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1
PARALLELIZED PIPELINE FOR VECTOR
GRAPHICS AND IMAGE PROCESSING

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is a continuation of U.S. patent
application Ser. No. 16/613,169, filed Nov. 13, 2019, which
is a U.S. National Stage application Under 35 U.S.C. § 371
of PCT application No. PCT/US2018/022628, filed Mar. 15,
2018, which claims the benefit of the filing date of U.S.
Provisional Application No. 62/508,096, filed May 18, 2017,
the entire disclosures of which are hereby incorporated by
reference.

BACKGROUND

Processing and displaying vector graphics, such as a web
page’s type on a laptop’s display or a map on a smartphone’s
touch screen, requires significant processing resources. As
the number and size of displays continue to grow, faster,
more efficient processing of vector graphics becomes nec-
essary. However, declining advances in processing perfor-
mance using current vector graphics processing techniques
threatens to reduce the use of vector graphics.

Many methods of processing vector graphics data rely on
a computing device’s central processing unit (CPU), with or
without assistance from a graphical processing unit (GPU).
For decades, vector graphics processing has been seen as
being incompatible with data-parallel computing devices
like GPUs. As such, most vector graphics processing tech-
niques fail to take advantage of the GPU’s ability to process
data in parallel.

Current vector graphics processing techniques tend to
focus on accelerating only a fraction of a complete vector
graphics processing pipeline using parallel processing, with
the remainder continuing to be processed with scalar CPU
algorithms. While modest speedups relative to the available
computing power of the GPU have been realized by per-
forming a portion of the vector graphics processing pipeline
in parallel, the bulk of the GPU’s computing power is not
utilized. Additionally, energy inefficiencies are prevalent in
in current vector graphics techniques due to the continual
utilization of both the scalar CPU and the GPU. Moreover,
most of these vector graphics techniques sacrifice visual
quality with imprecise antialiasing.

SUMMARY

Embodiments within the disclosure relate generally to
processing vector graphics on a computer system. One
aspect includes a method for rasterizing and compositing
vector graphics in parallel on a data-parallel computing
device. The method comprising loading, by one or more
parallel processors, vector data of the vector graphics into
local memory accessible by the one or more parallel pro-
cessors, wherein the vector data includes one or more paths
comprised of one or more path segments of the vector
graphics; rasterizing, by the one or more parallel processors,
the one or more path segments into respective rasters;
assigning, by the one or more parallel processors, each of the
rasters into groups based on pixel coordinates of the respec-
tive rasters, wherein each group has an associated key and
the rasters within each group represent a portion of the same
vector graphic; placing, by the one or more parallel proces-
sors, the rasters onto subpixels according to their respective
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pixel coordinates; and rendering, by the one or more parallel
processors, the rasters onto a display.

In some examples, loading the vector data occurs in
response to the one or more parallel processors receiving
pull commands which identify a location of the vector data
in a host memory.

In some examples, loading the vector data further
includes simultaneously building a path data structure for
each of the one or more paths in the vector data.

In some examples, each path data structure includes a
respective path head as a root node to linked list data
structures comprising blocks, each respective path head
containing descriptive information about a total path calcu-
lated during pull commands.

In some examples, for each path head, the descriptive
information about the total path includes one or more of (i)
a total number of blocks which were required for a path, (i)
how many lines and curves are in the path. (iii) the total
path’s 2D bounds, and (iv) a head node indicating a location
of a first path node in the linked list data structure.

In some examples, each path head is associated with path
nodes.

In some examples, each path node includes a segment
count block which stores a total number of segments within
the respective path node and a next node block which stores
a location of the next path node in the linked list.

In some examples, each path node includes path segment
blocks storing indices which point to blocks of data asso-
ciated with the one or more path segments.

In some examples, the path segment blocks include a type
block which defines geometry of the path segments which
make up the path represented by the path node, wherein the
geometry may be curves or a line segments.

In some examples, the rasterizing includes converting
path segments into tile trace subpixels (TTSs), and packing
the TTSs into tile trace subpixel blocks (TTSBs).

Another aspect includes a non-transitory computer read-
able medium storing instructions, which when executed by
one or more parallel processors, cause the one or more
parallel processors to perform the steps of: loading vector
data of vector graphics into local memory accessible by the
one or more parallel processors, wherein the vector data
includes one or more paths comprised of one or more path
segments of the vector graphics; rasterizing the one or more
path segments into respective rasters; assigning each of the
rasters into groups based on pixel coordinates of the respec-
tive rasters, wherein each group has an associated key and
the rasters within each group represent a portion of the same
vector graphic; placing rasters onto subpixels according to
their respective pixel coordinates; and rendering the rasters
onto a display.

Another aspect includes a system for rasterizing and
compositing vector graphics in parallel comprising: one or
more data-parallel computing devices; and memory storing
instructions, the instructions executable by the one or more
data-parallel computing devices, wherein the instructions
comprise: loading vector data of vector graphics into local
memory accessible by the one or more parallel processors,
wherein the vector data includes one or more paths com-
prised of one or more path segments of the vector graphics;
rasterizing the one or more path segments into respective
rasters; assigning each of the rasters into groups based on
pixel coordinates of the respective rasters, wherein each
group has an associated key and the rasters within each
group represent a portion of the same vector graphic; placing
rasters onto subpixels according to their respective pixel
coordinates; and rendering the rasters onto a display.
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BRIEF DESCRIPTION OF THE DRAWINGS

The present technology is illustrated by way of example,
and not by way of limitation, in the figures of the accom-
panying drawings in which like reference numerals refer to
similar elements including:

FIG. 1 is a functional diagram of an example system in
accordance with aspects of the disclosure.

FIG. 2 is a pictorial diagram of the example system of
FIG. 1.

FIG. 3A is an example of a separate memory architecture
in accordance with aspects of the disclosure.

FIG. 3B is an example of a unified memory architecture
in accordance with aspects of the disclosure.

FIG. 4 is a block diagram of the pull kernel process in
accordance with aspects of the disclosure.

FIG. 5 is an example a path data structure in accordance
with aspects of the disclosure.

FIG. 6 is a block diagram of the rasterization process in
accordance with aspects of the disclosure.

FIG. 7 is an example transformation flow in accordance
with aspects of the disclosure.

FIG. 8 is an example raster data structure in accordance
with aspects of the disclosure.

FIG. 9 is an illustration showing the placement of TTS
structures into a tile trace subpixel block structure of a
parallel processing device’s memory in accordance with
aspects of the disclosure.

FIG. 10 is an illustration showing the creation of X and Y
slivers in accordance with aspects of the disclosure.

FIG. 11 is an example illustration of a place determination
in accordance with aspects of the disclosure.

FIG. 12 is an illustration of a TTS structure in accordance
with aspects of the disclosure.

FIG. 13 is a block diagram outlining the placement and
sorting of rasters in accordance with aspects of the disclo-
sure.

FIG. 14 is a block diagram outlining the rendering of
raster in accordance with an embodiment.

FIG. 15 is an illustration of a conversion from a left
trapezoid to a right trapezoid in accordance with aspects of
the disclosure.

FIG. 16 is an illustration of a dual accumulator in accor-
dance with aspects of the disclosure.

FIG. 17 is an illustration of a single accumulator in
accordance with aspects of the disclosure.

FIG. 18 is a flow diagram in accordance with aspects of
the disclosure.

DETAILED DESCRIPTION

Overview

This technology relates to rasterizing, compositing, and
otherwise manipulating (collectively herein referred to as
“processing”) vector graphics on a computer system. In
particular, the processing of vector graphics is performed on
data-parallel computing devices using a fully parallelized
processing pipeline. The parallelized processing pipeline
may be implemented and controlled through customized
application programming interfaces (APIs) which provide
the data-parallel computing device, such as a graphics
processing unit (GPU), with access to kernel programs. The
kernel programs may be executed by the data-parallel com-
puting device to perform the processing. In this regard, each
respective kernel may constitute a portion of the parallelized
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4

processing pipeline, with each kernel utilizing standard APIs
and sub-APIs to perform all of the processing of the vector
graphics.

The steps of the parallelized processing pipeline may
include the steps of pulling vector path, rasterizing the
pulled data, sorting and segmenting the rasterized data,
prefixing the sorted and segmented data, placing the prefixed
data, and rendering the placed data onto a display. Each of
the steps may be implemented by one or more of the kernels.
The vector path may be comprised of data representing path
segments, untransformed bounds, metadata, and memory
footprints of the respective vector graphics.

Pulling vector data includes moving blocks of concat-
enated vector data from a host memory location to an
efficiently traversable data structure that is allocated and
managed by the GPU. For instance, a processor in the
computer system, such as the CPU, may transfer sequential
path data contained in the vector data from a host memory,
such as memory accessible to the CPU into memory acces-
sible by the GPU, such as the GPU’s discrete memory. In
this regard, the sequential paths data from the host memory
may be reorganized into a number of fixed-size blocks
dependent upon the GPU’s natural transaction size, such that
a bus separating the GPU from the host memory location
may be utilized more efficiently.

In one example, the vector data may be moved from the
host memory location to the GPU’s discrete memory, by the
CPU appending pull commands into the GPU’s command
buffer, from which the GPU retrieves its instructions. The
pull commands may contain the paths’ host ID, number of
full path nodes before the current pull command, an offset
into the CPU memory segment region, and the number of
memory segment regions that the node should copy. In some
instances, other techniques to move the path data (e.g.,
sequences of line endpoints and curve control points) from
the host’s memory to memory accessible by the GPU, such
as the GPU’s discrete memory, may be used.

A pull kernel may then be launched by the GPU, causing
the GPU to execute the pull commands within its command
buffer. In this regard, upon a threshold number of pull
commands being appended into the GPU’s command buffer,
after a predetermined amount of time has passed, and/or the
GPU attempting to access a sub-kernel within the pull
kernel, the GPU may launch the pull kernel. The pull kernel
may cause the GPU to execute the pull commands which
reserves memory blocks to store the respective path nodes in
the GPU’s discrete memory. Subsequently, the GPU may
copy the path nodes into a data structure.

The paths within the data structure may be rasterized by
the GPU to create a raster which represents a transformed
path that’s suitable for rendering and other post-rasterization
activities such as hit detection, clipping, and masking. Prior
to rasterizing the paths, the GPU may execute a number of
kernels which prepare the GPU’s memory and the paths for
rasterization. In this regard, the GPU may execute a copy
transforms kernel which copies the transformation matrices
into the GPU’s memory when the GPU is discrete. The GPU
may further execute an allocate raster kernel and an expand
raster kernel. The allocate raster kernel may cause the GPU
to allocate memory blocks for the raster heads which will be
processed by the kernel grid. The expand raster kernel may
cause the CPU to generate and update a raster cohort ID map
which maps a raster cohort ID to a full-sized device raster
ID. For instance, the raster cohort ID may be comprised of
15 bits or more or less and be mapped to a full-sized device
raster ID of 32 bits or more or less, although other bit sizes
may be used for the raster cohort ID and device raster ID.
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The GPU may then launch the rasterize kernel which
converts the paths into pixels. In this regard, the rasterize
kernel splits the lines and curves of the paths into subpixel
line segments. For example, the rasterize kernel may load
one or more path segments belonging to the same raster and
split the transformed lines and curves into subpixel line
segments. The subpixel line segments may then be stored as
a tile trace subpixel (TTS) structure.

Each TTS structure may be stored within an active tile bin
associated with a subpixel location. The number of active
tile bins may be finite and dependent upon the processing
and memory capabilities of the GPU. In the event that an
active tile bin is full or needs to be flushed, the TTS
structures may be purged. In this regard, the GPU may place
the TTS structures within an active tile bin into a tile trace
subpixel block (TTSB) structure stored in the GPU’s
memory, as shown in FIG. 9. A tile trace subpixel key
(TTSK) that records the raster cohort ID, the tile coordi-
nates, and the address of the TTSB may be created and
appended to a queue in the GPU’s local memory. Upon the
TTSK queue becoming full or requiring a flush due to
subpixel line segments belonging to a different tile bin being
processed, the TTSKs may be appended in bulk to an extent
that will be sorted later.

The tile trace subpixel keys may be sorted and segmented
to enable parallel rendering of the paths based on their
respective subkeys. In this regard, the GPU may execute a
TTSK sort and segment kernel which sorts the TTSKs by
their subkeys and groups the TTSKs by a raster cohort 1D
subkey. For example, each TTSK may include three sub-
keys, or more or less, including a raster cohort ID, a Y tile
coordinate, and a X tile coordinate. The TTSKs may be
sorted according to the subkeys. After the sortation is
complete, the TTSKs may be grouped by each raster cohort
1D, y tileline, and x tileline.

The TTSK sort and segment kernel may compare each
sorted TTSK with its predecessor and if a certain number of
bits differ, then an index of the sorted TTSKs is appended to
an extent. In this regard, each index marks the beginning of
a sequence of TTSK that belong to a raster cohort ID. The
TTSK sort and segment kernel may also calculate how many
tile trace prefix blocks (ITTPB), TTPK nodes, and TTSK
nodes will used within a subsequent prefix post-processing
stage, and pre-allocate blocks for the calculated number of
TTPB, TTPK nodes, and TTSK nodes.

The TTSB blocks produced by the rasterize kernel and the
TTSKs processed by the TTSK sort and segment kernel may
require an additional post-processing step. In this regard, the
GPU, for each index, may execute a prefix kernel which
sequentially loads the TTSKs within the index and stores the
TTSKs into the preallocated TTSK nodes. The prefix kernel
may, upon determining that the TTSK tile coordinates
change, store the accumulated TTP values into the preallo-
cated TTPB block, construct a TTPK key, and store the
TTPK key into the preallocated TTPK node. In other words,
the TTSKs may be sorted, and in a final pass of the sort (or
via a dedicated sorting kernel) various statistics and indices
are calculated based on the number of changes in the tile
coordinate (YX) and raster cohort ID (R). Upon a span of
TTSKSs changing to a new coordinate (YX) a TTPK key and
TTPB block may be calculated. The total number of TTPKs
per raster cohort ID may be determined and used to generate
a raster structure that points to these TTPKs. In the event the
TTSK raster ID changes, the prefix kernel may exit.

The TTSs in the TTSB block may then be assigned a
pointer to the TTSK key and the TTS altitudes may be
scatter-added to a 1xH array. At the end of the prefix stage,
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each raster has the following associated data; a) a list of
TTSK nodes containing TTSKs pointing to TTSBs contain-
ing TTSs; b) a list of TTPK nodes containing TTPKs
pointing to TTPBs containing TTP altitudes; c¢) a total count
of TTSKs; d) a total count of TTPKs; and e) tight axis-
aligned bounds with subpixel resolution. This raster struc-
ture allows the GPU to grab all the necessary data in a single
pull, as opposed to grabbing blocks from the block data pool
one at a time. In some embodiments a long path may require
multiple passes through the rasterize, sort and segment, and
prefix kernels to be processed.

A place kernel may executed by the GPU to specify that
a raster should be subpixel translated and then rendered on
a particular layer in a composition comprised of an array of
tile trace composition keys (TTCKs). Each composition may
be treated as one or more bins of spatially partitioned TTCK
keys. For example, the place kernel may cause execution
groups, corresponding to the GPUs processors, to perform a
place determination as shown in FIG. 11. In this regard, each
execution group may determine if the raster’s bounds are in
or outside of the composition bounds. In the event the
raster’s bounds are outside of the composition the place
determination is cancelled. Otherwise, for all TTSKs in the
TTSK node the place kernel a) translates the TTSK key; b)
converts the TTSK key into a TTCK key; ¢) appends the
TTCK key to a local queue; and d) in the event the local
queue is full or needs to be flushed then append it to the
composition’s TTCK key extent.

Similarly, for all TTPK keys in the TTPK node hierarchy
the place kernel causes the GPU to a) translate the TTPK
key; b) expand the TTPK key since it may span multiple
tiles; ¢) clip the expanded tile range; d) convert each TTPK
key into a TTCK key; e) append each TTCK key to a local
spatially binned queue; and f) if the local spatially binned
queue is full or needs to be flushed, then append it to the
composition’s one or more spatially binned TTCK key
extents. Again, as the tile position of each TTCK is known,
the composition may be treated as one or more bins of
spatially partitioned TTCK keys. As such, the number of bits
required to represent the tile’s X and Y coordinates in the
TTCK composition may be reduced.

A TTCK sort and segment kernel may be executed by the
GPU to sort the TTCKs by a group of subkeys. In this
regard, the TTCK sort phase arranges the TTCKs so that all
keys belonging to the same tile are in increasing layer order.
The TTCK segment stage discovers the starting index of the
first TTCK key for a tile. For example, each TTCK may
include three subkeys, or more or less, including a Y tile
coordinate, a X tile coordinate, and a layer index. The
TTCKs may be sorted according to the subkeys, starting
with the Y tile coordinate, then the X tile coordinate, and
finally the layer index. After the sortation is complete, the
TTCKs may be grouped by each tile coordinate and in
increasing layer order.

The TTCK sort and segment kernel causes the GPU to
compare each sorted TTCK with its predecessor. In the event
that a number of bits differ then the index of the sorted index,
the sorted TTCK is appended to an extent. Each index may
mark the beginning of a sequence of TTCKs that belong to
a tile at position (X,Y).

Upon sorting and segmenting the TTCKs, the GPU may
then render the raster. In this regard, the GPU may execute
a render kernel, as shown in FIG. 14, which in turn, launches
an execution group for each tile in the TTCK key extent. The
function of each execution group is to decode the TTCK
keys into filled path outlines that are blended with adjacent
layers. In this regard, each execution group processes a
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fixed-size tile of pixels and allocates various tile-sized
blocks of memory. When there are no more keys left to
process or the tile is commanded to flush, the blended pixels
are stored or composited onto a target surface.

The features described above allow for processing vector
graphics on a data-parallel computing device in a fully
parallelized manner. Such parallelized processing offers
significantly faster more efficient vector graphic processing
than offered by current CPU. GPU, and hybrid vector
graphics engines. Further, by processing the vector graphics
completely on the data-parallel computing device, the sys-
tem’s CPU(s) may be free to perform other processing tasks
simultaneously.

Example Systems

FIGS. 1 and 2 show an example system 100 in which the
features described herein may be implemented. It should not
be considered as limiting the scope of the disclosure or
usefulness of the features described herein. In this example,
system 100 may include computing devices 110, 120, 130,
and 140 as well as storage system 150. Each computing
device may contain one or more processors 112, memory
114 and other components typically present in general
purpose computing devices. Memory 114 of each of com-
puting devices 110, 120, 130, and 140 may store information
accessible by the one or more processors 112, including
instructions 116 that can be executed by the one or more
processors 112.

The memory may store data that can be retrieved, manipu-
lated or stored by one or more processors. The memory may
be of any non-transitory type capable of storing information
accessible by the processor, such as a hard-drive, memory
card, ROM. RAM, DVD. CD-ROM, write-capable, and
read-only memories. Data elements, such as instructions 116
and data 118, may be held in memory spaces. For example,
a graphics processing unit have several memory spaces
including: registers, constants, indexable shared local
memory, global device memory, local memory, stack
memory, parameter memory, and texture memory. Each of
these memory spaces may have different properties includ-
ing different latency, size, concurrent access restrictions
relative to the current processing element which, if any,
processing elements can access this memory space, random
access and indexability defining whether data can be
accessed by an index or handle and for what purpose,
writability, bandwidth, and access pattern penalties such as
bank conflicts, coalescing, cache misses, partition camping,
etc. The registers may be directly accessible by processors in
a multiprocessor.

The instructions 116 may be any set of instructions to be
executed directly, such as machine code, or indirectly, such
as scripts, by the one or more processors. In that regard, the
terms “instructions,” ‘“kernels,” “application,” “steps.” and
“programs” can be used interchangeably herein. The instruc-
tions can be stored in object code format for direct process-
ing by a processor, or in any other computing device
language including scripts or collections of independent
source code modules that are interpreted on demand or
compiled in advance. Functions, methods, and routines of
the instructions are explained in more detail below.

Data 118 may be retrieved, stored, and modified by the
one or more processors 112 in accordance with the instruc-
tions 116. For instance, although the subject matter
described herein is not limited by any particular data struc-
ture, the data can be stored in computer registers, in a
relational database as a table having many different fields
and records, or XML documents. The data can also be
formatted in any computing device-readable format such as,
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but not limited to, binary values, ASCII or Unicode. More-
over, the data can comprise any information sufficient to
identify the relevant information, such as numbers, descrip-
tive text, proprietary codes, pointers, references to data
stored in other memories such as at other network locations,
or information that is used by a function to calculate the
relevant data.

The one or more processors 112 can be any conventional
processors, such as a commercially available CPU. Alter-
natively, the processors can be dedicated components such
as an application specific integrated circuit (“ASIC”) or
other hardware-based processor.

The one or more of computing devices 110, 120, and 130
may include specialized hardware components to perform
specific computing processes in parallel, such as rasterizing,
compositing, and otherwise manipulating vector graphics
faster or more efficiently. For instance, the one or more
graphics processing units 113 (“GPU”) may be any conven-
tional graphics processing units, such as those produced by
Intel, AMD, and NVIDIA. Additionally, the one or more
GPUs may be single instruction, multiple data (SIMD)
devices, single instruction, multiple thread devices (SIMT).
Each GPU 113 may have a natural transaction size, such as
such as 64, 128, or 256 bytes, or more or less, which equate
to 16, 32, or 64 words, respectively. The natural transaction
size may be the GPU’s architectural width (i.e., within a
multiprocessor, such as GPU 113, the number of words
which may be processed in a single cycle.)

Although FIG. 1 functionally illustrates the processor,
memory, and other elements of the computing devices as
being within the same block, the processor, computer, com-
puting device, or memory can actually comprise multiple
processors, computers, computing devices, or memories that
may or may not be stored within the same physical housing.
For example, the memory 114 can be a hard drive or other
storage media located in housings different from that of the
computing device 110.

References to a processor, computer, computing device,
or memory will be understood to include references to a
collection of processors, computers, computing devices, or
memories that may or may not operate in parallel. For
example, the computing device 110 may include server
computing devices operating as a load-balanced server farm,
distributed system, etc. Yet further, although some functions
described below are indicated as taking place on a single
computing device having a single processor, various aspects
of the subject matter described herein can be implemented
by a plurality of computing devices, for example, commu-
nicating information over network 160.

Each of the computing devices can be at different nodes
of a network 160 and capable of directly and indirectly
communicating with other nodes of network 160. Although
only a few computing devices 110, 120, 130, and 140 are
depicted in FIGS. 1-2, it should be appreciated that a typical
system can include a large number of connected computing
devices, with each different computing device being at a
different node of the network 160. The network 160 and
intervening nodes described herein can be interconnected
using various protocols and systems, such that the network
can be part of the Internet, World Wide Web, specific
intranets, wide area networks, or local networks. The net-
work can utilize standard communications protocols, such as
Ethernet, WiFi and HTTP, protocols that are proprietary to
one or more companies, and various combinations of the
foregoing. Although certain advantages are obtained when
information is transmitted or received as noted above, other
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aspects of the subject matter described herein are not limited
to any particular manner of transmission of information.

As an example, each of the computing devices 110 may
include web servers capable of communicating with storage
system 150 as well as computing devices 120, 130, and 140
via the network. For example, one or more of server com-
puting devices 110 may use network 160 to transmit and
present information to a user, such as user 220, 230, or 240,
on a display, such as displays 122, 132, or 142 of computing
devices 120, 130, or 140. In this regard, computing devices
120, 130, and 140 may be considered client computing
devices, and may perform all or some of the features
described herein.

Each of the client computing devices 120, 130, and 140
may be configured similarly to the server computing devices
110, with one or more processors, memory and instructions
as described above. Each client computing device 120 or
130 may be a personal computing device intended for use by
a user 220 or 230, and have all of the components normally
used in connection with a personal computing device such as
a central processing unit (CPU), memory (e.g., RAM and
internal hard drives) storing data and instructions, a display
such as displays 122, 132, or 142 (e.g., a monitor having a
screen, a touch-screen, a projector, a television, or other
device that is operable to display information), and user
input device 124 (e.g., a mouse, keyboard, touch-screen, or
microphone). The client computing device may also include
a camera for recording video streams and/or capturing
images, speakers, a network interface device, and all of the
components used for connecting these elements to one
another.

Although the client computing devices 120, 130, and 140
may each comprise a full-sized personal computing device,
they may alternatively comprise mobile computing devices
capable of exchanging data with a server, such as server
computing device 110, over a network such as the Internet.
By way of example only, client computing device 120 may
be a mobile phone or a device such as a wireless-enabled
PDA, a tablet PC, or a netbook that is capable of obtaining
information via the Internet. In another example, client
computing device 130 may be a tablet or laptop computer.
In an additional example, client computing device 140 may
be a digital camera, such as a 360-degree camera or digital
single-lens reflex camera. As an example the user may input
information using a small keyboard, a keypad, microphone,
using visual signals with a camera, or a touch screen.

As with memory 114, storage system 150 can be of any
type of computerized storage capable of storing information
accessible by the server computing devices 110, such as a
hard-drive, memory card, ROM, RAM. DVD, CD-ROM,
write-capable, and read-only memories. In addition, storage
system 150 may include a distributed storage system where
data is stored on a plurality of different storage devices
which may be physically located at the same or different
geographic locations. Storage system 150 may be connected
to the computing devices via the network 160 as shown in
FIG. 1 and/or may be directly connected to any of the
computing devices 110, 120, 130, and 140 (not shown).

The CPU and GPU may have a separate or unified
memory architecture, as shown in FIGS. 3A and 3B, respec-
tively. A separate memory architecture, also known as a
discrete memory system, may be comprised of the CPU 112
and GPU 113 having their own discrete memories. In order
to transfer data between the CPU and GPU memories, a bus,
such as PCI Express 119 may be utilized, as shown in FIG.
3A. In a unified memory device the CPU and GPU may
share caches and provide memory coherency across its
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processing elements. For instance, as shown in FIG. 3B, the
CPU 112 and GPU 113 share a memory interface comprising
a local level cache 115 and dynamic random access memory
117.

Example Methods

Turning first to the pulling step, blocks of concatenated
vector path data may be moved from a host memory location
to an efficiently traversable data structure that is allocated
and managed by the GPU. For instance, a processor in the
computer system, such as the CPU 112, may transfer the
vector path data, including sequential path data 401, from a
host memory 420 into memory accessible by the GPU 113,
such as the GPU’s discrete memory, as shown in FIG. 4. In
this regard, the sequential path data from the host memory
420 may be reorganized into a number of fixed-size blocks
dependent upon the GPU’s natural transaction size, such that
a bus separating the GPU 113 from the host memory may be
utilized more efficiently. The fixed-size blocks may be
further dependent upon the GPU’s natural processing size,
such as 64, 128, or 256 bytes, or more or less, which equate
to 16, 32, or 64 words, respectively. The pulling step may be
bypassed in the event the CPU and GPU share the same
memory location, such as a shared cache.

In order to transfer the vector path data from the host
memory to the GPU’s discrete memory, the CPU may then
append pull commands into the GPU’s command buffer 407,
from which the GPU 113 retrieves its instructions. Each pull
command may point to a small portion of the total path
residing in the host memory. The GPU may execute all of the
pull commands in parallel and copy data from the host
memory to the GPU’s memory. Each pull command may
contain the paths’ host ID (i.e., location where the vector
path data may be found), number of full path nodes before
the current pull command, an offset into the host memory
segment region, and the number of memory segment regions
that the node should copy. The pull commands may be
executed by a pull kernel 403 upon a threshold number of
pull commands being appended into the GPU’s command
buffer, after a predetermined amount of time has passed,
and/or when the GPU attempts to access a sub-kernel within
the a pull kernel 403.

While performing the pull command, the GPU may
simultaneously build a path data structure 501 for each
distinct vector path, as shown in FIG. 5. In this regard,
GPU’s are not typically designed with efficient and perfor-
mant dynamic memory allocator, therefore the GPU is
programmed to perform its own memory allocation. Accord-
ingly, the path data structures 501 in the parallelized pipeline
are built from fixed-size blocks of memory which allows the
parallelized pipeline to quickly acquire and release the
fixed-sized blocks from a data block pool 405. The GPU
may reserve enough blocks of memory in the data block pool
405 of the GPU to store the path data structure 501. By
performing the pull command and building the data structure
simultaneously, significant processing and efficiency gains
may be made.

A host-to-device map 505 may be stored within the
GPU’s memory. The host-to-device path map 505 may store
device path IDs 506 which map the location of the host path
id 503 of a path within the host memory 420 to the path head
507 of a corresponding path data structure 501.

The path data structures may each include a path head
507, which is a root node in a linked list data structure of
blocks. The path head blocks contain descriptive informa-
tion about the entire path calculated during the pull com-
mands, such as the total number of blocks which were
required for a path (i.e., total node count), how many lines
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and curves (i.e., segments 511) are in the path, as well as the
path’s 2D bounds (i.e., path bounds). The path head 507 may
further include a head node id, which indicates the location
of the first path node in the linked list of path nodes 509
which are in the path data structure 501. The path head 507
and its attached path nodes 509 may all be built from the
same size blocks, although different block sizes are possible.

As further shown in FIG. 5, each path node may include
a segment count which indicates the total number of seg-
ments within a respective path node, as well as an identifi-
cation of the location of the next path node in the linked list
(i.e., “next node id”). For the last path node in a path data
structure, the next node id may be left as a null value,
thereby indicating that no further path nodes are within the
path data structure. Each path node may also include path
segment blocks which are indices which point to blocks of
data which describe the curve and line geometry of the path
segments which make up the path represented by the path
node. In this regard, the segment blocks may include a type
segment block, which describes whether the coordinates
pointed to by the coordinate blocks represent path segments
which are linear or part of a curve, such as a cubic or
quadratic segment. Lines may be described with two two-
dimensional coordinates, such as (x0,y0)—(x1,y1), while
curves, such as Bezier curves, may be described with either
three or four two-dimensional coordinates.

Each path, including the path coordinates of each path
segment which makes up the entire path, may be stored in
the GPU’s memory as shown in by paths 409 of FIG. 4. The
path coordinates pointed to by the coordinate blocks in the
path data structure may be retrieved from the paths 409 of
the GPU. Such a path data structure may allow the path head
507 and each path node 509 to be updated in parallel using
basic operations, such as 32-bit word atomic operations.

The path segments within the data structure may be
rasterized by the GPU to create a raster which represents a
transformed path that’s suitable for rendering and other
post-rasterization activities such as hit detection, clipping,
and masking. Prior to rasterizing the paths 409, the GPU
may execute additional kernels which prepare the GPU’s
memory and the paths for rasterization, as shown in FIG. 6.
For instance, the GPU 113 may receive fill commands 603
from the host device. The fill commands 603 may be a
3-tuple or 4-tuple, or more or less, which provide informa-
tion needed to perform the rasterization of the path seg-
ments. In this regard, the tuples may include data which
indicates the host id of the path, the host id of the raster that
is under construction, the raster cohort id (i.e., indicating a
group of raster that are processed together) and/or a pointer
(or index) to the transformation matrix that will be applied
to this path before rasterization. The fill commands 603 may
also include a pointer (or index) to a “clipping” region to clip
the transformed paths before or during rasterization. The fill
commands 603 may be read by the allocate raster and
expand raster kernels, 605 and 607, respectively. The allo-
cate raster and expand raster kernels may convert the fill
commands 603 into finer-grained device-side rasterize com-
mands 609, as described herein.

The GPU may execute a copy transforms kernel which
copies one or more transformation matrices (i.e., transforms
601) into the GPU’s memory from the memory of the host
device when the GPU has separate memory from the host
device. In this regard, before a vector path is rendered, the
parallelized processing pipeline may receive a transforma-
tion request, such as a request to scale, rotate, shear, and/or
translate a vector path. So each command to the rasterization
kernel points to the data structure corresponding to a vector
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path and the transformation matrix that may be applied to the
data structure prior to rasterization.

As shown in FIG. 7, the data structure corresponding to a
vector path may be transformed in parallel. In this regard, a
matrix multiply may be performed on each two-dimensional
coordinate pointed to by the path segments of each path node
in the first data structure 501. The matrix multiply results in
the overall vector path being scaled, rotated, sheared, and/or
translated depending on which transformation matrices are
applied. The transformed vector path may be stored in a
transformed path 701. Each updated path, including the path
coordinates of each updated path segment which makes up
the entire path of the path 701 may be stored in the GPU’s
memory. For instance, a first path may contain four line
segments which correspond to a rectangle. The four line
segments may be subjected to a matrix multiple of a trans-
formation matrix which applies curves to each of the four
line segments. The four line segments which result from the
matrix multiply may be store in a transformed path.

The GPU may further execute an allocate raster kernel
and an expand raster kernel. The allocate raster kernel 605
may cause the GPU to allocate and reserve memory blocks
in the data block pool 405 for the raster heads which will be
processed by the rasterize kernel 611, as described further
herein.

The expand raster kernel 607 may cause the CPU to
generate and update a raster cohort ID map which maps a
raster cohort ID to a full-sized device raster ID, as shown in
FIG. 8. The raster cohort ID map 805 may store device raster
IDs (i.e., raster cohort IDs 806) which map the location of
the host raster id 803 within the host memory to the raster
head 807 of a corresponding raster data structure 801. A
raster cohort ID 806 is a temporary ID that solves the
problem that a 64-bit, or more or less, tile trace subpixel key
(TTSK) structure does not provide enough room to point to
a fixed size TTSB block containing tile trace subpixels
(TTSs), its tile coordinates, and the fixed size block that
represents the raster head 807. In this regard, since the GPU
may only rasterize thousands of paths in parallel at any one
instant in time, the TTSK node 809 does not need to record
the 25-32 bit, or more or less, address of the raster head, but
rather the TTSK node only needs to differentiate itself from
the other raster nodes in its cohort. To allow for quick sorting
of the TTSK’s they may be kept small. Once raster post
processing is complete, the true raster id (i.e., host raster ID
803) may be read back from the table using the smaller raster
cohort id as an index.

Returning to FIG. 6, the GPU may launch the rasterize
kernel 611 based on instructions received from the raster-
ization command queue 609. The rasterize kernel 611 may
convert the transformed path segments in the transformed
data structures 701 into rasters. In this regard, the rasterize
kernel may split the lines and curves of the transformed path
segments into subpixel line segments which define locations
of the transformed path segments within the bounds of pixel
tiles having a predefined width and height.

The subpixel line segments may be segregated into tiles
and encoded as tile-relative tile trace subpixels (TTSs). A
predefined number of TTSs, such as 16 or 32, may be held
in tile trace subpixel block (TTSB) structures. TTSK keys
615, as shown in FIG. 6, may be generated which may point
to respective TTSBs in addition to the raster cohort ID and
the tile coordinates. The TTSKs may also indicate to which
tile its contained TTSs belong.

In the event the transformed path segments are curves,
they may be flattened into line segments prior to rasteriza-
tion. For example, as shown in FIG. 9, curved segments may
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be subdivided and flattened into line segments in parallel by
one or more processors in a processor group. As previously
discussed, lines may be described with two two-dimensional
coordinates, such as (x0,y0)—(x1,y1), while curves, such as
Bezier curves, may be described with either three or four
two-dimensional coordinates. In the event the Bezier curve
is quadratic, it may be degree-elevated into cubics. Line
segments may be represented as a four-coordinate structure
(e.g., (x0,y0)—(x1,y1),) and may then be placed within a
single processor and held in a level of four, or more or less,
registers spanning the processor group. Cubics may be split
across two adjacent processors within the processor group.
For example, an eight-coordinate structure comprised of
x0-x3 and y0-y3, representing a cubic may be positioned
within a level of four registers spanning the processor group
901, as shown in FIG. 9. Starting with the X axis, each axis
of a four-control point cubic may be on a single processor in
the group and held in four register quads. For instance, x0-x3
may be stored in four registers of a first processor 903 and
y0-y3 may be stored in four registers of a second processor
905. Every segment may be marked with a type indicating
whether it’s empty, a line, or a cubic “X” or “Y” segment.
Each single-axis cubic control points may be subdivided
resulting in eight control points still belonging to the same
axis. These eight control points may reuse the four registers
and temporarily use four more registers of the processor. All
subdivided segments may be totaled and written to local
memory.

A group-wide inclusive prefix sum may be performed
with each processor of the processor group. A prefix sum is
a common data-parallel algorithm for efficiently calculating
a running total of N values, and may be inclusive or
exclusive. In this regard, an inclusive prefix represents the
sum total of all previous elements including the element
itself. For example, the inclusive prefix sum of [1.5,3.9]
would be [1.6,9.18], whereas an exclusive only counts the
elements before the element itself. To calculate the group-
wide inclusive prefix sum, each processor may contribute
zero if the segment is already empty, one if the segment is
a line, and 2' if the segment is a cubic.

The inclusive prefix sum may be converted into an
exclusive prefix sum such that every processor in the group
has an index of where to store its segments. In this regard,
when a processor is holding a line segment the low 16 bits,
or more or less, of the prefix sum may be the offset of where
to append the segment in shared local memory and when the
processor is holding a cubic segment the high 16 bits, or
more or less, of the prefix sum may represent the offset of
where to append the cubic segments, although other bits may
be used. The segments may be appended to existing queues
of cubic or lines segments.

If there are any cubic segments, then the total number is
compared to how many cubic segments are available in the
previous level of registers. If there is a surplus of cubic
segments then the processor group’s operating level
increases. The processor group’s operating level is each
respective row of registers used during the subdivision
process. If there is a deficit then the operating level
decreases. Otherwise, the operating level will remain the
same. Once the new operating level is determined, the
register quads are loaded with as many segments as possible.
Next, the number of line segments in the shared local
memory queue are totaled. If there are enough line segments
enqueued then they’re processed into subpixels, as described
further herein. The conversion of the cubics may continue
until there are no cubics left to subdivide. For example, if the
GPU 113 has a natural transaction size of 16 words, then
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each multiprocessor may load a maximum of sixteen four-
coordinate segments, which may represent as many as eight
cubic curves. These eight cubic curves may be subdivided,
resulting in sixteen cubic curves. If none of these smaller
cubic curves are determined to be flat enough to be consid-
ered line segments, then eight of the smaller cubic curves
may be saved in registers and then work on the remaining
eight cubic curves containing sixteen four-coordinate seg-
ments, may be performed. When there are more subdivided
curves than can be processed, in place then we need to
increase the operating level (i.e., from level 0 to level 1).

In some instances, the number of subdivisions necessary
to achieve a level of flatness may be estimated to reduce
processing. In this regard, the number of subdivisions can be
computed using either a conservative estimate or an opti-
mistic estimate. The estimates may determine how many
segments the curve should be divided in order for the
segments to be considered line segments. The conservative
estimate may assure that the segments are flat enough to be
considered line segments. Using the estimated number of
subdivisions, the progress group can cooperatively subdi-
vide one or more cubic segments and reduce both shared
local memory transactions and reduce the number of register
levels necessary depending on how conservative the esti-
mator is.

The line segments may be directly converted to subpixels
in several fully parallelized steps. In this regard, one or more
processors in a group may load a line segment. For each
loaded line segment, the total number of X slivers on the X
axis may be calculated with a prefix sum, where a sliver is
a line segment with an axis width of less than or equal to one
pixel. Based on the prefix sum, one or more processors in the
group may cooperatively load an X sliver from shared
memory and calculates the (y0,y1) end points for the sliver
and, if needed, update the end point of the slivered line
segment in shared memory. The total number of Y slivers,
which represent subpixels, for the processor group may be
calculated with another prefix sum. For example, as shown
in FIG. 10, lines segments 1001-1004 may be loaded into a
processor group. Each line segment 1001-1004 may then be
split into X slivers and Y slivers. For instance, line segment
1001 may be split in X slivers 1001a, 10015, 1001¢, and
10014, where each of the slivers is defined by a Y coordinate
crossing. Line segment 1001 may also be split into Y slivers
1001e, 1001/, 1001g, 10001/, and 1001 defined by X and
Y coordinate crossings, with each Y sliver representing a
subpixel.

The processor group may continue converting the line
segments until there are enough subpixels to bin into TTSB
blocks. In this regard, based upon the prefix sum, the
processor group can cooperatively store up to processor
group size subpixels into a shared local memory queue for
binning and upon enough subpixels being queued, binning
the subpixels into TTSB blocks, as described herein.

Each subpixel line segment may be placed into TTSB
blocks. In this regard, based on the prefix sum, the processor
group can cooperatively store up to processor group size
subpixels into a shared local memory queue for binning. For
example, FIG. 11 shows Y slivers 1001e and 1001/ being
placed into TTSB block 1101 and Y slivers 1001g-1001;
being placed into TTSB block 1103, with other Y slivers of
line segments 1001-1004 being placed in one of TTSB
blocks 1101-1107, depending on its tile location. In some
instances a hash of the tile coordinates may be used to
determine which bin to use for a tile.

Upon there being enough subpixels to fill a TTSB struc-
ture, or if the tile bin must be flushed, each subpixel line
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segment may be encoded in a tile trace subpixel (TTS)
structure. In this regard, there may be a finite number of bins
available to the processor group, and in the event the tile
coordinates hash indexes a bin that is accumulating subpix-
els for a different tile then the tile may be flushed and a
TTSK/RYX key may be created as a pointer to the flushed
TTSB. An example TTS representing an example square
32x32 (32-bit) pixel tile with 5 bits of subpixel resolution is
shown in FIG. 12, although rectangular tiles may also be
used. TX 1201 represents an unsigned min(x0,x1) tile sub-
pixel coordinate. SX 1203 represents an unsigned subpixel
span from min to max x with range [0,32]. TY 1205
represents an unsigned min(y0,y1) tile subpixel coordinate,
and DY 1207 represents a signed subpixel delta (y1-yO0).
The range of delta in DY may be [-32,32] but horizontal
lines may not be encoded so [1,32] is mapped to [0,31] and
may be stored in 6 bits. Although the subpixel resolution is
shown as 5 bits and tile size is shown as 32x32 pixels,
resolution may be greater or fewer than 5 bits and the tile
size may be smaller or larger than 32x32 pixels. In the event
that subpixel translation of rasters is not requested, then
there is no need to be able to derive the original direction of
the line segment on the X axis and the SX value can be a
scalar. Similarly, if pixel translation of rasters is not
requested then only the pixel coordinate, area, and DY's need
to be stored in the TTSK.

The tile trace subpixel keys may be sorted and segmented
to enable parallel rendering of the paths based on their
respective subkeys. For example, referring back to FIG. 6,
upon producing the TTSKs 615, a sort and segment kernel
617 may be executed by the GPU to group the TTSKs by
raster cohort ID, and sort the TTSKs by their subkeys. Each
TTSK may include three subkeys, or more or less, including
a raster cohort ID, a Y tile coordinate, and a X tile coordi-
nate. The TTSKs may be sorted according to the subkeys.
After the sortation is complete, the TTSKs may be grouped
by each raster cohort ID. Y tile coordinate, and X tile
coordinate.

The TTSK sort and segment kernel 617 may compare
each sorted TTSK with its predecessor and if a certain
number of bits differ, then an index of the sorted TTSKs is
appended to an extent. In this regard, each index marks the
beginning of a sequence of TTSK that belong to a raster
cohort ID. The sort and segment kernel 617 step may also
calculate exactly how many TTPB blocks and TTPK nodes
will required by the PREFIX post-processing stage. The
number of TTSK nodes is simply a function of the number
of TTSK keys. The total number of TTPB blocks, TTPK
nodes and TTSK nodes may be allocated from the block
pool 405 before executing the prefix kernel.

The tile trace prefix block (TTPB) must be synthesized
from each TTSB’s TTS values in order to render the original
vector path. In this regard, the TTSBs produced by the
rasterize kernel and the TTSKs processed by the TTSK sort
and segment kernel may require an additional post-process-
ing step. Referring again to FIG. 6, the prefix kernel 621 may
sweep the TTS values from left to right across all the tile’s
columns and for each row in the tile (“scanline”) to accu-
mulate the signed vertical component of each TTS subpixel
line. Note that the subpixel lines have “direction”. This
single-column of accumulated vertical values is the TTPB
and may be 16 to 32 signed integers, or more or less. This
column of data represents the previous tile’s potential con-
tribution to the tile on its right.

In an example, the vector graphic attempting to be dis-
played may be a large version of the letter “A” such that it
covers many 16x16 pixels tiles, then there would be a large
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amount of empty space in the inner upper triangle. The tiles
in the empty space do not need to display any pixels, but the
inner edge of the right hand side of the triangle needs to
know the contribution of all of the paths that were drawn to
its left, which could be many tiles. The TTPB represents the
“carried in” value that’s necessary to perform the final pixel
coverage calculation. By using both the TTPBs and TTSBs
each tile may perform its rendering in complete isolation.

For each index, the GPU may execute the prefix kernel
which sequentially loads the TTSKs within the index and
stores the TTSKs into the preallocated TTSK nodes. The
prefix kernel may, upon determining that the TTSK tile
coordinates change upon loading a sequential TTSK, store
the accumulated tile trace prefix (TTP) values into the
preallocated TTPB block, construct a TTPK key, and store
the TTPK key into the preallocated TTPK node. In the event
the TTSK raster ID changes, the prefix kernel may exit. The
TTSs in the TTSB block may then be assigned a pointer to
the TTSK key and the TTS altitudes may be scatter-added to
a 1xH array, where H is a number of columns.

At the end of the prefix stage, each raster 623 may have
the following associated data: a) a list of TTSK nodes 809
containing TTSKs pointing to TTSBs containing TTSs; b) a
list of TTPK nodes 811 containing TTPKs pointing to
TTPBs containing TTP altitudes; c) a total count of TTSKs
813; d) a total count of TTPKs 815; and e) tight axis-aligned
bounds with subpixel resolution, as shown in the raster data
structure of FIG. 8. In some embodiments a long path may
require multiple passes through the rasterize, sort and seg-
ment, and prefix kernels to be processed.

Upon prefixing the data, a place kernel may executed by
the GPU to specify that a raster should be subpixel translated
and then rendered on a particular layer in a composition
comprised of an array of tile trace composition keys
(TTCKs). Each composition may be treated as one or more
bins of spatially partitioned TTCK keys. For example, a
place command queue 1301 may be filled with place com-
mands that cause the GPU to execute a place kernel 1303,
as shown in FIG. 13. In this regard, the place kernel 1303
may cause execution groups, corresponding to the GPUs
processors, to each determine if the raster’s 623 bounds are
in or outside of the composition bounds. In the event the
raster’s bounds are outside of the composition the place
determination is cancelled. Otherwise, for all TTSKs in the
TTSK node the place kernel a) translates the TTSK key; b)
converts the TTSK key into a TTCK key; ¢) appends the
TTCK key to a local queue; and d) in the event the local
queue is full or needs to be flushed then append it to the
composition’s TTCK key extent.

Similarly, for all TTPK keys in the TTPK node hierarchy
the place kernel 1303 causes the GPU to a) translate the
TTPK key; b) expand the TTPK key since it may span
multiple tiles; c) clip the expanded tile range; d) convert
each TTPK key into a TTCK key; e) append each TTCK key
to a local spatially binned queue; and f) if the local spatially
binned queue is full or needs to be flushed, then append it to
the composition’s one or more spatially binned TTCK key
extents. Again, as the tile position of each TTCK is known,
the composition may be treated as one or more bins of
spatially partitioned TTCK keys. As such, the number of bits
required to represent the tile’s X and Y coordinates in the
TTCK composition may be reduced.

The place kernel 1303 may reuse a raster object by
generating up to four times as many TTCK keys that carry
a tile resolution translation offset (dx,dy) that indicates how
the TTSB and TTPB words should be translated within the
tile. In this regard, before the TTS and TTP words are
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scattered into the shared local memory accumulators, the
translation is applied and the values may be clipped appro-
priately. TTP words to the “left” of tile may be clamped and
accumulate in a column 0. In the event that translation of
rasterized paths is not a requirement, then the TTS and TTP
words can pre-compute their area contributions in the ras-
terize kernel, discussed further herein.

The TTCKs may be sorted by a second sort and segment
kernel 1307 to sort the TTCKSs in a spatially partitioned bin.
In this regard, the TTCKs may be sorted such that the
TTCKs which belong to the same tile are in increasing layer
order. The sort and segment kernel may further locate the
starting index of the first TTCK for a tile. For example, the
TTCKSs may be treated as 64-bit, or more or less, unsigned
integers and on a predefined number of high bits ‘T’ of the
64-bits may be compared. For purposes of the second sort
and segment kernel 1307, the entire composition may have
a single bin, so partitioning may not be needed. Three
subkeys, or more or less, including a Y tile coordinate, a X
tile coordinate, and a layer index may be found in the ‘T’
bits. Upon completion of the sortation, the TTCKs may be
grouped by each tile coordinate and in increasing layer
order.

The TTCK sort and segment kernel 1303 may cause the
GPU 113 to compare each sorted TTCK with its predecessor.
In the event that a predefined number of bits differ then the
index of the sorted index, the sorted TTCK is appended to
an extent. Each index may mark the beginning of a sequence
of TTCKs that belong to a tile at position (X,Y). The sorted
TTCKs 1309 may be stored in the data block pool 405.

As the tile position of each TTCK key is known, there
may be opportunities to ease the sorting complexity of the
TTCK sorting phase. In this regard, a composition is an
array of TTCK keys and can be treated as one or more bins
of spatially partitioned TTCK keys. The composition’s
partitioning can be as small as one bin per tile coordinate. By
spatially partitioning the composition the number of bits
required to represent the tile’s X and Y coordinates in the
TTCK key may be reduced.

Upon sorting and segmenting the TTCKs, the rasters may
be rendered. In this regard, a render kernel may launch an
execution group for each tile in the TTCK key extent. The
function of each execution group is to decode the TTCK
keys into filled path outlines that are blended with adjacent
layers. In this regard, each execution group processes a
fixed-size tile of pixels and allocates various tile-sized
blocks of memory. When there are no more keys left to
process or the tile is commanded to flush, the blended pixels
are stored or composited onto a target surface. For instance,
as shown in FIG. 14, the render kernel 1403, executing on
the GPU, may receive the TTCKs 1309 and styling infor-
mation 1401. The render kernel may render the rasters 623
into a framebuffer 1405 for output onto a display.

For each common-tile TTCK sequence loaded to an
execution group, the render kernel 1403 may cause the
execution groups to, in parallel, perform the following steps:

1. Load the first TTCK key in the sequence.

Record this key’s (X,Y) position and Layer index.
Clear the tile altitude and area accumulators.
Scatter-add the words of the TTSB or TTPB block to

the appropriate accumulator.

. Load the next key.

. If the next key has the same Y, X and Layer index
values then go to 4.

7. Otherwise, temporarily save this TTCK key.

8. Load the Group ID associated with the current layer.

2.
3.
4.
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9. If the current layer’s Group ID matches the work-in-
progress Group ID:
a. Load and execute all commands associated with this
layer
b. The saved TTCK key is now the current TTCK key
c. Go to 3.
10. If the current layer’s Group ID is within the current
Group’s layer range:
a. We know that the current layer belongs to a group
deeper in the hierarchy.
b. For all Group IDs between the current Group ID and
the parent group of the current layer:
i. Load and execute all commands associated with
entering this Group ID
ii. Update the current depth, layer range and Group
ID.
c. Load and execute all commands associated with this
layer
d. The saved TTCK key is now the current TTCK key
e. Go to 3.
11. Otherwise, the layer must belong to a cousin in the
group hierarchy.
a. Load and execute all commands associated with
exiting the current Group ID
b. Update the current depth, layer range and Group ID.
c. Goto 9d

The above steps for rendering the rasters recognize that a
line segment’s signed contribution to a polygon’s total area
is ((x0+x1)*(y1—y0))/2, which is also the area of a left
trapezoid. Another simplification may include ignoring the
denominator and proceeding with a contribution that’s
scaled by two (i.e., ((x0+x1)*dy).) These oriented area
contributions may be accumulated to produce a signed total
area of the polygon that is scaled by two.

The polygon area formula can be used to calculate the
covered area of each pixel on a scanline. In this regard,
scanlines are typically processed in the increasing x direc-
tion (i.e., left to right), thereby necessitating that each pixel
on a scanline “carry in” any accumulated coverage from the
pixels to its left. This “carry in” value may be equated to the
summation of all dy, values to the left of the current pixel
multiplied by the subpixel resolution along the x axis:

n—1
[Z dyi] « SUBPIXEL.WIDTH 2
=0

The left trapezoidal area result may be converted to a right
trapezoidal area in order to utilize the above equation. To
convert the left trapezoid to a right trapezoid, as shown in
FIG. 15, the right trapezoid 1505 may be found by removing
the left trapezoid 1503 from the entire subpixel width and
height 1501. In the event scanlines are processed in decreas-
ing x order, the conversion from a left trapezoidal area to a
right trapezoidal area may be skipped.

Based on the above conversion to a right trapezoidal area,
the total fractional coverage of a pixel may be equal to:

n-1

[Zdyi] « SUBPIXEL.WIDTH 2 +

i=0

(dy, * SUBPIXEL.WIDTH % 2 — (x0, +x1,) xdy,)
SUBPIXEL.WIDTH « SUBPIXEL.HEIGHT « 2
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Which may be simplified to the following equation:

-1
[Z dyi] % SUBPIXEL.RESOLUTION, % 2 — (x0,, + x1,,) = dy,
i=0

SUBPIXEL.RESOLUTION, x SUBPIXEL.RESOLUTION,, x 2

The subpixel coverage area calculation can be parallelized
and made suitable for parallel processing by grouping sub-
pixel line segments into common tiles with dimensions that
fit the width of the GPU’s 113 native execution width. In
order to compute the coverage of each pixel in a tile, each
subpixel line segment intersecting the tile can compute its
oriented area contribution and scatter-add its oriented area
contribution into a tile matrix residing in the GPU’s
memory. Such an accumulation may continue until all
intersecting subpixel line segments have been scatter-added.
Similarly, the coverage contribution of tiles to the left of
each tile on a tile-line can be computed with a data-parallel
prefix sum algorithm. Furthermore, if the heights of the tiles
match the data parallel device’s native execution width then
the prefix sum can be performed with throughput only
limited by available memory bandwidth. Moreover, given
all the rasterized subpixel line segment outlines and “car-
ried-in” coverage contributions of tiles to the left, the
coverage of each pixel in the tile can be computed in one
pass and with minimal computation.

There may be one or more number of possible layer,
group entry, and group exit commands. For example, these
commands may include layer nonzero and even-odd cover-
age calculations; layer coverage accumulation, masking,
inversion and initialization; layer color solid fill and gradient
fill; inter-layer blending using Porter-Duff blending rules;
Inter-group blending operations; framebuffer write or blend;
execution group state save and restore; coordinated execu-
tion of external operations; opacity tests for early exit.

In order to scatter-add the words of the TTSB or TTPB
block to the appropriate accumulator, a single or dual
accumulator may be used. Turning first to the dual accumu-
lator, for all TTSB and TTPB blocks pointed to by a TTCK
key and belonging to the same layer, the area, which is a
right trapezoid, and dy values may be scatter-added into the
shared local memory accumulators. For example, as shown
in FIG. 16, the data stored within the TTSs 1601 found
within TTSBs may be scatter-added into two memory accu-
mulators including the area accumulator 1607 and the dy
accumulator 1605. The data with the TTPs 1603 found
within the TTBPs may be scatter-added into the dy accu-
mulator 1605. The pixel coverage for a column, j, may then
be found using the following dual accumulator equation:

coverage.column; =

J
[Zdy.columnj] * SUBPIXEL.RESOLUTION,; * 2-area.column;
=0

SUBPIXEL.RESOLUTION, * SUBPIXEL.RESOLUTION,, %2

Turning now to the single accumulator, for all TTSB and
TTPB blocks pointed to by a TTCK key and belonging to the
same layer, right trapezoid areas and left trapezoid areas may
be scatter-added into the single shared local memory area
accumulator. For example, as shown in FIG. 17, the data
stored within the TTSs 1601 found within TTSBs and the
TTPs 1603 found within the TTBPs may be scatter-added
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into the area accumulator 1701. In this regard, the right
trapezoid areas 1705 and left trapezoid areas 1703, defined
by the TTSs, may be scatter-added into the area accumulator
1701. The dual accumulator equation can be transformed
into an equivalent single accumulator calculation by recog-
nizing the pixel to the right of the subpixel line segment.
Once this is done, the pixel coverage for column j using the
following equation:

coverage.column; =

J
Zarea.columnj
i=0
SUBPIXEL.RESOLUTION, « SUBPIXEL.RESOLUTION,, %2

Post-rasterization activities such as hit detection, clipping,
and masking may use the parallel pipeline. The data com-
position used in the parallel pipeline is a collection of TTCK
keys that have been sorted in tile Y, tile X and Layer (YXL)
order, which may be used for purposes other than rendering.
For example, a hit detection kernel may efficiently query, in
parallel, the data composition to determine if one or more
user input points or regions intersect any filled paths on
layers in the composition. In this regard, the hit detection
kernel returns a list of tiles and layers which have paths that
would intersect the input points or regions. The reported
layer index may also be used to determine the ancestral path
of Group IDs enclosing the layer. In an example, a compo-
sition that includes completely transparent control points
that can be tested with the hit detection kernel and then
restyled and made opaque if there is an intersection in order
to simplify development of graphics applications that
require user input and tracking.

External operations may be scheduled by the render
kernel 1403. In this regard, an external operation may
involve multiple tiles and cannot start until all potentially
involved tiles have suspended processing. Examples of such
operations may include transforming an intermediate layer
with a blur, sharpen, rotation or scaling kernel; subpixel
antialiasing using neighboring pixel color and coverage
data; performing a blit from one region to another region on
a surface; blitting from one surface to another; loading and
processing from one region and storing to another region;
and rendezvousing with an external pipeline.

The tiles that must be suspended before an external
operation can begin may be defined with a raster placed onto
a layer. In the event the rasterized path REGION 0 overlaps
a tile then the tile execution group suspends rendering, saves
the tile’s state and registers that the tile has been suspended
on the coordinated external operation descriptor associated
with this layer. Since the descriptor already has the total
count of tiles that intersect the REGION N raster so the last
tile to register its suspension can initiate the execution of the
external operation.

An external operation may perform multiple processing
steps affecting multiple independent but possibly overlap-
ping regions. If the regions and processing steps are inde-
pendent then each region can be represented with its own
layer and descriptor. When an external operation determines
that it is complete, the suspended tiles may be released back
to the render stage. A suspended tile may eventually be
assigned to an execution group and has it state restored and
processing may be resumed.

The entire parallel pipeline may masquerades as an imme-
diate mode API that hides the pipeline’s asynchronous



US 11,983,794 B2

21

execution. In this regard, the API’s in the pipeline are
designed for ease of use and so that the path and raster API
functions can usually be invoked without blocking. The API
represents path and raster resources with host-side refer-
ences that are immediately usable but represent resources
that may not be available.
The API’s in the pipeline may also supports reclaiming
the resources associated with these host-side references to
paths and rasters. As previously discussed, the path and
raster host IDs map to device-side IDs and the device-side
path and raster data structures consist of blocks allocated
from one or more fixed-size block pools on the GPU. A
release kernel may walk the path and raster data structures
and returns each block to the data block pool.
Flow diagram 1800 of FIG. 18 is an example flow
diagram of some of the aspects described above that may be
performed by one or more computing devices such as client
computing devices 120, 130, or 140. It is understood that the
steps discussed herein are merely an example; the steps may
occur in a different order, steps may be added, and steps may
be omitted. In this example, vector data of the vector
graphics, may be loaded into local memory accessible by the
one or more parallel processors, as shown in block 1801.
The vector data may include one or more paths comprised of
one or more path segments of the vector graphics, as shown
in block 1803. The one or more parallel processors may
rasterize the one or more path segments into respective
rasters and assign each of the rasters into groups based on
pixel coordinates of the respective rasters, with each group
may have an associated key and the rasters within each
group represent a portion of the same vector graphic, as
shown in block 1805. The rasters may be placed onto
subpixels according to their respective pixel coordinates and
rendered onto a display by the one or more parallel proces-
sors, as shown in blocks 1807 and 1809, respectively.
Most of the foregoing alternative examples are not mutu-
ally exclusive, but may be implemented in various combi-
nations to achieve unique advantages. As these and other
variations and combinations of the features discussed above
can be utilized without departing from the subject matter
defined by the claims, the foregoing description of the
embodiments should be taken by way of illustration rather
than by way of limitation of the subject matter defined by the
claims. As an example, the preceding operations do not have
to be performed in the precise order described above. Rather,
various steps can be handled in a different order, such as
reversed, or simultaneously. Steps can also be omitted unless
otherwise stated. In addition, the provision of the examples
described herein, as well as clauses phrased as “such as,”
“including” and the like, should not be interpreted as lim-
iting the subject matter of the claims to the specific
examples; rather, the examples are intended to illustrate only
one of many possible embodiments. Further, the same
reference numbers in different drawings can identify the
same or similar elements.
The invention claimed is:
1. A method for rendering a plurality of rasters onto a
display, the method comprising:
assigning, by one or more data-parallel computing
devices, each one of the plurality of rasters to a
respective group of rasters, wherein each respective
group of rasters has an associated subpixel key and the
rasters within each respective group of rasters represent
a portion of a same vector graphic; and

rendering, by the one or more data-parallel computing
devices, the rasters onto a display based on the subpixel
keys associated with the respective groups of rasters.
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2. The method of claim 1, wherein the assigning is
performed based on pixel coordinates of the rasters.

3. The method of claim 2, further comprising:

placing, by the one or more data-parallel computing

devices, the respective rasters onto subpixels according
to their pixel coordinates.

4. The method of claim 3, further comprising:

loading, by one or more data-parallel computing devices,

vector data of vector graphics into local memory acces-
sible by the one or more data-parallel computing
devices, wherein the vector data includes one or more
paths comprised of one or more path segments of the
vector graphics; and

rasterizing, by the one or more data-parallel computing

devices, the one or more path segments into respective
rasters.

5. The method of claim 4, wherein loading the vector data
occurs in response to the one or more data-parallel comput-
ing devices receiving one or more commands which identify
a location of the vector data in a host memory.

6. The method of claim 4, wherein loading the vector data
further includes building a path data structure for each of the
one or more paths in the vector data.

7. The method of claim 6, wherein each path data struc-
ture includes a respective path head as a root node to linked
list data structures comprising blocks, each respective path
head containing descriptive information about a total path.

8. The method of claim 7, wherein, for each respective
path head, the descriptive information about the total path
includes one or more of (i) a total number of blocks which
were required for a path, (ii) how many lines and curves are
in the path, (iii) the total path’s 2-dimensional (2D) bounds,
or (iv) a head node indicating a location of a first path node
in a linked list data structure.

9. The method of claim 7, wherein each path head is
associated with one or more path nodes.

10. The method of claim 9, wherein each path node
includes a segment count block which stores a total number
of segments within the respective path node, and a next node
block which stores a location of a next path node in a linked
list data structure.

11. The method of claim 6, wherein each path node
includes path segment blocks storing indices which point to
blocks of data associated with the one or more path seg-
ments.

12. The method of claim 11, wherein the path segment
blocks include a type block which defines geometry of the
path segments which make up the path represented by the
path node, wherein the geometry comprises one or more
curves or line segments.

13. A system for rendering a plurality of rasters onto a
display, the system comprising:

a display; and

one or more data-parallel computing devices operatively

coupled to the display, the one or more data-parallel

computing devices being configured to:

assign each one of the plurality of rasters to a respective
group of rasters, wherein each respective group of
rasters has an associated subpixel key and the rasters
within each respective group of rasters represent a
portion of a same vector graphic; and

render the rasters onto the display based on the subpixel
keys associated with the respective groups of rasters.

14. The system of claim 13, wherein the one or more
data-parallel computing devices assign each one of the
plurality of rasters based on pixel coordinates of the rasters.
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15. The system of claim 14, wherein the one or more
data-parallel computing devices are further configured to
place the respective rasters onto subpixels according to their
pixel coordinates.

16. The system of claim 15, wherein the one or more data
parallel computing devices are further configured to:

load vector data of vector graphics into local memory

accessible by the one or more data-parallel computing
devices, the vector data including one or more paths
comprised of one or more path segments of the vector
graphics; and

rasterize the one or more path segments into respective

rasters.

17. The system of claim 15, wherein the one or more
data-parallel computing devices load the vector data when
the one or more data-parallel computing devices receive one
or more commands which identify a location of the vector
data in a host memory.

18. A system for rendering a plurality of rasters onto a
display, the system comprising:

local memory; and

one or more data-parallel computing devices operatively

coupled to the local memory, the one or more data-
parallel computing devices being configured to:
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load vector data of vector graphics into the local
memory, the vector data including one or more paths
comprised of one or more path segments of the
vector graphics; and

rasterize the one or more path segments into respective
rasters by converting the one or more path segments
into tile trace subpixels (TTSs), and packing the
TTSs into tile trace subpixel blocks (TTSBs); and

render the respective rasters onto the display.

19. The system of claim 18, wherein the one or more
data-parallel computing devices are further configured to
place the respective rasters onto subpixels according to their
pixel coordinates.

20. The system of claim 18, wherein the one or more
data-parallel computing devices are further configured to:

assign each one of the plurality of rasters to a respective

group of rasters, wherein each respective group of
rasters has an associated subpixel key and the rasters
within each respective group of rasters represent a
portion of a same vector graphic; and

render the rasters onto the display based on the subpixel

keys associated with the respective groups of rasters.
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