US 20240143397A1

a2y Patent Application Publication o) Pub. No.: US 2024/0143397 A1

a9y United States

Li et al. 43) Pub. Date: May 2, 2024
(54) DATA PROCESSING METHOD AND (52) US. CL
SYSTEM, AND RELATED DEVICE CPC GO6F 9/5016 (2013.01); GO6F 9/544
(2013.01)
(71) Applicant: HUAWEI TECHNOLOGIES CO.,
LTD., Shenzhen (CN)
(57) ABSTRACT

(72) Inventors: Chao Li, Shanghai (CN); Ke He,
Shenzhen (CN)

(21) Appl. No.: 18/410,757
(22) Filed: Jan. 11, 2024

Related U.S. Application Data

(63) Continuation of application No. PCT/CN2022/
105221, filed on Jul. 12, 2022.

(30) Foreign Application Priority Data
Jul. 14,2021 (CN) .cooveviieerecinee 202110792976.7
Oct. 20, 2021 (CN) .ocevevvveecencennee 202111221037.3

Publication Classification

A data processing method and system, and a related device
are described. The data processing system includes a pro-
cessor and a computing core. The method includes the
processor receiving metadata of first data and metadata of
second data, where the second data is obtained by perform-
ing a first operation set on the first data, the first operation
set includes at least two first operations, and memory
addresses corresponding to elements at adjacent positions in
each row of the second data are discontinuous. The proces-
sor identifies the first operation set based on the metadata of
the second data, and determines a second operation set that
matches the first operation set. The computing core obtains
third data based on the first data and the second operation

(51) Imt. CL set, where memory addresses corresponding to elements at
GO6F 9/50 (2006.01) adjacent positions in each row of the third data are continu-
GOGF 9/54 (2006.01) ous.

A . , S501
processor obtains metadata of first data and metadata of | _—"

second data

The processor identifies a first operation set based on the S502

metadata of the second data, and determines each first L
operation in the first operation set

. . S503

The processor determines a second operation set that matches | _—"
the first operation set
S504

A computing core obtains third data based on the first data and
the second operation set

Patent Application Publication

May 2, 2024 Sheet 1 of 6

US 2024/0143397 Al

Stream synchronization
instruction . .
> Discontinuous
Copy the discontinuous tensor
Host 110 - fensor
Copy the continuous Device 120
tensor
. L
Continuous o
tensor Stream synchronization end
mstruction
>
FIG. 1

(Software | Software |
| ' | — |
3 Guest operating | | Task scheduler E | /O processing !
o system 2110 2120 | ; unit 2210 |
| | e ———
i ! s et 1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, !
P Interface E Hardwz;eCPU N i
| ar ! core
Hardwere Processor A 2220 2230 | |
| 30 | i |
: | | l 1 |
: | | : |
| Memory 2140 ! ! Memory 2240 i
| Operator : e _ |
| information !] Discontinuous | |Continuous| | |
| library : ! tensor tensor !
{ ! I |
e o

FI1G. 2

Patent Application Publication = May 2, 2024 Sheet 2 of 6 US 2024/0143397 A1

) View-1
Continuous View-2 _ '
source 1ew- Discontinuous
tensor o view tensor
View-n
e \ s \ View-1
Match a Feature .
. . View-2
TBE scenario View-1
operator 1 extraction T
\ s \ / View-n

Operator I

information Match a Feature View-2
stack TBE scenario View-2
operator 1 extraction View-n

Feature
scenario View-n View-n
extraction

TBE
operator 1

Scenario information stack

. View-1
Continuous View-2 . .
source 1ew- Discontinuous
tensor U view tensor
View-n

Scenario information stack
Feature scenario Feature scenario
extraction extraction
Tempora Continuous
PORALY \ Iyiscontinuous| | Continuous| | Discontinuous| | Continuous .

continuous . 1 -1 . 1 = . 2 = . 2 - view

tensor view view | view view tensor

Matched TBE Matched TBE
operator operator

Operator information stack

FIG. 4

Patent Application Publication = May 2, 2024 Sheet 3 of 6 US 2024/0143397 A1

A processor obtains metadata of first data and metadata of | _— S501

second data

l

The processor identifies a first operation set based on the S502
metadata of the second data, and determinces cach first L
operation in the first operation set
S503

The processor determines a second operation set that matches | _—"
the first operation set

l

5504
A computing core obtains third data based on the first data and
the second operation set
FIG. 5

(/ View information 4 View information \
i Shape: {8, 451143, 4} Shape: {8, 12, 21,21} ;
%\Stride: {1804572,4, 1} Stride: {1804572, 1, 252, 12y

Disconti * '

Source tensor 610 opexl';ii%?} 111111;11(5116320 View tensor 630

(Source information Source information ;
§ Shape: {8, 451143, 4} Shape: {8,451143,4}
*\Stride: {1804572,4, 1} Stride: {1804572, 4, 1}/‘

FIG. 6

Transposition axis information

Patent Application Publication = May 2, 2024 Sheet 4 of 6 US 2024/0143397 A1
O% ?;téon Category Name Type Type range
fp 16, fp 32, int 8, uint 8, int 16, uint
Input X Tensor | 16 int 32, uint 32, int 64, and uint 64
fp 16, fp 32, int §, vint §, int 16, uint
Transpose | Output Y Tensor | 16 ‘it 32, uint 32, int 64, and uint 64
Attribute |Command| Integer list
Attribute Value
Input Temporary continuous tensor
Output Continuous view tensor

{0,2,1}

F1G. 7

May 2,2024 Sheet S of 6 US 2024/0143397 Al

Patent Application Publication

8 'OId
- - - - - — Y Y - - - - - o~ ~
1 °C1 “TST “TLSHO8T} -opLns {1 v ‘TLSYOS8T} :9pLnS \
{21 ‘1T 191L "8} odeys {¥ ‘er11st g} sadeys
UOIRULIOJUT 30IN0G UONBULIOJUT 22IN0S \
uoronpap 0OL8 105U 088 I0sua) _
UON eI PUOIS SNONUIFUOISIP PoMOLIEN SNONUIIUOISIP [enpIsay] _
1 ‘T1 ‘TST ‘TLSYO8T)} :9pLnS {11 ‘TST TLSYO81} oping /
{21 ‘1T ‘17 °8} odeys {T1 12191, "8} odeys /
UOTJRULIOJUT MITA UOTJRULIOJUT MITA
~N - 4
e et s s s s s s s st s s s st s b e et s s s e o s s e e e e
- e ~ /
11 °C1 26T ‘TLSYOS8T) opLng {1 % ‘TLSPO8/T} :9pIns \
{21 ‘12 ‘12 "8} odeyg {¥ erT1GH 8} sadeys
UOIRULIOIUT 92IN0S UOIIBULIOJUT 90IN0S \
068 Iosua) 09§ Iosudy uononpap _
snonuruodsip pasodsuery, SNONULJUOISIP [enpIsoy UONRINT ISI I |
(T1 "TST °1 “TLSYO81} opLos 1°T1 “TST ‘TLSYO8T} *oPLn /
{12 17 °C1 *8} rodeyg {T1 °12 “1¢ '8} redeyg /
AN UOTJBULIOTUT MITA UOT)BUIIOJUT MIT A
~ _7
S

{1 v ‘TLSHO8T) opLng
(¥ ‘cp11Sh g} adeys
UOTJRULIOJUT 92IN0G

08 Iosuo)

SNONUIIUOISL(]

{z1zse
‘T ‘TLSYO81) -9pLng
{1z 17 “C1 ‘8} odeys
UOTJBULIOJUT MITA

asodsuei],

{1 ‘v “TLSPO8T} roping
{¥ ‘cp116H 8} :adeys
UOIRULIOJUT 92IN0§

0€8 JosuQ)

SNONUIUOISI(]

{121
“TST TLSYO81) :opLug
{12127 1 8} :odeys
UOTYRULIOJUL MITA

w0y

RSN P U UL

{1 v “TLSYO81) opins
{¥‘cP11ch g} rodeys
UOTIBULIOJUT 2DIN0S

078 1osud)

SNONUTIUOISI(] AMOIIEN

{19 “TLSPO8T) opLng
{¥ ‘ceer g} odeys
UOTJBWILIOJUT ML A

{1 v ‘TLSPO8T) optng
{¥‘ep11Sy]} :adeys
UOTJRWLIOTUT 92IN0S

018 JOSU3) 22IN0§

{1 ‘¥ “TLSPOST) :opLns
{¥ ‘cv116Y ‘8} odeys
UOTJRUWLIOJUT MITA

Patent Application Publication = May 2, 2024 Sheet 6 of 6

View information
Shape: {8, 12, 21, 21}
Stride: {1804572, 1,

US 2024/0143397 Al

View information
Shape: {8, 451143, 4}
Stride: {1804572, 252, 1}

Output tensor 950

Source information
Shape: {8, 451143, 4}
Stride: {1804572, 252, 1}

252,12}
Broadcast Narrow | |Transpose
Input tensor 910 | | Opg%tor opgg%tor B opgz%tor —
Source information
Shape: {8, 451143, 4}
Stride: {1804572, 4, 1}
FIG. 9
10

11

/

/

12

Processor

Computing core

FIG. 10

US 2024/0143397 Al

DATA PROCESSING METHOD AND
SYSTEM, AND RELATED DEVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of International
Application No. PCT/CN2022/105221, filed on Jul. 12,
2022, which claims priority to Chinese Patent Application
No. 202110792976.7, filed on Jul. 14, 2021, and Chinese
Patent Application No. 202111221037.3, filed on Oct. 20,
2021, all of which are hereby incorporated by reference in
their entireties.

TECHNICAL FIELD

[0002] The present disclosure relates to the field of pro-
cessor technologies, and in particular, to a data processing
method and system, and a related device.

BACKGROUND

[0003] Pytorch is an open-source machine learning library
for application programs such as natural language process-
ing. A Pytorch framework supports performing an operation
on a view-class framework of a source tensor to obtain a
view tensor, to effectively reduce performance consumption
caused by copying displayed tensor data. The source tensor
and the view tensor share a memory.

[0004] An operator corresponding to the operation per-
formed on the view-class framework may be referred to as
a view-class framework operator, which mainly includes a
reshape (reshape) operator and a discontinuous operator.
The reshape operator includes framework operators such as
view, view as, squeeze, unsqueeze, and flatten. A corre-
sponding view tensor generated based on the operators is
referred to as a continuous tensor, where when elements in
the view tensor are arranged in a row-major manner, corre-
sponding index memories are consistent with those of the
source tensor, and are continuously distributed. The discon-
tinuous operator includes framework operators such as
transpose (transpose), narrow (narrow), and expand (ex-
pand). A corresponding view tensor generated based on the
operators is referred to as a discontinuous tensor, where
when elements in the view tensor are arranged in a row-
major manner, corresponding index memories are different
from those of the source tensor, and are discontinuously
distributed on a shared memory.

[0005] During current application, the discontinuous ten-
sor usually needs to be converted into the continuous tensor.
A current conversion solution is mainly to copy the discon-
tinuous tensor from a device side (e.g., a neural-network
processing unit (NPU) chip) to a host, and the host com-
pletes the conversion of the discontinuous tensor and then
copies a converted discontinuous tensor back to the device
side. In conclusion, in the current solution for converting the
discontinuous tensor into the continuous tensor, conversion
efficiency is low, a requirement on device hardware is high,
and performance consumption is high.

[0006] Therefore, how to improve tensor conversion effi-
ciency, reduce dependence on the device hardware in a
conversion process, and improve device conversion perfor-
mance is an urgent problem to be resolved currently.

May 2, 2024

SUMMARY

[0007] Embodiments of the present disclosure include a
data processing method and system, and a related device.
Deduction is performed on a discontinuous scenario, espe-
cially recursive deduction is performed on a scenario in
which a plurality of view-class operations are combined, so
that discontinuous scenarios are extracted one by one, an
operation that matches each discontinuous scenario is deter-
mined, and finally determined operations are sequentially
performed to complete a conversion process. This can
effectively improve conversion efficiency of converting a
discontinuous tensor into a continuous tensor, reduce depen-
dence on device hardware, and improve conversion perfor-
mance.

[0008] According to a first aspect, this application pro-
vides a data processing method. The method is performed by
a data processing system, the system includes a processor
and a computing core. The method includes: The processor
obtains metadata of first data and metadata of second data,
where the second data is obtained by performing a first
operation set on the first data, the first operation set includes
at least two first operations, and memory addresses corre-
sponding to elements at adjacent positions in each row of the
second data are discontinuous. The processor identifies the
first operation set based on the metadata of the second data,
and determines each first operation in the first operation set.
The processor determines a second operation set that
matches the first operation set, where a second operation that
matches each first operation in the first operation set exists
in the second operation set. The computing core obtains
third data based on the first data and the second operation
set, where memory addresses corresponding to elements at
adjacent positions in each row of the third data are continu-
ous.

[0009] Optionally, the first data may be a source tensor, the
second data may be a discontinuous tensor obtained by
performing the first operation set on the source tensor, the
third data may be a continuous tensor obtained by perform-
ing the second operation set on the source tensor, and the
first operation set may be a discontinuous framework opera-
tor, for example, a transpose operator, a narrow operator, or
an expand operator.

[0010] In this embodiment of this application, the proces-
sor analyzes metadata of a discontinuous tensor, and per-
forms recursive deduction on a generation scenario of the
discontinuous tensor, to determine a series of operations
performed on the source tensor, and further determine a
plurality of tensor boost engine (TBE) operators that match
the series of operations. The computing core sequentially
executes the plurality of TBE operators on the source tensor,
to complete a process of converting the discontinuous tensor
into the continuous tensor. This can improve conversion
efficiency, reduce dependence on performance of an Al CPU
of a chip, and effectively improve conversion performance.
[0011] With reference to the first aspect, in a possible
implementation of the first aspect, the processor sequentially
identifies, based on a preset priority, the first operations
included in the first operation set; and the processor deter-
mines, based on a first operation identified each time, a
feature scenario corresponding to the first operation, and
sequentially puts feature scenarios into a scenario informa-
tion stack.

[0012] In this embodiment of this application, when
deducing and identifying the first operations in the first

US 2024/0143397 Al

operation set in a preset priority order, for example, the
processor may first identify a transpose operation, then
identify a narrow operation, and finally identify a deform
operation, and identify the first operations included in the
first operation set one by one. In this way, combination
interference between the plurality of first operations can be
effectively reduced, and identification accuracy and identi-
fication efficiency can be improved.

[0013] With reference to the first aspect, in a possible
implementation of the first aspect, the processor determines
whether the metadata of the second data matches at least one
piece of feature information of a to-be-identified first opera-
tion, and if the metadata of the second data matches the at
least one piece of feature information of the to-be-identified
first operation, the processor determines the to-be-identified
first operation. The metadata of the second data includes a
shape, a stride, and a memory offset of the second data.
[0014] In the solution provided in this application, the
processor performs identification by comparing the meta-
data of the second data with the feature information of the
to-be-identified first operation, and does not need to perform
strict one-to-one correspondence, and only a piece of or
some of the feature information needs to be matched to
determine the to-be-identified first operation. In this way,
combination interference between the plurality of first
operations can be effectively reduced, and identification
efficiency can be improved.

[0015] With reference to the first aspect, in a possible
implementation of the first aspect, the processor traverses an
operator information library, where the operator information
library includes a plurality of tensor boost engine TBE
operators. For each first operation identified from the first
operation set, the processor determines, as a second opera-
tion that matches the first operation, an operator that is in the
operator information library and that has a same feature as
the first operation, and sequentially puts second operations
into an operator information stack.

[0016] In the solution provided in this application, after
determining the series of first operations performed on the
source tensor, the processor may further search the current
operator information library for each first operation. When
finding that a feature described by using metadata of an
operator is the same as a feature corresponding to the
operation, the processor may determine that the operator is
of a same type as the operation, in other words, the operator
is a TBE operator that matches the operation, to obtain the
second operation set.

[0017] With reference to the first aspect, in a possible
implementation of the first aspect, the processor delivers a
conversion command to the computing core, where the
conversion command includes the second operation set, and
the conversion command indicates the computing core to
calculate the first data based on the second operation set, to
obtain the third data.

[0018] In the solution provided in this application, after
finding, in the operator information library, the plurality of
TBE operators that match the first operation set, the proces-
sor informs the computing core to execute the plurality of
TBE operators on the source tensor, to obtain a continuous
tensor, where index memories corresponding to elements at
adjacent positions in each row of the tensor are continuous.
In this way, a tensor conversion process can be completed
without depending on the AI CPU, thereby reducing depen-
dence on chip hardware.

May 2, 2024

[0019] With reference to the first aspect, in a possible
implementation of the first aspect, the processor constructs
fourth data, where metadata of the fourth data is the same as
the metadata of the first data, and the fourth data and the first
data share a memory. The computing core sequentially
performs the second operations in the second operation set
on the fourth data, to obtain the third data.

[0020] In the solution provided in this application, before
the computing core performs calculation, the processor may
obtain, based on a determined TBE operator, input param-
eter information required by the operator, where the input
parameter information includes an input tensor. The input
tensor may be a temporary continuous tensor constructed in
a memory sharing manner, where metadata of the temporary
continuous tensor is the same as metadata of the source
tensor. After the temporary continuous tensor is constructed,
the computing core can perform corresponding calculation,
to ensure that the computing core can correctly execute a
corresponding TBE operator, to complete a tensor conver-
sion process.

[0021] With reference to the first aspect, in a possible
implementation of the first aspect, the first operation set
includes a transpose operator, a narrow operator, and an
expand operator.

[0022] With reference to the first aspect, in a possible
implementation of the first aspect, the system includes a host
and a chip, the processor is located in the host, and the
computing core is located in the chip.

[0023] With reference to the first aspect, in a possible
implementation of the first aspect, the chip includes at least
one of a neural-network processing unit NPU, a graphics
processing unit GPU, a tensor processing unit TPU, and a
data processing unit DPU.

[0024] In this solution provided in this application, a
process of performing recursive deduction on a generation
scenario of a combination-class discontinuous tensor may be
completed by the host in the data processing system, or may
be completed by the chip in the data processing system.
Regardless of whether scenario recursive deduction is com-
pleted by the host or the chip, the computing core eventually
executes the TBE operator to convert the discontinuous
tensor into the continuous tensor. In this way, data copying
and hardware dependence on the Al CPU are reduced, and
conversion efficiency and conversion performance are
improved.

[0025] According to a second aspect, this application
provides a data processing system. The system includes a
processor and a computing core.

[0026] The processor is configured to: obtain metadata of
first data and metadata of second data, where the second data
is obtained by performing a first operation set on the first
data, the first operation set includes at least two first opera-
tions, and memory addresses corresponding to elements at
adjacent positions in each row of the second data are
discontinuous; identify the first operation set based on the
metadata of the second data, and determine each first opera-
tion in the first operation set; and determine a second
operation set that matches the first operation set, where a
second operation that matches each first operation in the first
operation set exists in the second operation set.

[0027] The computing core is configured to obtain third
data based on the first data and the second operation set,
where memory addresses corresponding to elements at adja-
cent positions in each row of the third data are continuous.

US 2024/0143397 Al

[0028] It should be understood that a chip may also
include a plurality of processors and computing cores, and
the processors and the computing cores may concurrently
execute respective tasks without affecting or interfering with
each other. Quantities of processors and computing cores of
the chip are not limited in this application.

[0029] With reference to the second aspect, in a possible
implementation of the second aspect, the processor is spe-
cifically configured to: sequentially identity, based on a
preset priority, the first operations included in the first
operation set; and determine, based on a first operation
identified each time, a feature scenario corresponding to the
first operation, and sequentially put feature scenarios into a
scenario information stack.

[0030] With reference to the second aspect, in a possible
implementation of the second aspect, the processor is spe-
cifically configured to: determine whether the metadata of
the second data matches at least one piece of feature
information of a to-be-identified first operation, and if the
metadata of the second data matches the at least one piece
of feature information of the to-be-identified first operation,
determine the to-be-identified first operation, where the
metadata of the second data includes a shape, a stride, and
a memory offset of the second data.

[0031] With reference to the second aspect, in a possible
implementation of the second aspect, the processor is spe-
cifically configured to: traverse an operator information
library, where the operator information library includes a
plurality of TBE operators. For each first operation identified
from the first operation set, determine, as a second operation
that matches the first operation, an operator that is in the
operator information library and that has a same feature as
the first operation, and sequentially put second operations
into an operator information stack.

[0032] With reference to the second aspect, in a possible
implementation of the second aspect, the processor is further
configured to deliver a conversion command to the comput-
ing core, where the conversion command includes the sec-
ond operation set, and the conversion command indicates
the computing core to calculate the first data based on the
second operation set, to obtain the third data.

[0033] With reference to the second aspect, in a possible
implementation of the second aspect, the processor is further
configured to construct fourth data, where metadata of the
fourth data is the same as the metadata of the first data, and
the fourth data and the first data share a memory. The
computing core is further configured to perform the second
operation in the second operation set on the fourth data, to
obtain the third data.

[0034] With reference to the second aspect, in a possible
implementation of the second aspect, the first operation set
includes a transpose operator, a narrow operator, and an
expand operator.

[0035] With reference to the second aspect, in a possible
implementation of the second aspect, the processor is
located in a host of the system, and the computing core is
located in a chip of the system.

[0036] With reference to the second aspect, in a possible
implementation of the second aspect, the chip includes at
least one of a neural-network processing unit NPU, a graph-
ics processing unit GPU, a tensor processing unit TPU, and
a deep learning processing unit DPU.

[0037] According to a third aspect, this application pro-
vides a chip, including a processor and a computing core.

May 2, 2024

[0038] The processor is configured to: obtain metadata of
first data and metadata of second data, where the second data
is obtained by performing a first operation set on the first
data, the first operation set includes at least two first opera-
tions, and memory addresses corresponding to elements at
adjacent positions in each row of the second data are
discontinuous; identify the first operation set based on the
metadata of the second data, and determine each first opera-
tion in the first operation set; and determine a second
operation set that matches the first operation set, where a
second operation that matches each first operation in the first
operation set exists in the second operation set.

[0039] The computing core is configured to obtain third
data based on the first data and the second operation set,
where memory addresses corresponding to elements at adja-
cent positions in each row of the third data are continuous.
[0040] According to a fourth aspect, this application pro-
vides a computing device, including the data processing
system provided in any implementation of the first aspect.
[0041] According to a fifth aspect, this application pro-
vides a computer storage medium. The computer storage
medium stores a computer program, and when the computer
program is executed by a processor, the method provided in
any one of the first aspect and the implementations of the
first aspect can be implemented.

[0042] According to a sixth aspect, this application pro-
vides a computer program product, where the computer
program includes instructions, and when the computer pro-
gram is executed by a computer, the computer is enabled to
perform the method provided in any one of the first aspect
and the implementations of the first aspect.

BRIEF DESCRIPTION OF DRAWINGS

[0043] To describe technical solutions in embodiments of
the present invention more clearly, the following briefly
describes the accompanying drawings for describing
embodiments. It is clear that the accompanying drawings in
the following descriptions show some embodiments of the
present disclosure, and persons of ordinary skill in the art
may still derive other drawings from these accompanying
drawings without creative efforts.

[0044] FIG. 1 is a schematic diagram of a tensor conver-
sion process according to an embodiment of this application;
[0045] FIG. 2 is a schematic diagram of a structure of a
system according to an embodiment of this application;
[0046] FIG. 3 is a schematic diagram of splitting of a
combination-class discontinuous scenario according to an
embodiment of this application;

[0047] FIG. 4 is a schematic diagram of converting a
combination-class discontinuous tensor to a continuous ten-
sor according to an embodiment of this application;

[0048] FIG. 5is a schematic flowchart of a data processing
method according to an embodiment of this application;
[0049] FIG. 6 is a schematic diagram of a first operation
set according to an embodiment of this application;

[0050] FIG. 7 is a schematic diagram of input parameter
information of a transpose operator according to an embodi-
ment of this application;

[0051] FIG. 8 is a schematic diagram of identification and
extraction of a combination-class discontinuous scenario
according to an embodiment of this application;

[0052] FIG. 9 is a schematic diagram of another tensor
conversion process according to an embodiment of this
application; and

US 2024/0143397 Al

[0053] FIG. 10 is a schematic diagram of a structure of a
chip according to an embodiment of this application.

DESCRIPTION OF EMBODIMENTS

[0054] The following clearly and describes technical solu-
tions in embodiments of this application with reference to
the accompanying drawings. It is clear that the described
embodiments are merely some rather than all of embodi-
ments of this application.

[0055] First, some terms and conventional technologies in
this application are explained and described with reference
to the accompanying drawings, to help persons skilled in the
art have a better understanding.

[0056] Metadata is data for describing actual data, and is
used to describe attribute information of the actual data. The
attribute information may be a file name of the actual data,
a storage address pointer of the actual data, or the like. For
example, metadata of a tensor may be used to describe
feature information such as a shape, a quantity of dimen-
sions, and a format of the tensor. In addition, the metadata
may further have a corresponding identifier identifying the
metadata. The metadata and the corresponding identifier
may form a key-value pair. Each key-value pair may include
akey (key) and a value (value) corresponding to the key. The
value is the metadata, and the key identifies the value.
[0057] A host may also be referred to as a client, is
connected to a hard disk, a hard disk subsystem, or a file
server, and can store data and a computer system for 1/O
access. The host may specifically include a physical
machine, a virtual machine, a container, and the like. The
host is configured to: communicate with a device and
perform data processing. For example, the device is an
application server, a multiprocessor machine, a workstation,
or a personal computer.

[0058] The device is a processing chip that integrates a
multiplication and addition module, an activation function
module, a two-dimensional data calculation module, a
decompression module, and the like. The device can accel-
erate calculation of a neural network, and effectively
improve calculation efficiency of the neural network. For
example, the processing chip is an NPU, a GPU, a TPU, or
a DPU. The processing chip may include a plurality of
processors and computing cores, which can concurrently
execute respective tasks.

[0059] Currently, to reduce performance consumption
caused by copying displayed tensor data, a Pytorch frame-
work supports performing an operation on a view-class
framework of a source tensor to obtain a view tensor, where
an element in the source tensor and an element in the view
tensor share a memory. However, during actual data pro-
cessing, a discontinuous tensor usually needs to be con-
verted into a continuous tensor, to further perform data
processing. For example, in a compute unified device archi-
tecture (CUDA), a memory address of each element in the
discontinuous tensor is calculated. Depending on load and
store instructions, the processing chip (e.g., the GPU) may
access an element at any memory position, and store the
element in a specified continuous memory area, to ensure
that when elements in the discontinuous tensor are arranged
in a row-major manner, corresponding index memories are
continuous. In this way, conversion of the discontinuous
tensor is completed. However, many processing chips cur-
rently cannot efficiently copy data based on the foregoing
data migration logic. For example, the NPU cannot complete

May 2, 2024

conversion from the discontinuous tensor to the continuous
tensor in the foregoing manner. For this type of processing
chip, an operation of converting the discontinuous tensor
into the continuous tensor usually needs to be completed
with the help of the host. As shown in FIG. 1, a host 110
directly establishes a connection to a device 120 via a
network or through a peripheral component interconnect
express (PCle) interface. The host 110 may be a server, and
the device 120 may be an NPU accelerator card inserted into
the server. First, the host 110 delivers a stream synchroni-
zation instruction to the device 120, where the instruction
hinders execution of all tasks in a current stream. After
receiving the instruction, the device 120 copies a discon-
tinuous tensor to the host 110. The host 110 calculates a
memory address of each element in the discontinuous tensor
based on information about the current discontinuous tensor,
and then copies each element to a specified memory area
according to a Load/Store instruction of a CPU. After
completing the copy, the host 110 may convert the discon-
tinuous tensor into a continuous tensor, then copy the
continuous tensor to the device 120, and finally, deliver a
stream synchronization end instruction to the device 120 to
release a related resource. It can be learned that, during
conversion of the discontinuous tensor, normal execution of
another task is hindered. In addition, tensor data needs to be
copied back and forth between the host and the device. Copy
efficiency is low, performance consumption of the host is
high, and performance of an entire conversion process is
poor.

[0060] In addition, the discontinuous tensor may also be a
tensor obtained through performing a plurality of view-class
framework operations on the source tensor. The plurality of
view-class framework operations overlap and interfere with
each other, which increases difficulty in identifying and
deducing a generation scenario of a discontinuous tensor of
this type. An operation of converting the discontinuous
tensor to a continuous tensor can be performed by using only
a processor in a host or a processor in a device, a capability
of a computing core in the device cannot be fully used, and
overall conversion efficiency of the operation is low.
[0061] Based on the foregoing descriptions, this applica-
tion provides a data processing method. A processor is used
to deduce a generation scenario of a discontinuous tensor,
and in particular, perform recursive deduction on a combi-
nation-class discontinuous scenario in which a plurality of
view-class operations are combined, to determine an opera-
tion set that matches the combination-class discontinuous
scenario, and an Al core sequentially performs the operation
set to complete data re-copying, to convert the discontinuous
tensor into a continuous tensor. This effectively improves
conversion efficiency, reduces dependence on device hard-
ware, especially an Al CPU, and improves conversion
performance.

[0062] The technical solutions in embodiments of this
application may be applied to any system in which conver-
sion of the discontinuous tensor needs to be performed, and
are particularly applicable to a scenario that is for a com-
bination-class discontinuous tensor and with low depen-
dence on the AT CPU.

[0063] FIG. 2 is a schematic diagram of a structure of a
system according to this application. As shown in FIG. 2, the
system includes a host 210 and a chip 220. The host 210 may
include a hardware layer and a software layer. The software
layer includes a guest operating system 2110 and a task

US 2024/0143397 Al

scheduler 2120. The hardware layer includes hardware such
as one or more processors a memory. The chip 220 may be
at least one of a neural-network processing unit NPU, a
graphics processing unit GPU, a tensor processing unit TPU,
and a data processing unit DPU. The chip 220 also includes
a hardware layer and a software layer. The hardware layer
includes hardware such as one or more processors (e.g., Al
CPUs 2220), one or more computing cores (Al cores 2230),
and a memory. The software layer includes various process-
ing units (e.g., /O processing units 2210) to process a
procedure related to converting a discontinuous tensor into
a continuous tensor. The host 210 and the chip 220 may be
connected through an interface. In some embodiments, the
chip 220 and the host 210 may be located on different
devices. In some other embodiments, the chip 220 may be
mounted on the host 210 in a card insertion manner.

[0064] The host 210 is configured to work with the chip to
complete conversion of the discontinuous tensor. A proces-
sor 2130 may be a CPU, or may be another general-purpose
processor, a digital signal processor (DSP), an application-
specific integrated circuit (ASIC), a field programmable gate
array (FPGA) or another programmable logic device, a
discrete gate or transistor logic device, a discrete hardware
component, or the like. The general-purpose processor may
be a microprocessor, any conventional processor, or the like.

[0065] A memory 2140 may be configured to store an
operator information library. The memory 2140 may include
a read-only memory and a random access memory, or may
be a volatile memory or a nonvolatile memory, or may
include both a volatile memory and a nonvolatile memory.
The nonvolatile memory may be the read-only memory
(ROM), a programmable read-only memory (PROM), an
erasable programmable read-only memory (EPROM), an
electrically erasable programmable read-only memory (EE-
PROM), or a flash memory. The volatile memory may be the
random access memory (RAM), used as an external cache.
By way of example but not limitative description, many
forms of RAMs are available may be used, for example, a
static random access memory (SRAM), a dynamic random
access memory (DRAM), a synchronous dynamic random
access memory (SDRAM), a double data rate synchronous
dynamic random access memory (DDR SDRAM), an
enhanced synchronous dynamic random access memory
(ESDRAM), a synchlink dynamic random access memory
(SLDRAM), and a direct rambus random access memory
(DR RAM).

[0066] In a possible implementation, the task scheduler
2120 in the host 210 sends a tensor conversion task to the
processor 2130, and the processor 2130 extracts metadata of
the current discontinuous tensor from the memory 2140,
where the metadata includes information such as a shape, a
stride, and a memory offset of the discontinuous tensor.
Then, the processor 2130 analyzes the metadata and per-
forms deduction in a preset priority order. For example,
whether stride information is non-monotonic may be first
determined, and if the stride information is monotonic, it is
determined that there is a transpose scenario. The scenario is
extracted and put into a scenario information stack, and a
first operation (namely, a transpose operation) correspond-
ing to the transpose scenario may be determined. Then, the
processor 2130 traverses the operator information library in
the memory 2140, finds a TBE operator of a same type as the
first operation, learns of information required by the TBE
operator, and puts the TBE operator into the operator infor-

May 2, 2024

mation stack. Then, a residual scenario is identified and
deduced again. In addition, a discontinuous scenario and a
TBE operator that are obtained through deduction are
respectively put in the scenario information stack and the
operator information stack in sequence, until the residual
scenario cannot be split. A deduction process is shown in
FIG. 3. A discontinuous view tensor is obtained by perform-
ing n view-class operations on a source tensor, and then the
discontinuous view tensor is identified in sequence in the
preset priority order, and a view-class operation is identified
each time, to extract a feature scenario and match a corre-
sponding TBE operator, which is put in the scenario infor-
mation stack and the operator information stack. Finally, the
processor 2130 delivers an instruction to the chip 220
through a PCle interface, constructs a temporary continuous
tensor in the chip 220 in a manner of sharing a memory of
the discontinuous tensor, and delivers the TBE operator in
the operator information stack to the Al core 2230. The Al
core 2230 sequentially schedules the TBE operator in the
operator information stack to calculate the temporary con-
tinuous tensor, and re-copies each element in the discon-
tinuous tensor in a memory 2240 to a specified area, to
obtain a continuous tensor, where index memories corre-
sponding to two adjacent elements in each row of the
continuous tensor are continuous in the memory 2240. A
specific process of converting a discontinuous tensor to a
continuous tensor is shown in FIG. 4. After the temporary
continuous tensor is constructed, a first single-operator
discontinuous scenario is extracted from the scenario infor-
mation stack, to reconstruct a first discontinuous scenario,
and a corresponding TBE operator is invoked from the
operator information stack to perform an operation of con-
verting the discontinuous tensor to the continuous tensor.
Until both the scenario information stack and the operator
information stack are empty, reconstruction is stopped, and
a result tensor is a target continuous view tensor.

[0067] It can be learned that, during tensor conversion,
recursive deduction is performed on the generation scenario
of the discontinuous tensor by using the known discontinu-
ous tensor and the known source tensor, so that an operation
corresponding to each discontinuous scenario can be
obtained through deduction. Then, the matched TBE opera-
tor may be obtained through mapping from the operator
information library based on the operation, and the TBE
operator is put into an operator information stack. Finally,
the Al core executes a plurality of TBE operators in the
operator information stack to generate a continuous tensor
without depending on performance of hardware like the Al
CPU. This can effectively improve conversion efficiency and
conversion performance.

[0068] With reference to the schematic diagram of the chip
shown in FIG. 2, the following describes a data processing
method according to an embodiment of this application.
FIG. 5 is a schematic flowchart of a data processing method
according to an embodiment of this application. The method
may be applied to the data processing system shown in FIG.
2. The method may specifically include the following steps.
[0069] S501: A processor obtains metadata of first data
and metadata of second data.

[0070] Specifically, in this embodiment of this application,
the first data may be a source tensor, and the source tensor
is an n-dimensional data structure. A specific form of the
source tensor includes a scalar, a vector, a matrix, and the
like. For example, a Oth-dimensional tensor is a scalar.

US 2024/0143397 Al

Metadata of the source tensor is data for describing the
source tensor, and includes a shape, a stride, a memory
offset, and the like of the tensor. Correspondingly, the
second data may be a discontinuous tensor. When elements
in the discontinuous tensor are arranged in a row-major
manner, memory addresses corresponding to elements at
adjacent positions in each row are discontinuous.

[0071] In addition, the processor may be the processor
2130 in the host shown in FIG. 2. To be specific, scenario
deduction in the following step S502 and operator mapping
matching in the following step S503 are completed by the
host. The processor may alternatively be the Al CPU 2220
shown in FIG. 2. To be specific, scenario deduction in step
S502 and operator mapping matching in step S503 are
completed by a chip. This is not limited in this application.

[0072] It should be noted that the second data is obtained
by performing a first operation set on the first data, in other
words, the discontinuous tensor is obtained by performing a
series of first operations on the source tensor. The first
operation is a discontinuous operation. For example, in a
Pytorch framework, the first operation is a corresponding
operation of executing a discontinuous view-class frame-
work operator on the source tensor. Optionally, the discon-
tinuous view-class framework operator includes a transpose
operator, a harrow operator, an expand operator, and the like.

[0073] For example, the first operation set includes a
narrow operation, a deform operation, and a transpose
operation. As shown in FIG. 6, a source tensor 610 includes
view information and source information. The view infor-
mation is consistent with the source information, shapes of
the information are both {8, 451143, 4}, strides are both
{1804572, 4, 1}. The source tensor is a continuous tensor. A
discontinuous operation unit 620 is used to perform the first
operation set on the source tensor 610. To be specific, the
narrow operation, the deform operation, and the transpose
operation are sequentially performed on the source tensor, to
generate a discontinuous view tensor 630. It can be learned
that view information in the discontinuous view tensor 630
is inconsistent with the source information, and compared
with the source tensor 610, in the discontinuous view tensor
630, the shape and the stride in the view information are
apparently changed.

[0074] It should be understood that, when a discontinuous
combination-class view-class framework operation is per-
formed on the source tensor to obtain a view tensor, only
metadata of the source tensor is changed, and the source
tensor and the view tensor still share a memory. To be
specific, an element in the source tensor and an element in
the view tensor are the same, and occupy the same memory.

[0075] S502: The processor identifies the first operation
set based on the metadata of the second data, and determines
each first operation in the first operation set.

[0076] Specifically, after obtaining the metadata of the
source tensor and the metadata of the discontinuous tensor,
the processor determines, by analyzing each feature (e.g.,
the foregoing shape, stride, or memory offset) of the dis-
continuous tensor, a series of discontinuous operations per-
formed on the source tensor.

[0077] In a possible implementation, the processor
sequentially identifies, based on a preset priority, the first
operations included in the first operation set, and the pro-
cessor determines, based on a first operation identified each

May 2, 2024

time, a feature scenario corresponding to the first operation,
and sequentially puts the feature scenario into a scenario
information stack.

[0078] Specifically, because combination-class view-class
operations overlap and interfere with each other, to reduce
mutual impact between view-class operations and improve
identification and deduction accuracy, when performing
feature scenario identification, the processor may perform
identification in a preset priority identification order. For
example, the transpose operation is of a first priority, the
narrow operation is of a second priority, and the deform
operation is of a third priority. In this case, when performing
scenario identification, the processor preferentially identifies
a transpose scenario, then identifies a narrow scenario, and
finally identifies a deform scenario.

[0079] It should be noted that, in a process of identifying
each scenario, the processor needs to relax a determining
condition corresponding to the scenario, not all determining
conditions of the scenario needs to be satisfied, but only
some of the determining conditions need to be satisfied. For
example, there are three determining conditions of a feature
scenario, and the metadata of the discontinuous tensor
satisfies one of the determining conditions. In this case, it
may be determined that the feature scenario exists. It is easy
to understand that interference caused by scenario combi-
nation can be further eliminated by properly relaxing a
determining condition of a scenario, thereby improving
efficiency and accuracy of scenario identification.

[0080] For example, as shown in FIG. 6, when the dis-
continuous view tensor 630 and the source tensor 610 are
known, the processor needs to deduce the discontinuous
operation unit 620. The processor analyzes stride informa-
tion of the discontinuous view tensor 630, and finds that the
stride information is non-monotonic, that is, it may be
determined that a transpose scenario and a transpose opera-
tion exist.

[0081] Similarly, another discontinuous scenario and dis-
continuous operation may also be deduced based on the
foregoing logic. For example, when the discontinuous
operation is narrow, the processor analyzes shape informa-
tion, and finds that elements of some axes in the shape are
reduced, and the processor may determine that a narrow
scenario and a narrow operation exist.

[0082] After the processor completes the scenario identi-
fication, feature scenario extraction needs to be performed,
that is, a combined discontinuous scenario is divided into
two parts. A first part is a constructed identified scenario, and
the other part is a residual scenario. The residual scenario
may still be a combined discontinuous scenario. If the
residual scenario is still a combined discontinuous scenario,
further identification continues to be performed until the
residual scenario cannot be further divided. The scenario
information stack is constructed, and all extracted feature
scenarios are sequentially put into the scenario information
stack. Fach feature scenario corresponds to one first opera-
tion, that is, corresponds to one discontinuous view opera-
tion.

[0083] S503: The processor determines a second operation
set that matches the first operation set.

[0084] Specifically, the processor performs recursive
deduction on a generation scenario of the discontinuous
tensor. After each time the discontinuous operation is iden-
tified and the feature scenario is extracted, the processor
needs to further determine a second operation that matches

US 2024/0143397 Al

the discontinuous operation and the feature scenario, to be
specific, determine whether there is a tensor boost engine
(TBE) operator having a feature the same as a feature
corresponding to the discontinuous operation and the feature
scenario.

[0085] It should be understood that the TBE operator is
compiled in a TBE language, and may be directly invoked
and executed by a computing core Al core, to generate a
continuous tensor. In this embodiment of this application,
each discontinuous operation corresponds to one TBE
operator. For example, the transpose operation corresponds
to a transpose operator, the narrow operation corresponds to
a narrow operator, and a deform operation corresponds to a
broadcast operator.

[0086] The processor traverses a current operator infor-
mation library to search for a TBE operator that matches the
discontinuous operation. For example, in the scenario shown
in FIG. 6, the first operation set includes the transpose
operation, and a feature of the transpose operator is that
stride information of a tensor is non-monotonic, shape and
stride information of a specified axis of the tensor is
replaced, a memory offset of the tensor is O and remains
unchanged, and the stride information of the discontinuous
view tensor is also non-monotonic. Therefore, the processor
may determine that the TBE operator that matches the
transpose operation is the transpose operator, and directly
determine the transpose operator in the operator information
library as an operator that matches the discontinuous opera-
tion (namely, the transpose operation).

[0087] Further, after determining the TBE operator that
matches the discontinuous operation, the processor may
obtain input parameter information required by the TBE
operator. For example, FIG. 7 is a schematic diagram of
input parameter information required by the transpose
operator. The input parameter information includes an input
tensor, a result tensor, and transposed axis information. The
input tensor is a temporary continuous tensor constructed in
a memory sharing manner. The result tensor is used to
receive an operator execution result, and is an empty con-
tinuous tensor newly created based on the view information
of the discontinuous tensor. The transposed axis information
is the same as transpose axis information corresponding to
the transpose operation obtained through deduction.

[0088] After the processor determines a second operation
corresponding to each first operation and finds a TBE
operator that matches the second operation, the processor
constructs an operator information stack, and sequentially
puts TBE operators obtained through deduction into the
operator information stack.

[0089] It should be noted that, after the processor deter-
mines the second operation, if no TBE operator that matches
the second operation is found in the operator information
library, a research and development personnel may compile
a TBE operator that matches the second operation, and add
the TBE operator to the operator information library. In this
way, changing an operator at a software layer is imple-
mented. This can effectively extend applicable scenarios,
improve conversion flexibility, fully utilize performance of
the Al core, and remove hardware dependence on the Al
CPU.

[0090] To further describe how to perform identification
and extract a feature scenario in a combined discontinuous
scenario, refer to FIG. 8. As shown in FIG. 8, a narrow
operation is performed on a source tensor 810 to obtain a

May 2, 2024

discontinuous tensor 820, then a deform operation is per-
formed to obtain a discontinuous tensor 830, and a transpose
operation is performed to obtain a discontinuous tensor 840.
For the discontinuous tensor 840, view information and
source information thereof are compared and analyzed, and
a transpose scenario is first identified, and then first iteration
deduction is performed, and for the discontinuous tensor
840, a transposed discontinuous tensor 850 and a residual
discontinuous tensor 860 are constructed. The transposed
discontinuous tensor 850 is put into a scenario information
stack, a TBE operator that matches the transposed discon-
tinuous tensor is found from an operator information library,
and the TBE operator is put into an operator information
stack. Then, a narrow operation is identified and second
iteration deduction is performed. For the residual discon-
tinuous tensor 860, a narrowed discontinuous tensor 870 and
a residual discontinuous tensor 880 are constructed. The
narrowed discontinuous tensor 870 is put into the scenario
information stack, a TBE operator that matches the nar-
rowed discontinuous tensor is found from the operator
information library, and the TBE operator is put into the
operator information stack. Because the residual discontinu-
ous tensor 880 is not a combination-type discontinuous
tensor, and is a deformed discontinuous tensor, in this case,
iteration is stopped, and a deduction procedure ends.
[0091] It should be noted that a scenario construction
policy complies with a fixed scenario refresh policy. For
example, view information of the transposed discontinuous
tensor 850 is consistent with view information of the dis-
continuous tensor 840, view information of the residual
discontinuous tensor 860 is consistent with source informa-
tion of the transposed discontinuous tensor 850, source
information of the residual discontinuous tensor 860 is
consistent with source information of the discontinuous
tensor 840, and a scenario information refresh policy of each
iteration is consistent.

[0092] S504: The computing core obtains third data based
on the first data and the second operation set.

[0093] Specifically, after putting the TBE operators into
the operator information stack, the processor delivers the
operator information stack to the computing core Al core,
and the computing core Al core sequentially executes the
TBE operators in the operator information stack to obtain
the continuous tensor.

[0094] It should be understood that the TBE operator
exists in the operator information library in a form of a file,
and the file records input parameter information of the TBE
operator. The processor sends, to the computing core Al
core, the file corresponding to the TBE operator. The com-
puting core Al core executes the file corresponding to the
TBE operator, to output the continuous tensor.

[0095] In a possible implementation, before delivering the
TBE operator to the computing core Al core, the processor
constructs a temporary continuous tensor in a manner of
sharing a memory with the discontinuous view tensor.
Metadata of the temporary continuous tensor is the same as
the metadata of the source tensor, and the temporary con-
tinuous tensor and the source tensor share a memory. In
other words, the temporary continuous tensor may be under-
stood as restoration of the source tensor. Certainly, the
temporary continuous tensor may be constructed in another
manner. This is not limited in this application.

[0096] For example, in the scenario shown in FIG. 6, the
processor constructs the temporary continuous tensor as an

US 2024/0143397 Al

input tensor 910 based on the discontinuous view tensor 630.
As shown in FIG. 9, the input tensor 910 is the same as the
discontinuous view tensor 630. First, a deform scenario is
extracted from the scenario information stack, and then a
corresponding TBE operator, for example, a broadcast
operator 920, is invoked from the operator information stack
to calculate the input tensor 910 by using the broadcast
operator, where a calculation result is a continuous tensor.
Then, a narrow scenario is extracted from the scenario
information stack, and a corresponding narrow operator 930
is invoked from the operator information stack. A first
calculation result is calculated by using the slice operator,
where a calculation result is also a continuous tensor.
Finally, a transpose scenario is extracted from the scenario
information stack, and a corresponding transpose operator
940 is invoked from the operator information stack. A
second calculation result is calculated by using the transpose
operator 940, and an output tensor 950 is obtained after the
calculation. The output tensor 950 is a continuous tensor,
that is, the output tensor 950 may also be referred to as a
continuous tensor 950. For the continuous tensor 950, when
elements in the tensor are arranged in a row-major manner,
memory addresses corresponding to elements at adjacent
positions in each row are continuous.

[0097] It should be noted that, when executing the TBE
operator, the computing core Al core re-determines a
memory area in a main memory, and sequentially migrates
elements in the source tensor to the memory area in a
memory read manner determined by using the continuous
tensor, to ensure that when the continuous tensor is arranged
in the row-major manner, memory addresses of adjacent
elements are continuous.

[0098] It can be learned that, during execution of this
embodiment of the present disclosure, the semantics of the
view-class framework operator of the Pytorch framework
does not need to be changed. A discontinuous operation is
determined by performing recursive deduction on the gen-
eration scenario of the discontinuous tensor, to determine a
TBE operator that matches the discontinuous operation.
Finally, a computing core Al core is used to execute the TBE
operator to generate the continuous tensors with memories
are continuously distributed, without depending on hard-
ware performance of the Al CPU. This improves conversion
efficiency and conversion performance. In addition, the
discontinuous operation is more flexible, and easy to be
expanded at the software layer, and performance of the
computing core Al core can be fully utilized.

[0099] It should be understood that the foregoing method
is applicable to the Pytorch framework. In addition, for
another Al framework that has discontinuous operations
such as transpose and narrow, the method provided in the
present disclosure may be used to perform scenario inverse
deduction, to complete conversion of the discontinuous
tensor based on a result obtained through inverse deduction,
especially conversion of a combination-class discontinuous
tensor.

[0100] It should be further understood that, the foregoing
merely only an example in which a first operation set
includes a narrow operation, a deform operation, and a
transpose operation to describe how to perform recursive
deduction on a combined scenario and how to complete,
based on a deduction result, a process of converting a tensor
into a continuous tensor. For a first operation set including

May 2, 2024

another discontinuous operation, recursive deduction and
tensor conversion may also be performed in the same
method.

[0101] The data processing method provided in this appli-
cation may be widely used in a Pytorch model training and
deduction scenario, to significantly improve efficiency of
model training and deduction, reduce time consumption of
training, and accelerate model training. It may be understood
that, if model training involves converting the discontinuous
tensor into the continuous tensor, in this application, the Al
core executes the TBE operator to perform memory copying
to implement converting the discontinuous tensor into the
continuous tensor. Compared with a process in which the
host performs the memory copying to complete converting
the discontinuous tensor into the continuous tensor, this
method can reduce a round-trip data copying delay, and
improve conversion efficiency, to effectively improve effi-
ciency of model training and deduction, and generate a huge
commercial value.

[0102] The foregoing describes in detail the method in
embodiments of this application. To better implement the
foregoing solutions in embodiments of this application,
correspondingly, the following further provides a related
device configured to implement the foregoing solutions.

[0103] FIG. 10 is a schematic diagram of a structure of a
chip according to an embodiment of this application. As
shown in FIG. 10, the chip 10 includes a processor 11 and
a computing core 12. The chip 10 may be an NPU chip, a
GPU chip, a TPU chip, or another Al chip. The chip may
include a plurality of processors and computing cores, and
the plurality of processors and computing cores may con-
currently execute respective tasks. In FIG. 10, one processor
and one computing core are used as an example. For
functions of the chip described in this embodiment of the
present disclosure, refer to related descriptions in embodi-
ments of the present disclosure shown in FIG. 2 to FIG. 9.
Details are not described herein again.

[0104] An embodiment of this application provides a
computing device. The computing device may be the host in
the data processing system shown in FIG. 2, and a chip is
integrated into the host in a card insertion manner. The host
and the chip may work together to perform related descrip-
tions in embodiments of the present disclosure shown in
FIG. 2 to FIG. 9. Details are not described herein again.

[0105] An embodiment of this application further provides
a computer-readable storage medium, where the computer-
readable storage medium stores a computer program, and
when the program is executed by a processor, some or all of
the steps recorded in any one of the foregoing method
embodiments may be implemented.

[0106] An embodiment of this application further provides
a computer program product, where when the computer
program product runs on a computer or a processor, the
computer or the processor is enabled to perform one or more
steps in any one of the foregoing methods. When each
component module of the foregoing device is implemented
in a form of a software functional unit and sold or used as
an independent product, the component module may be
stored in the computer-readable storage medium.

[0107] Inthe foregoing embodiments, descriptions of each
embodiment have different emphasis. For a part that is not
described in detail in an embodiment, refer to related
descriptions in other embodiments.

US 2024/0143397 Al

[0108] It should further be understood that, “first”, “sec-
ond”, “third”, “fourth”, and various numerical numbers in
this specification are merely used for distinguishing for ease
of description, and are not used to limit the scope of this
application.

[0109] It should be understood that the term “and/or” in
this specification describes only an association relationship
between associated objects and represents that three rela-
tionships may exist. For example, A and/or B may represent
the following three cases: Only A exists, both A and B exist,
and only B exists. In addition, the character “/” in this
specification usually indicates an “or” relationship between
the associated objects.

[0110] It should be further understood that, in various
embodiments of this application, sequence numbers of the
foregoing processes do not mean execution sequences. The
execution sequences of the processes should be determined
based on functions and internal logic of the processes, and
should not be construed as any limitation on the implemen-
tation processes of embodiments of this application.

[0111] Persons of ordinary skill in the art may be aware
that, in combination with the examples described in embodi-
ments disclosed in this specification, units and algorithm
steps may be implemented by electronic hardware or a
combination of computer software and electronic hardware.
Whether the functions are performed by hardware or soft-
ware depends on particular applications and design con-
straints of the technical solutions. Persons skilled in the art
may use different methods to implement the described
functions for each particular application. However, it should
not be considered that such implementation goes beyond the
scope of this application.

[0112] It may be clearly understood by persons skilled in
the art that, for the purpose of convenient and brief descrip-
tion, for a detailed working process of the foregoing system,
apparatus, and unit, refer to a corresponding process in the
foregoing method embodiments. Details are not described
herein again.

[0113] In the several embodiments provided in this appli-
cation, it should be understood that the disclosed system,
apparatus, and method may be implemented in other man-
ners. For example, the described apparatus embodiment is
merely an example. For example, division into the units is
merely logical function division and may be other division
during actual implementation. For example, a plurality of
units or components may be combined or integrated into
another system, or some features may be ignored or not
performed. In addition, the displayed or discussed mutual
couplings or direct couplings or communication connections
may be implemented through some interfaces. The indirect
couplings or communication connections between the appa-
ratuses or units may be implemented in electronic, mechani-
cal, or another form.

[0114] The units described as separate parts may or may
not be physically separate, and parts displayed as units may
or may not be physical units, may be located at one position,
or may be distributed on a plurality of network units. Some
or all of the units may be selected based on actual require-
ments to achieve objectives of the solutions of embodi-
ments.

[0115] In addition, functional units in embodiments of this
application may be integrated into one processing unit, each
of the units may exist alone physically, or two or more units
are integrated into one unit.

May 2, 2024

[0116] When the function is implemented in the form of a
software functional unit and sold or used as an independent
product, the function may be stored in a computer-readable
storage medium. Based on such an understanding, the tech-
nical solutions of this application essentially, or the part
contributing to the prior art, or some of the technical
solutions may be implemented in a form of a software
product. The computer software product is stored in a
storage medium, and includes several instructions for
instructing a computer device (which may be a personal
computer, a server, a network device, or the like) to perform
all or some of the steps of the methods described in
embodiments of this application. The foregoing storage
medium includes any medium that can store program code,
such as a USB flash drive, a removable hard disk, a
read-only memory (ROM), a random access memory
(RAM), a magnetic disk, or an optical disc.

[0117] A sequence of the steps of the method in embodi-
ments of this application may be adjusted, combined, or
deleted based on actual requirements.

[0118] Modules in the apparatus in embodiments of this
application may be combined, divided, and deleted based on
actual requirements.

[0119] In conclusion, the foregoing embodiments are
merely intended for describing the technical solutions of this
application, but not for limiting this application. Although
this application is described in detail with reference to the
foregoing embodiments, persons of ordinary skill in the art
should understand that they may still make modifications to
the technical solutions described in the foregoing embodi-
ments or make equivalent replacements some technical
features thereof, without departing from the scope of the
technical solutions of embodiments of this application

What is claimed is:

1. A data processing method, wherein the method is
performed by a data processing system, the data processing
system comprises a processor and a computing core, and the
method comprises:

obtaining, by the processor, metadata of first data and

metadata of second data, wherein the second data is
obtained by performing a first operation set on the first
data, the first operation set comprises at least two first
operations, and memory addresses corresponding to
elements at adjacent positions in each row of the
second data are discontinuous;

identifying, by the processor, the first operation set based

on the metadata of the second data, and determining
each first operation in the first operation set;
determining, by the processor, a second operation set that
matches the first operation set, wherein a second opera-
tion that matches each first operation in the first opera-
tion set exists in the second operation set; and
obtaining, by the computing core, third data based on the
first data and the second operation set, wherein memory
addresses corresponding to elements at adjacent posi-
tions in each row of the third data are continuous.

2. The method according to claim 1, wherein the identi-
fying, by the processor, the first operation set based on the
metadata of the second data, and determining each first
operation in the first operation set comprises:

sequentially identifying, by the processor based on a

preset priority, the first operations comprised in the first
operation set; and

US 2024/0143397 Al

determining, by the processor based on a first operation
identified each time, a feature scenario corresponding
to the first operation, and sequentially putting feature
scenarios into a scenario information stack.

3. The method according to claim 2, wherein the sequen-
tially identifying, by the processor based on a preset priority,
the first operations comprised in the first operation set
comprises:

determining, by the processor, whether the metadata of

the second data matches at least one piece of feature
information of a to-be-identified first operation, and if
the metadata of the second data matches the at least one
piece of feature information of the to-be-identified first
operation, determining, by the processor, the to-be-
identified first operation, wherein the metadata of the
second data comprises a shape, a stride, and a memory
offset of the second data.

4. The method according to claim 1, wherein the deter-
mining, by the processor, a second operation set that
matches the first operation set comprises:

traversing, by the processor, an operator information

library, wherein the operator information library com-
prises a plurality of tensor boost engine (ITBE) opera-
tors; and

for each first operation identified from the first operation

set, determining, by the processor as a second operation
that matches the first operation, an operator that is in
the operator information library and that has a same
feature as the first operation, and sequentially putting
second operations into an operator information stack.

5. The method according to claim 1, wherein before the
obtaining, by the computing core, third data, the method
further comprises:

delivering, by the processor, a conversion command to the

computing core, wherein the conversion command
comprises the second operation set, and the conversion
command indicates the computing core to calculate the
first data based on the second operation set, to obtain
the third data.

6. The method according to claim 1, wherein the obtain-
ing, by the computing core, third data comprises:

constructing, by the processor, fourth data, wherein meta-

data of the fourth data is the same as the metadata of the
first data, and the fourth data and the first data share a
memory; and

sequentially performing, by the computing core, the sec-

ond operations in the second operation set on the fourth
data, to obtain the third data.

7. The method according to claim 1, wherein the first
operation set comprises a transpose operator, a narrow
operator, and an expand operator.

8. The method according to claim 1, wherein the data
processing system further comprises a host and a chip, the
processor is located in the host, and the computing core is
located in the chip.

9. The method according to claim 8, wherein the chip
comprises at least one of a neural-network processing unit
(NPU), a graphics processing unit (GPU), a tensor process-
ing unit (TPU), or a data processing unit (DPU).

10. A data processing system, comprising a processor and
a computing core, wherein

the processor is configured to: obtain metadata of first

data and metadata of second data, wherein the second
data is obtained by performing a first operation set on

May 2, 2024

the first data, the first operation set comprises at least
two first operations, and memory addresses corre-
sponding to elements at adjacent positions in each row
of the second data are discontinuous; identify the first
operation set based on the metadata of the second data,
and determine each first operation in the first operation
set; and determine a second operation set that matches
the first operation set, wherein a second operation that
matches each first operation in the first operation set
exists in the second operation set; and
the computing core is configured to obtain third data
based on the first data and the second operation set,
wherein memory addresses corresponding to elements
at adjacent positions in each row of the third data are
continuous.
11. The data processing system according to claim 10,
wherein the processor is specifically configured to:
sequentially identify, based on a preset priority, the first
operations comprised in the first operation set; and
determine, based on a first operation identified each time,
a feature scenario corresponding to the first operation,
and sequentially put feature scenarios into a scenario
information stack.
12. The data processing system according to claim 10,
wherein the processor is specifically configured to:
determine whether the metadata of the second data
matches at least one piece of feature information of a
to-be-identified first operation, and if the metadata of
the second data matches the at least one piece of feature
information of the to-be-identified first operation,
determine the to-be-identified first operation, wherein
the metadata of the second data comprises a shape, a
stride, and a memory offset of the second data.
13. The data processing system according to claim 10,
wherein the processor is specifically configured to:
traverse an operator information library, wherein the
operator information library comprises a plurality of
TBE operators; and
for each first operation identified from the first operation
set, determine, as a second operation that matches the
first operation, an operator that is in the operator
information library and that has a same feature as the
first operation, and sequentially put second operations
into an operator information stack.
14. The data processing system according to claim 10,
wherein
the processor is further configured to deliver a conversion
command to the computing core, wherein the conver-
sion command comprises the second operation set, and
the conversion command indicates the computing core
to calculate the first data based on the second operation
set, to obtain the third data.
15. The data processing system according to claim 10,
wherein
the processor is further configured to construct fourth
data, wherein the fourth data is the same as the meta-
data of the first data, and the fourth data and the first
data share a memory; and
the computing core is further configured to sequentially
perform the second operation in the second operation
set on the fourth data, to obtain the third data.
16. The data processing system according to claim 10,
wherein the first operation set comprises a transpose opera-
tor, a narrow operator, and an expand operator.

US 2024/0143397 Al May 2, 2024
11

17. The data processing system according to claim 10,
wherein the data processing system further comprises a host
and a chip, the processor is located in the host, and the
computing core is located in the chip.

18. The system according to claim 17, wherein the chip
comprises at least one of a neural-network processing unit
(NPU), a graphics processing unit (GPU), a tensor process-
ing unit (TPU), and a data processing unit (DPU).

19. A chip, comprising a processor and a computing core,
wherein

the processor is configured to: obtain metadata of first

data and metadata of second data, wherein the second
data is obtained by performing a first operation set on
the first data, the first operation set comprises at least
two first operations, and memory addresses corre-
sponding to elements at adjacent positions in each row
of the second data are discontinuous; identify the first
operation set based on the metadata of the second data,
and determine each first operation in the first operation
set; and determine a second operation set that matches
the first operation set, wherein a second operation that
matches each first operation in the first operation set
exists in the second operation set; and

the computing core is configured to obtain third data

based on the first data and the second operation set,
wherein memory addresses corresponding to elements
at adjacent positions in each row of the third data are
continuous.

