNNs . However , since GPU only contains rather 
small on - chip caching , then data of the vector elements may 
be repeatedly moved from the off - chip , and off - chip band 
width becomes a main performance bottleneck , causing 
huge power consumption . 

addition results . The combiner may be configured to com 
bine the one or more addition results into an output vector . 
10007 ] . Another example apparatus may include a vector 
caching unit configured to store a first vector and a second 
vector , wherein the first vector includes one or more first 
elements and the second vector includes one or more second 
elements . The example apparatus may further include a 
computation module that includes one or more multipliers 
and a combiner . The one or more multipliers may be 
configured to respectively multiply each of the first elements 
with a corresponding one of the second elements to generate 
one or more multiplication results . The combiner may be 
configured to combine multiplication results into an output 
vector . 
[ 0008 ] Another example aspect of the present disclosure 
provides an example method for vector operations in a 
neural network . The example method may include storing , 
by a vector caching unit , a first vector and a second vector , 
wherein the first vector includes one or more first elements 
and the second vector includes one or more second ele 
ments ; respectively adding , by one or more adders of a 
computation module , each of the first elements to a corre 
sponding one of the second elements to generate one or more 
addition results , and combining , by a combiner of the 
computation module , the one or more addition results into an 
output vector . 
[ 00091 . The example aspect of the present disclosure may 
include another example method for vector operations in a 
neural network . The example method may include storing , 
by a vector caching unit , a first vector and a second vector , 
wherein the first vector includes one or more first elements 
and the second vector includes one or more second ele 
ments ; respectively multiplying , by one or more multiplier 
of a computation module , each of the first elements with a 
corresponding one of the second elements to generate one or 
more multiplication results ; and combining , by a combiner , 
the one or more multiplication results into an output vector . 
[ 0010 ] To the accomplishment of the foregoing and related 
ends , the one or more aspects comprise the features herein 
after fully described and particularly pointed out in the 
claims . The following description and the annexed drawings 
set forth in detail certain illustrative features of the one or 
more aspects . These features are indicative , however , of but 
a few of the various ways in which the principles of various 
aspects may be employed , and this description is intended to 
include all such aspects and their equivalents . 

SUMMARY 

BRIEF DESCRIPTION OF THE DRAWINGS 

10005 ] The following presents a simplified summary of 
one or more aspects in order to provide a basic understand 
ing of such aspects . This summary is not an extensive 
overview of all contemplated aspects , and is intended to 
neither identify key or critical elements of all aspects nor 
delineate the scope of any or all aspects . Its sole purpose is 
to present some concepts of one or more aspects in a 
simplified form as a prelude to the more detailed description 
that is presented later . 
10006 ] One example aspect of the present disclosure pro 
vides an example apparatus for vector operations in a neural 
network . The example apparatus may include a vector 
caching unit configured to store a first vector and a second 
vector , wherein the first vector includes one or more first 
elements and the second vector includes one or more second 
elements . Further , the example apparatus may include a 
computation module that includes one or more adders and a 
combiner . The one or more adders may be configured to 
respectively add each of the first elements to a correspond 
ing one of the second elements to generate one or more 

[ 0011 ] The disclosed aspects will hereinafter be described 
in conjunction with the appended drawings , provided to 
illustrate and not to limit the disclosed aspects , wherein like 
designations denote like elements , and in which : 
[ 0012 ] FIG . 1 illustrates a block diagram of an example 
neural network acceleration processor by which vector 
operations may be implemented in a neural network ; 
[ 0013 ] FIG . 2A illustrates an example vector addition 
process that may be performed by the example neural 
network acceleration processor ; 
[ 0014 ] FIG . 2B illustrates an example vector multiplica 
tion process that may be performed by the example neural 
network acceleration processor ; 
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[ 0015 ] . FIG . 3 illustrates an example computation module 
in the example neural network acceleration processor by 
which vector operations may be implemented in a neural 
network ; 
[ 0016 ] FIG . 4A illustrates a flow chart of an example 
method for performing vector multiplication between two 
vectors in a neural network ; 
[ 0017 ] FIG . 4B illustrates a flow chart of an example 
method for performing vector multiplication between a 
vector and a scalar value ; 
[ 0018 ] FIG . 5A illustrates a flow chart of an example 
method for performing vector division between two vectors 
in a neural network ; and 
[ 0019 ] FIG . 5B illustrates a flow chart of an example 
method for performing vector division between a vector and 
a scalar value in a neural network . 

DETAILED DESCRIPTION 
[ 0020 ] Various aspects are now described with reference 
to the drawings . In the following description , for purpose of 
explanation , numerous specific details are set forth in order 
to provide a thorough understanding of one or more aspects . 
It may be evident , however , that such aspect ( s ) may be 
practiced without these specific details . 
[ 0021 ] In the present disclosure , the term “ comprising ” 
and " including ” as well as their derivatives mean to contain 
rather than limit ; the term " or ” , which is also inclusive , 
means and / or . 
[ 0022 ] In this specification , the following various embodi 
ments used to illustrate principles of the present disclosure 
are only for illustrative purpose , and thus should not be 
understood as limiting the scope of the present disclosure by 
any means . The following description taken in conjunction 
with the accompanying drawings is to facilitate a thorough 
understanding to the illustrative embodiments of the present 
disclosure defined by the claims and its equivalent . There are 
specific details in the following description to facilitate 
understanding . However , these details are only for illustra 
tive purpose . Therefore , persons skilled in the art should 
understand that various alternation and modification may be 
made to the embodiments illustrated in this description 
without going beyond the scope and spirit of the present 
disclosure . In addition , for clear and concise purpose , some 
known functionality and structure are not described . 
Besides , identical reference numbers refer to identical func 
tion and operation throughout the accompanying drawings . 
[ 0023 ] Various types of vector operations between two 
vectors may be performed in a neural network . A vector may 
refer to one or more values formatted in a one - dimensional 
data structure . The values included in a vector may be 
referred to as elements . The number of the elements in the 
vector may be referred to as a length of the vector . 
10024 ) FIG . 1 illustrates a block diagram of an example 
neural network acceleration processor by which vector 
operations may be implemented in a neural network . 
[ 0025 ] As depicted , the example neural network accelera 
tion processor 100 may include a controller unit 106 , a direct 
memory access unit 102 , a computation module 110 , and a 
vector caching unit 112 . Any of the above - mentioned com 
ponents or devices may be implemented by a hardware 
circuit ( e . g . , application specific integrated circuit ( ASIC ) , 
Coarse - grained reconfigurable architectures ( CGRAs ) , 
field - programmable gate arrays ( FPGAs ) , analog circuits , 
memristor , etc . ) . 

[ 0026 ] In some examples , a vector operation instruction 
may originate from an instruction storage device 134 to the 
controller unit 106 . An instruction obtaining module 132 
may be configured to obtain a vector operation instruction 
from the instruction storage device 134 and transmit the 
instruction to a decoding module 130 . 
100271 The decoding module 130 may be configured to 
decode the instruction . The instruction may include one or 
more operation fields that indicate parameters for executing 
the instruction . The parameters may refer to identification 
numbers of different registers ( “ fregister ID ” hereinafter ) in 
the instruction register 126 . Thus , by modifying the param 
eters in the instruction register 126 , the neural network 
acceleration processor 100 may modify the instruction with 
out receiving new instructions . The decoded instruction may 
be transmitted by the decoding module 130 to an instruction 
queue module 128 . In some other examples , the one or more 
operation fields may store immediate values such as 
addresses in the memory 101 and a scalar value , rather than 
the register IDs . 
[ 0028 ] The instruction queue module 128 may be config 
ured to temporarily store the received instruction and / or one 
or more previously received instructions . Further , the 
instruction queue module 128 may be configured to retrieve 
information according to the register IDs included in the 
instruction from the instruction register 126 . 
[ 0029 ] For example , the instruction queue module 128 
may be configured to retrieve information corresponding to 
operation fields in the instruction from the instruction reg 
ister 126 . Information for the operation fields in vector 
addition ( VA ) instruction may include a starting address of 
a first vector , a length of the first vector , a starting address 
of a second vector , a length of the second vector , and an 
address for an output vector . As depicted , in some examples , 
the instruction register 126 may be implemented by one or 
more registers external to the controller unit 106 . 
( 0030 ) Once the relevant values are retrieved , the instruc 
tion may be sent to a dependency processing unit 124 . The 
dependency processing unit 124 may be configured to 
determine whether the instruction has a dependency rela 
tionship with the data of the previous instruction that is 
being executed . This instruction may be stored in the storage 
queue module 122 until it has no dependency relationship on 
the data with the previous instruction that has not finished 
executing . If the dependency relationship does not exist , the 
controller unit 106 may be configured to decode one of the 
instructions into micro - instructions for controlling opera 
tions of other modules including the direct memory access 
unit 102 and the computation module 110 . 
[ 0031 ] For example , the control unit 106 may receive a 
vector addition instruction that includes a vector addition 
( VA ) instruction that include a starting address of a first 
vector , a length of the first vector , a starting address of a 
second vector , a length of the second vector , and an address 
for an output vector . According to the VA instruction , the 
direct memory access unit 102 may be configured to retrieve 
the first vector and the second vector from the memory 101 
according to the respective addresses included in the VA 
instruction . The retrieved vectors may be transmitted to and 
stored in the vector caching unit 112 . 
[ 0032 ] In some examples , the controller unit 106 may 
receive a vector - add - scalar ( VAS ) instruction that includes a 
starting address of a vector , a length of the vector , a scalar 
value , and an address for an output vector . According to the 
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VAS instruction , the direct memory access unit 102 may be 
configured to retrieve the vector from the memory 101 
according to the address . The vector may be transmitted to 
and stored in the vector caching unit 112 . The scalar value 
included in the VAS instruction may be stored in the 
instruction caching unit 104 . The instruction caching unit 
104 may be implemented as a scratchpad memory , e . g . , 
Dynamic random - access memory ( DRAM ) , embedded 
DRAM ( DRAM ) , memristor , 3D - DRAM , non - volatile 
memory , etc . 
[ 0033 ] In some examples , the controller unit 106 may 
receive a vector - subtraction ( VS ) instruction that includes a 
starting address of a first vector , a length of the first vector , 
a starting address of a second vector , a length of the second 
vector , and an address for an output vector . According to the 
VS instruction , the direct memory access unit 102 may be 
configured to retrieve the first vector and the second vector 
from the memory 101 according to the respective addresses 
included in the VS instruction . The retrieved vectors may be 
transmitted to and stored in the vector caching unit 112 . 
[ 0034 ] In some examples , the controller unit 106 may 
receive a scalar - subtract - vector ( SSV ) instruction that 
include a starting address of a vector , a length of the vector , 
a scalar value , and an address for an output vector . Accord 
ing to the SSV instruction , the direct memory access unit 
102 may be configured to retrieve the vector from the 
memory 101 according to the address . The vector may be 
transmitted to and stored in the vector caching unit 112 . The 
scalar value included in the SSV instruction may be stored 
in the instruction caching unit 104 . 
[ 0035 ] In some examples , the controller unit 106 may 
receive a vector - multiply - vector ( VMV ) instruction that 
includes a starting address of a first vector , a length of the 

f0036 ] In some examples , the controller unit 106 may 
receive a vector - multiply - scalar ( VMS ) instruction that 
include a starting address of a vector , a length of the vector , 
a scalar value , and an address for an output vector . Accord 
ing to the VMS instruction , the direct memory access unit 
102 may be configured to retrieve the vector from the 
memory 101 according to the address . The vector may be 
transmitted to and stored in the vector caching unit 112 . The 
scalar value included in the VMS instruction may be stored 
in the instruction caching unit 104 . 
0037 ] In some examples , the controller unit 106 may 
receive a vector - divide ( VD ) instruction that includes a 
starting address of a first vector , a length of the first vector , 
a starting address of a second vector , a length of the second 
vector , and an address for an output vector . According to the 
VD instruction , the direct memory access unit 102 may be 
configured to retrieve the first vector and the second vector 
from the memory 101 according to the respective addresses 
included in the VD instruction . The retrieved vectors may be 
transmitted to and stored in the vector caching unit 112 . 
[ 0038 ] In some examples , the controller unit 106 may 
receive a scalar - divide - vector ( SDV ) instruction that include 
a starting address of a vector , a length of the vector , a scalar 
value , and an address for an output vector . According to the 
SDV instruction , the direct memory access unit 102 may be 
configured to retrieve the vector from the memory 101 
according to the address . The vector may be transmitted to 
and stored in the vector caching unit 112 . The scalar value 
included in the SDV instruction may be stored in the 
instruction caching unit 104 . 
0039 ] The above mentioned instructions may be format 
ted as follows and may be stored in the instruction caching 
unit 104 : 

Register 0 Register 1 Register 2 Register 3 Register 4 
VA Length of 

the second 
vector 

Address for 
output result 

Scalar value 

Length of 
the second 
vector 

Address for 
output result 

Scalar value 

Starting address Length of the first Starting 
of the first vector vector address of 

the second 
vector 

VAS Starting address Length of Address for 
of a vector the vector output result 

VS Starting address Length of Starting 
of the first vector the first address of 

vector the second 
vector 

SSV Starting address Length of Address for 
of a vector the vector output result 

VMV Starting address Length of Starting 
of the first vector the first address of 

vector the second 
vector 

VMS Starting address Length of Address for 
of a vector the vector output result 

VD Starting address Length of Starting 
of the first vector the first address of 

vector the second 
vector 

SDV Starting address Length of Address for 
of a vector the vector output result 

Length of 
the second 
vector 

Address for 
output result 

Scalar value 

Length of 
the second 
vector 

Address for 
output result 

Scalar value 
of a ve 

first vector , a starting address of a second vector , a length of 
the second vector , and an address for an output vector . 
According to the VMV instruction , the direct memory 
access unit 102 may be configured to retrieve the first vector 
and the second vector from the memory 101 according to the 
respective addresses included in the VMV instruction . The 
retrieved vectors may be transmitted to and stored in the 
vector caching unit 112 . 

[ 0040 ] Hereinafter , a caching unit ( e . g . , the vector caching 
unit 112 etc . ) may refer to an on - chip caching unit integrated 
in the neural network acceleration processor 100 , rather than 
other storage devices in memory 101 or other external 
devices . In some examples , the on - chip caching unit may be 
implemented as a register file , an on - chip buffer , an on - chip 
Static Random Access Memory ( SRAM ) , or other types of 
on - chip storage devices that may provide higher access 
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speed than the external memory . In some other examples , the 
instruction register 126 may be implemented as a scratchpad 
memory , e . g . , Dynamic random - access memory ( DRAM ) , 
embedded DRAM ( eDRAM ) , memristor , 3D - DRAM , non 
volatile memory , etc . 
[ 0041 ] FIG . 2A illustrates an example vector addition 
process that may be performed by the example neural 
network acceleration processor . 
10042 ] As depicted , a first vector ( “ Vector A ” ) may 
include one or more elements respectively denoted as A ( 1 ) , 
A ( 2 ) , . . . A ( n ) and , similarly , a second vector ( “ Vector B ” ) 
may include one or more elements respectively denoted as 
B ( 1 ) , B ( 2 ) , . . . B ( n ) . The elements in the first vector may be 
referred to as first elements . The elements in the second 
vector may be referred to as second elements . 
10043 ] The computation module 110 may include one or 
more adders . In response to a VA instruction , each of the 
adders may be configured to add a first element in the first 
vector to a corresponding second element in the second 
vector e . g . , A ( 1 ) to B ( 1 ) , A ( 2 ) to B ( 2 ) , . . . A ( n ) to B ( n ) . The 
addition results generated respectively by the one or more 
adders may be directly transmitted to a combiner . In other 
words , the addition results may be transmitted to the com 
biner without being temporarily stored in the vector caching 
unit 112 . The combiner may be configured to combine the 
addition results to generate an output vector . The output 
vector may be represented as A ( 1 ) + B ( 1 ) , A ( 2 ) + B ( 2 ) , . . . 
A ( n ) + B ( n ) . 
[ 0044 ] In response to a VAS instruction , the adders may be 
configured to add a scalar value to each element in the first 
vector . The output vector may be represented as A ( 1 ) + S , 
A ( 2 ) + S , . . . A ( n ) + S . 
[ 0045 ] In an example of a VS instruction , the computation 
module 110 may include one or more subtractors configured 
to subtract the second elements of the second vector from the 
first elements in the first vector . The combiner may be 
similarly configured to combine the subtraction results to 
generate an output vector . The output vector may be repre 
sented as A ( 1 ) , B ( 1 ) , A ( 2 ) - B ( 2 ) , . . . A ( n ) - B ( n ) . 
[ 0046 ] In response to an SSV instruction , the subtractors 
may be configured to subtract the scalar value from each 
element in the first vector . The output vector may be 
represented as A ( 1 ) - S , A ( 2 ) - S , . . . A ( n ) - S . 
[ 0047 ] FIG . 2B illustrates an example vector multiplica 
tion process that may be performed by the example neural 
network acceleration processor . 
[ 0048 ] Similarly , a first vector ( “ Vector A ” ) may include 
one or more elements respectively denoted as A ( 1 ) , A ( 2 ) , . 
. . A ( n ) and , similarly , a second vector ( “ Vector B ” ) may 
include one or more elements respectively denoted as B ( 1 ) , 
B ( 2 ) , . . . B ( n ) . The elements in the first vector may be 
referred to as first elements . The elements in the second 
vector may be referred to as second elements . 
10049 ] The computation module 110 may include one or 
more multipliers . In response to a VMV instruction , each of 
the multipliers may be configured to multiply a first element 
in the first vector with a corresponding second element in the 
second vector , e . g . , A ( 1 ) with B ( 1 ) , A ( 2 ) with B ( 2 ) , . . . A ( n ) 
with B ( n ) . The multiplication results generated respectively 
by the one or more multipliers may be directly transmitted 
to the combiner . In other words , the multiplication results 
may be transmitted to the combiner without being tempo 
rarily stored in the vector caching unit 112 . The combiner 
may be similarly configured to combine the multiplication 

results to generate an output vector . The output vector may 
be represented as A ( 1 ) * B ( 1 ) , A ( 2 ) * B ( 2 ) , . . . A ( n ) * B ( n ) . 
[ 0050 ] In response to a VMS instruction , each of the 
multipliers may be configured to multiply a first element in 
the first vector with a scalar value . The combiner may be 
similarly configured to combine the multiplication results to 
generate an output vector . The output vector may be repre 
sented as A ( 1 ) * S , A ( 2 ) * S , . . . A ( n ) * S . 
10051 ] In an example of a VD instruction , the computation 
module 110 may include one or more dividers configured to 
divide the first element by the second elements correspond 
ingly . The combiner may be similarly configured to combine 
the division results to generate an output vector . The output 
vector may be represented as A ( 1 ) / B ( 1 ) , A ( 2 ) / B ( 2 ) , . . . 
A ( n ) / B ( n ) . 
[ 0052 ] In response to an SDV instruction , the dividers may 
be configured to divide the first elements by a scalar value . 
The combiner may be similarly configured to combine the 
division results to generate an output vector . The output 
vector may be represented as A ( 1 ) / S , A ( 2 ) / S , . . . A ( n ) / S . 
10053 ] FIG . 3 illustrates an example computation module 
in the example neural network acceleration processor by 
which vector operations may be implemented in a neural 
network ; 
[ 0054 ] As depicted , the computation module 110 may 
include a computation unit 302 , a data dependency relation 
ship determination unit 304 , a neuron caching unit 306 . The 
computation unit 302 may further include one or more 
multipliers 310 , one or more adders 312 , an inverter 314 , a 
reciprocal calculator 316 , a combiner 318 , and a vector 
generator 320 . 
[ 0055 ] The data dependency relationship determination 
unit 304 may be configured to perform data access opera 
tions ( e . g . , reading or writing operations ) on the caching 
units including the neuron caching unit 306 during the 
computation process . The data dependency relationship 
determination unit 304 may be configured to prevent con 
flicts in reading and writing of the data in the caching units . 
For example , the data dependency relationship determina 
tion unit 304 may be configured to determine whether there 
is dependency relationship in terms of data between a 
micro - instruction which to be executed and a micro - instruc 
tion being executed . If no dependency relationship exists , 
the micro - instruction may be allowed to be executed ; oth 
erwise , the micro - instruction may not be allowed to be 
executed until all micro - instructions on which it depends 
have been executed completely . The dependency relation 
ship may be determined when a target operation range of the 
micro - instruction to be executed overlaps a target operation 
range of a micro - instruction being executed . For example , 
all micro - instructions sent to the data dependency relation 
ship determination unit 304 may be stored in an instruction 
queue within the data dependency relationship determina 
tion unit 304 . The instruction queue may indicate the relative 
priorities of the stored micro - instructions . In the instruction 
queue , if the target operation range of reading data by a 
reading instruction conflicts with or overlaps the target 
operation range of writing data by a writing instruction of 
higher priority in the front of the instruction queue , then the 
reading instruction may not be executed until the writing 
instruction is executed . 
0056 ] The neuron caching unit 306 may be configured to 
store the elements in the first vector and the second vector . 
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[ 0057 ] In some examples , the computation unit 320 may 
receive a scalar value from the instruction caching unit 104 . 
The vector generator 320 may be configured to expand the 
scalar value into the first vector or the second vector . In other 
words , the vector generator 320 may overwrite the elements 
in the first vector or the second vector with the scalar value . 
Alternatively , the vector generator 320 may generate a 
vector of a same length as the first vector or the second 
vector . Elements of the generated vector may be assigned 
with the scalar value . 
[ 0058 ] Thus , with respect to a VAS , SSV , VMS , or SDV 
instruction that involves a scalar value and a vector , the 
vector generator 320 may convert the scalar value into a 
vector . The operations may be performed between a vector 
converted from the scalar value and a received vector . 
[ 0059 ] The computation unit 302 may be configured to 
receive the micro - instructions decoded from the vector 
operation instruction from the controller unit 106 . In the 
example that the micro - instructions instruct the computation 
module 110 to perform a vector addition operation to two 
vectors , the one or more adders 312 may be respectively 
configured to add a first element in the first vector to a 
corresponding second element in the second vector . The first 
vector and the second vector may be retrieved from the 
vector caching unit 112 or may be expanded from the scalar 
value from the instruction caching unit 104 . 
[ 0060 ] The addition results generated respectively by the 
one or more adders may be directly transmitted to the 
combiner 318 without being temporarily stored in the vector 
caching unit 112 or the neuron caching unit 306 . The 
combiner 318 may be configured to combine the addition 
results to generate an output vector . The output vector may 
be represented as A ( 1 ) + B ( 1 ) , A ( 2 ) + B ( 2 ) , . . . A ( n ) + B ( n ) . 
10061 ] In response to a VAS instruction , the adders 312 
may be configured to add a scalar value to each element in 
the first vector . The output vector may be represented as 
A ( 1 ) + S , A ( 2 ) + S , . . . A ( n ) + S . 
[ 0062 ] In response to a VS instruction , the subtractors 314 
may be configured to subtract the second elements of the 
second vector from the first elements correspondingly . The 
combiner 318 may be similarly configured to combine the 
addition results to generate an output vector . The output 
vector may be represented as A ( 1 ) - B ( 1 ) , A ( 2 ) - B ( 2 ) , . . . 
A ( n ) - B ( n ) . 
[ 0063 ] In response to an SSV instruction , the subtractors 
314 may be configured to subtract the scalar value from each 
element in the first vector . The output vector may be 
represented as A ( 1 ) - S , A ( 2 ) - S , . . . A ( n ) - S . 
10064 ) In the example that the micro - instructions instruct 
the computation module 110 to perform a vector multipli 
cation operation to two vectors , each of the multipliers 310 
may be configured to multiply a first element in the first 
vector with a corresponding second element in the second 
vector , e . g . , A ( 1 ) with B ( 1 ) , A ( 2 ) with B ( 2 ) , . . . A ( n ) with 
B ( n ) . The multiplication results generated respectively by 
the one or more multipliers may be directly transmitted to 
the combiner 318 without being temporarily stored in the 
vector caching unit 112 or the neuron caching unit 306 . The 
combiner 318 may be similarly configured to combine the 
multiplication results to generate an output vector . The 
output vector may be represented as A ( 1 ) * B ( 1 ) , A ( 2 ) * B ( 2 ) , 
. . . A ( n ) * B ( n ) . 
[ 0065 ] In response to a VMS instruction , each of the 
multipliers 310 may be configured to multiply a first element 

in the first vector with a scalar value . The combiner may be 
similarly configured to combine the multiplication results to 
generate an output vector . The output vector may be repre 
sented as A ( 1 ) * S , A ( 2 ) * S , . . . A ( n ) * S . 
[ 0066 ] In some examples , the dividers 316 may be con 
figured to divide the first elements by the second elements of 
the second vector The combiner 318 may be similarly 
configured to combine the division results to generate an 
output vector . The output vector may be represented as 
A ( 1 ) / B ( 1 ) , A ( 2 ) / B ( 2 ) , . . . A ( n ) / B ( n ) . 
[ 0067 ] In response to an SDV instruction , the dividers 316 
may be configured to divide the first elements by a scalar 
value . The combiner may be similarly configured to com 
bine the division results to generate an output vector . The 
output vector may be represented as A ( 1 ) / S , A ( 2 ) / S , . . . 
A ( n ) / S . 
[ 0068 ] FIG . 4A illustrates a flow chart of an example 
method 400 for performing vector multiplication between 
two vectors in a neural network . The method 400 may be 
performed by one or more components the apparatus of 
FIGS . 1 and 3 . 
[ 0069 ] At block 402 , the example method 400 may 
include receiving , by a controller unit , a vector - multiply 
vector instruction that includes a first address of a first 
vector , a second address of a second vector , and an operation 
code that indicates an operation to multiply the first vector 
with the second vector . For example , the controller unit 106 
may receive a vector - multiply - vector instruction that 
includes a first address of a first vector , a second address of 
a second vector , and an operation code that indicates an 
operation to multiply the first vector with the second vector . 
A first vector may include one or more elements respectively 
denoted as A ( 1 ) , A ( 2 ) , . . . A ( n ) and , similarly , a second 
vector may include one or more elements respectively 
denoted as B ( 1 ) , B ( 2 ) , . . . B ( n ) . 
[ 0070 ] At block 404 , the example method 400 may 
include receiving , by a computation module , the first vector 
and the second vector in response to the vector - multiply 
vector instruction based on the first address and the second 
address . For example , the computation module 110 may be 
configured to receive the first vector and the second vector 
in response to the vector - multiply - vector instruction . 
[ 0071 ] At block 406 , the example method 400 may 
include respectively multiplying , by one or more multipliers 
of the computation module , each of the first elements with 
a corresponding one of the second elements to generate one 
or more multiplication results . For example , the one or more 
multipliers 310 may be respectively configured to multiply 
a first element in the first vector with a corresponding second 
element in the second vector . The multiplication results 
generated respectively by the one or more multipliers 310 
may be directly transmitted to the combiner 318 without 
being temporarily stored in the vector caching unit 112 or the 
neuron caching unit 306 . 
[ 0072 ] At block 408 , the example method 400 may 
include combining , by a combiner of the computation mod 
ule , the one or more multiplication results into an output 
vector . For example , the combiner 318 may be configured to 
combine the multiplication results to generate an output 
vector . The output vector may be represented as A ( 1 ) * B ( 1 ) , 
A ( 2 ) * B ( 2 ) , . . . A ( n ) * B ( n ) . 
[ 0073 ] FIG . 4B illustrates a flow chart of an example 
method 401 for performing vector multiplication between a 



US 2019 / 0095401 A1 Mar . 28 , 2019 

vector and a scalar in a neural network . The method 401 may 
be performed by one or more components the apparatus of 
FIGS . 1 and 3 . 
[ 0074 ] At block 452 , the example method 401 may 
include receiving , by a controller unit , a vector - multiply 
scalar instruction that includes a first address of a vector , a 
second address of a scalar value , and an operation code that 
indicates an operation to multiply the vector with the scalar 
value . For example , the controller unit 106 may receive a 
VMS instruction that includes a first address of a vector , a 
second address of a scalar value , and an operation code that 
indicates an operation to multiply the vector with the scalar 
value . 
[ 0075 ] At block 454 , the example method 401 may 
include receiving , by a computation module , the vector and 
the scalar value in response to the vector - multiply - scalar 
instruction based on the first address and the second address . 
For example , the computation module 110 may be config 
ured to receive a first vector A and a scalar value . 
[ 0076 ] At block 456 , the example method 401 may 
include respectively multiplying , by one or more multipliers 
of the computation module , each of the elements with the 
scalar value to generate one or more multiplication results . 
For example , the multipliers 310 may be configured to 
multiply the scalar value with each element in the first 
vector . 
[ 0077 ] At block 458 , the example . the example method 
401 may include combining , by a combiner of the compu 
tation module , the one or more multiplication results into an 
output vector . For example , the combiner 318 may be 
configured to combine the multiplication results into an 
output vector . The output vector may be represented as 
A ( 1 ) * S , A ( 2 ) * S , . . . A ( n ) * S . 
[ 0078 ] FIG . 5A illustrates a flow chart of an example 
method 500 for performing vector division between two 
vectors in a neural network . The method 500 may be 
performed by one or more components the apparatus of 
FIGS . 1 and 3 . 
[ 0079 ] At block 502 , the example method 500 may 
include receiving , by a controller unit , a vector - divide 
instruction that includes a first address of a first vector , a 
second address of a second vector , and an operation code 
that indicates an operation to divide the first vector by the 
second vector . For example , the controller unit 106 may 
receive a vector - divide instruction that includes a first 
address of a first vector , a second address of a second vector , 
and an operation code that indicates an operation to divide 
the first vector by the second vector . A first vector may 
include one or more elements respectively denoted as A ( 1 ) , 
A ( 2 ) , . . . A ( n ) and , similarly , a second vector may include 
one or more elements respectively denoted as B ( 1 ) , B ( 2 ) , . 
. . B ( n ) . 
[ 0080 ] At block 504 , the example method 500 may 
include receiving , by a computation module , the first vector 
and the second vector in response to the vector - divide 
instruction based on the first address and the second address . 
For example , the computation module 110 may be config 
ured to receive the first vector and the second vector in 
response to the vector - divide instruction . 
[ 0081 ] At block 506 , the example method 500 may 
include respectively dividing , by one or more dividers of the 
computation module , each of the first elements by a corre 
sponding one of the second elements to generate one or more 

division results . For example , the dividers 316 may be 
configured to divide the first elements correspondingly by 
the second elements . 
[ 0082 ] At block 508 , the example method 500 may 
include combining , by a combiner , the one or more division 
results into an output vector . For example , the combiner 318 
may be similarly configured to combine the division results 
to generate an output vector . The output vector may be 
represented as A ( 1 ) B ( 1 ) , A ( 2 ) / B ( 2 ) , . . . A ( n ) / B ( n ) . 
10083 ] FIG . 5B illustrates a flow chart of an example 
method 501 for performing vector division between a vector 
and a scalar value in a neural network . 
10084 ] At block 552 , the example method 501 may 
include receiving , by a controller unit , a scalar - divide - vector 
instruction that includes a first address of a vector , a second 
address of a scalar value , and an operation code that indi 
cates an operation to divide the vector by the scalar value . 
For example , the controller unit 106 may receive as SDV 
instruction that includes a first address of a vector , a second 
address of a scalar value , and an operation code that indi 
cates an operation to divide the vector by the scalar value . 
[ 0085 ] At block 554 , the example method 501 may 
include receiving , by a computation module , the vector and 
the scalar value in response to the scalar - divide - vector 
instruction based on the first address and the second address . 
For example , the computation module 110 may be config 
ured to receive a first vector A and a scalar value . 
[ 0086 ] At block 556 , the example method 501 may 
include respectively dividing , by one or more dividers of the 
computation module , each of the elements by the scalar 
value to generate one or more division results . For example , 
the dividers 316 may be configured to divide each element 
in the first vector by the scalar value . 
[ 0087 ] At block 558 , the example method 501 may 
include combining , by a combiner of the computation mod 
ule , the one or more division results into an output vector . 
For example , the combiner 318 may be similarly configured 
to combine the subtraction results to generate an output 
vector . The output vector may be represented as A ( 1 ) / S , 
A ( 2 ) / S , . . . A ( n ) / S . 
[ 0088 ] The process or method described in the above 
accompanying figures can be performed by process logic 
including hardware ( for example , circuit , specific logic etc . ) , 
firmware , software ( for example , a software being external 
ized in non - transitory computer - readable medium ) , or the 
combination of the above two . Although the process or 
method is described above in a certain order , it should be 
understood that some operations described may also be 
performed in different orders . In addition , some operations 
may be executed concurrently rather than in order . 
[ 00891 . In the above description , each embodiment of the 
present disclosure is illustrated with reference to certain 
illustrative embodiments . Apparently , various modifications 
may be made to each embodiment without going beyond the 
wider spirit and scope of the present disclosure presented by 
the affiliated claims . Correspondingly , the description and 
accompanying figures should be understood as illustration 
only rather than limitation . It is understood that the specific 
order or hierarchy of steps in the processes disclosed is an 
illustration of exemplary approaches . Based upon design 
preferences , it is understood that the specific order or 
hierarchy of steps in the processes may be rearranged . 
Further , some steps may be combined or omitted . The 
accompanying method claims present elements of the vari 
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ous steps in a sample order , and are not meant to be limited 
to the specific order or hierarchy presented . 
[ 0090 ] The previous description is provided to enable any 
person skilled in the art to practice the various aspects 
described herein . Various modifications to these aspects will 
be readily apparent to those skilled in the art , and the generic 
principles defined herein may be applied to other aspects . 
Thus , the claims are not intended to be limited to the aspects 
shown herein but is to be accorded the full scope consistent 
with the language claims , wherein reference to an element in 
the singular is not intended to mean “ one and only one " 
unless specifically so stated , but rather " one or more . ” 
Unless specifically stated otherwise , the term “ some ” refers 
to one or more . All structural and functional equivalents to 
the elements of the various aspects described herein that are 
known or later come to be known to those of ordinary skill 
in the art are expressly incorporated herein by reference and 
are intended to be encompassed by the claims . Moreover , 
nothing disclosed herein is intended to be dedicated to the 
public regardless of whether such disclosure is explicitly 
recited in the claims . No claim element is to be construed as 
a means plus function unless the element is expressly recited 
using the phrase “ means for . ” 
[ 0091 ] Moreover , the term " or ” is intended to mean an 
inclusive “ or ” rather than an exclusive " or . ” That is , unless 
specified otherwise , or clear from the context , the phrase “ X 
employs A or B ” is intended to mean any of the natural 
inclusive permutations . That is , the phrase “ X employs A or 
B ” is satisfied by any of the following instances : X employs 
A ; X employs B ; or X employs both A and B . In addition , 
the articles " a " and " an " as used in this application and the 
appended claims should generally be construed to mean 
" one or more ” unless specified otherwise or clear from the 
context to be directed to a singular form . 
We claim : 
1 . An apparatus for vector operations in a neural network , 

comprising : 
a controller unit configured to receive a vector - multiply 

scalar instruction that includes a first address of a 
vector , a second address of a scalar value , and an 
operation code that indicates an operation to multiply 
the vector with the scalar value ; and 

a computation module configured to receive the vector 
and the scalar value in response to the vector - multiply 
scalar instruction based on the first address and the 
second address , 

wherein the vector includes one or more elements , and 
wherein the computation module includes : 

one or more multipliers configured to respectively 
multiply each of the elements with the scalar value to 
generate one or more multiplication results , and 

a combiner configured to combine the one or more 
multiplication results into an output vector . 

2 . The apparatus of claim 1 , 
wherein the vector - multiply - scalar instruction further 

indicates a first length of the first vector , and 
wherein the computation module is configured to retrieve 

the first vector based on the first address and the first 
length . 

3 . The apparatus of claim 1 , 
wherein the vector - multiply - scalar instruction further 

indicates a second length of the second vector , and 

wherein the computation module is configured to retrieve 
the second vector based on the second address and the 
second length . 

4 . The apparatus of claim 1 , wherein the vector - multiply 
scalar instruction further includes one or more register IDs 
that identify one or more registers configured to store the 
first address of the first vector , a first length of the first 
vector , the second address of the second vector , and a second 
length of the second vector . 

5 . The apparatus of claim 1 , wherein the controller unit 
comprises an instruction obtaining module configured to 
obtain the vector - multiply - scalar instruction from an instruc 
tion storage device . 

6 . The apparatus of claim 5 , wherein the controller unit 
further comprises a decoding module configured to decode 
the vector - multiply - scalar instruction into one or more 
micro - instructions . 

7 . The apparatus of claim 6 , wherein the controller unit 
further comprises an instruction queue module configured to 
temporarily store the vector - multiply - scalar instruction and 
one or more previously received instructions , and retrieve 
information corresponding to operation fields in the vector 
multiply - scalar instruction . 

8 . The apparatus of claim 7 , wherein the controller unit 
further comprises an instruction register configured to store 
the information corresponding to the operation fields in the 
vector - multiply - scalar instruction . 

9 . The apparatus of claim 8 , wherein the controller unit 
further comprises a dependency processing unit configured 
to determine whether the vector - multiply - scalar instruction 
has a dependency relationship with the one or more previ 
ously received instructions . 

10 . The apparatus of claim 9 , wherein the controller unit 
further comprises a storage queue module configured to 
store the vector - multiply - scalar instruction while the depen 
dency processing unit is determining whether the vector 
multiply - scalar instruction has the dependency relationship 
with the one or more previously received instructions . 

11 . A method for vector operations in a neural network , 
comprising : 

receiving , by a controller unit , a vector - multiply - scalar 
instruction that includes a first address of a vector , a 
second address of a scalar value , and an operation code 
that indicates an operation to multiply the vector with 
the scalar value ; 

receiving , by a computation module , the vector and the 
scalar value in response to the vector - multiply - scalar 
instruction based on the first address and the second 
address , wherein the vector includes one or more 
elements ; 

respectively multiplying , by one or more multipliers of 
the computation module , each of the elements with the 
scalar value to generate one or more multiplication 
results ; and 

combining , by a combiner of the computation module , the 
one or more multiplication results into an output vector . 

12 . The method of claim 11 , further comprising obtaining , 
by an instruction obtaining module of the controller unit , the 
vector - multiply - scalar instruction from an instruction stor 
age device . 

13 . The method of claim 12 , further comprising decoding , 
by a decoding module of the controller unit , the vector 
multiply - scalar instruction into one or more micro - instruc 
tions . 
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14 . The method of claim 13 , further comprising tempo 
rarily storing , by an instruction queue module of the con 
troller unit , the vector - multiply - scalar instruction and one or 
more previously received instructions , and retrieve informa 
tion corresponding to operation fields in the vector - multiply 
scalar instruction . 

15 . The method of claim 14 , further comprising storing , 
by an instruction register of the controller unit , the infor 
mation corresponding to the operation fields in the vector 
multiply - scalar instruction . 

16 . The method of claim 15 , further comprising deter 
mining , by a dependency processing unit of the controller 
unit , whether the vector - multiply - scalar instruction has a 
dependency relationship with the one or more previously 
received instructions . 

17 . The method of claim 16 , further comprising storing , 
by a storage queue module of the controller unit , the 
vector - multiply - scalar instruction while the dependency 
processing unit is determining whether the vector - multiply 
scalar instruction has the dependency relationship with the 
one or more previously received instructions . 


