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(57) ABSTRACT

Aspects of the disclosure provide a deep sequence model,
referred to as Koopman Neural Forecaster (KNF), for time
series forecasting. KNF leverages deep neural networks
(DNNs) to learn the linear Koopman space and the coeffi-
cients of chosen measurement functions. KNF imposes
appropriate inductive biases for improved robustness against
distributional shifts, employing both a global operator to
learn shared characteristics, and a local operator to capture
changing dynamics, as well as a specially-designed feed-
back loop to continuously update the learnt operators over
time for rapidly varying behaviors. KNF achieves superior
performance on multiple time series datasets that are shown
to suffer from distribution shifts.
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KOOPMAN NEURAL FORECASTER FOR
TIME SERIES WITH TEMPORAL
DISTRIBUTION SHIFTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application claims priority to U.S.
Provisional Application No. 63/410,868, filed Sep. 28, 2022,
the disclosure of which is hereby incorporated by reference
herein.

BACKGROUND

[0002] Temporal distribution shifts occur commonly in
many real-world time-series applications, from forecasting
stock prices to detecting and monitoring sensory measures,
to predicting fashion trend-based sales. Such distribution
shifts over time might be caused by the data being generated
in a highly dynamic and non-stationary environment, abrupt
changes that are difficult to predict, or constantly evolving
trends in the underlying data distribution. It has been shown
that temporal distribution shifts pose a fundamental chal-
lenge for time-series forecasting. When the distribution
shifts between the training and test domains are considered,
numerous advanced meta or transfer learning approaches
have been proposed. However, distribution shifts occurring
continuously over time remain a problem for deep neural
networks (DNNs).

[0003] With regard to temporal distribution shifts, various
statistical estimation methods have been studied, including
spectral density analysis, sample reweighting, and Bayesian
state-space models. However, these methods are limited to
low capacity auto-regressive models and are typically
designed for short-horizon forecasting. For large-scale com-
plex time series data, deep learning models increasingly
outperform traditional statistical methods. Yet, most deep
learning approaches are designed for stationary time series
data that have clear seasonal and trend patterns. For distri-
bution shifts, DNNs have been shown to be problematic in
forecasting on data with varying.

[0004] DNNs are black-box models and often require a
large number of samples to learn. For time series with
continuous distribution shifts, the number of samples from
a given distribution is small, thus DNNs would struggle to
adapt to the changing distribution and may therefore provide
inaccurate results. Furthermore, the non-linear dependencies
in a DNN are difficult to interpret or manipulate. Directly
modifying the parameters based on the change in dynamics
may lead to undesirable effects.

BRIEF SUMMARY

[0005] The present disclosure describes a Koopman-based
deep sequence model for time series forecasting. A Koop-
man Neural Forecaster (KNF) leverages DNNs to learn a
linear Koopman space and corresponding measurement
functions. KNF imposes appropriate inductive biases for
improved robustness against distributional shifts, employing
both a global operator to learn shared characteristics, and a
local operator to capture changing dynamics, as well as a
feedback loop to continuously update the operators over
time for rapidly varying behaviors. KNF achieves superior
performance compared to alternatives, on a wide range of
time series datasets that are particularly known to suffer
from distribution shifts.

[0006] KNF brings multiple benefits to time series fore-
casting with distribution shifts. Such benefits include using
predefined measurement functions, such as exponential,
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polynomial, etc., to provide sufficient expressivity for the
time series without requiring a large number of samples.
Further, since the Koopman operator is linear, it is much
easier to analyze and manipulate. For instance, it can be used
to perform spectral analysis and examine its eigenfunctions
to reach a better understanding of the frequency of oscilla-
tion. Further, a feedback loop makes the Koopman operator
adaptive to a non-stationary environment. As a result, pre-
dictions are more accurate.

[0007] One aspect of the disclosure provides a method for
time-series forecasting, comprising encoding, with an
encoder, multiple steps of observations of non-stationary
time-series events in a lookback window into corresponding
measurement vectors; applying, with one or more proces-
sors, predefined measurement functions with learned coef-
ficients to the measurement vectors; determining, with the
one or more processors based on analysis of the observa-
tions, Koopman operators; generating, with the one or more
processors, a forecast vector based on the measurement
vectors and Koopman operators; and providing, with the one
or more processors a forecast for output based on the
forecast vector. Learning the coefficients may be performed
by an encoder, such that ©: R%*—R"™** every time,
where n represents a number of measurement functions for
each feature, d represents a number of features in a time
series, and k represents a number of steps encoded by the
encoder.

[0008] The method may further include computing a latent
matrix in which each measurement vector is a different
linear transformation of a respective observation at a corre-
sponding time step; and applying the measurement functions
to the latent matrix.

[0009] The method may further include reconstructing,
using a decoder, observations from the forecast vector. The
encoder and the decoder may be any deep neural network
architecture including multi-layer perceptron. The encoder
may approximate parameters of the measurement functions
without directly learning non-stationary characteristics. The
deep neural network may be trained based on historic
time-series data, which may be specific to a context for
which the deep neural network will be used to generate
predictions. Such historic time series data may include one
or more parameters related to various events.

[0010] According to some examples, the predefined mea-
surement functions may contain at least one of polynomials,
exponential functions, trigonometric functions, or other
interaction functions.

[0011] According to some examples, the predefined mea-
surement functions may impose inductive biases into the
forecast.

[0012] According to some examples, the Koopman opera-
tor may be a finite matrix using a global operator and a local
operator to model propagation of dynamics. The method
may further include applying the global operator and the
local operator recursively to measurements to obtain pre-
dictions on a lookback window. The method may further
include adjusting the Koopman operator based on differ-
ences between the predictions on the lookback window and
a ground truth.

[0013] Another aspect of the disclosure provides a system
for time-series forecasting, comprising memory and one or
more processors in communication with the memory. The
one or more processors may be configured to encode, using
an encoder, multiple steps of observations of non-stationary
time-series events in a lookback window into corresponding
measurement vectors; apply predefined measurement func-
tions with learned coeflicients to the measurement vectors;
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determine, based on analysis of the observations, Koopman
operators; generate a forecast vector based on the measure-
ment vectors and Koopman operators; and provide a forecast
for output based on the forecast vector.

[0014] Generating the forecast vector may include com-
puting a latent matrix in which every vector is a linear
transformation of a respective observation at a correspond-
ing time step; and applying the measurement functions to the
latent matrix. In some examples, generating the forecast
vector may further comprise reconstructing, using a decoder,
observations from the forecast vector. The encoder and the
decoder may be any deep neural network architecture
including multi-layer perceptron.

[0015] According to some examples, the predefined mea-
surement functions may contain at least one of polynomials,
exponential functions, trigonometric functions, or other
interaction functions. The predefined measurement func-
tions may impose inductive biases into the forecast. The
encoder may approximate parameters of the measurement
functions without directly learning non-stationary charac-
teristics.

[0016] According to some examples, the Koopman opera-
tor may be a finite matrix using a global operator and a local
operator to model propagation of dynamics.

[0017] The one or more processors may be further con-
figured to apply the global operator and the local operator
recursively to measurements to obtain predictions on a
lookback window. The one or more processors may be
further configured to adjust the Koopman operator based on
differences between the predictions on the lookback window
and ground truth.

[0018] Yet another aspect of the disclosure provides a
non-transitory computer-readable medium storing instruc-
tions executable by one or more processors for performing
a method, comprising: encoding multiple steps of observa-
tions of non-stationary time-series events in a lookback
window into corresponding measurement vectors; applying
predefined measurement functions with learned coefficients
to the measurement vectors; determining, based on analysis
of the observations, Koopman operators; generating a fore-
cast vector based on the measurement vectors and Koopman
operators; and providing a forecast for output based on the
forecast vector.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG. 1illustrates an example architecture of a deep
forecasting model based on Koopman theory for time-series
data with temporal distributional shifts according to aspects
of the disclosure.

[0020] FIG. 2 depicts a block diagram of an example time
series forecasting system according to aspects of the disclo-
sure.

[0021] FIG. 3 depicts a block diagram of an example
environment for implementing a time series forecasting
system according to aspects of the disclosure.

[0022] FIG. 4 depicts a block diagram illustrating one or
more model architectures according to aspects of the dis-
closure.

[0023] FIG. 5 depicts a flow diagram of an example
process for performing time series forecasting according to
aspects of the disclosure.

[0024] FIG. 6 is a graph illustrating forecasts in a first
example use case according to aspects of the disclosure.
[0025] FIG. 7Ais a graph illustrating forecasts in a second
example use case according to aspects of the disclosure.
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[0026] FIG. 7B is a top view depiction of forecasted
basketball player trajectories relative to a basketball court
according to aspects of the disclosure.

[0027] FIG. 8A is a table illustrating an ablation study of
KNF on weekly data, according to aspects of the disclosure.
[0028] FIGS. 8B-C are graphs illustrating example M4
Competition predictions from KNF, according to aspects of
the disclosure.

DETAILED DESCRIPTION

[0029] The present disclosure provides a Koopman Neural
Forecaster (KNF) model. The KNF model is a Koopman-
based deep forecasting model for time-series data with
temporal distributional shifts. The proposed approach allows
the Koopman matrix to both capture the global behaviors
and evolve over time to adapt to local changing distribu-
tions, with state-of-the-art performance on highly non-sta-
tionary time series datasets, such as competitions (e.g., M4
Competition of forecasting methods), cryptocurrency return
forecasting, and sports player trajectory prediction. Inter-
pretable insights for the model behavior may be generated
via eigenvalues and eigenfunctions of the Koopman opera-
tors.

[0030] FIG. 1 illustrates an example architecture of the
KNF model. Encoder 10 is used to encode observations at
multiple time steps in lookback window 50 into a measure-
ment vector G(V)=[g,v,?), . . ., g,(v,")]. For example,
measurement vector 12 is computed at a first time step,
measurement vector 14 is computed at a second time step,
measurement vector 15 is computed at a third time step, etc.
While three time steps in the lookback window 50 are
illustrated as having computed vectors, it should be under-
stood that numerous vectors may be computed at additional
time steps as well. G(V t) is computed based on a set of
predefined measurement functions G and their input values
V t learned by the encoder 10.

[0031] The model utilizes a global operator K¢ and an
adaptive local operator

K

learned by a Transformer encoder 30 to model the evolution
of measurements. In forecasting window 60, an additional
adjustment operator

K7

is learned by a feedback module 30 based on the prediction
error on the lookback window 50. The feedback module 30
may be, for example, a multilayer perceptron (MLP) mod-
ule.

[0032] Time series data {x,},.,” can be considered as
observations of dynamical system states. For discrete form
X,.;1=F(x,), where xe xR ¥ is the system state, and F is the
underlying governing equation, a multi-step forecasting task
of predicting the future states given a sequence of past
observations may include seeking a function map f such
that:

flxgen -+ o X)Xy - s Xein)

where q is the lookback window length and h is the
forecasting window length.
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[0033] Koopman theory shows that any nonlinear
dynamic system can be modeled by an infinite-dimensional
linear Koopman operator acting on the space of all possible
measurement functions. More specifically, there exists a
linear infinite-dimensional operator K:G (y)— G () that
acts on a space of real-valued measurement functions G ():
={g:x— R}. The Koopman operator maps between func-
tion spaces and advances the observations of the state to the
next step:

K g)=g(Fe))=g(x,.,).

[0034] KNF can be used to forecast highly non-stationary
time series, as shown in FIG. 1. It instantiates an encoder-
decoder architecture for each time series segment. An
encoder 10 takes in observations from multiple time steps as
the underlying dynamics may contain higher-order time
derivatives.

[0035] The KNF model uses predefined measurement
functions with learned coefficients to map time series to the
functional space. The model employs both a global Koop-
man operator to learn the shared characteristics and a local
Koopman operator to capture the local changing dynamics.
The model also integrates a feedback loop to update the
learned operators over time based on forecasting error,
maintaining the model’s long-term forecasting performance.
[0036] The KNF model may leverage predefined measure-
ment functions. For example, a set of measurement func-
tions spanning the Koopman space may be defined as:
G:=[g;, . . . g,], where each g R+ R. As an example,
g,(x)=sin (x). Such functions may be canonical nonlinear
functions and may be used to model complex dynamical
systems. They also provide a sample-efficient approach to
represent highly nonlinear behavior that may be difficult to
learn for DNNs.

[0037] An encoder may be used to generate coefficients of
measurement functions Q(X,), such as the frequencies of
sine functions. Where n represents the number of measure-
ment functions for each feature, and d represents the number
of features in a time series, and k represents the number of
steps encoded by the encoder, W:R ®*— R"™* every
time. Length q of the lookback window is a multiple of k.
X oo May be denoted as Xte R

[0038] A latent matrix V,=(v,'", v,%, . .., v,)e R™
may be obtained using the following equation:

Vili 1= 3 R j OXL i1 <isn 1< jsd 1slsk

[0039] Where every vector v,e R is a different linear
transformation of the observations, and where the weights
are learned by the encoder Q. The measurement functions
may be defined in the latent space, rather than the observa-
tional space. Applying a set of predefined measurement
functions G to the latent matrix V,:

GV)=[g1(v )82, . . . g, (v ))e R

[0040] In some implementations, G(V,) may be flattened
into a vector, and then a finite Koopman operator should be
a ndxnd matrix. A decoder 20 may be used to reconstruct the
observations from the measurements. For example, decoder
may be ®: R - R and used to construct observations
from the following measurements:

R=2(G (V).
[0041] The encoder 10 and decoder 20 may be any DNN

architecture. In some examples, MLLP may be used. The set
of measurement functions G contains polynomials, expo-
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nential functions, trigonometric functions, interaction func-
tions, etc. Such predefined measurement functions may be
used to impose inductive biases into the model and to help
capture non-linear behaviors of time series. The encoder
model may approximate only the parameters of the functions
without needing to directly learn non-stationary character-
istics.

[0042] Global and Local Koopman Operators

[0043] Koopman operators may be identified using DNNs,
dynamic mode decomposition (DMD), or other techniques.
The encoder 10 may learn a finite approximation of mea-
surement vector G(V,), which forms a finite Koopman-
invariant subspace. The Koopman operator K may be the
finite matrix that best advances the measurements forward in
time. While the Koopman matrix should vary across samples
and time, it should also capture global behaviors. Using both
global operator K# and local operator

K

to model the propagation of dynamics in the Koopman
space, the Koopman matrix may be defined as:

KG(V) = (K& + K)G(V) = GV, £ 2 0

[0044] The global operator K® may be a ndxnd trainable
matrix that is shared across all time series. The global
operator K may be used to learn shared behavior, such as a
trend. The local operator

K

may be based on measurement functions on the lookback
window for each sample. The local operator should capture
the local dynamics specific to each sample. Forecasts may be
generated in an autoregressive way, and therefore the local
operator depends on time t and varies across autoregressive
steps, adapting to distribution changes along prediction.
Using a Transformer architecture with a single-head as the
encoder, relationships between measurements may be cap-
tured at different steps. An attention weight matrix may be
used in the last layer as the local Koopman operator.

[0045] Feedback Loop

[0046] The architecture further includes an additional
feedback loop, which may be a closed-loop feedback. In this
closed-loop feedback, an MLP module I" may be employed
to learn the adjustment operator

KE

based on the prediction errors in the lookback window. The
MLP module IT" is directly added to other operators when
making predictions on the forecasting window, as shown in
FIG. 1. Global and local operators are applied recursively to
the measurements at the first step in the lookback window to
obtain predictions:

R =@ K K Y G (v, 00, 0<isgk
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[0047] Then, the feedback module F uses the difference
between the predictions on the lookback window and the
observed data to generate additional adjustment operator

K

t>

which may be a diagonal matrix:
AR YO AN AR y € S

[0048] If the predictions deviate significantly from the
ground truth within the lookback window, the operator K,°
would learn the temporal change in the underlying dynamics
and correspondingly adjust the other two operators. For
forecasting, the sum of all three operators may be used:

X =0 K K 5K 951G (vy), i>0.

[0049] The feedback module may detect the distributional
shifts in the lookback window and adapt the global and local
operator to the latest distribution in the lookback window.
[0050] Loss Functions

[0051] KNF may be trained in an end-to-end fashion,
using superposition of three loss terms: reconstruction loss
(L,...), prediction loss on the lookback window (L,,..), and
prediction accuracy in the forecasting window (L.,,),
where L=L,_+L,..+L:, ... Adistance metric, using L2 loss,
is represented by: L.

[0052] The reconstruction loss may be computed to ensure
that decoder 1 can reconstruct the time series from the
measurements. The reconstruction loss may be computed as:

Lye.=l(X, ®(G (QX)X,)), £20.

[0053] The prediction loss on the lookback window may
be computed to ensure the sum of the global and local
operators in the best-fit propagation matrix on the lookback
window. The prediction loss on the lookback window may
be computed as:
Luqes=IX,_gpecrs DO KNG (WX, X, g)),
0<i<g/k.

[0054] The prediction accuracy in the forecasting window
may be computed to guide the feedback loop to learn the
correct adjustment placed on the Koopman operator:

Ly =IX, .y DUt K 1 K ey G (v), 0.

2

[0055] Training the Models

[0056] Different training strategies may be used to
improve the prediction accuracy of the KNF model. One
example strategy is reversible instance normalization, which
normalizes the input sequence of de-normalizes the predic-
tions at every autoregressive step for every instance. Another
example strategy is temporal bundling, which asks autore-
gressive models to generate multiple-step predictions
instead of just one on every call, to reduce a number of
model calls and therefore error propagations speed.

[0057] Training samples may be generated using a sliding
window approach. For example, for a dataset, a grid search
of hyperparameters may be performed. Examples of such
hyperparameters may include learning rate, input length,
hidden dimension, number of predictions made in each
autoregressive step, etc. Hyperparameter may be tuned
separately for different modules in a model. For example, the
number of layers may be tuned separately from the hidden
dimensions. The encoder and decoder may have a different
number of layers. Ranges for hyperparameter tuning may
vary.

[0058] According to some examples, a default set of
measurement functions used in KNF may include polyno-
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mials up to the order of four, an exponential function, and
trigonometric functions with the same number of input steps
for each feature, as well as pairwise product interaction
functions between features if the time series data is multi-
variate.

Example Use Cases/Datasets

[0059] The KNF model may be used for predictions in any
of a variety of contexts.

[0060] Some example contexts are predicting values for
cryptocurrencies, predicting trajectories for athletes such as
basketball players, etc. The dataset used for predictions in
the cryptocurrency context may include, for example, fea-
tures of historical trades. Such features may include open
and close prices, etc. The dataset used for athlete trajectories
may include, for example, historical player movement tra-
jectories. The KNF model achieves accurate prediction
performance for such datasets that have low forecastability,
no clear trends on seasonality, low sensitivity to initial
conditions, etc.

[0061] FIG. 2 depicts a block diagram of an example
Koopman neural forecasting system 100. The Koopman
neural forecasting system 100 may be part of a remote
system in communication with one or more user devices via
a network. The remote system may be a single computer,
multiple computers, or a distributed system like a cloud
environment. The remote system may include computing
resources, such as data processing hardware, and storage
resources, such as memory hardware. A data store, such as
a remote storage device, may be overlain on the storage
resources to allow scalable use of the storage resources by
one or more of the clients, such as the user devices, or the
computing resources. The data store can be configured to
store a plurality of data blocks within one or more tables,
such as a cloud database, that each include a plurality of
rows and columns. The data store may store any number of
tables at any point in time.

[0062] The Koopman neural forecasting system 100 can
be configured to receive a time series forecasting query 102,
such as from a user device via the network. The user device
may correspond to any computing device, such as a desktop
workstation, a laptop workstation, or a mobile device, such
as a smart phone. The user device can include computing
resources and storage resources. The query may be natural
language or standard query language (SQL). Each Koopman
neural forecasting query 102 can request one or more time
series forecasts for the Koopman neural forecasting system
100 to generate a forecast of future data 104 based on current
data 106. The Koopman neural forecasting system 100 can
forecast and return forecasted future data 104, such as to the
user device via the network as a query response.

[0063] The Koopman neural forecasting system 100 can
include encoder module 110, Koopman operator determina-
tion module 120, and a forecaster 130. The system 100 can
be configured to generate and train a forecasting model for
each forecast request in the query 102. The model may be
trained based on historic time-series data 106. Such historic
time series data 106 may include one or more parameters
related to various events. For example, for cryptocurrency
value, the historic time series data may include parameters
such as dates, times, crypto valuation, world events, etc.
Each event may be, for example, a purchase, trade, closing,
etc.

[0064] The system 100 can be configured to perform
hyper-parameter tuning or optimization when generating
and training the forecaster 130. A hyper-parameter may refer
to a parameter that controls or adjusts learning process of the
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models while other parameters, such as node weights, are
learned. For example, the system 100 can perform hyper-
parameter tuning on a data frequency and non-seasonal
order parameters.

[0065] The forecaster 130 can be configured to use infor-
mation from the encoder module 110 and the Koopman
operator determination module 120 to generate predictions
responsive to the query 102 and based on inference data 108.
The forecaster 130 can return the forecasted future data 104
to the user device, which can display the forecasted data 104,
such as via a graph. Each time series requested by the query
102 can be displayed on the graph with configurable filters
for controlling which portions of which time series are
displayed. For example, the query 102 can include a request
for ten time series forecasts. After receiving the future data
104, the user device can display on a graph with all ten time
series forecasts simultaneously. The display can be adjusted
on the user device to change which times series are view-
able, as well as zoom in or zoom out on the graph as desired.
[0066] FIG. 3 depicts a block diagram of an example
environment 200 for implementing a Koopman neural fore-
casting system 218. The Koopman neural forecasting system
218 can be implemented on one or more devices having one
or more processors in one or more locations, such as in
server computing device 202. Client computing device 204
and the server computing device 202 can be communica-
tively coupled to one or more storage devices 206 over a
network 208. The storage devices 206 can be a combination
of volatile and non-volatile memory and can be at the same
or different physical locations than the computing devices
202, 204. For example, the storage devices 206 can include
any type of non-transitory computer readable medium
capable of storing information, such as a hard-drive, solid
state drive, tape drive, optical storage, memory card, ROM,
RAM, DVD, CD-ROM, write-capable, and read-only
memories.

[0067] The server computing device 202 can include one
or more processors 210 and memory 212. The memory 212
can store information accessible by the processors 210,
including instructions 214 that can be executed by the
processors 210. The memory 212 can also include data 216
that can be retrieved, manipulated, or stored by the proces-
sors 210. The memory 212 can be a type of non-transitory
computer readable medium capable of storing information
accessible by the processors 210, such as volatile and
non-volatile memory. The processors 210 can include one or
more central processing units (CPUs), graphic processing
units (GPUs), field-programmable gate arrays (FPGAs),
and/or application-specific integrated circuits (ASICs), such
as tensor processing units (TPUs).

[0068] The instructions 214 can include one or more
instructions that, when executed by the processors 210,
cause the one or more processors to perform actions defined
by the instructions 214. The instructions 214 can be stored
in object code format for direct processing by the processors
210, or in other formats including interpretable scripts or
collections of independent source code modules that are
interpreted on demand or compiled in advance. The instruc-
tions 214 can include instructions for implementing a Koop-
man neural forecasting system 218, which can correspond to
the time series forecasting system 100 of FIG. 2. The
Koopman neural forecasting system 218 can be executed
using the processors 210, and/or using other processors
remotely located from the server computing device 202.

[0069] The data 216 can be retrieved, stored, or modified
by the processors 210 in accordance with the instructions
214. The data 216 can be stored in computer registers, in a
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relational or non-relational database as a table having a
plurality of different fields and records, or as JSON, YAML,
proto, or XML documents. The data 216 can also be for-
matted in a computer-readable format such as, but not
limited to, binary values, ASCII, or Unicode. Moreover, the
data 216 can include information sufficient to identify rel-
evant information, such as numbers, descriptive text, pro-
prietary codes, pointers, references to data stored in other
memories, including other network locations, or information
that is used by a function to calculate relevant data.

[0070] The client computing device 204 can also be con-
figured similarly to the server computing device 202, with
one or more processors 220, memory 222, instructions 224,
and data 226. The client computing device 204 can also
include a user input 228 and a user output 230. The user
input 228 can include any appropriate mechanism or tech-
nique for receiving input from a user, such as keyboard,
mouse, mechanical actuators, soft actuators, touchscreens,
microphones, and sensors.

[0071] The server computing device 202 can be config-
ured to transmit data to the client computing device 204, and
the client computing device 204 can be configured to display
at least a portion of the received data on a display imple-
mented as part of the user output 230. The user output 230
can also be used for displaying an interface between the
client computing device 204 and the server computing
device 202. The user output 230 can alternatively or addi-
tionally include one or more speakers, transducers or other
audio outputs, a haptic interface or other tactile feedback
that provides non-visual and non-audible information to the
platform user of the client computing device 204.

[0072] Although FIG. 3 illustrates the processors 210, 220
and the memories 212, 222 as being within the computing
devices 202, 204, components described herein can include
multiple processors and memories that can operate in dif-
ferent physical locations and not within the same computing
device. For example, some of the instructions 214, 224 and
the data 216, 226 can be stored on a removable SD card and
others within a read-only computer chip. Some or all of the
instructions and data can be stored in a location physically
remote from, yet still accessible by, the processors 210, 220.
Similarly, the processors 210, 220 can include a collection of
processors that can perform concurrent and/or sequential
operation. The computing devices 202, 204 can each include
one or more internal clocks providing timing information,
which can be used for time measurement for operations and
programs run by the computing devices 202, 204.

[0073] The server computing device 202 can be connected
over the network 208 to a data center 232 housing any
number of hardware accelerators 232A-N. The data center
232 can be one of multiple data centers or other facilities in
which various types of computing devices, such as hardware
accelerators, are located. Computing resources housed in the
data center 232 can be specified for deploying models
related to time series forecasting as described herein.

[0074] The server computing device 202 can be config-
ured to receive requests to process data from the client
computing device 204 on computing resources in the data
center 232. For example, the environment 200 can be part of
a computing platform configured to provide a variety of
services to users, through various user interfaces and/or
application programming interfaces (APIs) exposing the
platform services. The variety of services can include per-
forming time series forecasting. The client computing
device 204 can transmit input data associated with requests



US 2024/0119265 Al

for forecasts. The Koopman neural forecasting system 218
can receive the input data, and in response, generate output
data including a forecast.

[0075] As other examples of potential services provided
by a platform implementing the environment 200, the server
computing device 202 can maintain a variety of models in
accordance with different constraints available at the data
center 232. For example, the server computing device 202
can maintain different families for deploying models on
various types of TPUs and/or GPUs housed in the data
center 232 or otherwise available for processing.

[0076] FIG. 4 depicts a block diagram 300 illustrating one
or more model architectures 302, more specifically 302A-N
for each architecture, for deployment in a data center 304
housing a hardware accelerator 306 on which the deployed
models 302 will execute for providing forecasts. The hard-
ware accelerator 306 can be any type of processor, such as
a CPU, GPU, FPGA, or ASIC such as a TPU.

[0077] An architecture 302 of a model can refer to char-
acteristics defining the model, such as characteristics of
layers for the model, how the layers process input, or how
the layers interact with one another. For example, the one or
more models can be KNF models, and the one or more
model architectures 302 may refer to different orders of the
models, such as the number of time lags, different degrees of
differencing, such as the number of times the data has had
past values subtracted, and/or an order of the moving
average model, such as a size of the moving average
window. One or more model architectures 302 can be
generated that can output results associated with forecasts.
[0078] Referring back to FIG. 3, the devices 202, 204 and
the data center 232 can be capable of direct and indirect
communication over the network 208. For example, using a
network socket, the client computing device 204 can con-
nect to a service operating in the data center 232 through an
Internet protocol. The devices 202, 204 can set up listening
sockets that may accept an initiating connection for sending
and receiving information. The network 208 itself can
include various configurations and protocols including the
Internet, World Wide Web, intranets, virtual private net-
works, wide area networks, local networks, and private
networks using communication protocols proprietary to one
or more companies. The network 208 can support a variety
of short- and long-range connections. The short- and long-
range connections may be made over different bandwidths,
such as 2.402 GHz to 2.480 GHz, commonly associated with
the Bluetooth® standard, 2.4 GHz and 5 GHz, commonly
associated with the Wi-Fi® communication protocol; or
with a variety of communication standards, such as the
LTE® standard for wireless broadband communication. The
network 208, in addition or alternatively, can also support
wired connections between the devices 202, 204 and the data
center 232, including over various types of Ethernet con-
nection.

[0079] Although a single server computing device 202,
client computing device 204, and data center 232 are shown
in FIG. 3, it is understood that the aspects of the disclosure
can be implemented according to a variety of different
configurations and quantities of computing devices, includ-
ing in paradigms for sequential or parallel processing, or
over a distributed network of multiple devices. In some
implementations, aspects of the disclosure can be performed
on a single device connected to hardware accelerators con-
figured for processing optimization models, and any com-
bination thereof.

[0080] Referring back to FIG. 2, the query 102 can include
a reference to one or more columns of a table stored in the
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data store associated with the current data 106. The one or
more columns can include time series identification infor-
mation, time series timestamp data, and the time series data
itself. The time series timestamp column can include a time
component of the time series. Each data element of the time
series timestamp column can represent a point in time
associated with a respective time series data element from
the time series data column.

[0081] The Koopman neural forecasting system 100 can
output the forecasted data 104 for display as a plot illus-
trating the time series and corresponding components of the
time series. The time series can include a series of data
points with respect to time. The time series can be decom-
posed into a trend component, a seasonal component, and a
remainder portion. The trend component can represent
trends in the data that move up or down in a reasonably
predictable pattern. The trend component can also include
cyclical variations that correspond to cycles, such as “boom-
bust” cycles. The seasonal component can represent varia-
tions that repeat over a specific period, such as over a day,
week, month, etc. The remainder component can represent
seemingly random residual fluctuations that do not fall under
classifications of other components.

[0082] FIG. 5 depicts a flow diagram of an example
process 500 for performing Koopman neural forecasting.
The example process 500 can be performed on a system of
one or more processors in one or more locations, such as the
Koopman neural forecasting system 100 as depicted in FIG.
1.

[0083] As shown in block 510, multiple steps of observa-
tions of non-stationary time-series events in a lookback
window are encoded into corresponding measurement vec-
tors. For example, referring back to FIG. 1, encoder 10
encodes observations at multiple time segments in the
lookback window 50 into measurement vectors 12, 14, 15,
etc.

[0084] As shown in block 520, the time series is mapped
to functional space by applying predefined measurement
functions with learned coefficients to the measurement vec-
tors. Such measurement functions may span the Koopman
space. The measurement functions may be canonical non-
linear functions. The encoder may be used to generate the
coefficients of the measurement functions. In some
examples, a latent matrix is generated, where each vector in
the latent matrix is a linear transformation of the observa-
tions. In such examples, the measurement functions may be
defined in latent space rather than observational space.
Applying predefined measurement functions to the latent
matrix produces a result that may be flattened into a vector.
As shown in block 530, shared characteristics among the
observations are learned using a Koopman global operator.
Such shared characteristics may be an indicator of trend.
[0085] As shown in block 540, local changing dynamics
among the observations are captured using a Koopman local
operator. The local operator may depend on a time t and vary
across autoregressive steps, adapting to distribution changes
along prediction.

[0086] As shown in block 550, a forecast is generated
based on the measurement vectors and Koopman operators.
Koopman operator may be a [ndxnd] matrix. The forecast
may be output, such as by decoding forecasted measurement
vectors using a decoder.

[0087] As shown in block 560, forecasting errors are
identified. For example, differences between predictions on
the lookback window and the observed data may be used to
generate an adjustment operator. The adjustment operator
may be, for example, a diagonal matrix.
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[0088] In block 570, the Koopman operators may be
updated based on forecasting errors, to improve the accuracy
of future forecasts. For example, if predictions deviate
significantly from ground truth within the lookback window,
the adjustment operator may learn the temporal change in
the underlying dynamics. The adjustment operator may
correspondingly adjust the global and local operators. As an
example, the global and local operators may be updated to
a latest distribution in the lookback window.

[0089] FIG. 6 is a graph illustrating forecasts in a first
example use case, related to forecasts on cryptocurrency
datasets. As shown, KNF captures both overall trends and
small fluctuations with accuracy.

[0090] FIG. 7A is a graph illustrating forecasts in a second
example use case, related to forecasting player trajectories in
an athletic event, such as how players will move across a
basketball court in a basketball game. FIG. 7B is a top view
depiction of forecasted basketball player trajectories relative
to a basketball court. As shown in FIG. 7A, KNF may be
used to accurately predict whether or when a player will
change directions, while other prediction models fail.
[0091] FIG. 8A is a table illustrating an ablation study of
KNF on weekly data from the M4 Competition. The table
includes a Symmetric mean absolute percentage error
(sMAPE) of ensemble predictions from five functions of
each variant. KNF-base-G uses purely data driven measure-
ments. KNF-base-I uses predefined measurement functions,
which outperform KNF-base-G. Adding ReVIN, the global
Koopman operator, or the feedback loop also brings
improvement.

[0092] FIGS. 8B-C are graphs illustrating example M4
predictions from KNF. As seen in such figures, the predic-
tions from the model with the feedback loop removed start
to deviate from the ground truth after a few steps. The
feedback loop can cope with temporal distribution shifts and
thus improve the long-horizon forecasting accuracy.

[0093] Aspects of this disclosure can be implemented in
digital electronic circuitry, in tangibly embodied computer
software or firmware, and/or in computer hardware, such as
the structure disclosed herein, their structural equivalents, or
combinations thereof. Aspects of this disclosure can further
be implemented as one or more computer programs, such as
one or more modules of computer program instructions
encoded on a tangible non-transitory computer storage
medium for execution by, or to control the operation of, one
or more data processing apparatus. The computer storage
medium can be a machine-readable storage device, a
machine-readable storage substrate, a random or serial
access memory device, or combinations thereof. The com-
puter program instructions can be encoded on an artificially
generated propagated signal, such as a machine-generated
electrical, optical, or electromagnetic signal, that is gener-
ated to encode information for transmission to suitable
receiver apparatus for execution by a data processing appa-
ratus.

[0094] The term “configured” is used herein in connection
with systems and computer program components. For a
system of one or more computers to be configured to
perform particular operations or actions means that the
system has installed thereon software, firmware, hardware,
or a combination thereof that cause the system to perform
the operations or actions. For one or more computer pro-
grams to be configured to perform particular operations or
actions means that the one or more programs include
instructions that, when executed by one or more data pro-
cessing apparatus, cause the apparatus to perform the opera-
tions or actions.
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[0095] The term “data processing apparatus” or “data
processing system” refers to data processing hardware and
encompasses various apparatus, devices, and machines for
processing data, including programmable processors, com-
puters, or combinations thereof. The data processing appa-
ratus can include special purpose logic circuitry, such as a
field programmable gate array (FPGA) or an application
specific integrated circuit (ASIC). The data processing appa-
ratus can include code that creates an execution environment
for computer programs, such as code that constitutes pro-
cessor firmware, a protocol stack, a database management
system, an operating system, or combinations thereof.
[0096] The term “computer program” refers to a program,
software, a software application, an app, a module, a soft-
ware module, a script, or code. The computer program can
be written in any form of programming language, including
compiled, interpreted, declarative, or procedural languages,
or combinations thereof. The computer program can be
deployed in any form, including as a standalone program or
as a module, component, subroutine, or other unit suitable
for use in a computing environment. The computer program
can correspond to a file in a file system and can be stored in
a portion of a file that holds other programs or data, such as
one or more scripts stored in a markup language document,
in a single file dedicated to the program in question, or in
multiple coordinated files, such as files that store one or
more modules, sub programs, or portions of code. The
computer program can be executed on one computer or on
multiple computers that are located at one site or distributed
across multiple sites and interconnected by a data commu-
nication network.

[0097] The term “database” refers to any collection of
data. The data can be unstructured or structured in any
manner. The data can be stored on one or more storage
devices in one or more locations. For example, an index
database can include multiple collections of data, each of
which may be organized and accessed differently.

[0098] The term “engine” refers to a software-based sys-
tem, subsystem, or process that is programmed to perform
one or more specific functions. The engine can be imple-
mented as one or more software modules or components or
can be installed on one or more computers in one or more
locations. A particular engine can have one or more com-
puters dedicated thereto, or multiple engines can be installed
and running on the same computer or computers.

[0099] The processes and logic flows described herein can
be performed by one or more computers executing one or
more computer programs to perform functions by operating
on input data and generating output data. The processes and
logic flows can also be performed by special purpose logic
circuitry, or by a combination of special purpose logic
circuitry and one or more computers.

[0100] A computer or special purpose logic circuitry
executing the one or more computer programs can include a
central processing unit, including general or special purpose
microprocessors, for performing or executing instructions
and one or more memory devices for storing the instructions
and data. The central processing unit can receive instructions
and data from the one or more memory devices, such as read
only memory, random access memory, or combinations
thereof, and can perform or execute the instructions. The
computer or special purpose logic circuitry can also include,
or be operatively coupled to, one or more storage devices for
storing data, such as magnetic, magneto optical disks, or
optical disks, for receiving data from or transferring data to.
The computer or special purpose logic circuitry can be
embedded in another device, such as a mobile phone, a
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personal digital assistant (PDA), a mobile audio or video
player, a game console, a Global Positioning System (GPS),
or a portable storage device, e.g., a universal serial bus
(USB) flash drive, as examples.

[0101] Computer readable media suitable for storing the
one or more computer programs can include any form of
volatile or non-volatile memory, media, or memory devices.
Examples include semiconductor memory devices, e.g.,
EPROM, EEPROM, or flash memory devices, magnetic
disks, e.g., internal hard disks or removable disks, magneto
optical disks, CD-ROM disks, DVD-ROM disks, or com-
binations thereof.

[0102] Aspects of the disclosure can be implemented in a
computing system that includes a back end component, e.g.,
as a data server, a middleware component, e.g., an applica-
tion server, or a front end component, e.g., a client computer
having a graphical user interface, a web browser, or an app,
or any combination thereof. The components of the system
can be interconnected by any form or medium of digital data
communication, such as a communication network.
Examples of communication networks include a local area
network (LAN) and a wide area network (WAN), e.g., the
Internet.

[0103] The computing system can include clients and
servers. A client and server can be remote from each other
and interact through a communication network. The rela-
tionship of client and server arises by virtue of the computer
programs running on the respective computers and having a
client-server relationship to each other. For example, a
server can transmit data, e.g., an HTML page, to a client
device, e.g., for purposes of displaying data to and receiving
user input from a user interacting with the client device.
Data generated at the client device, e.g., a result of the user
interaction, can be received at the server from the client
device.

[0104] Unless otherwise stated, the foregoing alternative
examples are not mutually exclusive, but may be imple-
mented in various combinations to achieve unique advan-
tages. As these and other variations and combinations of the
features discussed above can be utilized without departing
from the subject matter defined by the claims, the foregoing
description of the embodiments should be taken by way of
illustration rather than by way of limitation of the subject
matter defined by the claims. In addition, the provision of the
examples described herein, as well as clauses phrased as
“such as,” “including” and the like, should not be interpreted
as limiting the subject matter of the claims to the specific
examples; rather, the examples are intended to illustrate only
one of many possible embodiments. Further, the same
reference numbers in different drawings can identify the
same or similar elements.

1. A computer-implemented method for time-series fore-
casting, comprising:

encoding, with an encoder, multiple steps of observations
of non-stationary time-series events in a lookback
window into corresponding measurement vectors;

applying, with one or more processors, predefined mea-
surement functions with learned coefficients to the
measurement vectors;

determining, with the one or more processors based on
analysis of the observations, Koopman operators;

generating, with the one or more processors, a forecast
vector based on the measurement vectors and Koopman
operators; and

providing, with the one or more processors a forecast for
output based on the forecast vector.
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2. The method of claim 1, further comprising:

computing a latent matrix in which each measurement

vector is a different linear transformation of a respec-
tive observation at a corresponding time step; and
applying the measurement functions to the latent matrix.

3. The method of claim 1, further comprising: reconstruct-
ing, using a decoder, observations from the forecast vector.

4. The method of claim 3, wherein the encoder and the
decoder are any deep neural network architecture including
multi-layer perceptron.

5. The method of claim 1 wherein the predefined mea-
surement functions contain at least one of polynomials,
exponential functions, trigonometric functions, or other
interaction functions.

6. The method of claim 1, wherein the predefined mea-
surement functions impose inductive biases into the fore-
cast.

7. The method of claim 1, wherein the encoder approxi-
mates parameters of the measurement functions without
directly learning non-stationary characteristics.

8. The method of claim 1, wherein the Koopman operator
is a finite matrix using a global operator and a local operator
to model propagation of dynamics.

9. The method of claim 8, further comprising applying the
global operator and the local operator recursively to mea-
surements to obtain predictions on a lookback window.

10. The method of claim 9, further comprising adjusting
the Koopman operator based on differences between the
predictions on the lookback window and a ground truth.

11. A computer-implemented system for time-series fore-
casting, comprising:

memory; and

one or more processors in communication with the

memory and configured to:

encode, using an encoder, multiple steps of observa-
tions of non-stationary time-series events in a look-
back window into corresponding measurement vec-
tors;

apply predefined measurement functions with learned
coeflicients to the measurement vectors;

determine, based on analysis of the observations,
Koopman operators;

generate a forecast vector based on the measurement
vectors and Koopman operators; and

provide a forecast for output based on the forecast
vector.

12. The system of claim 11, wherein generating the
forecast vector comprises:

computing a latent matrix in which every vector is a linear

transformation of a respective observation at a corre-
sponding time step; and

applying the measurement functions to the latent matrix.

13. The system of claim 12, wherein generating the
forecast vector further comprises reconstructing, using a
decoder, observations from the forecast vector.

14. The system of claim 13, wherein the encoder and the
decoder are any deep neural network architecture including
multi-layer perceptron.

15. The system of claim 11 wherein the predefined
measurement functions contain at least one of polynomials,
exponential functions, trigonometric functions, or other
interaction functions.

16. The system of claim 11, wherein the predefined
measurement functions impose inductive biases into the
forecast.

17. The system of claim 11, wherein the encoder approxi-
mates parameters of the measurement functions without
directly learning non-stationary characteristics.
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18. The system of claim 11, wherein the Koopman opera-
tor is a finite matrix using a global operator and a local
operator to model propagation of dynamics.

19. The system of claim 18, further comprising applying
the global operator and the local operator recursively to
measurements to obtain predictions on a lookback window.

20. The system of claim 19, further comprising adjusting
the Koopman operator based on differences between the
predictions on the lookback window and ground truth.

21. A non-transitory computer-readable medium storing
instructions executable by one or more processors for per-
forming a method, comprising:

encoding multiple steps of observations of non-stationary

time-series events in a lookback window into corre-
sponding measurement vectors;

applying predefined measurement functions with learned

coeflicients to the measurement vectors;

determining, based on analysis of the observations, Koop-

man operators;

generating a forecast vector based on the measurement

vectors and Koopman operators; and

providing a forecast for output based on the forecast

vector.
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