
US 20210042148A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0042148 A1

Alford et al . (43) Pub . Date : Feb. 11 , 2021

(54) DYNAMIC INSERTION OF VARIABLIZED
SECRETS IN A PIPELINE INTEGRATION
SYSTEM

(52) U.S. CI .
CPC G06F 9/4843 (2013.01) ; G06F 2221/034

(2013.01) ; G06F 21/57 (2013.01) ; G06F
9/466 (2013.01)

(71) Applicant : Pivotal Software , Inc. , San Francisco ,
CA (US)

(57) ABSTRACT (72) Inventors : Jesse Thomas Alford , Denver , CO
(US) ; Jeremy Scott Alvis , Highlands
Ranch , CO (US) ; Justin Tyler Archie ,
Denver , CO (US) ; Kira Combs Boyle ,
Denver , CO (US) ; Christy M. Cattin ,
Denver , CO (US) ; Nadja Brigitte
Conklin , Denver , CO (US) ; John
Frederick Cornish , IV , Golden , CO
(US) ; John Patrick McBride , Denver ,
CO (US)

(21) Appl . No .: 16 / 536,225

Methods , systems , and apparatus , including computer pro
grams encoded on computer storage media , for dynamically
injecting secrets in a pipeline integration system . One of the
methods includes receiving , by a pipeline controller , a job
identifying a pipeline for executing a plurality of tasks . A
preparatory task is invoked for the pipeline that obtains one
or more original task definitions for the identified pipeline
and generates one or more modified task definitions for the
pipeline , wherein each modified task definition references
one or more variablized secret names specified as the value
of the reserved variable of the one or more configuration
files . One or more subsequent execution tasks are invoked
using each respective modified task definition . One or more
retrieved secrets are injected into an execution environment
for each particular execution task .

(22) Filed : Aug. 8 , 2019

Publication Classification

(51) Int . Ci .
G06F 9/48
GO6F 9/46
GO6F 21/57

(2006.01)
(2006.01)
(2006.01)

Job 105 Configuration Files 104

100 % SecretName1
Pipeline ID : ci pipeline

SecretName2

Params = ((SecretName3 ,
SecretName4 ,
SecretName5))

Cloud Computing Platform 150
Secrets Database 140

QUERY
122 SecretName1 : Secret Value 1 Preparatory Task 130

ORIGINAL
TASK

DEFINITIONS
102 SecretName2 : Secret Value 2

Modified Task
Definitions 132

CONFIG .
FILES 104

SECRET
VALUES
142 Pipeline

Controller 120
SecretName3 : Secret Value 3

SecretName4 : Secret Value 4

SecretName1
SecretLocation1

MODIFIED
TASK

DEFINITIONS
132 SecretName2

SecretLocation2

SecretName3
SecretLocation3

SECRET VALUES
142

ORIGINAL TASK
DEFINITIONS

102
Execution Task 160

Collection of
Pipeline Task
Definitions

170
SecretName4
SecretLocation4 Eny . Var , 1 = Secret Value 1 ...

Env . Var , 2 = Secret Value 2
Env . Var . 3 = Secret Value 3
Eny . Var . 4 = Secret Value 4

Job 105

Configuration Files 104

100 %

SecretName1

Pipeline ID : ci_pipeline

SecretName2

Patent Application Publication

FIG . 1

Params = ((SecretName3 , SecretName4 , SecretName5))

Cloud Computing Platform 150

|

Secrets Database 140

ORIGINAL TASK DEFINITIONS 102

QUERY 122

Preparatory Task 130

SecretName1 : Secret Value 1 SecretName2 : Secret Value 2

1 1

Modified Task Definitions 132

CONFIG . FILES 104

SECRET VALUES 142

Pipeline Controller 120

SecretName3 : Secret Value 3

Feb. 11 , 2021 Sheet 1 of 4

SecretName4 : Secret Value 4

SecretName1 SecretLocation1

MODIFIED TASK DEFINITIONS 132

SecretName2 SecretLocation2 SecretName3 SecretLocation3

SECRET VALUES 142

ORIGINAL TASK DEFINITIONS 102

Execution Task 160

Collection of Pipeline Task Definitions 170

SecretName4 SecretLocation 4

Env . Var . 1 = Secret Value 1 Eny . Var . 2 = Secret Value 2 Env . Var . 3 = Secret Value 3 Env . Var . 4 = Secret Value 4

US 2021/0042148 A1

1 1

1

Patent Application Publication Feb. 11 , 2021 Sheet 2 of 4 US 2021/0042148 A1

Receive a job identifying a pipeline for
executing a plurality of execution tasks

S204

Is Invoke a preparatory task for the pipeline to
generate modified task definitions that
reference variablized secret names

5 206

208 Invoke a subsequent execution task as defined S
by a modified task definition

210 Inject one or more retrieved secrets as
specified in the modified task definition into an
execution environment for the subsequent

execution task

FIG . 2

Patent Application Publication Feb. 11 , 2021 Sheet 3 of 4 US 2021/0042148 A1

302 Retrieve , from a file system , original task
definitions and configuration files

S302

304 Determine the secret names of all secrets
required for a given task using the configuration

files
?

306 Combine each secret name with a known
pathname prefix to generate a path to the

secret in the secrets database
530

308 Generate modified task definitions by adding
the secret names and secret locations to the

corresponding original task definitions
53

310
Providing the modified task definitions

FIG . 3

Patent Application Publication Feb. 11 , 2021 Sheet 4 of 4 US 2021/0042148 A1

404 Retrieve , from the secrets database , one or
more secrets required for an execution task
using a respective modified task definition

540

Provision an execution environment to execute
the execution task

$ 406

408 Inject the retrieved secrets as environment $ 4
variables into the execution environment

Access the injected secrets from the execution S410
environment in order to execute the task

FIG . 4

US 2021/0042148 Al Feb. 11 , 2021
1

DYNAMIC INSERTION OF VARIABLIZED
SECRETS IN A PIPELINE INTEGRATION

SYSTEM

BACKGROUND

A pipeline controller then effectuates the pipeline by execut
ing each of the tasks as specified as workloads of the cloud
computing platform .
[0008] Pipeline integration systems can be used to auto
mate any appropriate job . One common job performed by
pipeline integration systems is continuous integration and
deployment of applications on the cloud - based platform . A
continuous integration pipeline can include tasks that handle
building , staging , testing , and deploying a new release of a
developer application . Each of these stages can be imple
mented as a cloud - based workload that also executes on the
platform .
[0009] Pipelines often break when they are too closely
coupled to the tasks that they are supposed to be automating .
This problem frequently arises due to secrets management
because secrets tend to change at a much faster rate than the
pipelines themselves . Although pipeline integration systems
can use secrets management systems to manage the values
of the secrets themselves , the pipeline can still break when
the topology of the secrets changes . When this happens , the
tasks that are executed by the pipeline integration system
can lack the secrets needed to execute properly because the
pipeline integration system had no visibility into the exis
tence of the secret .
[0010] For example , if an application to be deployed uses
a database and the next version of the database adds an
encryption layer with its own secret , the secrets topology of
the job will have changed . Typically to handle such a change
in secrets topology , the task definitions of the pipeline are
modified to match the changing secrets topology .
[0011] However , this is a tedious and error prone process
even for operators that control their entire platform stacks .
And platform operators that do not control their entire
platform stack must rely on other entities to reconfigure the
pipeline when there is a change in the secrets topology . For
example , often in a large organizations , one team will be in
charge of building and maintaining a pipeline that other
teams use for deploying applications . A team that makes a
change in the secrets topology incurs delays because they
must wait for a corresponding change to be made to the
pipeline itself to accommodate the change in secrets topol
ogy .

[0001] This specification generally relates to cloud com
puting platforms , and more particularly to cloud - based pipe
line integration systems .
[0002] “ Platform - as - a - Service ” (commonly referred to as
“ PaaS ”) technologies provide an integrated solution that
enables a web developer , or an application developer in
general , to build , deploy , and manage the life cycle of a
cloud - based workload , e.g. , a web application or any other
type of networked application . For brevity , in this specifi
cation , a PaaS system will also be referred to as a cloud
computing platform or simply a platform . Supporting the
cloud - based platform is an underlying cloud computing
infrastructure that is operated and maintained by a service
provider that may or may not be maintained by a different
entity than the platform itself . The underlying cloud com
puting infrastructure includes hardware resources , e.g. , pro

or servers , upon which workloads physically
execute , as well as other resources , e.g. , disks or networks
that can be used by the workloads .
[0003] Cloud computing platforms can provide workloads
with access to software and hardware resources . For
example , some cloud computing platforms provide inte
grated services . A service is a software subsystem that can
provide one or more functionalities for use by platform
workloads . An example of a service for use by a platform
workload is a database management system that maintains a
database that can be accessed and modified by platform
workloads . The software and hardware resources to imple
ment a service can be provisioned automatically by the
platform , either in advance or on demand .
[0004] A developer using a cloud computing platform can
leave logistics of provisioning and scaling hardware and
software resources , e.g. , processing power , facilities , power
and bandwidth , data storage , and database access , to the
cloud computing platform . By providing the hardware and
software resources required to run a cloud based application ,
a cloud computing platform enables developers to focus on
the development of an application itself .
[0005] Commonly , access to such hardware and software
resources require authentication . Different resources may
require different authentication technologies and different
secrets . For example , a cloud - based workload may have one
secret for accessing the platform itself , another secret for
scaling up hardware resources in the underlying computing
infrastructure , another secret for accessing a backend data
base , and another secret for integrating a third - party appli
cation utility .
[0006] In this specification , a secret is one or more items
of data that allow a particular platform workload to access
a resource . Thus , a secret can function as a credential for
accessing a resource . For example , an application can access
a database by providing a secret that authenticates the
application to the database .
[0007] A cloud - based pipeline integration system is a
software subsystem that can automate many aspects of using
cloud computing platforms . Generally a pipeline takes as
input a definition of a set of tasks , referred to as a job , that
are to be executed in a particular order or in a partial order .

cessors

SUMMARY
[0012] This specification describes a pipeline integration
system that can dynamically discover secrets during pipeline
execution . To do so , a pipeline controller uses a preparatory
task to find variablized secrets in input configuration files .
The preparatory task then generates modified task defini
tions that allow the secrets to be injected into the execution
environments of the execution task . These techniques allow
the secrets topology of a job to change without requiring a
change to the pipeline itself .
[0013] Particular embodiments of the subject matter
described in this specification can be implemented so as to
realize one or more of the following advantages . Using
variablized secrets in a pipeline integration system enables
users to change the secrets required for a job without
modifying the task definitions of the pipeline itself . This
allows users to submit job requests with an arbitrary set of
new secrets without reconfiguring the pipeline .
[0014] Thus , the method decouples the pipeline from the
parameters of the jobs it automates , thereby making the
pipeline more flexible and robust to changes in the param

US 2021/0042148 A1 Feb. 11 , 2021
2

eters . This means that the same pipeline can be used for
more versions of workloads that are deployed by the pipe
line . In other words , the workloads can iterate rapidly using
the same pipeline without having to change the pipeline
itself .
[0015] The techniques described below also make a cloud
computing platform more secure . The techniques described
below satisfy two goals for the secure handling of secrets
that conventional methods do not . The first security goal is
that the secrets should be ephemeral . In other words , they
should only be available when required . This goal implies
that secrets should not be written to file systems , both to
avoid forensic recovery and to avoid side - channel attacks .
The method achieves this goal by not writing any secrets to
disk . The second security goal is that access to secrets should
be as limited and strictly scoped as possible . For instance ,
full access to all secrets should not be given to any one
execution environment , so that if the environment is com
promised by an attacker , the attacker would not gain access
to all secrets . The method achieves this goal by only giving
access to a secrets database , which stores one or more
secrets to be used by the pipeline , to the pipeline controller
itself , which does not itself run workloads .
[0016] The techniques described below also increase flex
ibility by allowing a configuration file to be reused across
distributed systems , instead of requiring a configuration file
to be reformatted for every different pipeline .
[0017] The techniques described below also allow users of
the pipeline to use secrets in their configuration without
having to have access to the secrets management system .
This means a first user can allocate the secrets and a second
user can consume the secrets .
[0018] The details of one or more embodiments of the
subject matter of this specification are set forth in the
accompanying drawings and the description below . Other
features , aspects , and advantages of the subject matter will
become apparent from the description , the drawings , and the
claims .

[0025] The example pipeline integration system 100
includes a pipeline controller 120 that can receive a job 105 ,
which can be uploaded to a cloud computing platform 150
by a user .
[0026] The job 105 identifies a particular pipeline either
explicitly or implicitly . In this example , the job 105 includes
an explicit identifier for a pipeline named “ cipipeline , "
which for example might represent the tasks required to
perform continuous integration of an application on the
cloud computing platform 150 .
[0027] The job 105 also includes one or more configura
tion files for each task that will be executed by the pipeline .
The pipeline controller 120 can store and maintain the actual
task definitions for the pipeline in a collection of pipeline
task definitions 170. Each task definition can specify infor
mation required to perform a particular task in the pipeline ,
e.g. , binaries , source code , networks , or some combination
of these , that are needed to execute a task in the cloud
computing platform 150. For example , a task definition can
specify a container image or a virtual machine image that
provides an execution environment for the task to execute .
Task definitions can also specify data transfer between tasks .
In other words , a task definition can specify that its output
will be consumed by a subsequent task in the pipeline .
[0028] The pipeline controller 120 can then provision and
launch tasks to effectuate the pipeline , including a prepara
tory task 130 and an execution task 160. The cloud com
puting platform also includes a secrets database 140 that the
pipeline controller 120 can use to manage secrets for the job
105 .
[0029] As described above , the cloud computing platform
150 can be implemented as a software layer on an under
lying cloud computing infrastructure , which can include a
plurality of computers in one more locations . For example ,
the cloud computing platform 150 can be installed on a
plurality of computers in one or more data centers .
(0030) The configuration files 104 of the job 105 can
specify the names of one or more secrets to be used by tasks
during execution of the pipeline . The secret names corre
spond to secrets stored in the secrets database 140. The
referenced secrets can include secrets needed to access
resources required for the particular tasks of the job 105 .
[0031] Some of the secret names in the configuration files
104 can correspond to secrets that are already integrated into
the original task definitions 102 of the pipeline . For
example , the configuration files illustrated in FIG . 1 explic
itly specify the following secret names : SecretNamel and
SecretName2 .
[0032] The configuration files 104 can also include vari
ablized secret names that are specified in the value of a
special reserved variable having a particular reserved key . In
this case , the key name is “ Params , " and the value of the
reserved variable include other secret names that the pipe
line controller 120 can discover dynamically at pipeline
preparation time . In other words , the secrets that are speci
fied as the values of the reserved variable can be used even
when the task definitions of the pipeline do not include any
of the variablized secret names .
[0033] Thus , a user can easily add a new secret to a
pipeline by modifying the value of the “ Params " variable ,
which does not require modifying any of the task definitions
of the pipeline . Therefore , modifying the secrets topology of
a pipeline does not require waiting on another entity to
modify the task definitions of the pipeline .

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG . 1 is a diagram that illustrates an example
pipeline integration system .
[0020] FIG . 2 is a flowchart of an example process of a
pipeline controller handling a job request .
[0021] FIG . 3 is a flowchart of an example process per
formed by a preparatory task .
[0022] FIG . 4 is a flowchart of an example process for
launching one or more execution tasks that access vari
ablized secrets .
[0023] Like reference numbers and designations in the
various drawings indicate like elements .

DETAILED DESCRIPTION

[0024] FIG . 1 is a diagram that illustrates an example
pipeline integration system 100. The pipeline integration
system 100 is an example of a system that can be used to
implement the techniques described in this specification . In
particular , the pipeline integration system 100 can dynami
cally handle a change in secrets topology without breaking
an existing pipeline . This means that the task definitions of
an existing pipeline can still be reused even when the secrets
topology of the job changes for particular versions of a task .

US 2021/0042148 A1 Feb. 11 , 2021
3

[0034] Before invoking the execution tasks as defined in
the original task definitions 102 of the pipeline , the pipeline
controller 120 can retrieve the referenced secrets from the
secrets database 140. In order to retrieve the secrets from the
secrets database 140 , the pipeline controller 120 can extract
from the configuration files 104 the secret names and the
locations of the secrets within the secrets database 140 .
[0035] The pipeline controller 120 can launch a prepara
tory task 130 on the cloud computing platform 150 in order
to dynamically extract secret names and their locations . To
do so , the pipeline controller 120 can provide the prepara
tory task 130 with the original task definitions 102 of the
pipeline as well as the configuration files 104 provided by
the user .
[0036] The preparatory task 130 receives the original task
definitions 102 and the configuration files 104 and parses the
configuration files 104 to extract variablized secret names .
For every extracted secret name , the preparatory task 130
can infer a secret location . The process is described in more
detail below with reference to FIG . 3. The preparatory task
130 can then create modified task definitions 132 by insert
ing both the variablized secret names and the secret loca
tions into the original task definitions 102 for the specified
pipeline . The preparatory task 130 can then provide the
modified task definitions 132 to the pipeline controller 120 .
[0037] The pipeline controller 120 receives the modified
task definitions 132 and parses them to extract the secret
names and secret locations . For each such (secret name ,
secret location) pair , the pipeline controller 120 submits a
query 122 to the secrets database 140 , requesting the cor
responding secret that can be found in the given secret
location . The secrets database 140 retrieves the queried
secret values 142 and provides them to the pipeline control
ler 120 .
[0038] Having received all secret values 142 , the pipeline
controller 120 can invoke the execution tasks necessary to
complete the job . To do so , the pipeline controller 120 can
provision an execution environment 160 within the cloud
computing platform 150 to execute one or more execution
tasks required for the job 105. The execution tasks , as
defined in the modified task definitions 132 , can access
secret values 142 of the variablized secrets during execution .
The pipeline controller 120 can inject the secret values 142
into the execution environment 160 , e.g. , in the form of
environment variables of the execution environment 160. In
some implementations , the environment variables are never
written to the disk , thereby keeping the secret values ephem
eral during execution of the job .
[0039] The one or more execution tasks are then executed
within the execution environment 160. The execution tasks
can access the variablized secret values 142 that were
injected as environment variables into the execution envi
ronment 160. As illustrated , the execution task 160 can
access environment variables that correspond to the secret
names specified explicitly in the configuration files 104 , as
well as environment variables that correspond to the vari
ablized secret names that were discovered dynamically and
that were not referenced in the original task definitions 102 .
[0040] One example of a job that can be executed in the
pipeline integration system 100 is a pipeline that builds ,
tests , and deploys an application on a cloud - based comput
ing platform 150. In this case , the original task definitions
102 submitted by the user can describe build , test , and
deployment tasks . The pipeline controller 120 can then

provision tasks in the execution environment 160 for effec
tuating the deployment of the application .
[0041] If an updated version of the application requires an
additional secret , a user can simply add the secret name as
a variablized secret in the input configuration file . The
preparatory task 130 will then discover the secret name
dynamically and generate modified task definitions . This
process thereby allows the user to reuse the same pipeline
even though the topology of the secrets required changes .
[0042] FIG . 2 is a flowchart of an example process of a
pipeline controller handling a job request . The example
process can be implemented by a distributed computing
system having a plurality of computers in one or more
locations and programmed in accordance with this specifi
cation .
[0043] The pipeline controller receives a job identifying a
pipeline for executing a plurality of tasks (step 204) . The job
can include configuration files and can identify explicitly or
implicitly a pipeline having one or more original task
definitions . The configuration files can include one or more
variablized secret names that are specified as values of a
reserved variable .
[0044] The pipeline controller invokes a preparatory task
to generate modified task definitions that reference vari
ablized secret names (step 206) . The pipeline controller can
provide the preparatory task with the original task defini
tions and the configuration files . In some implementations ,
the pipeline controller provisions an execution environment ,
e.g. , a container or a virtual machine , on a cloud computing
platform to execute the preparatory task .
[0045] The pipeline controller can provide the original
task definitions and configuration files to the preparatory
task in a variety of ways . For example , the pipeline con
troller can mount the original task definitions and the
configuration files to a file system that will be accessed by
the preparatory task when launched . Alternatively or in
addition , the pipeline controller can launch a preparatory
task that is configured to query the pipeline controller for a
location of the original task definitions and configuration
files or for the files themselves . The preparatory task is
explained in more detail below with reference to FIG . 3 .
[0046] After the preparatory task is complete , the pipeline
controller receives the modified task definitions . In some
implementations , the preparatory task writes the modified
task definitions to the disk so that the pipeline controller can
access the modified task definitions . This does not violate
the ephemerality goal for the secure handling of secrets ,
however , because while the secret names and secret loca
tions can be stored in the modified task definitions , the
modified task definitions generally do not include the secret
values themselves . Thus , even if an adversary gains access
to the disk , the adversary will be unable to retrieve the
secrets from the secrets database because only properly
verified entities may retrieve secrets from the secrets data
base .
[0047] The pipeline controller invokes a subsequent
execution task , as defined by a modified task definition (step
208) . The pipeline controller can invoke the subsequent
execution task to effectuate one or more tasks as defined by
the pipeline . This is explained in more detail below with
reference to FIG . 4 .
[0048] The pipeline controller injects one
retrieved secrets as specified in the modified task definition
into an execution environment for the subsequent execution

or more

US 2021/0042148 A1 Feb. 11 , 2021
4

task (step 210) . This step is also explained in more detail
below with reference to FIG . 4 .
[0049] By using the preparatory task to generate modified
task definitions , the pipeline controller does not need to
know in advance what secrets will be required to execute the
job request . Thus , the users submitting jobs can change the
secrets required to execute the job without having to change
the original task definitions of the pipeline . The users can
thus add secrets , remove secrets , and change the variables of
existing secrets , all while using the same pipeline . The users
must simply include the variablized secret names for all
required secrets in the configuration files , and the prepara
tory task will parse the configuration files and inject the
secrets into the modified task definitions .
[0050] FIG . 3 is a flowchart of an example process per
formed by a preparatory task . The example process can be
implemented by a distributed computing system having a
plurality of computers in one or more locations and pro
grammed in accordance with this specification .
[0051] The preparatory task retrieves , from a file system ,
original task definitions and configuration files (step 302) .
These were mounted there by the pipeline controller that
invoked the preparatory task .
[0052] The preparatory task extracts the variablized secret
names of all secrets required for a given task from the
configuration files (step 304) . Each secret name corresponds
to a secret kept in a secrets database .
[0053] The preparatory task determines the location of
every required secret (step 306) . For each secret name , e.g. ,
secret_name_1 ' , the preparatory task 300 can infer the
location of the corresponding secret within the secrets
database . One way to do this is to take a known pathname
prefix , say “ my_organization / my_team / secrets / , and append
the secret name to the pathname prefix to create a full
pathname , in this case ‘ my_organization / my_team / secrets /
secret_name_1 ” . In this example , the pathname prefix is
known according to the team to which the user who
requested the application deployment belongs .
[0054] The preparatory task generates modified task defi
nitions by inserting each secret name and location into the
original task definition file that corresponds with the task
that requires the respective secret (step 308) .
[0055] The preparatory task provides the modified task
definitions (310) . For example , the preparatory task can
provide the modified task definitions as outputs to the
pipeline controller . In some implementations , the prepara
tory task can mount the modified task definitions to the file
system , which the pipeline controller can access .
[0056] This process illustrates another main advantage of
the current invention , namely that the preparatory task
satisfies the “ strict - scoping ” goal for the secure handling of
secrets . In other words , the preparatory task itself does not
have access to the entire secrets database . Rather , the
preparatory task only parses secret names and infers secret
locations . Thus , even if an adversary gained access to the
preparatory task , the adversary would not have access to the
secrets database .
[0057] FIG . 4 is a flowchart of an example process for
launching one or more execution tasks that access vari
ablized secrets . A pipeline controller can launch an execu
tion task executing a task defined in a respective modified
task definition . The example process can be implemented by

a distributed computing system having a plurality of com
puters in one or more locations and programmed in accor
dance with this specification .
[0058] The pipeline controller retrieves , from the secrets
database , one or more secrets required for an execution task
using a respective modified task definition for the execution
task (404) . For example , the modified task definition can be
generated by a preparatory task as described above with
reference to FIG . 3. To retrieve the secrets , the pipeline
controller can extract one or more secret names and loca
tions from a modified task definition and use the extracted
names and locations to retrieve the one or more respective
secrets from the secrets database .
[0059] The pipeline controller provisions an execution
environment to execute the execution task (step 406) . In
some implementations , the respective modified task defini
tion comprises directives for an underlying provisioning
system that can provision resources in the underlying cloud
computing infrastructure . In some implementations , the
respective modified task definition is a manifest that can be
understood by a deployment director of the pipeline con
troller . A deployment directory is a software subsystem that
can provision appropriate resources in the underlying cloud
computing infrastructure . One example of a deployment
director is the open source BOSH project , which can be used
to deploy and manage the lifecycles of software on large
scale distributed systems .
[0060] The pipeline controller injects the retrieved secrets
into the provisioned environment in the form of environment
variables (step 408) . For example , the pipeline controller can
configure the execution environment to have environment
variables corresponding to the variablized secret names .
[0061] The execution task executes the task in the provi
sioned execution environment by accessing the environment
variables that represent the injected secrets (step 410) . In this
way , the execution task is able to access and use variablized
secrets that were not referenced in the original task defini
tions of the pipeline .
[0062] Embodiments of the subject matter and the func
tional operations described in this specification can be
implemented in digital electronic circuitry , in tangibly
embodied computer software or firmware , in computer hard
ware , including the structures disclosed in this specification
and their structural equivalents , or in combinations of one or
more of them . Embodiments of the subject matter described
in this specification can be implemented as one or more
computer programs , i.e. , one or more modules of computer
program instructions encoded on a tangible non - transitory
storage medium for execution by , or to control the operation
of , data processing apparatus . The computer storage medium
can be a machine - readable storage device , a machine - read
able storage substrate , a random or serial access memory
device , or a combination of one or more of them . Alterna
tively or in addition , the program instructions can be
encoded on an artificially - generated propagated signal , e.g. ,
a machine - generated electrical , optical , or electromagnetic
signal , that is generated to encode information for transmis
sion to suitable receiver apparatus for execution by a data
processing apparatus .
[0063] The term “ data processing apparatus ” refers to data
processing hardware and encompasses all kinds of appara
tus , devices , and machines for processing data , including by
way of example a programmable processor , a computer , or
multiple processors or computers . The apparatus can also be ,

US 2021/0042148 A1 Feb. 11 , 2021
5

or further include , special purpose logic circuitry , e.g. , an
FPGA (field programmable gate array) or an ASIC (appli
cation - specific integrated circuit) . The apparatus can option
ally include , in addition to hardware , code that creates an
execution environment for computer programs , e.g. , code
that constitutes processor firmware , a protocol stack , a
database management system , an operating system , or a
combination of one or more of them .
[0064] A computer program which may also be referred to
or described as a program , software , a software application ,
an app , a module , a software module , a script , or code) can
be written in any form of programming language , including
compiled or interpreted languages , or declarative or proce
dural languages , and it can be deployed in any form ,
including as a stand - alone program or as a module , compo
nent , subroutine , or other unit suitable for use in a computing
environment . A program may , but need not , correspond to a
file in a file system . A program can be stored in a portion of
a file that holds other programs or data , e.g. , one or more
scripts stored in a markup language document , in a single
file dedicated to the program in question , or in multiple
coordinated files , e.g. , files that store one or more modules ,
sub - programs , or portions of code . A computer program can
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a data communication
network .
[0065] For a system of one or more computers to be
configured to perform particular operations or actions means
that the system has installed on it software , firmware ,
hardware , or a combination of them that in operation cause
the system to perform the operations or actions . For one or
more computer programs to be configured to perform par
ticular operations or actions means that the one or more
programs include instructions that , when executed by data
processing apparatus , cause the apparatus to perform the
operations or actions .
[0066] As used in this specification , an " engine , ” or “ soft
ware engine , ” refers to a software implemented input / output
system that provides an output that is different from the
input . An engine can be an encoded block of functionality ,
such as a library , a platform , a software development kit
(" SDK ") , or an object . Each engine can be implemented on
any appropriate type of computing device , e.g. , servers ,
mobile phones , tablet computers , notebook computers ,
music players , e - book readers , laptop or desktop computers ,
PDAs , smart phones , or other stationary or portable devices ,
that includes one or more processors and computer readable
media . Additionally , two or more of the engines may be
implemented on the same computing device , or on different
computing devices .
[0067] The processes and logic flows described in this
specification can be performed by one or more program
mable computers executing one or more computer programs
to perform functions by operating on input data and gener
ating output . The processes and logic flows can also be
performed by special purpose logic circuitry , e.g. , an FPGA
or an ASIC , or by a combination of special purpose logic
circuitry and one or more programmed computers .
[0068] Computers suitable for the execution of a computer
program can be based on general or special purpose micro
processors or both , or any other kind of central processing
unit . Generally , a central processing unit will receive
instructions and data from a read - only memory or a random

access memory or both . The essential elements of a com
puter are a central processing unit for performing or execut
ing instructions and one or more memory devices for storing
instructions and data . The central processing unit and the
memory can be supplemented by , or incorporated in , special
purpose logic circuitry . Generally , a computer will also
include , or be operatively coupled to receive data from or
transfer data to , or both , one or more mass storage devices
for storing data , e.g. , magnetic , magneto - optical disks , or
optical disks . However , a computer need not have such
devices . Moreover , a computer can be embedded in another
device , e.g. , a mobile telephone , a personal digital assistant
(PDA) , a mobile audio or video player , a game console , a
Global Positioning System (GPS) receiver , or a portable
storage device , e.g. , a universal serial bus (USB) flash drive ,
to name just a few .
[0069] Computer - readable media suitable for storing com
puter program instructions and data include all forms of
non - volatile memory , media and memory devices , including
by way of example semiconductor memory devices , e.g. ,
EPROM , EEPROM , and flash memory devices ; magnetic
disks , e.g. , internal hard disks or removable disks ; magneto
optical disks ; and CD - ROM and DVD - ROM disks .
[0070] To provide for interaction with a user , embodi
ments of the subject matter described in this specification
can be implemented on a computer having a display device ,
e.g. , a CRT (cathode ray tube) or LCD (liquid crystal
display) monitor , for displaying information to the user and
a keyboard and pointing device , e.g. , a mouse , trackball , or
a presence sensitive display or other surface by which the
user can provide input to the computer . Other kinds of
devices can be used to provide for interaction with a user as
well ; for example , feedback provided to the user can be any
form of sensory feedback , e.g. , visual feedback , auditory
feedback , or tactile feedback ; and input from the user can be
received in any form , including acoustic , speech , or tactile
input . In addition , a computer can interact with a user by
sending documents to and receiving documents from a
device that is used by the user ; for example , by sending web
pages to a web browser on a user's device in response to
requests received from the web browser . Also , a computer
can interact with a user by sending text messages or other
forms of message to a personal device , e.g. , a smartphone ,
running a messaging application , and receiving responsive
messages from the user in return .
[0071] Embodiments of the subject matter described in
this specification can be implemented in a computing system
that includes a back - end component , e.g. , as a data server , or
that includes a middleware component , e.g. , an application
server , or that includes a front - end component , e.g. , a client
computer having a graphical user interface , a web browser ,
or an app through which a user can interact with an imple
mentation of the subject matter described in this specifica
tion , or any combination of one or more such back - end ,
middleware , or front - end components . The components of
the system can be interconnected by any form or medium of
digital data communication , e.g. , a communication network .
Examples of communication networks include a local area
network (LAN) and a wide area network (WAN) , e.g. , the
Internet .
[0072] The computing system can include clients and
servers . A client and server are generally remote from each
other and typically interact through a communication net
work . The relationship of client and server arises by virtue

US 2021/0042148 A1 Feb. 11 , 2021
6

of computer programs running on the respective computers
and having a client - server relationship to each other . In some
embodiments , a server transmits data , e.g. , an HTML page ,
to a user device , e.g. , for purposes of displaying data to and
receiving user input from a user interacting with the device ,
which acts as a client . Data generated at the user device , e.g. ,
a result of the user interaction , can be received at the server
from the device .
[0073] In addition to the embodiments described above ,
the following embodiments are also innovative :
[0074] Embodiment 1 is a method comprising :

[0075] receiving , by a pipeline controller , a job identi
fying a pipeline for executing a plurality of tasks , the
job comprising one or more configuration files that
include a reserved variable whose value represents one
or more variablized secret names of secrets to be used
by one or more tasks of a plurality of tasks of the
identified pipeline ;

[0076] invoking , by the pipeline controller , a prepara
tory task for the pipeline , wherein the preparatory task
performs operations comprising :
[0077] obtaining one or more original task definitions

for the identified pipeline ,
[0078] determining , using the one or more configu

ration files , which secrets are required for each
respective task of the plurality of tasks of the pipe
line ;

[0079] generating , from the original task definitions ,
one or more modified task definitions for the pipe
line , wherein each modified task definition refer
ences one or more variablized secret names specified
as the value of the reserved variable of the one or
more configuration files ;

[0080] invoking , by the pipeline controller , one or more
subsequent execution tasks using each respective modi
fied task definition , including , for each subsequent
invocation of a particular execution task , performing operations comprising :
[0081] retrieving , by the pipeline controller from the

secrets database , one or more secrets specified by a
modified task definition for the particular execution
task ;

[0082] injecting , by the pipeline controller , the one or
more retrieved secrets into an execution environment
for the particular execution task ; and

[0083] accessing , by the particular execution task , the
one or more injected secrets from the execution
environment of the particular task .

[0084] Embodiment 2 is the method of embodiment 1 ,
wherein the configuration files include one or more vari
ablized secret names that are not referenced in the original
task definitions of the identified pipeline .
[0085] Embodiment 3 is the method of any one of embodi
ments 1-2 , further comprising :

[0086] receiving a modified configuration file that
includes a new variablized secret name to be used by a
particular task of the pipeline ; and

[0087] executing the one or more execution tasks of the
pipeline without modifying task definitions of the pipe
line to reference the new variablized secret name .

[0088] Embodiment 4 is the method of embodiment 3 ,
wherein the new variablized secret name identifies a secret
for accessing a resource for a new version of an application
to be executed by a task of the pipeline .

[0089] Embodiment 5 is the method of any one of embodi
ments 1-4 , wherein the configuration files never contain the
values of any secrets .
[0090] Embodiment 6 is the method of any one of embodi
ments 1-5 , wherein the plurality of tasks comprise one or
more tasks to deploy an application on a cloud - based
computing platform .
[0091] Embodiment 7 is the method of any one of embodi
ments 1-6 , wherein invoking , by a pipeline controller , a
preparatory task for the pipeline comprises mounting the
original task definitions for the pipeline and the configura
tion files to a file system and executing the preparatory task
in an execution environment that can read the file system .
[0092] Embodiment 8 is the method of any one of embodi
ments 1-7 , wherein the retrieved secrets do not exist outside
the secrets database except as environment variables in the
execution environment of the particular task .
[0093] Embodiment 9 is the method of any one of embodi
ments 1-8 , wherein the particular execution environment
does not have access to the secrets database .
[0094) Embodiment 10 is the method of any one of
embodiments 1-9 , wherein determining a location for each
secret comprises , for every secret , extracting a secret name
from a configuration file and combining the secret name
with a known pathname prefix to create a path to the secret
in the secrets database .
[0095] Embodiment 11 is a system comprising : a plurality
of computers and one or more storage devices storing
instructions that are operable , when executed by the one or
more computers , to cause the one or more computers to
perform the method of any one of embodiments 1 to 10 .
[0096] Embodiment 12 is a computer storage medium
encoded with a computer program , the program comprising
instructions that are operable , when executed by data pro
cessing apparatus , to cause the data processing apparatus to
perform the method of any one of embodiments 1 to 10 .
[0097] While this specification contains many specific
implementation details , these should not be construed as
limitations on the scope of any invention or on the scope of
what may be claimed , but rather as descriptions of features
that may be specific to particular embodiments of particular
inventions . Certain features that are described in this speci
fication in the context of separate embodiments can also be
implemented in combination in a single embodiment . Con
versely , various features that are described in the context of
a single embodiment can also be implemented in multiple
embodiments separately or in any suitable subcombination .
Moreover , although features may be described above as
acting in certain combinations and even initially be claimed
as such , one or more features from a claimed combination
can in some cases be excised from the combination , and the
claimed combination may be directed to a subcombination
or variation of a sub combination .
[0098] Similarly , while operations are depicted in the
drawings in a particular order , this should not be understood
as requiring that such operations be performed in the par
ticular order shown or in sequential order , or that all illus
trated operations be performed , to achieve desirable results .
In certain circumstances , multitasking and parallel process
ing may be advantageous . Moreover , the separation of
various system modules and components in the embodi
ments described above should not be understood as requir
ing such separation in all embodiments , and it should be
understood that the described program components and

US 2021/0042148 A1 Feb. 11 , 2021
7

systems can generally be integrated together in a single
software product or packaged into multiple software prod
ucts .

[0099] Particular embodiments of the subject matter have
been described . Other embodiments are within the scope of
the following claims . For example , the actions recited in the
claims can be performed in a different order and still achieve
desirable results . As one example , the processes depicted in
the accompanying figures do not necessarily require the
particular order shown , or sequential order , to achieve
desirable results . In certain cases , multitasking and parallel
processing may be advantageous .
What is claimed is :
1. Amethod performed by a system comprising a plurality

of computers , the method comprising :
receiving , by a pipeline controller , a job identifying a

pipeline for executing a plurality of tasks , the job
comprising one or more configuration files that include
a reserved variable whose value represents one or more
variablized secret names of secrets to be used by one or
more tasks of a plurality of tasks of the identified
pipeline ;

invoking , by the pipeline controller , a preparatory task for
the pipeline , wherein the preparatory task performs
operations comprising :
obtaining one or more original task definitions for the

identified pipeline ,
determining , using the one or more configuration files ,
whi secrets are required for ea respective task of
the plurality of tasks of the pipeline ;

generating , from the original task definitions , one or
more modified task definitions for the pipeline ,
wherein each modified task definition references one
or more variablized secret names specified as the
value of the reserved variable of the one or more configuration files ;

invoking , by the pipeline controller , one or more subse
quent execution tasks using each respective modified
task definition , including , for each subsequent invoca
tion of a particular execution task , performing opera
tions comprising :
retrieving , by the pipeline controller from the secrets

database , one or more secrets specified by a modified
task definition for the particular execution task ;

injecting , by the pipeline controller , the one or more
retrieved secrets into an execution environment for
the particular execution task ; and

accessing , by the particular execution task , the one or
more injected secrets from the execution environ
ment of the particular task .

2. The method of claim 1 , wherein the configuration files
include one or more variablized secret names that are not
referenced in the original task definitions of the identified
pipeline .

3. The method of claim 1 , further comprising :
receiving a modified configuration file that includes a new

variablized secret name to be used by a particular task
of the pipeline ; and

executing the one or more execution tasks of the pipeline
without modifying task definitions of the pipeline to
reference the new variablized secret name .

4. The method of claim 3 , wherein the new variablized
secret name identifies a secret for accessing a resource for a
new version of an application to be executed by a task of the
pipeline .

5. The method of claim 1 , wherein the configuration files
never contain the values of any secrets .

6. The method of claim 1 , wherein the plurality of tasks
comprise one or more tasks to deploy an application on a
cloud - based computing platform .

7. The method of claim 1 , wherein invoking , by a pipeline
controller , a preparatory task for the pipeline comprises
mounting the original task definitions for the pipeline and
the configuration files to a file system and executing the
preparatory task in an execution environment that can read
the file system .

8. The method of claim 1 , wherein the retrieved secrets do
not exist outside the secrets database except as environment
variables in the execution environment of the particular task .

9. The method of claim 1 , wherein the particular execu
tion environment does not have access to the secrets data
base .

10. The method of claim 1 , wherein determining a loca
tion for each secret comprises , for every secret , extracting a
secret name from a configuration file and combining the
secret name with a known pathname prefix to create a path
to the secret in the secrets database .

11. A system comprising :
one or more computers and one or more storage devices

storing instructions that are operable , when executed by
the one or more computers , to cause the one or more
computers to perform operations comprising :

receiving , by a pipeline controller , a job identifying a
pipeline for executing a plurality of tasks , the job
comprising one or more configuration files that include
a reserved variable whose value represents one or more
variablized secret names of secrets to be used by one or
more tasks of a plurality of tasks of the identified
pipeline ;

invoking , by the pipeline controller , a preparatory task for
the pipeline , wherein the preparatory task performs
operations comprising :
obtaining one or more original task definitions for the

identified pipeline ,
determining , using the one or more configuration files ,
which secrets are required for each respective task of
the plurality of tasks of the pipeline ;

generating , from the original task definitions , one or
more modified task definitions for the pipeline ,
wherein each modified task definition references one
or more variablized secret names specified as the
value of the reserved variable of the one or more
configuration files ;

invoking , by the pipeline controller , one or more subse
quent execution tasks using each respective modified
task definition , including , for each subsequent invoca
tion of a particular execution task , performing opera
tions comprising
retrieving , by the pipeline controller from the secrets

database , one or more secrets specified by a modified
task definition for the particular execution task ;

injecting , by the pipeline controller , the one or more
retrieved secrets into an execution environment for
the particular execution task ; and

US 2021/0042148 A1 Feb. 11 , 2021
8

accessing , by the particular execution task , the one or
more injected secrets from the execution environ
ment of the particular task .

12. The system of claim 11 , wherein the configuration
files include one or more variablized secret names that are
not referenced in the original task definitions of the identi
fied pipeline .

13. The system of claim 11 , wherein the operations further
comprise :

receiving a modified configuration file that includes a new
variablized secret name to be used by a particular task
of the pipeline ; and

executing the one or more execution tasks of the pipeline
without modifying task definitions of the pipeline to
reference the new variablized secret name .

14. The system of claim 13 , wherein the new variablized
secret name identifies a secret for accessing a resource for a
new version of an application to be executed by a task of the
pipeline .

15. The system of claim 11 , wherein the configuration
files never contain the values of any secrets .

16. The system of claim 11 , wherein the plurality of tasks
comprise one or more tasks to deploy an application on a
cloud - based computing platform .

17. The system of claim 11 , wherein invoking , by a
pipeline controller , a preparatory task for the pipeline com
prises mounting the original task definitions for the pipeline
and the configuration files to a file system and executing the
preparatory task in an execution environment that can read
the file system .

18. The system of claim 11 , wherein the retrieved secrets
do not exist outside the secrets database except as environ
ment variables in the execution environment of the particu
lar task .

19. The system of claim 11 , wherein the particular execu
tion environment does not have access to the secrets data
base .

20. The system of claim 11 , wherein determining a
location for each secret comprises , for every secret , extract
ing a secret name from a configuration file and combining
the secret name with a known pathname prefix to create a
path to the secret in the secrets database .

21. One or more non - transitory computer storage media
encoded with computer program instructions that when
executed by a plurality of computers cause the plurality of
computers to perform operations comprising :

receiving , by a pipeline controller , a job identifying a
pipeline for executing a plurality of tasks , the job
comprising one or more configuration files that include
a reserved variable whose value represents one or more
variablized secret names of secrets to be used by one or
more tasks of a plurality of tasks of the identified
pipeline ;

invoking , by the pipeline controller , a preparatory task for
the pipeline , wherein the preparatory task performs
operations comprising :
obtaining one or more original task definitions for the

identified pipeline ,
determining , using the one or more configuration files ,
which secrets are required for each respective task of
the plurality of tasks of the pipeline ;

generating , from the original task definitions , one or
more modified task definitions for the pipeline ,
wherein each modified task definition references one
or more variablized secret names specified as the
value of the reserved variable of the one or more
configuration files ;

invoking , by the pipeline controller , one or more subse
quent execution tasks using each respective modified
task definition , including , for each subsequent invoca
tion of a particular execution task , performing opera
tions comprising :
retrieving , by the pipeline controller from the secrets

database , one or more secrets specified by a modified
task definition for the particular execution task ;

injecting , by the pipeline controller , the one or more
retrieved secrets into an execution environment for
the particular execution task ; and

accessing , by the particular execution task , the one or
more injected secrets from the execution environ
ment of the particular task .

