US 20140337608A1

a2y Patent Application Publication o) Pub. No.: US 2014/0337608 A1

a9 United States

LEE

43) Pub. Date: Nov. 13, 2014

(54) METHOD AND SYSTEM FOR BOOTING AND
AUTOMATICALLY UPDATING SOFTWARE,
AND RECOVERING FROM UPDATE ERROR,
AND COMPUTER READABLE RECORDING
MEDIUM STORING METHOD

(71)  Applicant: SAMSUNG ELECTRONICS CO.,
LTD., Suwon-si (KR)

(72) Inventor: Jong-suk LEE, Suwon-si (KR)

(21) Appl. No.: 14/341,428

(22) Filed:  Jul. 25,2014

Related U.S. Application Data

(60) Continuation of application No. 13/291,901, filed on
Nov. 8, 2011, now Pat. No. 8,825,995, which is a
division of application No. 11/513,057, filed on Aug.
31, 2006, now Pat. No. 8,166,285.

(30) Foreign Application Priority Data

Sep. 27,2005  (KR) .oooocvvcieiienene 10-2005-0089692

Publication Classification

(51) Int.CL
GOGF 9/445 (2006.01)
GOGF 11/14 (2006.01)
GOGF 9/44 (2006.01)
(52) US.CL
CPC oo GOGF 8/65 (2013.01); GOGF 9/4401

(2013.01); GO6F 11/1417 (2013.01); GO6F
11/1433 (2013.01); GOGF 2201/865 (2013.01)
USPC i 713/1;717/168

(57) ABSTRACT

Provided are a booting method of updating software compo-
nents installed in a system and recovering from an error that
occurs in an update, a method and system for automatically
updating the software and recovering from the error, and a
computer readable recording medium storing the method.
The master boot record and the backup boot record are used to
stably update a kernel and eftectively recover from an update
error. The component configuration database is used to
update a plurality of software components including a kernel
in a transaction, and perfectly recover from an update error.

START UPDATE ENGINE

— 5702

DETERMINE PREVIOUS UPDATE
RESULT BASED ON COMPONENT +— 3704
CONFIGURATION INFORMATION

5708

EXECUTE COMPONENT
USING GURRENT
COMPONENT INFORMATION

IN MASTER BOOT
RECCRD

8712

EXECUTE COMPONENT
USING PREVIOUS
COMPONENT INFORMATION

END



Patent Application Publication  Nov. 13,2014 Sheet 1 of 16 US 2014/0337608 A1

'FIG. 1 (RELATED ART)

CURRENT IMAGE

— 110

BOOT LOADER

— 120

FIG. 2 (RELATED ART)

BACKUP IMAGE — 210
CURRENT IMAGE | 000
/NEW IMAGE
UPDATE VALIDITY 250
CONFIRMATION REPOSITORY
BOOT LOADER -~ 240




Patent Application Publication

Nov. 13,2014 Sheet 2 of 16 US 2014/0337608 A1

'FIG. 3 (RELATED ART)

BACKUP IMAGE 310

CURRENT IMAGE 400
/NEW IMAGE

SECOND BOOT LOADER  |— 330

FIRST BOOT LOADER | 340
FIG. 4A

410 411 412 A3
BD 5A -~ -~ 10 2B ]} 00 - -- 01 || o0 FE || cD At
“\KERNEL ID AN VERSION “\ KERNEL . VALIDITY FLAG

ADDRESS



Patent Application Publication  Nov. 13,2014 Sheet 3 of 16 US 2014/0337608 A1

FIG. 4B

TRANSACTION

STATE INFORMATION [ 420

COMPONENT  }—430
NAME L — 431
ADDRESS INFORMATION |— 432
440
VERSION INFORMATION {433
PREVIOUS COMPONENT | _ .,
ADDRESS
450
PREVIOUS VERSION  |— 435
COMPONENT STATE | _ .
INFORMATION




Patent Application Publication  Nov. 13,2014 Sheet 4 of 16 US 2014/0337608 A1

FIG. S
-|  PREVIOUSKERNEL  |—510
-|  CURRENT KERNEL  }—520

BACKUP BOOT RECORD |— 530

MASTER BOOT RECORD |— 540

BOOT LOADER L — 550




Patent Application Publication  Nov. 13,2014 Sheet S of 16 US 2014/0337608 A1

FIG. 6

START BOOT LOADER |—S602

'

DETERMINE WHETHER
MASTER BOOT RECORD |— S604
IS VALID

S606

IS IT
DETERMINED TO
BE VALID?

YES

- $608 5610
LOAD AND EXECUTE KERNEL LOAD AND EXECUTE KERNEL
USING MASTER BOOT RECORD USING BACKUP BOOT RECORD

END



Patent Application Publication  Nov. 13,2014 Sheet 6 of 16 US 2014/0337608 A1

FIG. 7

START UPDATE ENGINE — §702

!

DETERMINE PREVIOUS UPDATE
RESULT BASED ON COMPONENT 8704
CONFIGURATION INFORMATION

_-S708

EXECUTE COMPONENT YES
USING CURRENT
COMPONENT INFORMATION

5710

CURRENT
FORMATION ON KERNEL=
KERNEL INFORMATION STORED
IN MASTER BOOT
RECORD

NO
8712

EXECUTE COMPONENT
USING PREVIOUS
COMPONENT INFORMATION

END



Patent Application Publication  Nov. 13,2014 Sheet 7 of 16

FIG. 8

( START )

DOWNLOAD KERNEL OF NEW VERSION

US 2014/0337608 A1

— 5802

BACK UP MASTE

R BOOT RECCRD

— 5804

}

RECORD INFORMATION ON KERNEL OF
NEW VERSION ON MASTER BOOT RECORD

— S806

|

(END)



Patent Application Publication  Nov. 13,2014 Sheet 8 of 16 US 2014/0337608 A1

FIG. 9A
~
App. 3 App. 2
App. 1 > 910

NEW KERNEL (S94

924-—— CURRENT KERNEL

BACKUP BOOT FECORBY | 1 92°
Ver 0.5):

90— MASTER BOOT RECORD :
2 (Ver1.0)°
921 — BOOT LOADER
S
~

CONFIG DB
PACKAGECOMMIT(940}:NO (391)
COMP(950) | VER(960) | STATE(970) PREVIOUS(980) . 930
KERNEL 1.0 DOWNLOAD(S92)| 1.0(S93)
App 1 1.1
App 2 2.1
App 3 1.1




Patent Application Publication  Nov. 13,2014 Sheet 9 of 16 US 2014/0337608 A1

FIG. 9B
~
App. 3 App. 2
App. 1 > 910

924—1- CURRENT KERNEL
(S97)
> 920
921—  BOOT LOADER
______ —
~
CONFIG DB
PACKAGECOMMIT(940):NO
COMP(950) | VER(960) [ STATE(970) PREVIOUS(980) | | g4
KERNEL 1.1(S97) | UPDATE(S95) | 1.0
App 1 1.1
App 2 2.1
App 3 1.1




Patent Application Publication  Nov. 13,2014 Sheet 10 of 16 US 2014/0337608 A1

FIG. 9C
~
App. 3 App. 2
App. > 910

921—+  BOOT LOADER
I
N
CONFIG DB
PACKAGECOMMIT(940): YES(S99)
COMP(950) | VER(960) | STATE(970) PREVIOUS(980) [ | 949
KERNEL 1.1 DONE(S98) 1.0
App 1 1.1
App 2 2.1
App 3 1.1




Patent Application Publication  Nov. 13,2014 Sheet 11 0of 16 US 2014/0337608 A1

FIG. 10A
-~
App. 3 App. 2
App. 1 + 910
<
COMPRESSED KERNEL
> 920
 MASTER BOOT RECORD
3 ti (Ver 1.0)
BOOT LOADER
-~
UPDATE PACKAGE
Am.ﬂ Ver.1.1 | 990
KERNEL Ver 1.1
iy




Patent Application Publication  Nov. 13,2014 Sheet 12 0of 16 US 2014/0337608 A1

FIG. 10B
"\\
App. 3 App. 2
App. 1 > 910
<
COMPRESSED KERNEL
> 920

< MASTER BOOT RECORD 3
i i 0)# :

BOOT LOADER

-
-
CONFIG DB
PACKAGECOMMIT(940):NO{S101)
COMP(950) [VER(960} | STATE(970) PREVIOUS{980)
> 930
KERNEL 1.0
App 1 1.0 DOWNLOAD(S102)| 1.0(S103})
App 2 2.1
App 3 1.1




Patent Application Publication  Nov. 13, 2014 Sheet 13 0of 16 US 2014/0337608 A1

FIG. 10C
~
App. 3 App. 2
App. 1 == [New App. 1
Appl.bak| [=~App.1 > 910
(S1086) ($107)
<
COMPRESSED KERNEL
> 920
"MASTER BOOT RECORD
- i (Ver 1.0) :
BOOT LOADER
: -~
~
CONFIG DB
PACKAGECOMMIT(940):NO
COMP(950) | VER(960) | STATE(S70) PREVIOUS{9280)
: > 930
KERNEL 1.1
App 1 1.0 UPDATE(S105) 1.0
App 2 2.1
App 3 11
s




Patent Application Publication  Nov. 13, 2014 Sheet 14 0of 16 US 2014/0337608 A1

FIG. 10D
-
App. 3 App. 2
Appl.bakl |=App. 14 [ L g4
<
COMPRESSED KERNEL
> 920
“MASTER BOOT FRECORD .
s (Ver 1.0) By
BOOT LOADER

i~y
CONFIG DB 7
PACKAGECOMMIT(940):YES(S120)
COMP(950) | VER(980) | STATE(870) PREVIOUS(980)

> 930
KERNEL 11
App 1 1,1(8108)| DONE(S109) 1.0
App 2 2.1
App 3 1.1
-




Patent Application Publication

1001 —
1002 —

1003 —

NON-VOLATILE MEMORY

CURRENT KERNEL

MASTER BOOT RECORD

BOOT LOADER

RAM

Nov. 13,2014 Sheet 150f16  US 2014/0337608 A1
FIG. 11
1000
-
VAN
1200
> PROCESSOR
1100
v




Patent Application Publication  Nov. 13,2014 Sheet 16 of 16 US 2014/0337608 A1

FIG. 12
1000
Zz
A
NON-VOLAT!LE MEMORY
1004 —— PREVIOUS KERNEL
1001 —— CURRENT KERNEL
1005 ——|  BACKUP BOOT RECORD
1002 —4—|  MASTER BOOT RECORD D
1200
1003 —i BOOT LOADER
K— >} PROCESSOR
1010 —|| COMPONENT CONFIGURATION
INFORMATION
1020 — UPDATE ENGINE
1100
RAM D




US 2014/0337608 Al

METHOD AND SYSTEM FOR BOOTING AND
AUTOMATICALLY UPDATING SOFTWARE,
AND RECOVERING FROM UPDATE ERROR,
AND COMPUTER READABLE RECORDING
MEDIUM STORING METHOD

BACKGROUND OF THE INVENTION

[0001] ThisisaContinuation of U.S. patent application Ser.
No. 13/291,901, filed Nov. 8, 2011, now allowed, which is a
Divisional of U.S. patent application Ser. No. 11/513,057,
filed Aug. 31, 2006, now U.S. Pat. No. 8,166,285, which
claims priority from Korean Patent Application No. 10-2005-
0089692, filed on Sep. 27, 2005, in the Korean Intellectual
Property Office, the disclosure of which is incorporated
herein in its entirety by reference.

[0002] 1. Field of the Invention

[0003] Methods and systems consistent with the present
invention relate to updating software, and more particularly,
to a booting method for updating software components
installed in a system and recovering from an error that occurs
during the update, a method and system for automatically
updating the software and recovering from the error, and a
computer readable recording medium storing the method.
[0004] 2. Description of the Related Art

[0005] A kernel is the core of a related art operating system
(OS). When an automatic update of a kernel image is stopped
due to a system crash, it is impossible to even boot the OS.
[0006] FIG. 1 is a block diagram of a boot region of a
related art system. Referring to FIG. 1, a current image 110 is
a binary image combining an OS and an application. A boot
loader 120, which is a code executed to start a system, loads
the current image 110 into random access memory (RAM)
and executes the loaded image to boot the system. The boot
region has a disadvantage in that when an update of the
current image 110 fails, it is impossible to automatically
recover the failed update. Also, the boot region does not
provide functions of updating several software components
and recovering.

[0007] FIG.2is ablock diagram of a boot region of another
related art system, which automatically updates a kernel
using an update validity confirmation repository 230. Refer-
ring to FIG. 2, when the kernel is updated, a current image 220
is copied into a backup repository to generate a backup image
210, and a new image 220 is downloaded. If there is any
trouble with the booting of the system, a boot loader 240
checks an update validity based on the update validity con-
firmation repository 230 and copies the backup image 210
into the new image 220 to reboot the system. This related art
system has a disadvantage in that the entire backup image 210
is copied to recover the system. Therefore, the related art
system is not efficient, since it usually takes about 20 to 30
seconds to copy a kernel image of 12 Mbytes (megabytes) in
a flash memory.

[0008] FIG.3isablock diagram of a boot region of another
related art system, which automatically updates a kernel
using two boot loaders 330 and 340. Referring to FIG. 3,
when the kernel is updated, a current image 320 is copied to
a backup repository to generate a backup image 310, and a
new image 320 is downloaded. If there is any trouble with the
booting when a first boot loader 340 is executed, a second
boot loader 330 is executed to load the backup image 310.
This related art system has a disadvantage in that the system
should have a function of physically executing two boot load-
ers 330 and 340.

Nov. 13,2014

[0009] Accordingly, a technology for automatically updat-
ing the kernel and effectively recovering the system when an
update error occurs is required. Also, the technology must
perform an update rollback when an error occurs in updating
several software components, including the kernel. More spe-
cifically, the technology must automatically recover the soft-
ware to its previous state (e.g., to a last rebooting point) when
the update error occurs, in order to provide reliability of a
software automatic update.

SUMMARY OF THE INVENTION

[0010] The present invention provides a booting method of
updating software components including a kernel and auto-
matically recovering from an error occurred in the update, a
method and system for automatically updating the software
and recovering from the error, and a computer readable
recording medium storing the method.

[0011] According to another aspect of the present inven-
tion, there is provided a method of booting a system by
loading a kernel, the method comprising: determining
whether a master boot record including information on the
kernel is valid; if it is determined that the master boot record
is valid, loading and executing the kernel using the master
boot record; and if it is determined that the master boot record
is not valid, loading and executing a previous kernel using a
backup boot record including information on the previous
kernel.

[0012] The method may further comprise: determining a
previous update result based on component configuration
information including information on the update of software
components installed in the system; if it is determined that the
previous update was successfully finished, loading and
executing the components based on current component infor-
mation included in the component configuration information;
and if it is determined that the previous update was stopped,
loading and executing the components based on previous
component information included in the component configu-
ration information.

[0013] The method may further comprise: when the previ-
ous update was stopped, if it is determined that the update of
components other than the kernel was completed, and current
kernel information included in the component configuration
information and kernel information stored in the master boot
record are identical to each other, loading and executing the
components based on the current component information
included in the component configuration information.
[0014] According to another aspect of the present inven-
tion, there is provided a method of automatically updating
software for updating a kernel and recovering from an update
error, the method comprising: downloading the kernel of a
new version and storing the downloaded kernel; copying a
master boot record including information on the kernel on a
backup boot record; and recording information on the kernel
of the new version on the master boot record.

[0015] According to another aspect of the present inven-
tion, there is provided a method of automatically updating
software and recovering from an update error to update a
kernel, the method comprising: starting an update transac-
tion; changing state information on the kernel to “download”,
changing previous information on the kernel to current infor-
mation, downloading a kernel of a new version, and storing
the downloaded kernel; changing state information on the
kernel to “update”, copying information on a master boot
record that includes information on a kernel to a backup boot



US 2014/0337608 Al

record, and recording information on the kernel of the new
version in the current information on the kernel and the mas-
ter boot record; changing the state information on the kernel
to “done”; and finishing the update transaction.

[0016] The method may further comprise: before recording
new information on the master boot record, indicating a valid-
ity flag of the master boot record as “invalid”, and, after
recording the new information on the master boot record,
indicating the validity flag of the master boot record as
“valid”.

[0017] According to one aspect of the present invention,
there is provided a method of automatically updating soft-
ware for automatically recovering a kernel having an update
error and recovering from the update error, the method com-
prising: determining whether an update of the kernel is
stopped; and if it is determined that the update is stopped,
copying a backup boot record to a master boot record.

[0018] The determining may further comprise: if a transac-
tion of the update is started, determining that the update is
stopped.

[0019] The determining may further comprise: if current
information on the kernel is identical to information on the
kernel included in the master boot record, determining that
the update is successfully finished.

[0020] According to another aspect of the present inven-
tion, there is provided a method of automatically updating
software for updating more than one software components
whose update is necessary and recovering from an update
error, the method comprising: sequentially updating the com-
ponents, other than a kernel, included in an update package
including a list of the components whose update is necessary;
and if the update package includes the kernel, updating the
kernel last.

[0021] The updating of the components may further com-
prise: changing previous information on the components to
current information on the components, and downloading a
component of a new version; and changing the current infor-
mation on the components to information on the component
of the new version.

[0022] The method may further comprise: before updating
the components other than the kernel, starting an update
transaction; and after updating the kernel, finishing the update
transaction.

[0023] The updating of the kernel may further comprise:
changing state information on the kernel to “download”,
changing previous information on the kernel to current infor-
mation, downloading a kernel of a new version, and storing
the downloaded kernel; changing state information on the
kernel to “update”, copying a master boot record that includes
information on the current kernel to a backup boot record, and
recording information on the kernel of the new version in the
current information on the kernel and the master boot record;
and changing the state information on the kernel to “done”.

[0024] According to another aspect of the present inven-
tion, there is provided a method of automatically updating
software for recovering software components having an
update error and recovering from the update error, the method
comprising: determining whether an update of the compo-
nents included in an update package is stopped; and if it is
determined that the update is stopped, converting backup
components of the components included in the update pack-
age into original components.

Nov. 13,2014

[0025] The converting of the backup components may fur-
ther comprise: if the component is a kernel, copying a backup
boot record to a master boot record.

[0026] According to another aspect of the present inven-
tion, there is provided a system for automatically updating
software and recovering from an update error, the system
comprising; a non-volatile memory storing a current kernel, a
master boot record including address information on the cur-
rent kernel, and a boot loader that loads the current kernel to
the RAM and executes the RAM using the master boot record
to boot the system; and a processor executing the boot loader
stored in the non-volatile memory.

[0027] The master boot record may further comprise a
validity flag indicating whether the current kernel is valid, the
non-volatile memory further comprises a previous kernel and
abackup boot record that includes address information on the
previous kernel, and if it is determined that the master boot
record is valid, the boot loader loads the current kernel using
information on the master boot record, and if it is determined
that the master boot record is not valid, loading the previous
kernel using information on the back boot record.

[0028] The non-volatile memory may further comprise
component configuration information that includes informa-
tion on a software update, and an update engine that updates
software components and recovers from an error occurred in
the components update using the component configuration
information.

[0029] The component configuration information may
include state information on an update transaction, previous
information including names, addresses, and version of pre-
vious components, current information including addresses
and version of current components, and update state informa-
tion on the components, and the update engine updates each
of the components and recovers from the update error based
on the component configuration information.

BRIEF DESCRIPTION OF THE DRAWINGS

[0030] The above and other aspects of the present invention
will become more apparent by describing in detail exemplary
embodiments thereof with reference to the attached drawings
in which:

[0031] FIG. 1 is a block diagram of a boot region of a
related art system;

[0032] FIG. 2 is a block diagram of a boot region of another
related art system, which automatically updates a kernel
using an update validity confirmation repository;

[0033] FIG. 3 is ablock diagram of a boot region of another
related art system, which automatically updates a kernel
using two boot loaders;

[0034] FIG. 4A illustrates an example of a boot record
according to an exemplary embodiment of the present inven-
tion;

[0035] FIG. 4B is a block diagram of component configu-
ration information according to an exemplary embodiment of
the present invention;

[0036] FIG. 5isablock diagram of'a boot region according
to an exemplary embodiment of the present invention;
[0037] FIG. 6 is a flowchart illustrating a mechanism of
loading a kernel using the boot region illustrated in FIG. 5;
[0038] FIG. 7 is a flowchart illustrating an operation of
loading other software components after the kernel is com-
pletely loaded;



US 2014/0337608 Al

[0039] FIG. 8 is a flowchart illustrating a mechanism of
automatically updating a kernel according to an exemplary
embodiment of the present invention;

[0040] FIGS. 9A, 9B, and 9C in detail illustrate memory
state changes during the automatic kernel update according to
an exemplary embodiment of the present invention;

[0041] FIGS. 10A, 10B, 10C, and 10D illustrate memory
state changes during the components automatic update of an
update package according to an exemplary embodiment of
the present invention;

[0042] FIG. 11is a block diagram of a system for updating
software and recovering from an update error according to an
exemplary embodiment of the present invention; and

[0043] FIG. 12 is a block diagram of a system for updating
software and recovering from an update error according to
another exemplary embodiment of the present invention.

DETAILED DESCRIPTION OF THE
EXEMPLARY EMBODIMENTS

[0044] Hereinafter, exemplary embodiments of the present
invention will be described in detail with reference the
accompanying drawings.

[0045] FIG. 4A illustrates an example of a boot record
according to an exemplary embodiment of the present inven-
tion. A boot loader loads a kernel and executes the loaded
kernel by using the boot record when a system starts.

[0046] The bootrecord comprises a kernel address 412 and
avalidity flag413. The kernel address 412 indicates where the
kernel stored in a flash memory is located. A boot loader finds
the kernel using the kernel address 412 and loads the kernel.
The validity flag 413 indicates whether the kernel is valid or
not. That is, information in the boot record is corrected when
the kernel is updated. Before the boot record is corrected, the
validity flag 413 is set to indicate that the kernel is invalid, and
after the boot record is corrected, the validity flag 413 is set to
indicate that the kernel is valid, thereby allowing accurate
determination of whether the information in the boot record is
valid. Also, a kernel identifier (ID) 410 and a version 411 can
be included in the boot record.

[0047] The exemplary embodiment includes two boot
records. One of them is a master boot record that stores
information on a current kernel, and the other is a backup boot
record that includes information on a previous kernel that was
successfully loaded.

[0048] FIG. 4B is a block diagram of component configu-
ration information according to an exemplary embodiment of
the present invention. Referring to FIG. 4B, the component
configuration information includes basic information on soft-
ware components installed in a system and update informa-
tion. The component configuration information can be real-
ized in a database (DB).

[0049] Transaction state information 420 is used to manage
an update transaction and is a flag used to store a current state
of the update transaction and determine whether the update
succeeds or not.

[0050] The component configuration information contains
information on each component 430. For example, but not by
way of limitation, the information comprises a name 431,
current component information 440 including address infor-
mation 432 and version information 433, previous compo-
nent information 450 for managing a previous component
address 434 and a previous version 435 before the current
component is updated, and component state information 436
for managing a state of the component update. The exemplary

Nov. 13,2014

embodiment automatically recovers the system using the
component state information 436.

[0051] FIG. 5isablock diagram of a boot region according
to an exemplary embodiment of the present invention. Refer-
ring to FIG. 5, the boot region comprises a boot loader 550, a
current kernel 520, a backup previous kernel 510, a master
boot record 540 in which information on the current kernel
520 is recorded, and a backup boot record 530 in which
information on the previous kernel 510 is recorded.

[0052] FIG. 6 is a flowchart illustrating a mechanism of
loading a kernel using the boot region illustrated in FIG. 5.
Referring to FIG. 6, the boot loader 550 is started (Operation
S602) to determine whether a validity flag of the master boot
record 540 is valid or not (Operation S604). If it is determined
that the validity flag of the master boot record 540 is valid
(Operation S606), the kernel is loaded and executed using the
master boot record 540 (Operation S608). That is, the current
kernel 520 indicated by the master boot record 540 is loaded.
However, ifitis determined that the validity flag of the master
boot record 540 is not valid (Operation S606), which indi-
cates an error occurs during a previous update of kernel, the
previous kernel 510 is loaded and executed using the backup
boot record 530 (Operation S610) to stably start the system.
[0053] FIG. 7 is a flowchart illustrating an operation of
loading other software components after the kernel is com-
pletely loaded. Referring to FI1G. 7, an update engine program
loads and executes the software components used in a system.
An update engine is started (Operation S702) to determine
whether a previous update is successfully finished based on
component configuration information (Operation S704). The
determination is based on transaction state information of the
component configuration information. If the transaction state
information indicates that a transaction has ended, an update
transaction is characterized as successfully finished. If the
transaction state information indicates that the transaction has
started, the update transaction is characterized as unsuccess-
fully stopped.

[0054] If it is determined that the previous update is suc-
cessfully finished (Operation S706), the software compo-
nents are loaded and executed using current component infor-
mation included in the component configuration information
(Operation S708). That is, the current versions of software
components are loaded based on current component address
information.

[0055] However, if it is determined that the previous update
is stopped (Operation S706), the software components are
loaded and executed using previous component information
included in the component configuration information (Opera-
tion S712). That is, the software components of a previous
version are loaded based on previous component address
information.

[0056] According to an exemplary embodiment of the
present invention, the kernel may be updated after all appli-
cations other than the kernel are updated. Therefore, although
the previous update is stopped, it may be determined that an
update of the software components other than the kernel is
successfully finished, and current kernel information
included in the component configuration information is the
same as kernel information of the master boot record (Opera-
tion S710). This means that the kernel update is stopped after
information on the master boot record is successtully cor-
rected. In this case, since it may be determined that an update
transaction is successfully finished even if the transaction has
not been committed, it is efficient to load and execute the



US 2014/0337608 Al

software components using the current component informa-
tion included in the component configuration information
(Operation S708).

[0057] Even ifthe update of several components is stopped
before the system is rebooted, the system can be recovered to
a configuration of components last used by a user.

[0058] FIG. 8 is a flowchart illustrating a mechanism of
automatically updating a kernel according to an exemplary
embodiment of the present invention. Referring to FIG. 8, the
kernel is updated by downloading the kernel of a new version
(Operation S802), backing up a master boot record including
information on the kernel in a backup boot record (Operation
S804), and recording information (e.g., address, etc., but not
limited thereto) on the kernel of the new version to the master
boot record (Operation S806).

[0059] FIGS. 9A, 9B, and 9C illustrate in detail memory
state changes during the automatic kernel update according to
an exemplary embodiment of the present invention. Referring
to FIGS. 9A, 9B, and 9C, a file system region 910 stores three
applications App. 1, App. 2, and App. 3, and a raw format
region 920 has the substantially same constitution as the boot
region illustrated in FIG. 5. A configuration DB 930 that
stores component configuration information necessary for the
update and recovery contains PACKAGECOMMIT 940,
which is transaction state information, component identifiers
950, current version information 960, component state infor-
mation 970, and previous version information 980. Although
not shown in FIGS. 9A, 9B, and 9C, the current address
information 423 and the previous address information 435
illustrated in FIG. 4B are updated when the version informa-
tion is updated.

[0060] The raw format region 920, which is a boot area
excluding a file system, stores a boot loader 921. However, if
the boot loader 921 includes the file system, a kernel and a
boot record may be stored in the file system region 910. Also,
since the file system region 910 stores the file system like a
disk operation system (DOS), the exemplary embodiment
does not require such a file system.

[0061] If the exemplary embodiment does not have a file
system, applications can be stored in the raw format region
920. Also, the configuration DB 930 may be stored in one of
the raw format region 920 and the file system region 910.
[0062] Referring to FIG. 9A, PACKAGECOMMIT 940 is
set as “NO” (Operation S91), which means that the update
transaction is started and not yet committed. The state infor-
mation 970 of the kernel to be updated is changed to “DOWN-
LOAD” (S92), previous version information 980 is changed
to “1.0” corresponding to the current version information 960
(893), and a new kernel 925 of a new version (1.1) is down-
loaded and stored (S94). The master boot record 922 indicates
a current version 1.0 kernel 924, whereas the backup boot
record 923 includes information on a previous version 0.5
backup kernel.

[0063] Referring to FIG. 9B, kernel state information is
changed to “UPDATE” (S95), information on the master boot
record 922 is copied to the backup boot record 923, and
information on the kernel of the new version is recorded in
current kernel information and the master boot record 922.
More specifically, the master boot record 922 indicates a
newly downloaded version 1.1 kernel 925 (S97), and the
corresponding current version and address of the configura-
tion DB 930 are accordingly changed.

[0064] Referring to FIG. 9C, the kernel state information is
changed to “DONE” (S98) to indicate that the kernel is suc-

Nov. 13,2014

cessfully updated. Finally, PACKAGECOMMIT 940 is set as
“YES” (899) to indicate that the update transaction has been
successfully finished.

[0065] Inthe above process, the validity flag of the master
boot record 922 is always indicated “invalid” before new
information is recorded on the master boot record 922, and
the validity flag of the master boot record 922 is always
indicated “valid” after new information is recorded on the
master boot record 922.

[0066] When an error occurs in the kernel update, the sys-
tem can be automatically recovered to the kernel ofa success-
fully loaded version by determining whether the kernel
update is successtully finished, and, if it is determined that the
kernel update is stopped, copying the backup boot record 923
to the master boot record 922.

[0067] Whether the kernel update is stopped is determined
based on PACKAGECOMMIT 940. In detail, when the sys-
tem is booted, if PACKAGECOMMIT 940 is set as “NO”, it
is determined that the update transaction has been stopped.

[0068] However, even if the update transaction fails, the
current kernel information and the kernel information stored
in the master boot record 922 may be substantially identical to
each other, that is, when the update transaction is stopped
after S91 through S97 are performed. In this case, it is
regarded that the kernel update is successfully finished, and
the update transaction may be committed to finish without the
automatic recovery process.

[0069] FIGS. 10A, 10B, 10C, and 10D illustrate memory
state changes during automatically updating the components
in an update package 990 according to an exemplary embodi-
ment of the present invention.

[0070] Referring to FIG. 10A, the update package 990 is a
list of software components to be updated. The list may
include application components and a kernel. It may be pos-
sible to sequentially update the application components
(S102 through S109) and then update the kernel that is a
critical component.

[0071] An application component other than the kernel,
i.e.,anapplication App. 1 included in the update package 990,
is updated as illustrated in FIGS. 10B, 10C, and 10D. The
application App. 1 is updated by changing previous compo-
nent information to current component information, down-
loading components of a new version, and changing the cur-
rent component information to information on the new
version component.

[0072] Referringto FIG. 10B, PACKAGECOMMIT 940 is
set as “NO” to start an update transaction (Operation S101).
The current component state information 970 is changed to
“DOWNLOAD” (Operation S 102), the previous component
information 980 is changed to the current component infor-
mation 960 (Operation S103), and a component, i.e., a new
APP. 1, of a new version is downloaded and stored (Operation
S 104).

[0073] Referring to FIG. 10C, the component state infor-
mation 970 is changed to “UPDATE” (Operation S105), the
component APP. 1 of a previous version is backed up as App
1.bak (Operation S106), and the component, i.e., the new
APP. 1, of the new version is changed to the original compo-
nent App. 1 (Operation S107).

[0074] Referring to FIG. 10D, the current component infor-
mation 960 is changed to information on the component of the
new version (Operation S108), and the component state infor-



US 2014/0337608 Al

mation 970 is changed to “DONE” (Operation S109). The
current and previous versions of the component App.1 are 1.1
and 1.0, respectively.

[0075] Each of the applications included in the update
package 990 is updated through Operations S102 through S
109. The kernel is finally updated through Operations S92
through S98 illustrated in FIGS. 9A, 9B, and 9C. When every
component included in the update package 990 is completely
updated, PACKAGECOMMIT 940 is set as “YES” to finish
the update transaction (Operation S120).

[0076] When an error occurs in the component update, the
components can be automatically recovered to the previous
version by determining whether components included in the
update package are successfully updated, and, if it is deter-
mined that the component update is stopped, changing
backup components corresponding to all the components
included in the update package to original components. When
an error occurs in the kernel update, the kernel can be auto-
matically recovered to the previous version by copying the
backup boot record 923 to the master boot record 922.
[0077] Whether the update error occurs is determined
based on state information on the update transaction. If the
update transaction is in a state that indicates a start when the
system is rebooted, it is determined the update transaction
was unsuccessfully stopped before being rebooted. However,
although the update transaction is not finished, if the state
information on the components included in the update pack-
age 990 other than the kernel is set as “DONE”, and the
current kernel information and the kernel information stored
in the master boot record 922 are identical to each other, the
kernel update is actually finished. Therefore, it is regarded
that the kernel update is successfully finished, the kernel may
not be recovered to the previous version and the update trans-
action is committed.

[0078] FIG. 11is a block diagram of a system for updating
software and recovering from an update error according to an
exemplary embodiment of the present invention. Referring to
FIG. 11, the system comprises a processor 1200, a RAM
1100, and a non-volatile memory 1000 that stores a current
kernel 1001, a master boot record 1002 including address
information on the current kernel 1001, and a boot loader
1003 that is a program code (e.g., a set of instructions) for
booting the system.

[0079] The boot loader 1003 loads the current kernel 1001
to the RAM 1100 and executes the RAM 1100 using the
master boot record 1002 to boot the system. The master boot
record 1002 may include a validity flag indicating whether the
current kernel 1001 is valid.

[0080] FIG. 12 is a block diagram of a system for updating
software and recovering from an update error according to
another exemplary embodiment of the present invention. The
non-volatile memory 1000 may include a previous kernel
1004 of a previous version that is a backup kernel, and a
backup boot record 1005 that is a backup master boot record
1002. In this case, when the system is booted, the boot loader
1003 determines whether the master boot record 1002 is
valid. If it is determined that the master boot record 1002 is
valid, the current kernel 1001 is loaded using information on
the master boot record 1002, and if it is determined that the
master boot record 1002 is not valid, the previous kernel 1004
is loaded using information on the backup boot record 1005.
[0081] The non-volatile memory 1000 may include com-
ponent configuration information 1010 including informa-
tion on a software update, and an update engine 1020 that

Nov. 13,2014

updates software components and recovers from an error that
occurs in the components update using the component con-
figuration information 1010.
[0082] The component configuration information 1010
may include state information on an update transaction, pre-
vious information including names, addresses, and version of
components which were installed before they are updated,
current information including addresses and version of
updated components, and update state information on the
components, as illustrated in FIG. 4B. The update engine
1020 updates each of the components and recovers from the
update error based on the component configuration informa-
tion 1010.
[0083] The exemplary embodiments can also be embodied
as computer readable code (e.g., a set of instructions) on a
computer readable medium.
[0084] Asdescribed above, the exemplary embodiment can
update software and a kernel that may cause a fatal result
when its” update fails at that time, and can recover a system
from an update error using component configuration infor-
mation.
[0085] Also, even if the software update is stopped for an
external reason, the exemplary embodiment recovers a sys-
tem in a booting unit using final configuration information
that is successfully loaded, thereby substantially perfectly
rolling back the system to a previous version.
[0086] Also, the exemplary embodiment effectively update
kernel and boot the system using boot records, and substan-
tially improves a system operating speed by changing only
the boot records when the kernel is recovered.
[0087] While this invention has been particularly shown
and described with reference to exemplary, non-limiting
embodiments thereof, it will be understood by those skilled in
the art that various changes in form and details may be made
therein without departing from the spirit and scope of the
invention as defined by the appended claims.
What is claimed is:
1. A method of updating software, the method comprising:
updating a plurality of software components listed by an
update package;
determining whether the updating the software compo-
nents has failed; and
in response to determining that the updating the software
components has failed, recovering from an update error
by converting backup components of the software com-
ponents into corresponding original software compo-
nents.
2. The method of claim 1, wherein the updating the soft-
ware components comprises:
copying a master boot record including information on a
kernel of a current version on a backup boot record; and
updating the kernel of the current version into a kernel of a
new version by recording information on the kernel of
the new version on the master boot record.
3. The method of claim 2, wherein the recovering com-
prises:
determining whether the updating the kernel of the current
version into the kernel of the new version has failed; and
in response to determining that the updating the kernel of
the current version into the kernel of the new version has
failed, copying the backup boot record to the master boot
record.
4. The method of claim 1, wherein the determining com-
prises:



US 2014/0337608 Al

checking state information of a transaction for the updating
the software components; and

in response to the checked state information indicating that
the transaction is done, determining whether the updat-
ing the software components has succeeded.

5. A non-transitory computer readable medium having
embodied thereon a computer program for executing a
method of updating software, the method comprising:

updating a plurality of software components listed by an
update package;

determining whether the updating the software compo-
nents has failed; and

in response to determining that the updating the software
components has failed, recovering from an update error
by converting backup components of the software com-
ponents into corresponding original software compo-
nents.

6. An apparatus configured to update software, the appara-

tus comprising:

a memory configured to store information on a software
update and an update engine for updating software using
the information on the software update; and

a processor configured to execute the update engine,

wherein the update engine is configured to update a plural-
ity of software components listed by an update package,
determine whether the update of the software compo-

Nov. 13,2014

nents has failed, and in response to determining that the
update of the software components has failed, recover
from an update error by converting backup components
of the software components into corresponding original
software components.

7. The apparatus of claim 6, wherein the memory is con-
figured to store a kernel of a current version, a master boot
record including information on a kernel of a current version,
and a backup boot record, and

the update engine is configured to copy the master boot

record on the backup boot record and update the kernel
of the current version into a kernel of a new version by
recording information on the kernel of the new version
on the master boot record.

8. The apparatus of claim 7, wherein the update engine is
configured to determine whether the update of the kernel has
failed, and, in response to determining that the update of the
kernel has failed, copy the backup boot record to the master
boot record.

9. The apparatus of claim 6, wherein the update engine is
configured to check state information of a transaction for the
update, and, in response to the checked state information
indicating that the transaction is done, determine whether the
update of the software components has succeeded.

#* #* #* #* #*



