US 20200233475A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2020/0233475 A1l

Galbraith et al.

(54)

(71)

(72)

@
(22)

(1)

THREAD

CHECKPOINT TABLE FOR

COMPUTER PROCESSOR

Applicant:

Inventors:

Appl. No.:
Filed:

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Robert E. Galbraith, Rochester, MN
(US); Dylan R. Gransee, Kasson, MN
(US); Ethan J. Johnson, Rochester,
MN (US); AUSTIN J. MACKEDANZ,
Rochester, MN (US); Mussie T.
Negussie, Sacramento, CA (US);
SHANNON C. STRUTZ, Rochester,
CA (US)

16/253,498
Jan. 22, 2019

Publication Classification

Int. CL.

GO6F 1/30
GO6F 9/48

(2006.01)
(2006.01)

43) Pub. Date: Jul. 23, 2020
(52) US. CL
CPC oo, GOGF 1/30 (2013.01); GOGF 9/4812
(2013.01)
(57) ABSTRACT

Examples of techniques for a thread checkpoint table for a
computer processor are described herein. An aspect
includes, based on detecting an early power-off warning
(EPOW) signal, determine, based on a thread checkpoint
table, whether a status of a thread of a processor indicates
that the thread has begun a unit of atomic work. Another
aspect includes, based on determining that the status of the
thread of the processor indicates that the thread has begun
the unit of atomic work, allowing the thread to continue
execution of the unit of atomic work. Another aspect
includes determining, based the status of the thread in the
thread checkpoint table, that the thread has completed the
unit of atomic work. Another aspect includes, based on
determining that the thread has completed the unit of atomic
work, suspending the thread.

300

;

CHECKPOINT TABLE POINTER REGISTER 303

302

;

CHECKPOINT ENTRY 304A

CHECKPOINT ENTRY 304B

CHECKPOINT ENTRY 304C

CHECKPOINT ENTRY 304N

THREAD

\a| CHECKPOINT

TABLE
302

SCM
301

Patent Application Publication Jul. 23,2020 Sheet 1 of 7 US 2020/0233475 A1

Mass Storage 110

: i
: 1
: |
! Software 111 Hard Disk 108 S
; 3
i | ‘
H i
: I/O Adapter \
! 106 :
' 1
R A
i System |
i Memory 103 - — Network
! ; ommunications 112
CPU 101a E Figgl : Adapter —
_—1d | — | 107
CPU 101 ; :
— . | ROM :
CPU101c |;| 104 :
1 i
1 1
' (PR N A , System Bus 102
| l
Interface Adapter
116
Display
l Adapter
Keyboard 15
121
Mouse Speaker :
122 123 le f éay

FIG. 1

Patent Application Publication

Jul. 23,2020 Sheet 2 of 7

US 2020/0233475 Al

200

FIG. 2

EPOW
DETECTION
LOGIC
206
CPU 201
\ 4
POWER LOSS CORE M%AhngfY
CONTROL LOGIC 203A
c2oh 208A
202 —
204 THREAD 203B RY
CHECKPOINT 208B
TABLE
207
PCI 205A
PCI 205B
PCI 205C

Patent Application Publication Jul. 23,2020 Sheet 3 of 7 US 2020/0233475 A1

g300

CHECKPOINT TABLE POINTER REGISTER 303

THREAD

"y CHECKPOINT

TABLE
302

SCM
302 301

f

CHECKPOINT ENTRY 304A

CHECKPOINT ENTRY 304B

CHECKPOINT ENTRY 304C

CHECKPOINT ENTRY 304N

FIG. 3

Patent Application Publication Jul. 23,2020 Sheet 4 of 7 US 2020/0233475 A1
g400
CHECKPOINT CHECKPOINT CUSTOM
TYPE OWNERID | uNiQuE ID DATA
401 — 403 404

FIG. 4

Patent Application Publication Jul. 23,2020 Sheet 5 of 7 US 2020/0233475 A1

500

COMPILER INSERTS CHECKPOINTING INSTRUCTIONS
INTO SOFTWARE
201

!

THREAD BEGINS UNIT OF ATOMIC WORK
202

|

CHECKPOINTING INSTRUCTION CAUSES CPU TO SET
ENTRY IN THREAD CHECKPOINT TABLE FOR THREAD TO
BEGIN
503

!

THREAD COMPLETES ENTRY OF ATOMIC WORK
204

|

CHECKPOINTING INSTRUCTION CAUSES CPU TO SET
ENTRY IN THREAD CHECKPOINT TABLE FOR THREAD TO
END
505

FIG. 5

Patent Application Publication Jul. 23,2020 Sheet 6 of 7 US 2020/0233475 A1

600

EPOW RECIEVED
601

l

SUSPEND CHECKPOINTED THREADS (FIG. 7)
602

LONG EPOW?
603

MOVE CHECKPOINT TABLE TO CACHE
604

v

FLUSH CACHE TO SCM
605

FLUSH CHECKPOINT TABLE TO SCM
606

v

UPON RESTART, USE THREAD CHECKPOINT TABLE IN
—> SCM TO RESUME EXECUTION
607

FIG. 6

Patent Application Publication Jul. 23,2020 Sheet 7 of 7 US 2020/0233475 A1

700

f

FOR EACH THREAD, EXAMINE THREAD ENTRY IN THREAD

701

CHECKPOINT TABLE

BEGINNING %%%T’JII\IN%E
?
CHEC%PQOINT ' YES THREAD
— 703

NO

SUSPEND THREAD
704

ALL THREADS
SUSPENDED?

NO

705

END
706

FIG. 7

US 2020/0233475 Al

THREAD CHECKPOINT TABLE FOR
COMPUTER PROCESSOR

BACKGROUND

[0001] The present techniques relate to processors. More
specifically, the techniques relate to a thread checkpoint
table for a computer processor.

[0002] For electrically powered computer systems, even a
brief power interruption may have highly disruptive effects.
For example, important data may be lost, and considerable
time may be required to bring affected computer systems
back online, with potentially major consequences.

[0003] High-speed computer systems have the capability
to do a significant amount of processing in a matter of
milliseconds, enabling some mitigation of the effects of a
power interruption during the relatively short period of time
that it takes for a power failure to occur, if an early warning
is provided. It takes a small but finite amount of time, (e.g.,
a power supply hold time), for the input power level to
decline and the stored energy in the bulk capacitance of the
power supply to be exhausted. The earlier a warning of an
impending power failure is provided, the more a computer
system can accomplish by way of mitigation during any
remaining processing time before total power loss.

SUMMARY

[0004] According to an embodiment described herein, a
system can include a processor to, based on detecting an
early power off warning (EPOW) signal, determine, based
on a thread checkpoint table, whether a status of a thread of
the processor indicates that the thread has begun a unit of
atomic work. The processor can also, based on determining
that the status of the thread of the processor indicates that the
thread has begun the unit of atomic work, allow the thread
to continue execution of the unit of atomic work. The
processor can also determine, based the status of the thread
in the thread checkpoint table, that the thread has completed
the unit of atomic work. The processor can also, based on
determining that the thread has completed the unit of atomic
work, suspend the thread.

[0005] According to another embodiment described
herein, a method can include, based on detecting an early
power off warning (EPOW) signal in a processor, determin-
ing, based on a thread checkpoint table, whether a status of
a thread of the processor indicates that the thread has begun
a unit of atomic work. The method can also include, based
on determining that the status of the thread of the processor
indicates that the thread has begun the unit of atomic work,
allowing the thread to continue execution of the unit of
atomic work. The method can also include determining,
based the status of the thread in the thread checkpoint table,
that the thread has completed the unit of atomic work. The
method can also include, based on determining that the
thread has completed the unit of atomic work, suspending
the thread

[0006] According to another embodiment described
herein, an apparatus can include hardware logic to, based on
detecting an early power off warning (EPOW) signal in a
processor, determine, based on a thread checkpoint table,
whether a status of a thread of the processor indicates that
the thread has begun a unit of atomic work. The processor
can also, based on determining that the status of the thread
of the processor indicates that the thread has begun the unit

Jul. 23,2020

of atomic work, allow the thread to continue execution of the
unit of atomic work. The processor can also determine,
based the status of the thread in the thread checkpoint table,
that the thread has completed the unit of atomic work. The
processor can also, based on determining that the thread has
completed the unit of atomic work, suspend the thread.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. 1 is a block diagram of an example computer
system for use in conjunction with a thread checkpoint table;
[0008] FIG. 2 is a block diagram of an example system
including a thread checkpoint table;

[0009] FIG. 3 is a block diagram of an example system for
a thread checkpoint table;

[0010] FIG. 4 is a block diagram of an example entry in a
thread checkpoint table;

[0011] FIG. 5 is a process flow diagram of a method for
maintaining a thread checkpoint table;

[0012] FIG. 6 is a process flow diagram of a method for
powering off a processor using a thread checkpoint table;
and

[0013] FIG. 7 is a process flow diagram of a method for
suspending threads in a processor including a thread check-
point table.

DETAILED DESCRIPTION

[0014] Embodiments of a thread checkpoint table for a
computer processor are provided, with exemplary embodi-
ments being discussed below in detail. A thread checkpoint
table may store data regarding the work being performed by
the various threads of a multithreaded computer processor
system. The thread checkpoint table may be maintained
during execution of software by the processor and stored in
a non-volatile memory associated with the processor in
response to an impending loss of power. When the power
loss situation is resolved, the thread checkpoint table may be
used to allow the threads to resume execution.

[0015] Storage class memory (SCM) is a type of relatively
high performance, high capacity non-volatile memory that
may be used in conjunction with a thread checkpoint table.
SCM may be used in place of dynamic random access
memory (DRAM) as near-processor memory. SCM may
have various underlying technologies, including but not
limited to phase change memory (PCM), magnetoresistive
random access memory (MRAM), and resistive random
access memory (RRAM). Because SCM is non-volatile
memory, i.e., the contents of SCM are retained after a power
off, a processor may recover and continue jobs that were
interrupted by the power off after restarting.

[0016] In some computer systems (e.g., a laptop), there
may be a battery or other backup power source for use in
case of a failure of a main power source. In such an
environment, loss of main power may not cause a critical
response on the hardware level to the processor or memory.
However, in an environment in which no battery or other
backup power source is present, such as in an embedded
processing environment, an early power off warning
(EPOW) signal may be asserted a short time before total
power loss in the computer system occurs. In some embodi-
ments, a computer system including a backup power source
may also implement an EPOW signal when, for example, a
backup battery is at a critically low voltage.

US 2020/0233475 Al

[0017] In a computer system that includes non-volatile
memory such as SCM, a thread checkpoint table that gives
a state of programs and memory in the computing system at
the time of a total power loss may be used to resume
operations by the computer processor after a restart. The
thread checkpoint table may track the execution of each
thread in the processor, including memory accesses. The
checkpoint table may be kept within a local memory in the
central processing unit (CPU) until an EPOW is signaled. In
response to the EPOW, each thread in the CPU may be
suspended at the end of an atomic unit of work using the
thread checkpoint table. The checkpoint data in the thread
checkpoint table may include any appropriate information
regarding a thread, including but not limited to identifiers,
pointers, and/or timestamps. The thread checkpoint table
may be maintained using instructions that are inserted into
computer code by a compiler. The instructions may cause
the thread checkpoint table to be updated when an atomic
unit of work is begun, and after the atomic unit of work is
completed. Checkpoint data is written by the processor into
the thread checkpoint table when software that is being
executed by the processor executes an instruction, which
provides the checkpoint value. In some embodiments, each
checkpoint entry may include a status bit (e.g. a most
significant bit) that indicates whether an atomic unit of work
is currently being performed by the thread. The status bit
may be set in the checkpoint table entry to indicate that the
thread should be allowed to complete the current atomic unit
of work before the thread is suspended in response to an
EPOW.

[0018] A computer system may be an embedded system on
a chip (SOC) that includes a multi-core, multi-threaded CPU
with SCM attached. An EPOW signal may be provided to
the CPU by a power supply or on-card low voltage detect
(LVD). The CPU includes a thread checkpoint table which
may contain checkpoint data for each thread of the CPU. The
CPU may also include a register that holds a SCM address
at which the thread checkpoint table is stored when an
EPOW signal is processed. When an EPOW signal is
received, power loss control logic of the processor may
suspend the execution of each thread in the processor based
upon the current status bit of the thread. For example, a
“begin” status bit may indicate that an atomic unit of work
has been begun by the thread, but not completed. Therefore,
a thread with a “begin” status bit may be allowed to continue
execution until the status bit of the thread is changed. A
status bit of “end” or “simple checkpoint” may indicate that
the thread is not in the process of performing an atomic unit
of work, so that the thread may be immediately suspended.
Entries in the thread checkpoint table may also include
timestamps belonging to a thread, or locks that are held by
a thread.

[0019] In an example of usage of a thread checkpoint
table, software that is being executed by a processor thread
may need to update multiple control blocks located in the
SCM atomically. A “begin” checkpoint may be set for the
thread indicating that the thread is beginning an atomic unit
of work before the control blocks are updated. When the
updating of the control blocks is complete, an “end” check-
point may be set for the thread. If an EPOW occurs after the
“begin” checkpoint is set but before the “end” checkpoint is
set, the thread may be allowed to continue execution after
the EPOW occurs until the “end” checkpoint is set, in order
to complete the atomic unit of work. Upon power up, the

Jul. 23,2020

thread checkpoint table may be used to verify that each
thread completed its atomic unit of work.

[0020] In some embodiments, when an EPOW is detected,
threads are suspended based on their respective status bits in
the thread checkpoint table. Any thread having a status bit
indicating “begin” may be permitted to complete its current
atomic work unit. After all the threads are suspended, the
thread checkpoint table may be flushed to the SCM by the
CPU. The thread checkpoint table may be stored at a
predetermined address in the SCM. There may also be a full
or targeted flush of the processor caches (e.g., level 1, level
2, and/or level 3 caches). In various embodiments, the thread
checkpoint table may bypass the processor caches and be
flushed directly to the SCM, or the thread checkpoint table
may be written to a processor cache before contents of the
processor caches are subsequently flushed to the SCM. SCM
accesses may be halted on a good error correcting code
(ECC) boundary, such that no ECC errors will be encoun-
tered when reading the SCM upon power up.

[0021] Turning now to FIG. 1, a computer system 100 is
generally shown in accordance with an embodiment. The
computer system 100 can be an electronic, computer frame-
work comprising and/or employing any number and com-
bination of computing devices and networks utilizing vari-
ous communication technologies, as described herein. The
computer system 100 can be easily scalable, extensible, and
modular, with the ability to change to different services or
reconfigure some features independently of others. The
computer system 100 may be, for example, a server, desktop
computer, laptop computer, tablet computer, or smartphone.
In some examples, computer system 100 may be a cloud
computing node. Computer system 100 may be described in
the general context of computer system executable instruc-
tions, such as program modules, being executed by a com-
puter system. Generally, program modules may include
routines, programs, objects, components, logic, data struc-
tures, and so on that perform particular tasks or implement
particular abstract data types. Computer system 100 may be
practiced in distributed cloud computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted cloud computing environment, program modules may
be located in both local and remote computer system storage
media including memory storage devices.

[0022] As shown in FIG. 1, the computer system 100 has
one or more central processing units (CPU(s)) 101a, 1015,
101c, etc. (collectively or generically referred to as proces-
sor(s) 101). The processors 101 can be a single-core pro-
cessor, multi-core processor, computing cluster, or any num-
ber of other configurations. The processors 101, also
referred to as processing circuits, are coupled via a system
bus 102 to a system memory 103 and various other com-
ponents. The system memory 103 can include a read only
memory (ROM) 104 and a random access memory (RAM)
105. The ROM 104 is coupled to the system bus 102 and
may include a basic input/output system (BIOS), which
controls certain basic functions of the computer system 100.
The RAM is read-write memory coupled to the system bus
102 for use by the processors 101. The system memory 103
provides temporary memory space for operations of said
instructions during operation. The system memory 103 can
include random access memory (RAM), read only memory,
flash memory, or any other suitable memory systems.

US 2020/0233475 Al

[0023] The computer system 100 comprises an input/
output (I/O) adapter 106 and a communications adapter 107
coupled to the system bus 102. The 1/O adapter 106 may be
a small computer system interface (SCSI) adapter that
communicates with a hard disk 108 and/or any other similar
component. The I/O adapter 106 and the hard disk 108 are
collectively referred to herein as a mass storage 110.
[0024] Software 111 for execution on the computer system
100 may be stored in the mass storage 110. The mass storage
110 is an example of a tangible storage medium readable by
the processors 101, where the software 111 is stored as
instructions for execution by the processors 101 to cause the
computer system 100 to operate, such as is described herein
below with respect to the various Figures. Examples of
computer program product and the execution of such
instruction is discussed herein in more detail. The commu-
nications adapter 107 interconnects the system bus 102 with
a network 112, which may be an outside network, enabling
the computer system 100 to communicate with other such
systems. In one embodiment, a portion of the system
memory 103 and the mass storage 110 collectively store an
operating system, which may be any appropriate operating
system, such as the z/OS or AIX operating system from IBM
Corporation, to coordinate the functions of the various
components shown in FIG. 1.

[0025] Additional input/output devices are shown as con-
nected to the system bus 102 via a display adapter 115 and
an interface adapter 116 and. In one embodiment, the
adapters 106, 107, 115, and 116 may be connected to one or
more 1/O buses that are connected to the system bus 102 via
an intermediate bus bridge (not shown). A display 119 (e.g.,
a screen or a display monitor) is connected to the system bus
102 by a display adapter 115, which may include a graphics
controller to improve the performance of graphics intensive
applications and a video controller. Akeyboard 121, a mouse
122, a speaker 123, etc. can be interconnected to the system
bus 102 via the interface adapter 116, which may include, for
example, a Super I/O chip integrating multiple device adapt-
ers into a single integrated circuit. Suitable I/O buses for
connecting peripheral devices such as hard disk controllers,
network adapters, and graphics adapters typically include
common protocols, such as the Peripheral Component Inter-
connect (PCI). Thus, as configured in FIG. 1, the computer
system 100 includes processing capability in the form of the
processors 101, and, storage capability including the system
memory 103 and the mass storage 110, input means such as
the keyboard 121 and the mouse 122, and output capability
including the speaker 123 and the display 119.

[0026] In some embodiments, the communications
adapter 107 can transmit data using any suitable interface or
protocol, such as the internet small computer system inter-
face, among others. The network 112 may be a cellular
network, a radio network, a wide area network (WAN), a
local area network (LAN), or the Internet, among others. An
external computing device may connect to the computing
system 100 through the network 112. In some examples, an
external computing device may be an external webserver or
a cloud computing node.

[0027] It is to be understood that the block diagram of
FIG. 1 is not intended to indicate that the computer system
100 is to include all of the components shown in FIG. 1.
Rather, the computer system 100 can include any appropri-
ate fewer or additional components not illustrated in FIG. 1
(e.g., additional memory components, embedded control-

Jul. 23,2020

lers, modules, additional network interfaces, etc.). Further,
the embodiments described herein with respect to computer
system 100 may be implemented with any appropriate logic,
wherein the logic, as referred to herein, can include any
suitable hardware (e.g., a processor, an embedded controller,
or an application specific integrated circuit, among others),
software (e.g., an application, among others), firmware, or
any suitable combination of hardware, software, and firm-
ware, in various embodiments.

[0028] FIG. 2 is an example system 200 that may include
a thread checkpoint table. System 200 may correspond to a
computer system such as computer system 100 of FIG. 1,
and CPU 201 in system 200 may correspond to processor(s)
101 of FIG. 1. The CPU 201 includes a plurality of processor
cores 203A-B, and a power loss control logic 202. Each
processor core 203A-B has a respective cache memory
208A-B, which may include any appropriate number of
levels of cache, and may also include one or more registers.
The power loss control logic 202 may include a local
memory that holds a thread checkpoint table 207. Check-
point data is inserted by the CPU 201 into the thread
checkpoint table 207 in power loss control logic 202 as
software (e.g., software 111 of FIG. 1) is executed by the
threads of the processor cores 203A-B.

[0029] The power loss control logic 202 is in communi-
cation with EPOW detection logic 206, which receives an
EPOW signal from a power supply of a computer system in
which the CPU 201 is located. The CPU 201 is further in
communication with a non-volatile memory comprising
SCM 204, which may correspond to system memory 103 of
FIG. 1. The CPU 201 is also in communication with a
plurality of peripheral components via PCIs 205A-C, which
may correspond to interface adapter 116 of FIG. 1. System
200 may comprise any appropriate type of computer system;
in some embodiments, system 200 may be a SOC.

[0030] It is to be understood that the block diagram of
FIG. 2 is not intended to indicate that the system 200 is to
include all of the components shown in FIG. 2. Rather, the
system 200 can include any appropriate fewer or additional
components not illustrated in FIG. 2 (e.g., additional pro-
cessor cores, registers, memory components, etc.). Further,
the embodiments described herein with respect to system
200 may be implemented with any appropriate logic,
wherein the logic, as referred to herein, can include any
suitable hardware (e.g., a processor, an embedded controller,
or an application specific integrated circuit, among others),
software (e.g., an application, among others), firmware, or
any suitable combination of hardware, software, and firm-
ware, in various embodiments.

[0031] FIG. 3 is an example system 300 including a thread
checkpoint table. FIG. 3 may be implemented in conjunction
with a computer system such as computer system 100 of
FIG. 1 and is discussed with respect to system 200 of FIG.
2. System 300 illustrates an embodiment of a thread check-
point table 302 after power off of the system 200 of FIG. 2.
After an EPOW is detected by EPOW detection logic 206 of
FIG. 2, but before full power off, the thread checkpoint table
302 is flushed from the power loss control logic 202 to the
SCM 301 (which may correspond to SCM 204 of FIG. 2),
to a location that is indicated by a memory address in the
checkpoint table pointer register 303. The checkpoint table
pointer register 303 may be located in CPU 201 of FIG. 2.
At restart of the CPU 201, the value that is stored in the
checkpoint table pointer register 303 gives the location of

US 2020/0233475 Al

the thread checkpoint table 302 in SCM 301, so that the
thread checkpoint table 302 may be directly accessed by the
CPU 201 upon restart.

[0032] The thread checkpoint table 207/302 includes a
plurality of entries 304A-N. A thread checkpoint table
207/302 may have any appropriate number of entries. The
number of entries 304A-N in the thread checkpoint table
207/302 may correspond to a number of threads that are
supported by the CPU 201. The entries 304A-N in thread
checkpoint table 207/302 may be indexed based on thread
number in some embodiments, such that each thread (e.g.,
threads A-N) has a respective entry in the thread checkpoint
table 207/302. In some embodiments, each of entries
304A-N is the same size as a word size of the CPU 201 that
maintains the thread checkpoint table 207/302 (e.g., 32 or 64
bits).

[0033] It is to be understood that the block diagram of
FIG. 3 is not intended to indicate that the system 300 is to
include all of the components shown in FIG. 3. Rather, the
system 300 can include any appropriate fewer or additional
components not illustrated in FIG. 3 (e.g., additional tables,
registers, table entries, memory components, etc.). Further,
the embodiments described herein with respect to system
300 may be implemented with any appropriate logic,
wherein the logic, as referred to herein, can include any
suitable hardware (e.g., a processor, an embedded controller,
or an application specific integrated circuit, among others),
software (e.g., an application, among others), firmware, or
any suitable combination of hardware, software, and firm-
ware, in various embodiments.

[0034] FIG. 4 is a block diagram of an example checkpoint
table entry 400. A checkpoint table entry such as checkpoint
table entry 400 may correspond to each of checkpoint table
entries 304A-N of FIG. 3, and may be located in thread
checkpoint table 207/302. Checkpoint table entry 400
includes a checkpoint type field 401. In some embodiments,
the checkpoint type field 401 may be a most significant field
of the checkpoint table entry 400. In some embodiments, the
value of the checkpoint type field 401 may correspond to
Begin, indicating that the thread has begun an atomic unit of
work; or End, indicating that the thread has completed an
atomic unit of work. In some embodiments, the checkpoint
type field 401 may be a single bit that tells the processor if
there is an atomic work in progress (e.g., ‘0’ corresponds to
Begin and ‘1’ corresponds to End). In some embodiments,
one or more additional checkpoint types may be indicated by
checkpoint type field 401; for example, a checkpoint type
field 401 corresponding to a Simple Checkpoint may indi-
cate that the rest of the checkpoint table entry 400 holds
general information (e.g., a time stamp or lock information)
regarding the corresponding thread. Any appropriate value
may be stored in a checkpoint type field 401 to indicate the
status of the thread that corresponds to the checkpoint table
entry 400, and the checkpoint type field 401 may be any
appropriate size.

[0035] As shown in FIG. 4, the checkpoint table entry 400
further includes an owner identifier 402, a checkpoint
unique identifier 403, and custom data 404. Any appropriate
information regarding a thread may be stored in the various
fields 402-404 of a checkpoint table entry 400 corresponding
to the thread. For example, the owner identifier 402 may
hold any appropriate information regarding an owner of the
checkpoint table entry 400, including but not limited to a
task identifier, a thread identifier, a core number, a state

Jul. 23,2020

machine name, and/or a real-time transport protocol (RTP)
identifier. The checkpoint unique identifier 403 may hold
data regarding when the checkpoint entry was updated with
respect to other processor events, or data including a check-
point state transition number, a checkpoint sequence num-
ber, or a checkpoint time stamp. Custom data 404 may hold
data that enables a process resume after power is restored,
for example, a link register, program counter, next instruc-
tion address, EPOW restore function pointer, sequence num-
ber, and/or address of the last data write.

[0036] FIG. 4 is shown for illustrative purposes only; a
checkpoint table entry may include any appropriate number
of fields, and the fields may hold any appropriate informa-
tion and have any appropriate size.

[0037] FIG. 5 is a process flow diagram of an example
method 500 for maintaining a thread checkpoint table. The
method 500 can be implemented with any suitable comput-
ing device, such as the computer system 100 of FIG. 1, and
is discussed with respect to FIGS. 2, 3, and 4. In block 501,
a compiler inserts checkpointing instructions into software
during compiling of software source code into object code.
Checkpointing instructions may be inserted before and after
atomic units of work in the software (e.g., corresponding to
Begin and End checkpoint types), and cause the processor to
update the thread checkpoint table during execution of the
software. Checkpointing instructions may also cause Simple
Checkpoint data to be written into the thread checkpoint
table at any appropriate point during the execution of the
object code. The object code that is generated by the
compiler may then be executed by a processor such as CPU
201 of FIG. 2.

[0038] Flow then proceeds to block 502. In block 502,
during execution of the object code corresponding to the
software by a thread of a processor core 203A, the thread
begins a unit of atomic work, such as, for example, updating
a memory block. In block 503, based on a checkpointing
instruction that was inserted into the code in block 501, a
processor core 203A updates the thread checkpoint table
entry for the thread (e.g., checkpoint table entry 304A) to
indicate that the thread has begun the unit of atomic work.
In some embodiments, the checkpoint type field 401 in the
checkpoint table entry 304A/400 corresponding to the thread
may be updated to indicate Begin in block 503. Other data
regarding the unit of atomic work that is being performed by
the thread may be written into other fields (e.g. owner
identifier 402, a checkpoint unique identifier 403, and cus-
tom data 404) in the checkpoint table entry 400 in block 503.
The thread checkpoint table 207 that is updated in block 503
may be located in the power loss control logic 202 in some
embodiments. In block 504, the thread completes the unit of
atomic work that was begun in block 502. In block 505, the
processor core 203A updates the checkpoint type field 401
in the checkpoint table entry 304A/400 corresponding to the
thread to indicate that the thread has completed the unit of
atomic work. In some embodiments, the checkpoint type
field 401 in the checkpoint table entry 400 may be updated
to indicate End in block 505. Other data regarding the
execution of the thread may be written into other fields (e.g.
owner identifier 402, a checkpoint unique identifier 403, and
custom data 404) in the checkpoint table entry 400 in block
505. The thread checkpoint table 207 that is updated in block
505 may be located in the power loss control logic 202 in
some embodiments. Flow then proceeds back to block 502
as the thread continues execution of the software, and when

US 2020/0233475 Al

the thread begins another unit of atomic work, the thread
checkpoint table entry corresponding to the thread is
updated again. Blocks 502-505 of method 500 are repeated
throughout the execution of the software; whenever the
thread begins or ends a unit of atomic work, the thread’s
checkpoint table entry is updated. During the execution of
block 502-505, Simple Checkpoint data may also be written
into any field in a thread’s checkpoint table entry 400. At any
point during the performing of blocks 502-505 of method
500, an EPOW signal may be received from EPOW detec-
tion logic 206 by the power loss control logic 202. Handling
of'the EPOW signal is discussed in further detail below with
respect to FIGS. 6 and 7.

[0039] The process flow diagram of FIG. 5 is not intended
to indicate that the operations of the method 500 are to be
executed in any particular order, or that all of the operations
of the method 500 are to be included in every case. Addi-
tionally, the method 500 can include any suitable number of
additional operations.

[0040] FIG. 6 is a process flow diagram of an example
method 600 for powering off a processor using a thread
checkpoint table. The method 600 can be implemented with
any suitable computing device, such as the computer system
100 of FIG. 1, and is discussed with respect to FIGS. 2, 3,
and 4. Method 600 may occur during the execution of blocks
502-505 of method 500 of FIG. 5; method 600 is triggered
whenever an EPOW signal is detected. In block 601, an
EPOW signal is detected by EPOW detection logic 206,
which triggers the power loss control logic 202. In block
602, the power loss control logic 202 suspends all of the
threads of the CPU 201. Suspension of the threads is
performed based on the thread checkpoint table 207, and is
discussed in further detail below with respect to FIG. 7. In
block 603, after all of the threads are suspended, it is
determined whether the EPOW that was received in block
601 is a long EPOW. If it is determined in block 603 that the
EPOW is a long EPOW, flow proceeds from block 603 to
block 604, in which the checkpoint table is moved to a cache
(such as cache memory 208A) of the CPU 201. Then, in
block 605, the contents of the cache, including the thread
checkpoint table 207, are flushed from the cache to the SCM
204/301 (as shown by thread checkpoint table 302 of FIG.
3). The thread checkpoint table may be flushed to a location
in the SCM 301 that is given by checkpoint table pointer
register 303 in some embodiments.

[0041] Ifit was determined in block 603 that the EPOW is
not a long EPOW, flow proceeds from block 603 to block
606. In block 606, the thread checkpoint table is flushed
directly to the SCM 204/301 (as shown by thread checkpoint
table 302 of FIG. 3). The thread checkpoint table may be
flushed to a location that is given by checkpoint table pointer
register 303 in some embodiments.

[0042] From blocks 605 and 606 of method 600, flow
proceeds to block 607. In block 607, power is restored, and
the CPU 201 resumes execution based on the information in
the thread checkpoint table 302 in the SCM 204/301. The
CPU 201 may locate the thread checkpoint table 302 based
on the contents of the checkpoint table pointer register 303.
[0043] The process flow diagram of FIG. 6 is not intended
to indicate that the operations of the method 600 are to be
executed in any particular order, or that all of the operations
of the method 600 are to be included in every case. Addi-
tionally, the method 600 can include any suitable number of
additional operations.

Jul. 23,2020

[0044] FIG. 7 is a process flow diagram of an example
method 700 for suspending threads using a thread check-
point table. The method 700 can be implemented with any
suitable computing device, such as the computer system 100
of FIG. 1, and is discussed with respect to FIGS. 2, 3, and
4. Method 700 may occur in block 602 of FIG. 6. In block
701, for each thread of the plurality of threads (e.g., threads
A-N) of the CPU 201, the checkpoint type field 401 of the
thread’s respective checkpoint table entry 400/304A-N in
the thread checkpoint table 207 in power loss control logic
202 is examined. In block 702, if the checkpoint type field
401 indicates Begin for a thread, flow proceeds to block 703,
in which the thread is allowed to continue running according
to blocks 502-505 of FIG. 5. Flow then proceeds back to
block 701, and the checkpoint type field 401 of the thread’s
respective checkpoint table entry 400/304A-N in the thread
checkpoint table in power loss control logic 202 is examined
again.

[0045] If it is determined in block 702 that the checkpoint
type field 401 for a thread is not Begin (e.g., the checkpoint
type field 401 indicates End or Simple Checkpoint), flow
proceeds from block 702 to block 704, in which the thread
is suspended. Flow then proceeds to block 705, in which it
is determined whether all threads of the CPU 201 are
suspended. If all threads of the processor are not determined
to be suspended in block 705, flow proceeds back to block
701, and blocks 701, 702, 703, and 704 are repeated until all
threads are determined to be suspended in block 705. When
all threads of the processor are determined to be suspended
in block 705, flow proceeds to block 706, and method 700
ends.

[0046] The process flow diagram of FIG. 7 is not intended
to indicate that the operations of the method 700 are to be
executed in any particular order, or that all of the operations
of the method 700 are to be included in every case. Addi-
tionally, the method 700 can include any suitable number of
additional operations.

[0047] The present techniques may be a system, a method
or an apparatus. The flowchart and block diagrams in the
Figures illustrate the architecture, functionality, and opera-
tion of possible implementations of systems, methods, and
apparatus according to various embodiments of the present
techniques. In this regard, each block in the flowchart or
block diagrams may represent a module, segment, or portion
of logic for implementing the specified logical function(s).
In some alternative implementations, the functions noted in
the block may occur out of the order noted in the figures. For
example, two blocks shown in succession may, in fact, be
executed substantially concurrently, or the blocks may
sometimes be executed in the reverse order, depending upon
the functionality involved. It will also be noted that each
block of the block diagrams and/or flowchart illustration,
and combinations of blocks in the block diagrams and/or
flowchart illustration, can be implemented by special pur-
pose hardware-based systems that perform the specified
functions or acts or carry out combinations of special
purpose hardware and computer instructions.

[0048] The descriptions of the various embodiments of the
present techniques have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was

US 2020/0233475 Al

chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.
What is claimed is:
1. A system, comprising a processor configured to:
based on detecting an early power off warning (EPOW)
signal, determine, based on a thread checkpoint table,
whether a status of a thread of the processor indicates
that the thread has begun a unit of atomic work; and

based on determining that the status of the thread of the
processor indicates that the thread has begun the unit of
atomic work, allow the thread to continue execution of
the unit of atomic work;

determine, based the status of the thread in the thread

checkpoint table, that the thread has completed the unit
of atomic work; and

based on determining that the thread has completed the

unit of atomic work, suspend the thread.

2. The system of claim 1, wherein the unit of atomic work
comprises updating a memory block.

3. The system of claim 1, wherein the processor is further
configured to:

determine that all threads of the processor have been

suspended based on the thread checkpoint table; and
based on determining that all threads of the processor
have been suspended, flush the thread checkpoint table
from a local memory in the processor to a non-volatile
memory that is in communication with the processor.

4. The system of claim 3, wherein an address of a location
to which the thread checkpoint table is flushed in the
non-volatile memory is stored in a checkpoint table pointer
register of the processor, and wherein the non-volatile
memory comprises storage class memory (SCM).

5. The system of claim 4, wherein the processor is further
configured to:

based on a restart of the processor after the detection of

the EPOW signal:

access the thread checkpoint table at the address in the
non-volatile memory based on the checkpoint table
pointer register; and

resume execution of the thread based on the thread
checkpoint table.

6. The system of claim 1, wherein the status of the thread
in the thread checkpoint table is updated to indicate that the
thread has begun the unit of atomic work based on a first
checkpointing instruction that was inserted by a compiler
into object code that is being executed by the thread; and

wherein the status of the thread in the thread checkpoint

table is updated after detecting of the EPOW signal to
indicate that the thread has completed the unit of
atomic work based on a second checkpointing instruc-
tion that was inserted by the compiler into the object
code.

7. The system of claim 1, wherein the thread checkpoint
table comprises a plurality of checkpoint table entries, and
wherein each checkpoint table entry corresponds to a single
respective thread of the processor.

8. A computer-implemented method, comprising:

based on detecting an early power off warning (EPOW)

signal in a processor, determining, based on a thread

Jul. 23,2020

checkpoint table, whether a status of a thread of the
processor indicates that the thread has begun a unit of
atomic work; and

based on determining that the status of the thread of the

processor indicates that the thread has begun the unit of
atomic work, allowing the thread to continue execution
of the unit of atomic work;

determining, based the status of the thread in the thread

checkpoint table, that the thread has completed the unit
of atomic work; and

based on determining that the thread has completed the

unit of atomic work, suspending the thread.
9. The computer-implemented method of claim 8,
wherein the unit of atomic work comprises updating a
memory block.
10. The computer-implemented method of claim 8, fur-
ther comprising:
determining that all threads of the processor have been
suspended based on the thread checkpoint table; and

based on determining that all threads of the processor
have been suspended, flushing the thread checkpoint
table from a local memory in the processor to a
non-volatile memory that is in communication with the
processor.

11. The computer-implemented method of claim 10,
wherein an address of a location to which the thread check-
point table is flushed in the non-volatile memory is stored in
a checkpoint table pointer register of the processor, and
wherein the non-volatile memory comprises storage class
memory (SCM).

12. The computer-implemented method of claim 11, fur-
ther comprising:

based on a restart of the processor after the detection of

the EPOW signal:

accessing the thread checkpoint table at the address in
the non-volatile memory based on the checkpoint
table pointer register; and

resuming execution of the thread based on the thread
checkpoint table.

13. The computer-implemented method of claim 8,
wherein the status of the thread in the thread checkpoint
table is updated to indicate that the thread has begun the unit
of atomic work based on a first checkpointing instruction
that was inserted by a compiler into object code that is being
executed by the thread: and

wherein the status of the thread in the thread checkpoint

table is updated after detecting of the EPOW signal to
indicate that the thread has completed the unit of
atomic work based on a second checkpointing instruc-
tion that was inserted by the compiler into the object
code.

14. The computer-implemented method of claim 8,
wherein the thread checkpoint table comprises a plurality of
checkpoint table entries, and wherein each checkpoint table
entry corresponds to a single respective thread of the pro-
Cessor.

15. An apparatus, comprising hardware logic configured
to:

based on detecting an early power off warning (EPOW)

signal in a processor, determine, based on a thread
checkpoint table, whether a status of a thread of the
processor indicates that the thread has begun a unit of
atomic work; and

US 2020/0233475 Al

based on determining that the status of the thread of the
processor indicates that the thread has begun the unit of
atomic work, allow the thread to continue execution of
the unit of atomic work;
determine, based the status of the thread in the thread
checkpoint table, that the thread has completed the unit
of atomic work; and
based on determining that the thread has completed the
unit of atomic work, suspend the thread.
16. The apparatus of claim 15, wherein the unit of atomic
work comprises updating a memory block.
17. The apparatus of claim 15, wherein the hardware logic
is configured to:
determine that all threads of the processor have been
suspended based on the thread checkpoint table; and
based on determining that all threads of the processor
have been suspended, flush the thread checkpoint table
from a local memory in the processor to a non-volatile
memory that is in communication with the processor.
18. The apparatus of claim 17, wherein an address of a
location to which the thread checkpoint table is flushed in
the non-volatile memory is stored in a checkpoint table
pointer register of the processor, and wherein the non-
volatile memory comprises storage class memory (SCM)

Jul. 23,2020

19. The apparatus of claim 18, wherein the hardware logic
is configured to:

based on a restart of the processor after the detection of
the EPOW signal:

access the thread checkpoint table at the address in the
non-volatile memory based on the checkpoint table
pointer register; and

resume execution of the thread based on the thread
checkpoint table.

20. The apparatus of claim 15, wherein the status of the
thread in the thread checkpoint table is updated to indicate
that the thread has begun the unit of atomic work based on
a first checkpointing instruction that was inserted by a
compiler into object code that is being executed by the
thread; and

wherein the status of the thread in the thread checkpoint
table is updated after detecting of the EPOW signal to
indicate that the thread has completed the unit of
atomic work based on a second checkpointing instruc-
tion that was inserted by the compiler into the object
code.

