a2 United States Patent

Sheriber et al.

US011705086B2

ao) Patent No.: US 11,705,086 B2
45) Date of Patent: *Jul. 18, 2023

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

ADJUSTING VIRTUAL MACHINE GPU
REFRESH RATE TO REMOTE DESKTOP
STREAM FRAME RATE

Applicant: Red Hat Israel, Ltd., Ra’anana (IL)

Inventors: Snir Sheriber, Ra’anana (IL); Uri
Lublin, Ra’anana (IL.)

Assignee: Red Hat Israel, Ltd., Ra’anana (IL)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 157 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 17/229,663
Filed: Apr. 13, 2021

Prior Publication Data

US 2021/0233487 Al Jul. 29, 2021

Related U.S. Application Data

Continuation of application No. 16/843,557, filed on
Apr. 8, 2020, now Pat. No. 10,997,940, which is a
continuation of application No. 16/162,196, filed on
Oct. 16, 2018, now Pat. No. 10,643,569.

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

9,007,362 B2 4/2015 Shuster et al.

9,924,134 B2 3/2018 Glen

9,940,898 B2 4/2018 Cook et al.

10,198,299 Bl 2/2019 Xu et al.

2010/0226441 Al 9/2010 Tung et al.
2011/0126110 Al 5/2011 Vilke et al.
2014/0285502 Al 9/2014 Hobbs
2018/0293690 Al  10/2018 Ray et al.
2019/0188148 Al 6/2019 Dong

OTHER PUBLICATIONS

Gong et al., “A Benchmark for User-Perceived Display Quality on
Remote Desktops”, VMware Technical Journal, Dec. 2013, https://
labs.vmware.com/vmtj/a-benchmark-for-user-perceived-display-
quality-on-remote-desktops, 12 pages.

Martindale, “Nvidia’s Prototype 1,700Hz Display Could Unlock
Frame Rates For Future VR”, Digital Trends, 2016 https://www.
digitaltrends.com/virtual-reality/nvidia-1700hz-vr-display/, 10 pages.

Primary Examiner — Robert J Craddock
(74) Attorney, Agent, or Firm — Womble Bond Dickinson
(US) LLP

Int. C1.
GO9G 5/00 (2006.01) (57) ABSTRACT
GO6F 9/455 (2018.01) A system and method of adjusting a refresh rate to match a
GO6F 9/50 (2006.01) . : :

given remote desktop stream frame rate is described. The
GO6F 9/38 (2018.01) . . . .
US. Cl sys(tie.:m may include a prc;ﬂcessmg dezlcelz{ to tyansmlt, .alsl a

i 1] 1t 1 1 t
CPC ... GO9G 5/001 (2013.01); GOGF 93877 o o e & D ot raio 1o & o g;?fedzvslm;
(2013.01); GOGF 9/45558 (2013.01); GO6F client
9/5077 (2013.01); GO9G 5/006 (2013.01); '
G09G 2360/06 (2013.01); GO9G 2360/18
(2013.01) 20 Claims, 6 Drawing Sheets
Remote
Desktop Client A
102
T
Frame rate Encaded Media
Frames
213
emote
Desktop Image A
215

Agent Graphics Driver A Operating
mn 123 System A

3 Guest

115

I
Refresh rate 315

317

Virtual Machine GPU A

107

Virtual Machine 111

Host Machine 101




US 11,705,086 B2

Sheet 1 of 6

Jul. 18, 2023

U.S. Patent

L FdN9I4

LOL QUIYIBI 1SOH

£oL (Nd

9) uun buissanold sydein

6oL JosiasadAH /7 J0nuop BUIYIBI [BNUIA

60L
Nd9 BUIYIBW [ENLIA

a

oLy
Nd9 SUIYIeN [eNLIA

|

L]

L]

6ZL g J8nig soyder

€21 ¥ Joaug soydesn

L1 g waisks BunesadQ 1s9n9

GL1 v waisks bunesadQ 1s9n9

tLL d sulyIely [enLIA

LLL V SUIYIB |BMUIA

voL
g wai) dopisaq
gi0Wway

0L
v sl dopiseq
aj0way




US 11,705,086 B2

Sheet 2 of 6

Jul. 18, 2023

U.S. Patent

Z FdN9OIH

LOL 8uiyoe 1SOH

LLL euiyaei [enLip

o1l owel)
oyl uo paseq 1Bl N
B 18 S19)jnqowey) LOL ¥ NdD sulydep [enlip
melpay
A
Le
6Lz 9)e. owel
GLL
v wosks bunesado
y 158Nn9
Gle
v obew| dopysaq
o10WaY
A
eLe
SoWe. BIPS pepoaul
ke
olel aweld
Y jol Seld
0L
v way ) dopisaq
2)0WaY




US 11,705,086 B2

Sheet 3 of 6

Jul. 18, 2023

U.S. Patent

€ F¢4NOid

LOL QUIYIBI 1SOH

LLL BUIyOBN [BNUIA

0L

V NdO 2UIYIEN [BNUIA

_ !
LLE

GLE 918l ysayay

SLL
v walsg £ZL LLE
buneiadp v Joaug sowyders | 1uaby
1san9  }
SLe
v abew) doyysag
a10Way
gLe
sowe.d Lz
BIPSIN POpOIU
IP3N _u+ podu3 91eJ AwWel4
|
0L
v ) dopisaq
210WaY




US 11,705,086 B2

Sheet 4 of 6

Jul. 18, 2023

U.S. Patent

¥ 3dNOId

LOL 2uiyaIeN 1SO0H

60L JoSiaIadAH / 101UOW BUIYIBY [BNUIA

V14 LLL SUIYIRW [enilip

\
L0L YV NdO suiyIepy [enuip
| [
Gy ey
_ sinduoiu)
A4
SLL v
v woshs GLZ
Bunesadg v abew; dopseq
159n9 aj0way
¢le
sowel

BIpa papoouy

Y

0L
v ey dopysaq
ajowsy




US 11,705,086 B2

Sheet 5 of 6

Jul. 18, 2023

U.S. Patent

ELS \/\

ALTANY

S 34N9Id

uoI doysap 910WaI Y] 0) B1RJ SR DU YIM
weaxns epaw e se obiewn dopsap ajowal sy Jo uonod ay) ywsuen

ol owey)
oy saydiew 1ey) el ysayol e e abews dopysap ajowai e jo uonod
B 9]201) 0] SIANQAWELY MEIP 0] (dS SUIYIBW [ENLIA 9} S|qeUD
SPURLILLIOD BI0W IO BUO B} UIRIBYM “(NdD) hun Buissadoud soydesb
QUIYDBLU [2NLIA B 0) 3184 IR SU) UO PASE] 9)Rl YSaljal palsap
e Buipnjur spuewwod 210w 10 8UO ‘aulydew [enuiA au) Aq ‘puas
A

\. S

1ua dopisep ajowa. ay)
1oy a1es sweyy e Bukpoads 1sanbau sy quei dopjsep slows. & woj

ILEAN uoissas dopisap ajowal e Buiysiqelse Joj 1senbal B YUaWLOAAUD

IOAISS SUIYDBLU [RNLIA B Ul SUIYIRW [BNIA B 18 ‘DAI908)

005




US 11,705,086 B2

Sheet 6 of 6

Jul. 18, 2023

U.S. Patent

9 F4NOI4
N
30IA3 < q S .
NOILYHINID TYNOIS m YHOMLIN Jv
ON@ —— ﬁr!)»x\é\i.sz«&.let\\,v: eI:t%s\\\T‘ :
979~ SNOILLONYLSNI g
AN
] i e I o
¥29 NNIG3W 319vavIH-HILNINOD L _ 39103
LINN JAMG JOVAYILNI YHOMLAN
—
919 — 229
2
Yy
ERINE|
T0MINOD HOSHND [ gl > AMOWIWDILYLS
9 — 909 —
30IA3a 93 \111_ SNOLLONYLSNI ﬂ
- - g -
B N\
1NdNI DIMIWNN-YHA 1Y T
ll\ ’n\
219 809—— 09
929~  SNOILONULSNI
AV1dSIA 03dIA - > e >
H0SS3004d
o9 — A |\. 209 —

009 \



US 11,705,086 B2

1
ADJUSTING VIRTUAL MACHINE GPU
REFRESH RATE TO REMOTE DESKTOP
STREAM FRAME RATE

RELATED APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 16/843,557, filed on Apr. 8, 2020, which is a
continuation of U.S. patent application Ser. No. 16/162,196,
filed on Oct. 16, 2018, now issued as U.S. Pat. No. 10,643,
569 on May 5, 2020, which are herein incorporated by
reference in their entirety.

TECHNICAL FIELD

Aspects of the present disclosure relate to adjusting
virtual machine graphic processing unit (GPU) refresh rates
to remote desktop stream frame rates.

BACKGROUND

A virtual machine can draw framebuffers at a certain rate
(aka refresh rate). One way to send graphics of a remote
desktop is by using video streaming. With this method, the
framebuffers are encoded and sent as a video stream at a
certain frame rate to a remote desktop client. However, when
the refresh rate is different from the frame rate, CPU
operations or GPU operations may be wasted.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the disclosure are illustrated by way of
example and not limitation in the figures of the accompa-
nying drawings in which like references indicate similar
elements.

FIG. 1 illustrates a remote desktop environment in accor-
dance with an embodiment of the disclosure.

FIG. 2 illustrates a system for adjusting a virtual machine
GPU refresh rate to match a frame rate of a remote desktop
stream, in accordance with an embodiment of the invention.

FIG. 3 further illustrates a system for adjusting a virtual
machine GPU refresh rate to match a frame rate of a remote
desktop stream, in accordance with an embodiment of the
invention.

FIG. 4 further illustrates a system for adjusting a virtual
machine GPU refresh rate to match a frame rate of a remote
desktop stream, in accordance with an embodiment of the
invention.

FIG. 5 is a flow diagram illustrating an example method
500 of adjusting a virtual machine GPU refresh rate to match
a frame rate of a remote desktop stream, in accordance with
an embodiment of the invention.

FIG. 6 illustrates a diagrammatic representation of a
machine in the example form of a computer system 600
within which a set of instructions, for causing the machine
to perform any one or more of the methodologies discussed
herein, may be executed.

DETAILED DESCRIPTION

Described herein are systems and methods for adjusting
virtual machine GPU refresh rates to frame rates of remote
desktop streams, so that CPU/GPU operations can be more
efficiently utilized. In an embodiment, framebuffers are
written by a virtual machine at a refresh rate, while graphics
of a remote desktop (or remote desktop image) are rendered
by a guest operating system, encoded at a frame rate, and

15

20

25

30

35

40

45

60

2

sent as a video stream to a remote desktop client. Where the
refresh rate and the frame rate are different, CPU operations
or GPU operations may not be efficiently utilized. If the
frame rate is higher, a single frame can be sent multiple
times; if the refresh rate is higher, a rendered framebuffer
may not be sent.

To address the above described deficiencies, various
embodiments of the present disclosure are described to
dynamically adjust the virtual machine GPU refresh rate to
match the remote desktop stream frame rate to avoid such
waste in GPU or CPU operations.

In an embodiment, a system for and a method of adjusting
a GPU refresh rate of a virtual machine to match a given
remote desktop stream frame rate is described. The adjust-
ment of the GPU refresh rate of the virtual machine can be
made directly using the virtual machine GPU device or
through a graphics driver of the virtual machine. The virtual
machine receives information for the given frame rate either
from a remote desktop client or from a hypervisor, and stores
the information in the graphics driver or the virtual machine
GPU. A guest operating system of the virtual machine
receives the frame rate information, and adjusts a refresh
rate of the virtual machine GPU. The virtual machine GPU
uses the adjusted refresh rate to draw or redraw framebuffers
to create a remote desktop image for transmission to the
remote desktop client.

In an embodiment, the guest operating system includes an
agent, which can receive a desired refresh rate from the
hypervisor or a remote desktop client. The desired refresh
rate can be set initially, for example, to a refresh rate of a
display device of the remote desktop client, or a constant e.g.
60 Hz or 30 Hz, or set by a user, or set according to network
conditions.

In an embodiment, the desired refresh rate can be passed
in a request from the remote desktop client and stored in the
graphics driver of the virtual machine through the agent. The
graphics driver can set the value of the desired refresh rate
in the virtual machine GPU by changing settings of the
virtual machine GPU. The virtual machine GPU can subse-
quently draw framebuffers at the desired refresh rate to
create the remote desktop image.

In an alternative embodiment, the desired refresh rate of
the virtual machine GPU can be provided by the hypervisor
based on network conditions, and can be stored in the virtual
machine GPU. The guest operating system can receive a
value indicating the desired refresh rate from the virtual
machine GPU via the agent, and send one or more com-
mands via a graphical driver or one or more libraries to the
virtual machine GPU to draw framebuffers at a refresh rate
matching the value. The virtual machine GPU can also
generate interrupts to the guest operating system at a rate
specified by the value, to enable the virtual machine to draw
framebuffers at the rate (i.e., refresh rate).

In an example, the desired refresh rate and the value of the
refresh rate parameter can be determined based on the
parameters of the request for creating the remote desktop
session, or based on the given frame rate.

In an example, after receiving one or more portions of the
remote desktop image encoded at the given frame rate, the
remote desktop client can display the portions of the remote
desktop image at the given frame rate.

FIG. 1 illustrates a remote desktop environment in accor-
dance with an embodiment of the invention.

As shown in FIG. 1, a host machine 101 can include a host
graphic processing unit (GPU) 103, and a virtual machine
monitor (VMM)/hypervisor 105 that runs a number of
virtual machines, for example, virtual machine A 111 and



US 11,705,086 B2

3

virtual machine B 113. Each virtual machine 111 or 113 can
include a guest operating system 115 or 117, and a virtual
machine GPU 107 or 108, which can be a software abstrac-
tion of the GPU 103 or another GPU, a partition of the GPU
103, or the whole GPU 103.

Each guest operating system 115 or 117 can include a
graphics driver 123 or 125. Applications in each guest
operating system 115 or 117 can use graphics driver 123 or
125 or through one or more libraries to communicate with
the virtual machine GPU 107 or 109.

As further shown in FIG. 1, a remote desktop client 102
or 104 can be a client computer with a software application
running on the client computer. The software application can
communicate with a guest operating system 115 or 117 on
the host machine 101 to create a desktop session. Each
remote desktop client 102 or 104 can receive user inputs,
such as keyboard and mouse input, and convert the input
into a network compatible representation to be transmitted to
the guest operating system 115 or 117. The guest operating
system 115 or 117 can receive the network-compatible
representation of the user input, and convert this represen-
tation into actual input messages, which are then sent to a
message queue in a guest operating system 115 or 117, as if
the input was generated at the guest operating system.

Each remote desktop client 102 or 104 can communicate
with the host machine through a network 127 using a remote
desktop protocol (RDP). RDP can be executed via a TCP/IP
networks and is internally divided into several layers,
including a layer for handling the transmission of mouse and
keyboard input and displaying output. The host machine 101
does not know which type of client machine will contact the
host machine, and therefore needs to receive all parameters
that characterize the remote desktop client 102 and 104.
Example parameters include operating system used, proto-
col version, size of a display device of the remote desktop
client, and refresh rate of the display device.

FIG. 2 illustrates a system for adjusting a virtual machine
GPU refresh rate to match a frame rate of a remote desktop
stream, in accordance with an embodiment of the invention.

As shown in FIG. 2, the remote desktop client A 102 can
send a request for creating a remote desktop session. The
request can include parameters that characterize the remote
desktop client. In an embodiment, the parameters can
include a frame rate 211 used for encoding graphics trans-
mitted from the virtual machine 111. In an alternative
embodiment, the parameters can include information from
which to derive the frame rate 211; for example, the infor-
mation can be a refresh rate of the display device of the
remote desktop client 102.

Upon receiving the frame rate 211 or deriving a frame rate
from information in the request, the virtual machine 111 can
send the frame rate 211 to the guest operating system 115,
which can send one or more commands including the frame
rate 217 to the virtual machine GPU 107. The one or more
commands enable the virtual machine GPU 107 to draw
framebuffers to create 219 a remote desktop image 215 at a
refresh rate that matches the frame rate. The guest operating
system 115 can subsequently transmit the remote desktop
image 215 as a media stream with the frame rate to the
remote desktop client 102.

FIG. 3 further illustrates a system for adjusting a virtual
machine GPU refresh rate to match a frame rate of a remote
desktop stream, in accordance with an embodiment of the
invention.

In FIG. 3, an agent 311 in the guest operating system 115
can receive the frame rate 211 from a client request, and can
store a value of a refresh rate parameter derived from the

10

30

40

45

60

4

frame rate to the graphics driver 123. The graphics driver
123 can adjust a refresh rate of the virtual machine GPU 107
to match the frame rate 211 or the derived fresh rate 315. The
adjustment of the refresh rate can be made by changing
settings of the virtual machine GPU 107. The derived refresh
rate 315 can be a refresh rate of a display device of the
remote desktop client 102, and can be derived from the
frame rate 211.

In an embodiment, the graphics driver 123, after receiving
the desired refresh rate, can report the desired refresh rate to
the guest operating system 115. The guest operating system
115 can send one or more commands to the virtual machine
GPU 107, to instruct the virtual machine GPU 107 to draw
framebuffers at the desired refresh rate to create 317 one or
more portions of the remote desktop image 215.

FIG. 4 further illustrates a system for adjusting a virtual
machine GPU refresh rate to match a frame rate of a remote
desktop stream, in accordance with an embodiment of the
invention.

As shown in FIG. 4, in an embodiment, a desired refresh
rate 404 can be obtained by the virtual machine GPU 107
from the hypervisor 105. The desired refresh rate 404 can be
set by the hypervisor based on one or more conditions of a
network used by the remote desktop client 102 to connect to
the virtual machine 111. For example, the hypervisor can set
a higher desired refresh rate (e.g., 60 Hz) for the virtual
machine GPU 107 if a fast network connection is detected
by the hypervisor 105, and a lower desired refresh rate (e.g.,
30 Hz) if a slow network connection is detected. The virtual
machine GPU 107, after obtaining the desired refresh rate
from the hypervisor 105 can draw framebuffers at a refresh
rate matching the desired refresh rate 404 for creating 415
the remote desktop image 215.

In an example, the virtual machine GPU 107 can also
generate interrupts 413 to the guest operating system 115 at
the desired refresh rate, to enable the virtual machine 111 to
redraw framebuffers at the rate (i.e., refresh rate). In an
embodiment, the guest operating system 115, upon receiving
the interrupts 413 from the virtual machine GPU 107, can
send one or two commands via the graphical driver 123 to
the virtual machine GPU 107 for use in drawing or redraw-
ing framebuffers.

FIG. 5 is a flow diagram illustrating an example method
500 of adjusting a virtual machine refresh rate to match a
frame rate of a remote desktop, in accordance with an
embodiment of the invention.

The method 500 may be performed by processing logic
that comprises hardware (e.g., circuitry, dedicated logic,
programmable logic, microcode, etc.), software (e.g.,
instructions run on a processing device to perform hardware
simulation), or a combination thereof. For example, the
method 500 may be performed by one or more of the
systems or components described with reference to FIG. 2.

Beginning in block 511, a virtual machine in a virtual
machine server environment receives a request for estab-
lishing a remote desktop session from a remote desktop
client, the request specifying a frame rate for the remote
desktop client.

In block 512, the virtual machine sends one or more
commands including a desired refresh rate based on the
frame rate to a virtual machine graphics processing unit in
the virtual machine, wherein the one or more commands
enable the virtual machine GPU to draw framebuffers to
create a portion of a remote desktop image at a refresh rate
that matches the frame rate.

In block 513, the guesting operating system transmits the
portion of the remote desktop image as a media stream with



US 11,705,086 B2

5

the frame rate to the remote desktop client. The remote
desktop client receives the portion of the remote desktop
image, and displays the portion of the remote desktop image
on a display device of the remote desktop client.

FIG. 6 illustrates a diagrammatic representation of a
machine in the example form of a computer system 600
within which a set of instructions (e.g., framebuffer instruc-
tions), for causing the machine to perform any one or more
of the methodologies discussed herein, may be executed. In
alternative embodiments, the machine may be connected
(e.g., networked) to other machines in a local area network
(LAN), an intranet, an extranet, or the Internet. The machine
may operate in the capacity of a server or a client machine
in a client-server network environment, or as a peer machine
in a peer-to-peer (or distributed) network environment. The
machine may be a personal computer (PC), a tablet PC, a
set-top box (STB), a Personal Digital Assistant (PDA), a
cellular telephone, a web appliance, a server, a network
router, a switch or bridge, a hub, an access point, a network
access control device, or any machine capable of executing
a set of instructions (sequential or otherwise) that specify
actions to be taken by that machine. Further, while only a
single machine is illustrated, the term “machine” shall also
be taken to include any collection of machines that indi-
vidually or jointly execute a set (or multiple sets) of instruc-
tions to perform any one or more of the methodologies
discussed herein.

The exemplary computer system 600 includes a process-
ing device 602 (e.g., a virtual machine GPU), a main
memory 604 (e.g., read-only memory (ROM), flash
memory, dynamic random access memory (DRAM), a static
memory 606 (e.g., flash memory, static random access
memory (SRAM), etc.), and a data storage device 618,
which communicate with each other via a bus 630. Any of
the signals provided over various buses described herein
may be time multiplexed with other signals and provided
over one or more common buses. Additionally, the inter-
connection between circuit components or blocks may be
shown as buses or as single signal lines. Each of the buses
may alternatively be one or more single signal lines and each
of the single signal lines may alternatively be buses.

Processing device 602 represents one or more general-
purpose processing devices such as a microprocessor, cen-
tral processing unit, or the like. More particularly, the
processing device may be complex instruction set comput-
ing (CISC) microprocessor, reduced instruction set com-
puter (RISC) microprocessor, very long instruction word
(VLIW) microprocessor, or processor implementing other
instruction sets, or processors implementing a combination
of instruction sets. Processing device 602 may also be one
or more special-purpose processing devices such as an
application specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. The processing device
602 is configured to execute processing logic 626, for
performing the operations and steps discussed herein.

The data storage device 618 may include a machine-
readable storage medium 628, on which is stored one or
more set of instructions 622 embodying any one or more of
the methodologies of functions described herein, including
instructions to cause the processing device 602 to execute
operations such as writing/drawing framebuffers, creating a
remote desktop image, and encoding a remote desktop
image as described herein. The instructions 622 may also
reside, completely or at least partially, within the main
memory 404 or within the processing device 602 during
execution thereof by the computer system 600; the main

40

45

50

55

6

memory 604 and the processing device 602 also constituting
machine-readable storage media. The instructions 622 may
further be transmitted or received over a network 620 via the
network interface device 608.

The machine-readable storage medium 628 may also be
used to store instructions to perform a method for matching
a virtual machine GPU refresh rate to a given frame rate as
described herein. While the machine-readable storage
medium 628 is shown in an exemplary embodiment to be a
single medium, the term “machine-readable storage
medium” should be taken to include a single medium or
multiple media (e.g., a centralized or distributed database, or
associated caches and servers) that store the one or more sets
of instructions. A machine-readable medium includes any
mechanism for storing information in a form (e.g., software,
processing application) readable by a machine (e.g., a com-
puter). The machine-readable medium may include, but is
not limited to, magnetic storage medium (e.g., floppy dis-
kette); optical storage medium (e.g., CD-ROM); magneto-
optical storage medium; read-only memory (ROM); ran-
dom-access memory (RAM); erasable programmable
memory (e.g., EPROM and EEPROM); flash memory; or
another type of medium suitable for storing electronic
instructions.

The preceding description sets forth numerous specific
details such as examples of specific systems, components,
methods, and so forth, in order to provide a good under-
standing of several embodiments of the present disclosure.
It will be apparent to one skilled in the art, however, that at
least some embodiments of the present disclosure may be
practiced without these specific details. In other instances,
well-known components or methods are not described in
detail or are presented in simple block diagram format in
order to avoid unnecessarily obscuring the present disclo-
sure. Thus, the specific details set forth are merely exem-
plary. Particular embodiments may vary from these exem-
plary details and still be contemplated to be within the scope
of the present disclosure.

Additionally, some embodiments may be practiced in
distributed computing environments where the machine-
readable medium is stored on and or executed by more than
one computer system. In addition, the information trans-
ferred between computer systems may either be pulled or
pushed across the communication medium connecting the
computer systems.

Embodiments of the claimed subject matter include, but
are not limited to, various operations described herein.
These operations may be performed by hardware compo-
nents, software, firmware, or a combination thereof.

Although the operations of the methods herein are shown
and described in a particular order, the order of the opera-
tions of each method may be altered so that certain opera-
tions may be performed in an inverse order or so that certain
operation may be performed, at least in part, concurrently
with other operations. In another embodiment, instructions
or sub-operations of distinct operations may be in an inter-
mittent or alternating manner.

The above description of illustrated implementations of
the invention, including what is described in the Abstract, is
not intended to be exhaustive or to limit the invention to the
precise forms disclosed. While specific implementations of,
and examples for, the invention are described herein for
illustrative purposes, various equivalent modifications are
possible within the scope of the invention, as those skilled
in the relevant art will recognize. The words “example” or
“exemplary” are used herein to mean serving as an example,
instance, or illustration. Any aspect or design described



US 11,705,086 B2

7

herein as “example” or “exemplary” is not necessarily to be
construed as preferred or advantageous over other aspects or
designs. Rather, use of the words “example” or “exemplary”
is intended to present concepts in a concrete fashion. As used
in this application, the term “or” is intended to mean an
inclusive “or” rather than an exclusive “or”. That is, unless
specified otherwise, or clear from context, “X includes A or
B” is intended to mean any of the natural inclusive permu-
tations. That is, if X includes A; X includes B; or X includes
both A and B, then “X includes A or B” is satisfied under any
of the foregoing instances. In addition, the articles “a” and
“an” as used in this application and the appended claims
should generally be construed to mean “one or more” unless
specified otherwise or clear from context to be directed to a
singular form. Moreover, use of the term “an embodiment”
or “one embodiment” or “an implementation” or “one
implementation” throughout is not intended to mean the
same embodiment or implementation unless described as
such. Furthermore, the terms “first,” “second,” “third,”
“fourth,” etc. as used herein are meant as labels to distin-
guish among different elements and may not necessarily
have an ordinal meaning according to their numerical des-
ignation.

It will be appreciated that variants of the above-disclosed
and other features and functions, or alternatives thereof, may
be combined into may other different systems or applica-
tions. Various presently unforeseen or unanticipated alter-
natives, modifications, variations, or improvements therein
may be subsequently made by those skilled in the art which
are also intended to be encompassed by the following
claims. The claims may encompass embodiments in hard-
ware, software, or a combination thereof.

What is claimed is:

1. A non-transitory computer-readable medium including
instructions that, when executed by a processing device,
cause the processing device to:

transmit, by the processing device as a media stream, a

portion of a remote desktop image with a frame rate
that matches a refresh rate to a remote desktop client.

2. The non-transitory computer-readable medium of claim
1, wherein the processing device further to receive a request
to establish a remote desktop session from the remote
desktop client.

3. The non-transitory computer-readable medium of claim
1, wherein the frame rate is determined by a hypervisor in
a virtual machine server environment.

4. The non-transitory computer-readable medium of claim
3, wherein the refresh rate is to be changed by the hyper-
visor.

5. The non-transitory computer-readable medium of claim
2, wherein the frame rate is determined by a plurality of
parameters associated with the request, the plurality of
parameters characterizing the remote desktop client.

6. The non-transitory computer-readable medium of claim
5, wherein the plurality of parameters includes one or more
of an operating system or a protocol version.

25

40

45

55

8

7. The non-transitory computer-readable medium of claim
3, wherein the virtual machine server environment executes
on one or more host machines, and includes a plurality of
virtual machines managed by a hypervisor.

8. The non-transitory computer-readable medium of claim
3, wherein the virtual machine server environment com-
prises a virtual machine graphics processing unit (GPU).

9. The non-transitory computer-readable medium of claim
5, wherein the plurality of parameters includes one or more
of a size of a display device or a refresh rate of the display
device.

10. A system comprising:

a memory device;

a processing device operatively coupled to the memory

device, the processing device to:

transmit, as a media stream, a portion of a remote desktop

image with a frame rate that matches a refresh rate to
a remote desktop client.

11. The system of claim 10, wherein the processing device
further to receive a request to establish a remote desktop
session from the remote desktop client.

12. The system of claim 10, wherein the frame rate is
determined by a hypervisor in a virtual machine server
environment.

13. The system of claim 12, wherein the refresh rate is to
be changed by the hypervisor.

14. The system of claim 11, wherein the frame rate is
determined by a plurality of parameters associated with the
request, the plurality of parameters characterizing the
remote desktop client.

15. The system of claim 14, wherein the plurality of
parameters includes one or more of an

operating system, a protocol version, a size of a display

device, or a refresh rate of the display device.
16. The system of claim 12, wherein the virtual machine
server environment executes on one or more host machines,
and includes a plurality of virtual machines managed by a
hypervisor.
17. The system of claim 12, wherein the virtual machine
server environment comprises a virtual machine graphics
processing unit (GPU).
18. A method, comprising:
receiving, by a graphics processing unit (GPU) in a virtual
machine a first refresh rate based on a frame rate; and

drawing framebuffers to create a portion of a remote
desktop image at a second refresh rate that matches the
frame rate.

19. The method of claim 18, wherein the first refresh rate
is adjusted to match the frame rate of a remote desktop.

20. The method of claim 18, wherein information of the
frame rate is stored in at least one of a graphics driver or the
GPU.



