a2 United States Patent

Doubchak et al.

US011750221B1

US 11,750,221 B1
Sep. 5, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(1)

(52)

(58)

ENCODING AND DECODING OF DATA
USING GENERALIZED LDPC CODES

Applicant: SAMSUNG ELECTRONICS CO.,
LTD., Suwon-si (KR)

Inventors: Ariel Doubchak, Herzliya (IL); Avner

Dor, Kfar Saba (IL); Yaron Shany,

Kfar Saba (IL); Tal Philesof, Givatayim

(IL); Yoav Shereshevski, Tel-Aviv (IL);

Amit Berman, Binyamina (IL)

SAMSUNG ELECTRONICS CO.,
LTD., Suwon-si (KR)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 17/706,179

Filed: Mar. 28, 2022

Int. CL.

GO6F 11/00 (2006.01)

(56) References Cited

U.S. PATENT DOCUMENTS

2005/0243911 A1* 11/2005 Kwon HO4N 19/137
375/240.18
2005/0243912 ALl* 112005 Kwon HO4N 19/86
375/240.18
2005/0243913 Al* 112005 Kwon ... HO4N 19/159
375/240.03
2005/0243914 Al* 112005 Kwon HO4N 19/86
375/240.18
(Continued)

FOREIGN PATENT DOCUMENTS

CN
WO

112332869
WO-2021062289 Al *

2/2021

4/2021 HO4N 19/117

OTHER PUBLICATIONS

R. Michael Tanner, “A Recursive Approach to Low Complexity
Codes”, IEEE Transactions of Information Theory, vol. IT 27, No.
S, Sep. 1981.

(Continued)

Primary Examiner — Samir W Rizk
(74) Attorney, Agent, or Firm — F. Chau & Associates,

GO6F 11/30
G08C 25/00
HO3M 13/00
HO4L 1700

HO3M 13/11

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

LLC

&7

ABSTRACT

A method of correcting data stored in a memory device

U.S. CL
CPC HO3M 13/1174 (2013.01); HO3M 13/1108
(2013.01); HO3M 13/616 (2013.01)

Field of Classification Search
CPC HO3M 13/1174; HO3M 13/616; HO3M
13/1108

See application file for complete search history.

I

hidden erooy rows:
row's with errors with no
corrections
visible error rows: rows with
corractions with remaining
arrors after correction
residual rows: rows with
corrections without errors
after the corrections

Suiporap-sod

e

sdeus JoslR v K I

includes: applying an iterative decoder to the data; deter-
mining a total number of rows in first data the decoder
attempted to correct; estimating first visible error rows
among the total number that continue to have an error after
the attempt; estimating residual error rows among the total
number that no longer have an error after the attempt;
determining second visible error rows in second data of the

(Continued)

32

hidden error sows:
fOWs With ereors with no
corrections
visible error rows: rows with
corrections with remaining
errors after correction
residual rows: rows with
corrections without ereors
after the corrections

2

nz-h

Buipuoap-isod

adeys soua p K 24

51 i2
hidden error rows X >< X >< ><x ;’< >< >< hidden error rows
X XA Q] LXK XX
visible error rows| 2 Y X Q AR R AL T cibte ervor rows
X

residual rows

N
AN residual rows

US 11,750,221 B1
Page 2

decoder that continue to have an error by permuting indices
of the residual error rows according to a permutation; and
correcting the first data using the first visible error rows.

20 Claims, 16 Drawing Sheets

(56) References Cited
U.S. PATENT DOCUMENTS

2016/0182087 Al 6/2016 Sommer et al.
2017/0170849 Al 6/2017 Bentley et al.

OTHER PUBLICATIONS

Pascal O. Vontobel, et al., “Graph-Cover Decoding and Finite-
Length Analysis of Message-Passing Iterative Decoding of LDPC
Codes”, Submitted to IEEE Transactions on Information Theory,
Dec. 20, 2005.

Ramesh Mahendra Pyndiah, “Near-Optimum Decoding of Product
Codes: Block Turbo Codes”, IEEE Transactions on Communica-
tions, vol. 46, No. 8, Aug. 1998.

Christian Hager et al., “Approaching Miscorrection-Free Perform-
ing of Product Codes With Anchor Decoding”, IEEE Transactions
on Communications, vol. 66, No. 7, Jul. 2018.

* cited by examiner

US 11,750,221 B1

Sheet 1 of 16

Sep. 5, 2023

U.S. Patent

SCT NAN

N

(141

¥3ITIOYINOD

$S3D0V

4138 /
[543
FOVAUILNI
1SOH
nmﬁ\
YITIOYINOD AYOWIN
0t 7

01T
437T1041INOD
1SOH

US 11,750,221 B1

Sheet 2 of 16

Sep. 5, 2023

U.S. Patent

TFF 8¢ 49p02ap 103
11¢ k
J34hq aded
N vivd
A 4 . <S> %07 Jeyng
L (¢ 43p03ua 7D
] . 0T¢ yaay \ Viva/4aav/and
eJlie AJOWIBSIN p— 20?7 4/1sng >
0TT 49}{043u00 Y/M ﬁ -
QiND mmm\

91 J

71 /

US 11,750,221 B1

Sheet 3 of 16

Sep. 5, 2023

U.S. Patent

9771 INAN

d¢ 9l

8T¢ 43p0d3p 203

Tz 42p0dud 333

|

o0

C1 40ivy31d00V

&>

oct

oct

mm_,_.NOE.Zme rel
STV JOV4d3LNI
1SOH
mmﬂ\
d3TT0HLNOD AHOWIIN

A

011
d3TIOHLNOD
1SOH

US 11,750,221 B1

¢ 5l

Zf i
_PIOM TUIBH Popuaika 1] PAOM "LIBH DOPUSIKD

DIOM “WIBH DIPUMKR DJOM “LIBH DOpUIIXD

Sheet 4 of 16

Sep. 5, 2023

P10 UIRH papudixe ¢ IO "WEH Papuoie |
u
___________ DIOM WIEH popuaixe " BI0R, WeH pspuae
DIOM “UIRH PRpUBIXD DIOM WIEH PIpUSIXS

U.S. Patent

U.S. Patent Sep. 5, 2023 Sheet 5 of 16 US 11,750,221 B1

F
—, ﬁf"f
; ; 4
o fff
k /q. .{j'“ :
-\
=N <
ﬁ, .,/f L_D
LL

US 11,750,221 B1

Sheet 6 of 16

Sep. 5, 2023

U.S. Patent

S 'Ol

510419 3nd1N0 JO UOIBSIDIU] SHIeW X
| AQ payJew uonoe s If

-

O Aq payJew uonoe s,z

US 11,750,221 B1

Sheet 7 of 16

Sep. 5, 2023

post-decoding
n2 X 4 error shape

U.S. Patent

SMOJ [ENPISOI SAOJ {BNPISSL

{..xx..m....ttaMJVA x kN
TN 5 O WK | smod souta BjgisiA

SMO1 J0LB USPPIY PO OO X VA X VA SMOI JOLIB UIPPIY

e

SMOJ J04I3 YIS |

SR
3

v

P

post-decoding

1 X 4 error shape

Zf 3]
SUDIDBIIOY Y] JaYE SLOITI3LI0D QU3 Jaye
SI04Q INOYUM SUOITIDLI00 SI04D NOUIIM SUDIIIDLIOT
UM SAMOS ISMOL {enpisal L3I SA0) SSAMOS {BNPISI
/T UGTOSI0T ISYE SI01I3 ORI N0y IBSesona
FUILIELWIS YIM SUQII8LI00 FuuBLURE YW SU0IIDR L0
UM SMOT ISMOJ 10413 3JTISIA YW SMOT ISMOL 10459 DJUISIA
LIRENGE) SUGII 331103
DU YN SI00B Y3M smos {2y T OU YIM SI0LS UM SMOS
\ 'SMOI 10413 USPPIY SAOL 10418 UBPPIY
4} L)

US 11,750,221 B1

Sheet 8 of 16

Sep. 5, 2023

U.S. Patent

£ 'Ol

“(S)MO01 J011
UOPPIH 1811 9y} PUB SMOI JOIID S[qISIA JSIJ 9Y) JO SUONRIO] oy} Juisn vIep ISIL) 94} 1001100

LOL

BJEP PUODAS Y} JO SMOI JOIID
9]qQISIA PUODAS Y} WOLJ BILP }SIIJ UIYIIA SAMOJ JOIID USPPIH 1SI JO UOIIRI0] SUILLId_

90"

N

vonemuwiad e 03 Suipiodoe
SMOI [BNPISAL UISOYD 9Y3 JO S}IQ PaI0a11od Jo saoipul Sunnuriad Aq Bjep puodss umgim
SUOL}BOO] PUODSS PUEB SMOI J0LID [BNPISAI PUB J[QISIA JO J2QUUNU PUOIIS JUIUIULINIA(]

BIEP 1SIIJ/M SUONBOO] 1SIIJ PUB SMOIJ JOLIQ [eNPISAI Pue J[QISIA JO I0qUINU ISIIJ FUISOOY))

T

1D JSI11J UIY)IM SMOI J0LID USPPIH JO Joquinu }siij SUIS00y)

00L

elep Pa3daLIod IndinQ é8uneyjso

ou

10L

US 11,750,221 B1

Sheet 9 of 16

Sep. 5, 2023

U.S. Patent

8'Old

Joyjour auo
yim 9213e jerp suonorpard oyl w0l SMOI 10110 USPPLY 1S11) O} JO UO1IBO0] 9Y) QUIULINR(]

mow\\

T

SMOI J01IQ J[qISIA SUIUIBWAL 2} JO YOBD 10J £(R-108 sdais jeadoy

vog”

A

SMOI JOLID USPPIH 1SI1J 9U} JO SIXAPUL MOI o3 JO suonorpaid
d1eroudd o1 uoneInwidd 9SIdAUL oy JuIsn vlep 18I OU} UI S1q Puodds 03 sq 1811y oy depy

N
€08

(s)10100A

H#-1yS1om 01 Wy 910[duiod 03 10J09A €

-JS1aM oed Jo 11q 1811} € dif} 01 19p0oap

PIOMIPOD PI[BA © ST JOJOIA H-JYTIom AJLIOA SUIIIRE PIPUIIX PAUILIOYS © I8

\

BJRD 1SI1] O] JO SMOI JOLI J[qISIA | BIEp 1SIL OIf) JO SMOI JOLID 3](ISIA JSI1) oY)
1SI1J 913 SuIsn ($)101024 $-1y31om 0} Blep Jursn ($)103199A ¢-1431om 0} BIBD PUOIIS
PU0I3S Y} UT MOI 101D 9[qIsiA g ojo]duwio)) A} UT MOJ JOLID A[GISIA & 930]dwio)

US 11,750,221 B1

Sheet 10 of 16

Sep. 5, 2023

U.S. Patent

69l

BIEP 18I S} 1991100 0] JI9POJIP ALRISI oY) 03 SYTT Y} pue eiep 1siyy oy Ajddy

€06

opnjuSeuwt 1ysiy v
3urAey anjeA © 0] Bep ISI1J Y3 Ul MOL SUIUTBUDI OB JO Y11 Y} JO opmusews Suisedouf

20

Hom\\

T

anjeA () & 01 BIBP 1SJ1J AU} UI MOI JOLID 9[qISIA PUB UOPPIY PALJIIUIPL YO8 JO YT Ul 19S

US 11,750,221 B1

Sheet 11 of 16

Sep. 5, 2023

U.S. Patent

L001

019

UOIBWIISA PI[RA 9] WO PAONpap SOIRUIPIOOd 3y SuIsn vIep Sy} 1091100

 UOIBWIST plie
o ¢UONEBWIST PijeA oN

mOOH\\ n

0L da1s

SOA

20/ da3s ¢ MOJ duies 03 paddew $31eUIpI00d i

MOI JOLIO 9QISIA PIID]as Yord
JO SIJBUIPIOOD UMOLY € JU) WO 9JBUIPIOOD i B 90NPIP 0] Jopodd(] Surwiuel e Suis))

001

A

SOJRUIPIOOD
UMOWY € SABY JRY} BIRP ISIIJ O} JO SPIOMOPOD {-1YBIom PuB SMOJ JOIID J[qISIA unooes

€001

N\

BIBP PUOOIS
33 JO SMOI UOPPIY O JO U0 0} puodsaiiod 0] vjep puodas ayl JO SMOJ 3} JO U0 IS00Y)D)

001

SMOJ S104I9 J[ISIA PUODIS oY UO PAydudlle SUONIALIOD JO IdquInu pue
‘SMOJ SIOLID JGISIA PUODAS JO JOQUINU ‘SMOI JOLIO Q[qISIA 1811} oy} uo paydurone SuordoLI0d
IOQUINY ‘SMOI 10110 J[GISIA ISIIJ JO JOQUINU ‘| [UO PIseq BJep PUOOIS UMM TH SUILLIL(

1001

U.S. Patent Sep. 5, 2023 Sheet 12 of 16 US 11,750,221 B1

-:%-:k" SRR

J2

FIG.11A

1

US 11,750,221 B1

Sheet 13 of 16

Sep. 5, 2023

U.S. Patent

d11'5l4

US 11,750,221 B1

Sheet 14 of 16

Sep. 5, 2023

U.S. Patent

¢l 'Ol

A

.
o)

Noirssmemeimor e o
.

idge)

L

P |
WA &

US 11,750,221 B1

Sheet 15 of 16

Sep. 5, 2023

U.S. Patent

€T D4
IDYAHIING DNILOTNNOD = AHATO NOLEYDINIININGD
I vyl -
INAT DNIATIANS HIMO - HOSNIS
Oivl o5kt 7
HINYIdS IHAZO LOGNE HISN
ogry oerL
AYTARI0 IIATC ONMINLAYD TOVIE
oospL 0t *
¢ >
e
AN |10 ouls) | | | {HomeEEooy | -+ sioan
o HITIOHLNDD .
H00Et ed AHOWNIN
AT
. BOOEL 7
AN THID OHLS IHOD N
BnzeL BOLEL pitL
BangL oL

{00

US 11,750,221 B1

Sheet 16 of 16

Sep. 5, 2023

U.S. Patent

US 11,750,221 Bl

1
ENCODING AND DECODING OF DATA
USING GENERALIZED LDPC CODES

TECHNICAL FIELD

Exemplary embodiments of the present inventive concept
relate to encoding and decoding of data, and more particu-
larly to encoding and decoding of data using generalized
low-density parity check codes for storage on a memory
device.

DISCUSSION OF RELATED ART

Both low-density parity-check (LDPC) codes and turbo
product codes (TPCs) are known for their excellent error-
correction capability and their low encoding/decoding com-
plexity. Even better error-correction capabilities can be
achieved by generalized LDPC (GLDPC) codes, where local
check nodes in a tanner graph are allowed to be arbitrary, as
opposed to single-parity checks in “plain” LDPC codes.

In coding theory, a Hamming code is a linear error-
correcting code that encodes data with parity bits. For
example, a Hamming(7,4) code encodes four bits of data
into seven bits by adding three parity bits. GLDPC codes
based on Hamming codes provide an excellent combination
ot'high raw bit-error rate (rBER) coverage and low encoding
and decoding complexity. Due to a typical error floor, the
high rBER coverage of these codes is attainable only for a
moderate target frame error rate (FER) in the order of 1075,
Here, the term “error floor” refers to a situation in which
below a certain FER value, it is very difficult to decrease the
FER. While a moderate FER is sufficient from some appli-
cations, this is not the case for nonvolatile memories such as
NAND flash memories, where a very low FER on the order
of 107! is typically required. Thus, data cannot be encoded
for storage on NAND flash memories using GLDPC codes
based on Hamming codes.

SUMMARY

According to an exemplary embodiment of the disclosure,
a method of processing a request by a host to access data
stored in a memory device is provided. The method includes
reading data from the memory device in response to the
request; applying an iterative decoder to the read data;
performing an error correction upon determining that the
iterative decoder is oscillating; and outputting the corrected
data to the host. The error correction includes determining a
total number of rows in first data the decoder attempted to
correct; estimating first visible error rows among the total
number that continue to have an error after the attempt;
estimating residual error rows among the total number that
no longer have an error after the attempt; determining
second visible error rows in second data of the decoder that
continue to have an error by permuting indices of the
residual error rows according to a permutation; determining
whether zero or more first hidden error rows are present in
the first data from the second visible error rows, where each
hidden error row has an error and is a valid Hamming
codeword; and correcting the first data using the first visible
error rows and the determined number of first hidden error
rOws.

According to an exemplary embodiment of the disclosure,
a memory system including a memory device and a con-
troller is provided. The controller configured to read data
from the memory device. The controller includes an iterative
decoder. The controller is configured to apply the iterative

10

15

20

25

30

40

45

50

55

60

65

2

decoder to the read data and determine whether the iterative
decoder is oscillating. The controller is configured to deter-
mine a total number of rows in first data the decoder
attempted to correct, estimate residual error rows among the
total number that no longer have an error after the attempt,
determine second visible error rows in second data of the
decoder that continue to have an error by permuting indices
of the residual error rows according to a permutation,
determine whether zero or more first hidden error rows are
present in the first data from the second visible error rows,
and correct the first data using the first visible error rows and
the determined number of first hidden error rows when it is
determined that the iterative decoder is oscillating. Each
hidden error row has an error and is a valid Hamming
codeword.

According to an exemplary embodiment of the disclosure,
a memory device is provided that includes a memory array,
an iterative decoder, and a logic circuit configured to apply
the iterative decoder to decode data read from the memory
array. The logic circuit is configured to determine a total
number of rows in first data the decoder attempted to correct,
estimate residual error rows among the total number that no
longer have an error after the attempt, determine second
visible error rows in second data of the decoder that continue
to have an error by permuting indices of the residual error
rows according to a permutation, and correct the first data
using the first visible error rows when the iterative decoder
is repeatedly changing between two states during the
decode.

According to an exemplary embodiment of the disclosure,
a method of correcting data stored in a memory device is
provided. The method includes: applying an iterative
decoder to the data; determining a total number of rows in
first data the decoder attempted to correct; estimating first
visible error rows among the total number that continue to
have an error after the attempt; estimating residual error
rows among the total number that no longer have an error
after the attempt; determining second visible error rows in
second data of the decoder that continue to have an error by
permuting indices of the residual error rows according to a
permutation; and correcting the first data using the first
visible error rows.

BRIEF DESCRIPTION OF THE DRAWINGS

The present inventive concept will become more apparent
by describing in detail exemplary embodiments thereof with
reference to the attached drawings, in which:

FIG. 1 is a block diagram illustrating a memory system in
accordance with an exemplary embodiment of the present
inventive concept;

FIG. 2A is a block diagram of a controller and a memory
device of FIG. 1 according to an exemplary embodiment of
the inventive concept;

FIG. 2B is a block diagram illustrating a memory system
in accordance with an exemplary embodiment of the present
inventive concept;

FIG. 3 illustrates a GLDPC code based on an extended
Hamming code;

FIG. 4 illustrates the line-intersection property;

FIG. 5 illustrates an example of a pseudo-error,

FIG. 6 illustrates different types of rows in a pseudo-error;

FIG. 7 illustrates detecting and correcting pseudo-errors
according to an embodiment of the disclosure;

FIG. 8 illustrates a method of determining a location of
Hidden error rows according to an embodiment of the
disclosure that may be used in the method of FIG. 7;

US 11,750,221 Bl

3

FIG. 9 illustrates a method of correcting data using
estimated locations of visible error rows and Hidden error
rows, according to an embodiment of the disclosure;

FIG. 10 illustrated another method of correcting data
using estimated locations of visible error rows and Hidden
error rows, according to an embodiment of the disclosure;

FIG. 11A and FIG. 11B illustrate steps used to deduce
coordinates of errors according to an embodiment of the
disclosure;

FIG. 12 is a block diagram illustrating a solid state drive
system according to an exemplary embodiment of the inven-
tive concept.

FIG. 13 is a block diagram of a system to which is a
storage device is applied according to an exemplary embodi-
ment of the inventive concept.

FIG. 14 is a block diagram of a data center to which a
memory device is applied, according to an exemplary
embodiment of the inventive concept.

DETAILED DESCRIPTION

Hereinafter, exemplary embodiments of the inventive
concept in conjunction with accompanying drawings will be
described. Below, details, such as detailed configurations
and structures, are provided to aid a reader in understanding
embodiments of the inventive concept. Therefore, embodi-
ments described herein may be variously changed or modi-
fied without departing from embodiments of the inventive
concept.

Modules in the drawings or the following detailed
description may be connected with other modules in addi-
tion to the components described in the detailed description
or illustrated in the drawings. Each connection between the
modules or components may be a connection by communi-
cation or may be a physical connection.

FIG. 1 is a block diagram illustrating a memory system in
accordance with an exemplary embodiment of the inventive
concept.

Referring to FIG. 1, the memory system includes a host
controller 110 and a memory controller 120 (e.g., a solid
state disk (SSD) controller).

The host controller 110 controls read and write operations
of the memory controller 120 and may correspond to a
central processing unit (CPU), for example. The memory
controller 120 stores data when performing a write operation
and outputs stored data when performing a read operation
under the control of the host controller 110. The memory
controller 120 includes a host interface 121 and an access
controller 125. The host interface 121 and the access con-
troller 125 may be connected to one another via an internal
bus 127. The access controller 125 is configured to interface
with a nonvolatile memory device 126. In an exemplary
embodiment, the nonvolatile memory device 126 is imple-
mented by a flash memory device. In an alternate embodi-
ment, the nonvolatile memory device 126 is replaced with a
volatile memory but is described herein as nonvolatile for
ease of discussion.

The host interface 121 may be connected with a host (e.g.,
see 4100 in FIG. 12) via any one of a Parallel AT Attachment
(PATA) bus and Serial AT Attachment (SATA) bus. The host
interface 121 may provide an interface with the access
controller 125 according to the protocol of a host. The host
interface 121 may communicate with the host using Uni-
versal Serial Bus (USB), Small Computer System Interface
(SCSI), PCI express, ATA, Parallel ATA (PATA), Serial ATA
(SATA), Serial Attached SCSI (SAS), Universal Flash Stor-
age (UFS), or non-volatile memory express (NVMe). The

5

10

15

20

25

30

35

40

45

50

55

60

65

4

host interface 121 may perform a disk emulation function
which enables the host to recognize the controller 125 as a
hard disk drive (HDD). In an exemplary embodiment, the
access controller 125 is configured to interface with the
nonvolatile memory 126 or a dynamic random-access
memory (DRAM) using a Double data rate (DDR) protocol.

The access controller 125 is configured to write data to the
memory device 126, and read data from the memory device
126. The memory device 126 may include one or more
non-volatile memory devices.

The host controller 110 exchanges signals with the
memory controller 120 through the host interface 121. The
access controller 125 controls an access operation on a
memory in which data will be stored within the memory
device 126 when a write operation is performed and controls
an access operation on a memory in which data to be
outputted is stored within the memory device 126 when a
read operation is performed. The memory device 126 stores
data when a write operation is performed and outputs stored
data when a read operation is performed. The access con-
troller 125 and the memory device 126 communicate with
one another through a data channel 130. While only a single
memory device 126 is illustrated in FIG. 1, the inventive
concept is not limited thereto. For example, the access
controller 125 may communicate with multiple memory
devices across multiple channels or with multiple memory
devices across a single channel.

FIG. 2A is a block diagram of the access controller 125
and the memory device 126 of FIG. 1 according to an
exemplary embodiment of the inventive concept. The read
and write operations are performed in response to a com-
mand CMD, an address ADDR. The read operation reads
data DATA from the memory device 126 and the write
operation writes the data DATA to the memory device 126.
The command CMD, the address ADDR, and the data DATA
to write may be received from a host, the read data DATA
may be output to the host.

Referring to FIG. 2A, the memory device 126 includes a
memory array 210, and may include a page buffer 211. The
access controller 125 includes a bus interface 202 (e.g., a bus
controller or bus interface circuit), a buffer 204, and a
write/read controller 220. The write/read controller 220
includes an error correction code (ECC) encoder 222 (e.g.,
an encoding circuit or a computer program) and an ECC
decoder 228 (e.g., a decoding circuit or a computer pro-
gram). In an exemplary embodiment, the ECC encoder 222
encodes data using a GLDPC code based on a Hamming
code. In exemplary embodiment, the ECC decoder 228 is
configured to decode GLDPC codes or codewords to recover
the data. A decoding of the ECC decoder 228 may be
iterative such that it performs a first decoding on input data
in a first view (e.g., a first matrix of numbers), a permutation
is performed on the first view to generate a second view
(e.g., a second matrix of numbers), a second decoding is
performed on the second view, and continues in this manner
for a certain number of iterations until all errors have been
corrected or until some number of iterations. While FIG. 2A
illustrates that the ECC decoder 228 is located in the
controller 125, in an alternate embodiment, the ECC decoder
228 is located within the memory device 126.

FIG. 2B is a block diagram illustrating a memory system
in accordance with another embodiment of the inventive
concept. FIG. 2B is similar to FIG. 1, but it additionally
includes an accelerator 128 connected to the memory con-
troller 120. For example, the accelerator 128 may be imple-
mented by a field programmable gate array (FPGA). The
accelerator 128 includes the ECC encoder 222 and the ECC

US 11,750,221 Bl

5

decoder 228 discussed above with respect to FIG. 2A. The
accelerator 128 may receive read data from the memory
device 126 through the memory controller 120. The ECC
decoder 228 of the accelerator 128 may be configured to
decode GLDPC codes or codewords to recover the read data.
The accelerator 128 may transmit decoded read data to the
host controller 110 through the memory controller 120. The
accelerator 128 may receive write data from the host con-
troller 110 through the memory controller 120. The ECC
encoder 222 of the accelerator 128 may be configured to
encode the write data using a GLDPC code based on a
Hamming code. The accelerator 128 may send the encoded
write data to the memory device 126 through the memory
controller 120.

Herein, the term [n, k, d] code refers to a linear binary
code of length n, dimension k, and a minimum Hamming
distance d. Also, the term [n, k] code is an [n, k, d] code for
some d.

Hamming Codes

A Hamming code Ham is a [2"-1, 2"-m-1, 3] code
defined by a mx(2™-1) parity-check matrix whose 2"'-1
columns are all non-zero binary vectors of length m, where
m is some positive integer.

Extended Hamming Codes

An extended Hamming code eHam is the [2™, 2" -m-1, 4]
code obtained by adjoining a parity bit to all codewords of
the Hamming code Ham.

Shortening

If C is an [n, k] code and IC{1, . . ., n}, then the code
obtained by shortening C on I is obtained by first taking only
the codewords (¢, . . ., ¢,) of C with ¢,=0 for all i€], and
then deleting all coordinates from I (all of them zero
coordinates). The resulting code has length n—II| and dimen-
sion at least k—I1I. The dimension equals k-1l if I is a subset
of the information part in systematic encoding.

Shortened eH-Codes

C is a shortened eH-code if it is obtained by shortening
eHam on some subset I.
eH-GLDPC Codes

For positive integers n=2" and N, let C, . be some fixed
shortened eH-code of length n, and let 7 be a permutation on
the coordinates of Nxn matrices. The eH-GLDPC code
C o F,™" is defined as the set of all Nxn binary matrices M
that satisfy the following conditions:

1. All the rows of M are in C,,,.

2. All the rows of tM are in C, ., where M is the matrix

whose (i'j')-th entry is M, ; iff (i'j")=n(i))
The above conditions 1 and 2 refer to two different “views”
of the same matrix M: In the first view (hereinafter referred
to as “J,”), M itself is referred to, while in the second view
(hereinafter referred to as “J,”, the permutated version M
is referred to.

FIG. 3 illustrates the definition of eH-GLDPC codes. The
decoding of eH-LDPC codes is performed iteratively, typi-
cally in the following scheduling: decode rows in J,—apply
n—decode rows in J,—apply 7" This iterative process
is typically continued until all rows of both J, and J, are
indeed shortened-eH codewords, or until a predefined maxi-
mum number of iterations is reached. It is assumed that the
permutation x satisfies Property 1 defined ahead. This prop-
erty assures that the girth of the related Tanner graph is at
least 8, and hence that the minimum distance of the code is
at least 16.

Property 1 (Line-Intersection Property)

The set of indices obtained by applying a permutation 7t
to a row intersects each row at most once. Here, a row stands
for a set of indices of the form {(i, 1), (i, 2), . . ., (i, n)} for

10

15

20

25

30

35

40

45

50

55

60

65

6

some iE{1, . . . , N}. It may be verified that 7 has the
line-intersection property if and only if the inverse permu-
tation ™' has the line-intersection property. Further, the
property requires Nzn. The line-intersection property is
illustrated in FIG. 4, which shows a row in J, is permuted by
7t to the diagonal line, and this line intersects each J, row (the
horizontal lines) at most once.

Pseudo-Errors

A certain type of error (hereinafter referred to as “Pseudo-
errors”) is the reason for the error floor in eH-GLDPC codes.
Pseudo-errors can be thought of as a special case of near-
codewords/trapping sets, i.e., low-weight errors that violate
only a very small number of local constrains. They are
special in the sense that they result in oscillations between
J, and J,.

FIG. 5 is an example of decoder oscillations due to a
pseudo-error. An input to the decoder 228 is a matrix defined
by the left-most pattern of 16 dots in FIG. 5. Here, each dot
represents a “1” in an Nxn matrix, and the dots are aligned
for presentation convenience. For example, in the actual
input pattern, arbitrary row permutations are allowed. The
top row of 4 dots forms a shortened-eH codeword, while
each of the three triple-dot rows can be completed to a
weight-4 shortened-eH codeword (that is, the “1” complet-
ing to a weight-4 extended Hamming codeword does not fall
in the shortened indices). The input to the decoder may also
include soft reliability information on top of the “hard” bits
such as log-likelihood ratios LLRs). With the above input,
the decoder 228 is not able to correct the first row since it is
already a shortened-eH codeword, corrects the second
through fourth weight-3 rows to the nearest weight-4 code-
words (e.g., by flipping a 0 bit to 1), and corrects the fifth
through seventh weight-1 rows to an all-zero codeword.
After an action of the decoder 228, the remaining pattern
will be the 4x4 top pattern below the title “J,” in the figure,
consisting of 13 X’s (representing untouched “1”’s from the
input pattern), and 3 O’s, representing “1”’s created by
decoding J,. It is assumed that the three “1”s in the 0’s
appearing after a decoder action on J, are mapped back to
three separate rows in J,, then we are back to the original
situation in J,, and it is clear that the decoder 228 will
proceed by oscillating between J, and J, as described above.

By definition, a pseudo-error is an error pattern (say, at J,)
that results in decoder oscillations. Pseudo-errors for which
the post-decoding patterns at J, (i=1, 2) have only rows of
weight 4 are considered herein. The pre-decoding pseudo-
error at J; (=1, 2) as illustrated in FIG. 6 may be divided into
h, hidden error rows, visible error rows, and residual error
rows pi. The total number of rows including errors after J,’s
decoder action is denoted n,. The hidden error rows h, at J;
are shortened-eH codewords, and therefore “invisible” to
J;’s decoder. In an embodiment, a hidden error row h, is data
with 4 bit errors, is a valid shortened-eH codeword, and the
decoder is not able detect errors in a valid shortened-eH
codeword. There are n,~h; visible error rows, that is, rows in
which the decoder 228 acts on I, but with remaining errors
after the decoding. There are pi residual error rows, that is,
rows in which the decoder 228 acts on J, appropriately and
corrects all errors.

In an embodiment, pseudo-errors with two properties are
considered: 1) in visible-error rows, there are only wrong
corrections (e.g., all bits flipped by the decoder 228 should
not have been flipped); and ii) all visible-error (wrong)
corrections are mapped through m or =" (depending on
whether 1 equals 1 or 2, respectively) to rows without an
“X”, where an X marks an error present both before and after
the decoding.

US 11,750,221 Bl

7

FIG. 7 illustrates a method of detecting and correcting
pseudo-errors according to an embodiment of the disclosure.

The method of FIG. 7 includes determining whether the
iterative decoder is oscillating (step 701). In an embodiment,
the decoder 228 of FIG. 2A or FIG. 2B (e.g., an iterative
decoder) is determined to be oscillating when it repeatedly
changes between the same two states. For example, if the
decoder 228 could be considered to be oscillating if it
reaches a first state where it has flipped bits having first,
third, and fifth positions in a first row of the first data,
continues to a second state where it has flipped bits having
second, fourth, and seventh positions in a first column of the
second data, returns to the first state, etc. For example, the
W/R controller 220 or access controller 125 of FIG. 2A
could determine whether the decoder 228 of FIG. 2A is
oscillating or the accelerator 228 of FIG. 2B could determine
whether the decoder 228 of FIG. 2B is oscillating. If the
decoder 228 is not oscillating and all GLDPC constraints are
satisfied, the output of the decoder 228 may be corrected
data without any errors (step 700). If the decoder 228 is not
oscillating and all GLDPC constrains are not satisfied, the
data could not be corrected, and the method may exit. It is
assumed that during the oscillating, the decoder 228 records
the bits it has corrected in a first view J; and their locations
within the rows of data operated on (e.g., first recorded
information) and that the decoder 228 records the bits it has
corrected in a second view J, and their locations within the
rows of data operated on (e.g., second recorded informa-
tion). A location of a bit may indicate the row the bit is
located within and a column within that row. For example,
the recorded information may be temporarily stored in buffer
204. The first recorded information may indicate how many
rows of the first view J; the decoder 228 attempted to correct
and the second recorded information may indicate how
many rows of the second view J, the decoder 228 attempted
to correct.

The method of FIG. 7 includes choosing a first number
(e.g., Hy) of hidden error rows within first data (e.g., J;)
operated on by the iterative decoder (e.g., 228) (step 702).
The chosen first number of hidden error rows is a guess. For
example, if the guess assumes there is only 1 hidden error
row, but there are in fact 2 hidden error rows, the guess will
end up being a wrong guess. Thus, the method of FIG. 7
could initially set H, to O in a first iteration, and then to 1 in
a second iteration if the first guess is wrong. For example,
the choosing of the first number could be performed by the
ECC decoder 228.

The method of FIG. 7 further includes choosing a first
number (e.g., K,) of visible error rows and residual error
rows and their locations within the first data (step 703). The
first number of visible error rows is based on the number of
rows of the data that the decoder 228 attempted to correct.
For example, K, could be 1, 2, 3, 4, or 5 if the first recorded
information indicates that bits in 6 rows were flipped by the
decoder as shown under J, in FIG. 6. The chosen first
number of visible error rows is a guess. For example, if the
guess assumes there is only 1 visible error row, but there are
in fact 3 visible error rows, the guess will end up being a
wrong guess. Thus, the method of FIG. 7 could initially set
K, to 1 in a first iteration, and then to 2 in a second iteration
if the first guess is wrong, and then to 3 in a third iteration
if the second guess is wrong, etc. The number of residual
error rows (e.g., p;) within the first data is based on the
chosen number of visible error rows and the number of rows
of the data that the decoder attempted to correct. For
example, the first number of residual error rows may be
calculated by subtracting the chosen first number of visible

30

35

40

45

8

error rows from the total number of corrected rows. For
example, if 3 visible error rows are chosen as having
locations of the second through fourth rows from among 6
corrected rows, then it would be determined that there are 3
residual error rows having locations of the fifth through
seventh rows. For example, the choosing of the first number
of visible error rows and residual error rows and their
locations could be performed by the ECC decoder 228.

The choosing of the number of hidden error rows, the
choosing of the number of visible errors rows and their
locations, and the choosing of the number of residual errors
rows and their locations, may be referred to as selecting
parameters for a scan.

The method of FIG. 7 further includes determining a
second number of visible error rows and their locations (e.g.,
indexes) within second data (e.g., J,) operated on by the
iterative decoder and a second number of residual errors in
the second data and their locations within the second data by
permuting indices of the corrected bits of the chosen residual
rows according to a permutation (e.g., m). The iterative
decoder operating on the first data I, generates the second
data J,. The indices or locations of the touched bits of the
chosen residual rows (i.e., bits the decoder flipped as an
attempt to correct them) are stored in the first record
information created during normal operation of the iterative
decoder 228 operating on J, while oscillating in its attempt
to correct input data. For example, as shown in FIG. 6, the
touched bits in the fifth through seventh rows of J; chosen
as residual error rows map to the third and fourth rows of J,
according to the permutation. A permutation causes numbers
in a first matrix to be reordered so they have different
positions in a second matrix. For example, the touched bit of
the first residual row is in a fifth row and first column in J,,
but in a third row and fourth column in J, due to the
permutation. For example, the determining of the second
number of visible error rows and their locations within the
second data could be performed by the ECC decoder 228.

The method of FIG. 7 further includes determining the
location of the first hidden error rows within the first data
using the visible error rows of the second data (step 706).
The location of the first hidden error rows may be deter-
mined additionally using the visible error rows of the first
data. The determining of the location of the first hidden error
rows within the first data using the visible error rows of the
second data could be performed by the ECC decoder 228.

The method of FIG. 7 further includes correcting the first
data using the locations of the first visible error rows and the
locations of the first hidden error rows (step 707). When no
hidden error rows are found, the first data may be corrected
using only the locations of the first visible error rows.

FIG. 8 illustrates a method of implementing step 706 to
determine the location of the first Hidden error rows. For
example, the method of FIG. 8 could be performed by the
ECC decoder 228 located in the access controller 125 or
located in the accelerator 128.

The method of FIG. 8 includes completing a visible error
row to one or more weight-3 vector(s) using the visible error
rows of the first data, when hidden error rows have been
determined to be present (left side of step 801). For example,
as shown in FIG. 6, the second visible error row includes
two corrected bits illustrated as squares, and one of the other
bits can be flipped to convert the weight-2 vector into a
weight-3 vector. The third bit is flipped in the location of an
intersection with the 7-image of one of the visible error rows
of I,.

The method of FIG. 8 further includes using a Hamming
decoder to flip a first bit of each weight-3 vector to generate

US 11,750,221 Bl

9

weight-4 vector(s) (left side step 802). In an embodiment,
the Hamming decoder is a shortened extended Hamming
decoder or configured to decode a shortened extended
Hamming codeword.

If hidden error rows are not present, then step 801
includes completing a visible error row in the second data to
a weight-4 vector using the first visible error errors of the
first data (see right side of 801). Then it is verified whether
the weight-4 vector is a valid codeword in step 802 (see right
side of 802).

The method of FIG. 8 further includes mapping each of
the first bits to second bits in the first data using the inverse
permutation to generate predictions of the row indexes of the
first Hidden error row (step 803).

The method of FIG. 8 further includes repeating steps
801-803 for each of the remaining visible error rows (step
804).

The method of FIG. 8 further includes determining the
location of the hidden error rows from the predictions that
agree with one another (step 805). For example, if the
predictions derived from one visible error row of the second
data indicate the hidden error row is located in the first row
and the second row of J, in FIG. 6 and the predictions
derived from another visible error row of the second data
indicate the first row and the third row, it can be concluded
that the hidden error row is located the first row.

As discussed above, step 707 of FIG. 7 corrects the first
data using the locations of the first visible error rows and the
locations of the first hidden error row(s). FIGS. 9 and 10
illustrate a method to implementing step 707, which corrects
the first data using estimated locations of visible error rows
and the hidden error rows.

The method of FIG. 9 includes setting the LLR of each
identified hidden error row and visible error row in the first
data to 0 (step 901).

The method of FIG. 9 further includes increasing a
magnitude of the LLR of each the remaining rows in the first
data to a value having a higher magnitude (step 902). For
example, if the LLR of a first one of the remaining rows is
—0.5 and the LLR of a second one of the remaining rows is
—0.4, then both could be set to —1. For example, if the LLR
of a third one of the remaining rows is +0.2 and the LLR of
a second one of the remaining rows is +0.3, then both could
be set to +1. Thus, the LLR is essentially increased to a
maximum value and the sign is maintained. For example, if
the LLR supports a maximum negative value of —1 and a
maximum positive value of +1, the LLR is given the
maximum negative value if it is negative and the maximum
positive value if it is positive. Please note that use of a
maximum negative value of —1 and a maximum positive
value of +1 is merely an example since various other values
may be used. The remaining rows may include the previ-
ously identified residual error rows.

The method of FIG. 9 further includes applying the first
data and the LLRs to the iterative decoder to correct the first
data (step 903).

FIG. 10 illustrates a method of correcting data according
to an embodiment of the disclosure.

The method of FIG. 10 includes determining a second
number of hidden error rows (e.g., H,) within the second
data based on the number of first hidden error rows (e.g.,
H,), the number of first visible error rows, the number of
corrections made to the first visible error rows, the number
of second visible errors rows, and the number of corrections
made to the second visible errors rows (step 1001). The
second number of hidden error rows (e.g., H,) may be
calculated by assuming that hidden error rows include 4

20

25

30

35

40

45

50

55

60

65

10

errors, that the decoder completes a visible error row into a
shortened extended hamming codeword and using Equation
1 below.

4H, + ijl #

(visible error rows in side with € with j corrections)-
i 3
(4—/)=4H7+Z]_:1#

(visible error rows in side ¥ with j corrections)-(4—j) [Equa-
tion 1]
As shown in FIG. 6, side ¢ may correspond to J1 and side

€ may correspond to J2. Since 1 correction j was made to
each of the 3 visible error rows K, in J1, and one hidden row
H, with 4 errors was chosen, and each of the 3 visible error
rows were completed to a weight-4 codeword, the left side
of Equation 1 reduces to 13 errors. For example, 4H,+3*
(4-1)=13. The right side of Equation 1 reduces to 4H,+5
since J2 includes two visible errors rows where the first
visible error row had 1 correction and the second visible
error row has 2 corrections. For example, 4H,+1%(4 —1)+
1*(4 -2)=4H,+5. H, is then determined to be 2 since
4H,+5=13. Equation assumes that the number errors in J, is
equal to the number of errors in J,.

The method of FIG. 10 includes choosing one of the rows
of the second data to correspond to one of the hidden rows
of the second data (step 1002). The chosen row may exclude
the rows in J, where the decoder acted.

The method of FIG. 10 further includes selecting visible
error rows of the first data that have 3 known coordinates
(step 1003). The selecting may also include selecting the
weight-4 codewords (i.e., the no longer hidden error rows).
The selecting may be performed from: (1) the prior actions
of the decoder that flipped bits and bit locations of oscillat-
ing errors, (2) coordinates found in the course of the steps of
FIG. 8 and were mapped back to the first data, and (3) the
intersection with the chosen scanned row in the second data
if the number of second hidden error rows H, equals 2. The
3 known coordinates are locations of 3 bits within a row of
the first data that have been determined to have an error.

The method of FIG. 10 further includes using a Hamming
decoder to deduce a fourth coordinate from the 3 known
coordinates of each selected visible error row (step 1004).
The Hamming decoder may perform a decoding on 3 known
coordinates based on a shortened extended Hamming code
to deduce the fourth coordinate.

The method of FIG. 10 further includes determining
whether the fourth coordinates are all mapped to a same row
in the second data (step 1005). If they do not all map to the
same row, the method discards the choice of row and
resumes to step 1002 to choose another row if the number of
second hidden error rows H, equals 2 and not all rows were
scanned or resumes to step 702 of FIG. 7 if H,<2 or if H,=2
and all rows were scanned. If the fourth coordinates are all
mapped to a same row, then this row is a potential estimation
for the location of a second hidden error row.

The method of FIG. 10 further includes verifying whether
the potential estimation is a valid estimation (step 1006). If
the fourth coordinates are all mapped to a same row in the
second data, the verifying may include determining whether
the resulting four coordinates in a same row define a

US 11,750,221 Bl

11

Hamming codeword of weight 4. If not, the method discards
the choice of row and resumes to step 1002 to choose
another row if H,=2 or resumes to step 702 of FIG. 7 if H,<2
or H,=2 and all rows were scanned. The verifying may
further include, if H,=2, checking if an intersection of the
scanned row of the second data with the permutated visible
error rows (or with a hidden error row) of the first data define
a valid weight-4 Hamming codeword in the scanned row of
the second data. If not, the method discards the choice of
row and resumes to step 1002 to choose another row if H,=2
or resumes to step 702 of FIG. 7 if H,<2 or H,=2 and all
rows were scanned.

The method of FIG. 10 then corrects the first data using
the coordinates deduced from the potential estimation if the
verifying concludes the potential estimation is a valid esti-
mation (step 1007). Each deduced coordinate may indicate
a location of a given row within the first data and a bit
location within the given row. For example, in FIG. 6, if the
rows are sequential, begin at the first row, and show the first
4 bits of every row, then on the left side there would be 4
deduced coordinates having a row index of 1 with bit
positions of 1-4, 3 deduced coordinates having a row index
of 2 with bit positions of 1-3, 3 deduced coordinates having
a row index of 3 with bit positions of 1-3, and 3 deduced
coordinates having a row index of 3 with bit positions of 1-3.
The correcting of the data is then performed by flipping the
bits having these bit positions within the first data. However,
FIG. 6 need not be illustrating sequential rows or sequential
bits. For example, the first illustrated row could correspond
to a 10™ row within the first data and the second illustrated
row could correspond to a 19” row within the first data. For
example, the first X in the first row could correspond to a bit
having a 100" bit position in the 10" row, the second X in
the first row could correspond to a bit having a 112 bit
position in the 10” row, the first X in the second row could
correspond to a bit having a 50” bit position in the 19 row,
the second X in the second row could correspond to a bit
having a 62 bit position in the 19™ row, etc.

FIG. 11A and FIG. 11B illustrate steps of FIG. 10 used to
deduce the coordinates of the errors after a given set of the
scanning parameters has been selected.

In FIG. 11A, it is observed that the 4 X’s (marked with a
‘?) of the single hidden row of J, is mapped to a single X
in each one of the 4 X-rows of J, (marked with a ‘?’). As a
matter of notation, one will sometimes say that the hidden
error row of J; intersects all 4 X-rows of J,.

In the general case, if the number of X rows of [z is
larger than 4, then an additional scan over

Mo (#(X rov:s of J?))

intersection options is required, and in what follows one
considers the case where the scan hits the correct option.

Note also that #(X rows of Jz= Hz+ K7 is assumed to be

known at this stage, since both Hz and Kjhave been
calculated from the current values of the scanned param-
eters.

In each instance of this scan over M options, for each of

the K73 visible error rows of side # there is either 0 or 1 X’s
coming from the hidden error row of J,,, in case H,=1.In
case H,=0, it is clear that there are 0 X’s from hidden error

rows of [, in each visible error row of side ¥, as there are

20

25

30

35

40

45

50

55

60

12

no hidden error rows of J,. This is included in the more

general case where each visible error row of side € has
either 0 or 1 X’s from visible error rows of J,. Therefore,

unless noted otherwise, it is assumed that H,=1.

It is noted that all the X’s in the K3 visible error rows of
J7 not coming from the hidden error row of [, comes from
the K, visible error rows of J,, and by assumption, each
such row intersects each visible error row of /7 at most
once, in a known coordinate.

In what follows, one can simultaneously recover, in
Jz. the X’s from the visible error rows of [, and the
identity of the hidden error row of [, (if it exists). More-
over, one can reconstruct some unknowns in several differ-
ent ways, and checking if the resulting values for the same
unknown are the same will be used as a criterion for
screening out wrong assumptions.

A visible error row is fixed in J # and it is assumed that

the decoder flipped mge {1,2,3} coordinates in this row.
For example, in FIG. 6, there is one visible error row with

mg:l flips (/7’s), and one row with mg:Z flips. In this

row of J »° a shortened-eH word of weight 4 has exactly the
following “1”’s: 1) Up to one X from the hidden error row of

J [: such an X is assumed iff if H ¢=1 and the current value
of the scan over M options described above implies that this

]

visible error row of 7 indeed intersects with the hidden

J

X’s from the hidden error row of I), ii) exactly mD [7’s,

error row of “z (e.g., m,e {0,1} is written for the number of

and iii) exactly m,:=4— mg—mh X’s coming from the vis-
ible error rows of J 7 each such X coming from a different

row of J s

The algorithm may then run on all the visible error rows
of J7 as follows:

For each such row, the algorithm runs on

()

choices of m, rows out of the K, visible error rows of

Je

For each choice in the above scan if not all m, chosen
rows intersect with the fixed row of J3, then discard
this option

Otherwise, if m,=0, check if the 4 coordinates obtained
by the m, intersecting rows+m [1's form a short-
ened-eH codeword. If not, then discard this choice
and proceed to the next choice. If they do form a
codeword, then keep this as a hypothesis for m, X’s
from the visible error rows of J,

Otherwise if m,=1, then complete the total of 3=m_+
m; coordinates to a weight-4 shortened eH-code-
word. If no such completion exists within the short-
ening, then discard this choice and proceed to the
next choice. If an option exists, then keep it as a
potential estimation for the X coming from the
hidden error row of J,

If all options are discarded for some row, then move up
to the last scanned variable (from those we have
considered fixed), discard its current value and pro-
ceed to the next value

US 11,750,221 Bl

13

If more than one row had m,=1, then verity that the
resulting estimations of the hidden row of J, agree.
Otherwise, move up to the last scanned variable,
discard its current value and proceed to the next
value

Typically, and with high probability, only the correct
solution will not be screened out by the above process. In
addition, if one of the fixed parameters from outer scans is
incorrect, then typically all solutions will be screened out,
and it will be clear than the decoder must proceed to the next
hypothesis.

For example, in FIG. 6, there are 2 visible error rows in
J,, and 3 visible error rows in J,. For the J, row with the two
[I’s, one scans on

choices of a single visible error row from J;, and compete
the X resulting from the intersection of this J,-row with the
], row and the 2 [I's to a weight-4 shortened-eH codeword
(if possible). This results in one additional X on the J, row.
Similarly, for the visible J, row with a single [, one scans
on

(&)

choices of two visible error rows from J1, and again com-
plete the 3 resulting coordinates coming from 2 X’s mapped
from J1 and the single [] to a fourth coordinate from a
weight-4 codeword. If the two completions from the two
rows are mapped to the same row of J1, then this option is
retained. The situation after this stage is depicted in FIG.
11B. The X’s marked in J1 with a * are estimations of X’s
in a hidden row of J,, the X’s marked in J2 with a # are
estimations of X’s in visible error rows of J,.

As explained above, at this stage, the only unknown X’s
(if any) are those of the H 7 hidden error rows of side
J7. For example, in FIG. 11B, the only unknown X’s are
those in the two hidden error rows of J2. Also, the up to 1
hidden error row of side [z is no longer hidden, as the
decoder has a hypothesis for this row. Now there are two
different options to proceed: 1) since there are no longer any

hidden error rows in J¢, the remaining pseudo-error can be
solved by a simpler method for the case where there are
hidden error rows only on one side and 2) the remaining
pseudo-error can be solved directly, similarly to the above
method.
The 2" Option

If H3=0, then there is nothing to solve, and the entire
pattern is already known. If H=1, then work is performed
similarly to the above in order to find the single hidden error
row of fz, and consequently all missing X'. In an embodi-
ment, one can find the hidden error row of [by completing

triples of known coordinates in rows of J¢ to a weight-4
codewords. These completions need to be mapped to the
same row of fz (verification), which is then the estimated
hidden error row.
The case where Hp=2, as in FIG. 11B is considered. Let
row;, row, by the indices of the hidden rows in J3.
Scan on hypotheses, row, =1, . . ., N, excluding the rows
where the decoder acted

15

20

25

30

35

40

45

50

60

14

For each visible error row of], that does intersects with
row, and has a total of 3 known coordinates coming
from: 1. Flippings of the decoder (O’s in FIG. 11A), 2.
X’s that were already found by the algorithm (X’s in
FIG. 11B marked with # and also X’s marked with a *
for the no longer hidden error row), 3. The intersection
with row,, find a fourth coordinate that completes to a
weight-4 codeword
If no such codeword exist, discard the choice of row,

and proceed to the next option.
Otherwise, verify that the fourth coordinates coming
from all relevant rows of J, are mapped to the same

row of Jp.
If this is the case, then this row of 7 is an estimation
for row,, but a further verification is still required:
Map all X’s found in Jpthat are coming from
estimates of row; and row, back to J; By
construction, those X’s are mapped to row; and
row,. Verify that both of these rows are indeed
weight-4 codewords of the shortened-eH code.
For example, in FIG. 11B verify that each one
of the two X rows (marked with ?) in J, are
indeed codewords of weight 4.
If this is the case, then all the missing X's are
known, and hence the entire pseudo-error, and
pseudo-error decoding is complete. The
decoder can output the pseudo-error.
Otherwise, discard the current choice of row,
and proceed to the next option
If not all fourth coordinates from the relevant rows of
Jp are mapped to the same row of [z, then dis-
card the choice of row, and proceed to the next
option.
The 1¢" Option
In some cases, it is sufficient to consider only pseudo-
errors that are allowed to have hidden error rows only on one
side. For example, such cases may arise at an intermediate
stage of pseudo-error decoding with hidden rows on both
sides, as described in the previous section. As another
example, when modifying some decoder parameters, it is
possible to assure that practically all pseudo-errors have
hidden error rows only on one side, at the cost of slightly
decreasing the rBER coverage.
It is assumed that all hidden error rows appear only on one
side. In this case, we first scan over two options for the side
J¢ . £€{0,1}, that might contain hidden rows. By assump-

tion, there are no hidden error rows on side Jz.. This means
that the decoder of side J7 acted exactly in the rows that
contain the permutation-map of the pseudo-error at the
output of J,’s decoder. Referring to the Jz-rows in which
the decoder acted as visible error rows, this suggests the
following line of action:
For each row of J,, find its intersection with all visible
error rows
If for some row there are less than 4 intersections, discard
this row
Otherwise, if there are m>4 intersections, then check for

choices of 4 indices out of a total of m intersections,
and for each such choice check if it is a codeword of the
shortened-eH code

US 11,750,221 Bl

15

If not, discard this option. Otherwise, save this option

as a potential part of the pseudo-error for the current

Jp TOW
At this stage, there is typically a small number R of rows
of J, for which there is at least one saved codeword.

These rows include all visible error rows of J,.

‘We may now run on the hypothesized number r of rows
of the pseudo-error on side J,, typically in the range
r=1,...,6

For each choice of r, we may run on all

options of choosing r candidate rows of our R rows.
For each choice of r rows, we may now run on all
possible choices of a weight-4 codeword from each
one of r rows
At each scanning instance, we have a hypothesis for
the pseudo-error at side J, (accounting only for
the visible rows): r weight-4 codewords sitting in

I TOWS.

We may map this pattern to J7 and see that it
results exactly in the action of J3’s decoder for
the actual pseudo-error. If it does, then the rx4
pattern in [, is a candidate for the pseudo-
€ITor.

As an alternative, one can set the output LLRs of all
visible error rows of J3 to zero, set the magnitudes of output
LLR’s of all rows that are not visible error rows in J7 to
their maximum possible value, and proceed with
eH-GLDPC decoding iterations. Note that when we proceed
with the eH-GLDPC decoding iterations, the first step is to
map output LLRs from side J; to side J,. In particular, in
each row of J,, the zero LLRs mark exactly its intersection
with the visible error rows of Jz and they are now the
lowest LLRs of the row.

Referring back to FIG. 2A or FIG. 2B, in an alternate
embodiment, the ECC decoder 228 and logic of the con-
troller 125 for performing the above-described error correc-
tion is located in the memory device 126. The memory
device 126 may include a logic circuit configured to apply
the ECC decoder 228 stored therein to data from a non-
volatile memory array within the memory device 126, and to
determine whether the ECC decoder 228 is oscillating. As
discussed above, the ECC decoder 228 may oscillate
between two states while attempting to correct the read data.
The logic circuit may determine a total number of rows in
first data the decoder attempted to correct, estimate residual
error rows among the total number that no longer have an
error after the attempt, determine second visible error rows
in second data of the decoder that continue to have an error
by permuting indices of the residual error rows according to
a permutation, determine whether zero or more first hidden
error rows are present in the first data from the second
visible error rows, and correct the first data using the first
visible error rows and the determined number of first hidden
error rows when it is determined that the decoder 228 is
oscillating between the two states. The logic circuit may
output the error corrected data to the controller 125. The
controller 125 may provide an instruction to the logic circuit
to read the data in response to receiving a read request from
a host. The logic circuit may perform the above-described
decoding and error correction after reading the data in
response to receiving the instruction.

5

20

25

30

35

45

50

55

60

16

The above-described methods may be tangibly embodied
on one or more computer readable medium(s) (i.e., program
storage devices such as a hard disk, magnetic floppy disk,
RAM, ROM, CD ROM, Flash Memory, etc., and executable
by any device or machine comprising suitable architecture,
such as a general purpose digital computer having a pro-
cessor, memory, and input/output interfaces).

FIG. 12 is a block is a block diagram illustrating a solid
state drive system according to an exemplary embodiment of
the inventive concept. Referring to FIG. 12, a solid state
drive (SSD) system 4000 includes a host 4100 and an SSD
4200. The host 4100 includes a host interface 4111, a host
controller 4120, and a DRAM 4130.

The host 4100 may write data in the SSD 4200 or read
data from the SSD 4200. The host controller 4120 may
transfer signals SGL such as a command, an address, a
control signal, and the like to the SSD 4200 via the host
interface 4111. The DRAM 4130 may be a main memory of
the host 4100.

The SSD 4200 may exchange signals SGL with the host
4100 via the host interface 4211, and may be supplied with
a power via a power connector 4221. The SSD 4200 may
include a plurality of nonvolatile memories 4201 through
420n, an SSD controller 4210, and an auxiliary power
supply 4220. Herein, the nonvolatile memories 4201 to 420n
may be implemented by NAND flash memory. The SSD
controller 4210 may be implemented by the controller 125
of FIG. 1, FIG. 2A, or FIG. 2B. Each of the memory devices
4201 through 420n may be implemented by the memory
device 126 of FIG. 1, FIG. 2A, or FIG. 2B.

The plurality of nonvolatile memories 4201 through 420n
may be used as a storage medium of the SSD 4200. The
plurality of nonvolatile memories 4201 to 420n may be
connected with the DDS controller 4210 via a plurality of
channels CH1 to CHn. One channel may be connected with
one or more nonvolatile memories. Each of the channels
CH1 to CHn may correspond to the data channel 130
depicted in FIG. 1. Nonvolatile memories connected with
one channel may be connected with the same data bus.

The SSD controller 4210 may exchange signals SGL with
the host 4100 via the host interface 4211. Herein, the signals
SGL may include a command (e.g., the CMD), an address
(e.g., the ADDR), data, and the like. The SSD controller
4210 may be configured to write or read out data to or from
a corresponding nonvolatile memory according to a com-
mand of the host 4100.

The auxiliary power supply 4220 may be connected with
the host 4100 via the power connector 4221. The auxiliary
power supply 4220 may be charged by a power PWR from
the host 4100. The auxiliary power supply 4220 may be
placed within the SSD 4200 or outside the SSD 4200. For
example, the auxiliary power supply 4220 may be put on a
main board to supply an auxiliary power to the SSD 4200.

While an embodiment with respect to FIGS. 6-115 has
been described above with an initial step that starts with J,
and then later includes steps with respect to J,, the inventive
concept is not limited thereto. For example, the initial step
applied to J, may instead be applied to J, and then the later
steps with respect to J, would be replaced with correspond-
ing steps with respect to J,.

FIG. 13 is a diagram of a system 1000 to which a storage
device is applied, according to an embodiment. The system
1000 of FIG. 1 may basically be a mobile system, such as a
portable communication terminal (e.g., a mobile phone), a
smartphone, a tablet personal computer (PC), a wearable
device, a healthcare device, or an Internet of things (I0T)
device. However, the system 1000 of FIG. 13 is not neces-

US 11,750,221 Bl

17

sarily limited to the mobile system and may be a PC, a laptop
computer, a server, a media player, or an automotive device
(e.g., a navigation device).

Referring to FIG. 13, the system 1000 may include a main
processor 1100, memories (e.g., 1200a and 12005), and
storage devices (e.g., 1300a and 13005). In addition, the
system 1000 may include at least one of an image capturing
device 1410, a user input device 1420, a sensor 1430, a
communication device 1440, a display 1450, a speaker
1460, a power supplying device 1470, and a connecting
interface 1480.

The main processor 1100 may control all operations of the
system 1000, more specifically, operations of other compo-
nents included in the system 1000. The main processor 1100
may be implemented as a general-purpose processor, a
dedicated processor, or an application processor.

The main processor 1100 may include at least one CPU
core 1110 and further include a controller 1120 configured to
control the memories 1200a and 12005 and/or the storage
devices 1300aq and 13005. In some embodiments, the main
processor 1100 may further include an accelerator 1130,
which is a dedicated circuit for a high-speed data operation,
such as an artificial intelligence (Al) data operation. The
accelerator 1130 may include a graphics processing unit
(GPU), a neural processing unit (NPU) and/or a data pro-
cessing unit (DPU) and be implemented as a chip that is
physically separate from the other components of the main
processor 1100. The accelerator 1130 may include the ECC
encoder 222 and the ECC decoder 228 similar to the
accelerator 128 illustrated in FIG. 2B.

The storage devices 1300a and 13005 may serve as
non-volatile storage devices configured to store data regard-
less of whether power is supplied thereto, and have larger
storage capacity than the memories 1200a and 12005. The
storage devices 1300a and 13005 may respectively include
storage controllers(STRG CTRL) 1310¢ and 13106 and
NVM (Non-Volatile Memory)s 1320a and 13205 configured
to store data via the control of the storage controllers 1310a
and 13105. Although the NVMs 1320a and 13205 may
include flash memories having a two-dimensional (2D)
structure or a three-dimensional (3D) V-NAND structure,
the NVMs 1320a and 13205 may include other types of
NVMs, such as PRAM and/or RRAM.

The storage devices 1300a and 13005 may be physically
separated from the main processor 1100 and included in the
system 1000 or implemented in the same package as the
main processor 1100. In addition, the storage devices 1300a
and 13005 may have types of solid-state devices (SSDs) or
memory cards and be removably combined with other
components of the system 100 through an interface, such as
the connecting interface 1480 that will be described below.
The storage devices 1300a and 13005 may be devices to
which a standard protocol, such as a universal flash storage
(UFS), an embedded multi-media card (eMMC), or a non-
volatile memory express (NVMe), is applied, without being
limited thereto.

The image capturing device 1410 may capture still images
or moving images. The image capturing device 1410 may
include a camera, a camcorder, and/or a webcam.

The user input device 1420 may receive various types of
data input by a user of the system 1000 and include a touch
pad, a keypad, a keyboard, a mouse, and/or a microphone.

The sensor 1430 may detect various types of physical
quantities, which may be obtained from the outside of the
system 1000, and convert the detected physical quantities
into electric signals. The sensor 1430 may include a tem-

15

25

30

40

45

60

18

perature sensor, a pressure sensor, an illuminance sensor, a
position sensor, an acceleration sensor, a biosensor, and/or a
EYroscope sensor.

The communication device 1440 may transmit and
receive signals between other devices outside the system
1000 according to various communication protocols. The
communication device 1440 may include an antenna, a
transceiver, and/or a modem.

The display 1450 and the speaker 1460 may serve as
output devices configured to respectively output visual
information and auditory information to the user of the
system 1000.

The power supplying device 1470 may appropriately
convert power supplied from a battery (not shown) embed-
ded in the system 1000 and/or an external power source, and
supply the converted power to each of components of the
system 1000.

The connecting interface 1480 may provide connection
between the system 1000 and an external device, which is
connected to the system 1000 and capable of transmitting
and receiving data to and from the system 1000. The
connecting interface 1480 may be implemented by using
various interface schemes, such as advanced technology
attachment (ATA), serial ATA (SATA), external SATA
(e-SATA), small computer small interface (SCSI), serial
attached SCSI (SAS), peripheral component interconnection
(PCI), PCI express (PCle), NVMe, IEEE 1394, a universal
serial bus (USB) interface, a secure digital (SD) card inter-
face, a multi-media card (MMC) interface, an eMMC inter-
face, a UFS interface, an embedded UFS (eUFS) interface,
and a compact flash (CF) card interface.

FIG. 14 is a diagram of a data center 3000 to which a
memory device is applied, according to an embodiment.

Referring to FIG. 14, the data center 3000 may be a
facility that collects various types of pieces of data and
provides services and be referred to as a data storage center.
The data center 3000 may be a system for operating a search
engine and a database, and may be a computing system used
by companies, such as banks, or government agencies. The
data center 3000 may include application servers 3100 to
31007 and storage servers 3200 to 3200m. The number of
application servers 3100 to 31007 and the number of storage
servers 3200 to 3200 may be variously selected according
to embodiments. The number of application servers 3100 to
31007 may be different from the number of storage servers
3200 to 3200m. Each of the storage servers 3200 to 3200m
may include the accelerator 128 discussed above with
respect to FIG. 2B.

The application servers 3100 to 31007z may communicate
with the storage servers 3200 to 3200 through a network
3300. The network 3300 may be implemented by using a
fiber channel (FC) or Ethernet. In this case, the FC may be
a medium used for relatively high-speed data transmission
and use an optical switch with high performance and high
availability. The storage servers 3200 to 3200m may be
provided as file storages, block storages, or object storages
according to an access method of the network 3300.

In an embodiment, the network 3300 may be a storage-
dedicated network, such as a storage area network (SAN).
For example, the SAN may be an FC-SAN, which uses an
FC network and is implemented according to an FC protocol
(FCP). As another example, the SAN may be an Internet
protocol (IP)-SAN, which uses a transmission control pro-
tocol (TCP)/IP network and is implemented according to a
SCSI over TCP/IP or Internet SCSI (iSCSI) protocol. In
another embodiment, the network 3300 may be a general
network, such as a TCP/IP network. For example, the

US 11,750,221 Bl

19

network 3300 may be implemented according to a protocol,
such as FC over Ethernet (FCoE), network attached storage
(NAS), and NVMe over Fabrics (NVMe-oF).

Hereinafter, the application server 3100 and the storage
server 3200 will mainly be described. A description of the
application server 3100 may be applied to another applica-
tion server 3100n, and a description of the storage server
3200 may be applied to another storage server 3200m.

The application server 3100 may store data, which is
requested by a user or a client to be stored, in one of the
storage servers 3200 to 3200 through the network 3300.
Also, the application server 3100 may obtain data, which is
requested by the user or the client to be read, from one of the
storage servers 3200 to 3200 through the network 3300.
For example, the application server 3100 may be imple-
mented as a web server or a database management system
(DBMS).

The application server 3100 may access a memory 3120
or a storage device 3150n, which is included in another
application server 3100%, through the network 3300. Alter-
natively, the application server 3100 may access memories
3220 to 3220m or storage devices 3250 to 3250m, which are
included in the storage servers 3200 to 3200, through the
network 3300. Thus, the application server 3100 may per-
form various operations on data stored in application servers
3100 to 31007 and/or the storage servers 3200 to 3200m. For
example, the application server 3100 may execute an
instruction for moving or copying data between the appli-
cation servers 3100 to 31007 and/or the storage servers 3200
to 3200m. In this case, the data may be moved from the
storage devices 3250 to 3250m of the storage servers 3200
to 3200 to the memories 3120 to 3120# of the application
servers 3100 to 3100z directly or through the memories
3220 to 3220m of the storage servers 3200 to 3200m. The
data moved through the network 3300 may be data
encrypted for security or privacy.

The storage server 3200 will now be described as an
example. An interface 3254 may provide physical connec-
tion between a processor 3210 and a controller 3251 and a
physical connection between a network interface card (NIC)
3240 and the controller 3251. For example, the interface
3254 may be implemented using a direct attached storage
(DAS) scheme in which the storage device 3250 is directly
connected with a dedicated cable. For example, the interface
3254 may be implemented by using various interface
schemes, such as ATA, SATA, e-SATA, an SCSI, SAS, PCI,
PCle, NVMe, IEEE 1394, a USB interface, an SD card
interface, an MMC interface, an eMMC interface, a UFS
interface, an eUFS interface, and/or a CF card interface.

The storage server 3200 may further include a switch
3230 and the NIC(Network InterConnect) 3240. The switch
3230 may selectively connect the processor 3210 to the
storage device 3250 or selectively connect the NIC 3240 to
the storage device 3250 via the control of the processor
3210.

In an embodiment, the NIC 3240 may include a network
interface card and a network adaptor. The NIC 3240 may be
connected to the network 3300 by a wired interface, a
wireless interface, a Bluetooth interface, or an optical inter-
face. The NIC 3240 may include an internal memory, a
digital signal processor (DSP), and a host bus interface and
be connected to the processor 3210 and/or the switch 3230
through the host bus interface. The host bus interface may be
implemented as one of the above-described examples of the
interface 3254. In an embodiment, the NIC 3240 may be
integrated with at least one of the processor 3210, the switch
3230, and the storage device 3250.

10

15

20

25

30

35

40

45

50

55

60

65

20

In the storage servers 3200 to 3200m or the application
servers 3100 to 3100z, a processor may transmit a command
to storage devices 3150 to 3150% and 3250 to 3250m or the
memories 3120 to 31207 and 3220 to 3220m and program or
read data. In this case, the data may be data of which an error
is corrected by an ECC engine. The data may be data on
which a data bus inversion (DBI) operation or a data
masking (DM) operation is performed, and may include
cyclic redundancy code (CRC) information. The data may
be data encrypted for security or privacy.

Storage devices 3150 to 31507 and 3250 to 3250 may
transmit a control signal and a command/address signal to
NAND flash memory devices 3252 to 3252m in response to
a read command received from the processor. Thus, when
data is read from the NAND flash memory devices 3252 to
3252m, a read enable (RE) signal may be input as a data
output control signal, and thus, the data may be output to a
DQ bus. A data strobe signal DQS may be generated using
the RE signal. The command and the address signal may be
latched in a page buffer depending on a rising edge or falling
edge of a write enable (WE) signal.

The controller 3251 may control all operations of the
storage device 3250. In an embodiment, the controller 3251
may include SRAM. In an embodiment, the controller 3251
may include the ECC encoder 222 and the ECC decoder 228
of FIG. 2A. In another embodiment, the controller 3251 may
be connected to the accelerator 128 like that shown in FIG.
2B. The controller 3251 may write data to the NAND flash
memory device 3252 in response to a write command or read
data from the NAND flash memory device 3252 in response
to a read command. For example, the write command and/or
the read command may be provided from the processor 3210
of the storage server 3200, the processor 3210m of another
storage server 3200m, or the processors 3110 and 31107 of
the application servers 3100 and 3100z. DRAM 3253 may
temporarily store (or buffer) data to be written to the NAND
flash memory device 3252 or data read from the NAND flash
memory device 3252. Also, the DRAM 3253 may store
metadata. Here, the metadata may be user data or data
generated by the controller 3251 to manage the NAND flash
memory device 3252. The storage device 3250 may include
a secure element (SE) for security or privacy.

Although the present inventive concept has been
described in connection with exemplary embodiments
thereof, those skilled in the art will appreciate that various
modifications can be made to these embodiments without
substantially departing from the principles of the present
inventive concept.

What is claimed is:
1. A method of processing a request by a host to access
data stored in a memory device, the method comprising:
reading data from the memory device in response to the
request;
applying an iterative decoder to the read data;
upon determining that the iterative decoder is oscillating,
determining a total number of rows in first data the
decoder attempted to correct;
estimating first visible error rows among the total
number that continue to have an error after the
attempt;
estimating residual error rows among the total number
that no longer have an error after the attempt;
determining second visible error rows in second data of
the decoder that continue to have an error by per-
muting indices of the residual error rows according
to a permutation;

US 11,750,221 Bl

21

determining whether zero or more first hidden error
rows are present in the first data from the second
visible error rows, where each hidden error row has
an error and is a valid Hamming codeword;

correcting the first data using the first visible error rows
and the determined number of first hidden error
rows; and

outputting the corrected data to the host.

2. The method of claim 1, further comprising providing an
output of the iterative decoder to the host when it is
determined that the iterative decoder is not oscillating and
all constraints of the iterative decoder are satisfied.

3. The method of claim 1, wherein the iterative decoder is
determined to be oscillating when the decoder attempts to
correct a first number of errors in the read data to generate
the first data, and the decoder attempts to correct a second
number of errors in the second data to restore the first data
including the first number of errors.

4. The method of claim 1, wherein correcting the first data
using the first visible error rows and the determined number
of first hidden error rows comprises:

setting log-likelihood ratios (LLRs) of rows of the first

data determined to be the first visible error rows to 0O;

setting LLRs of rows of the first data determined to be a

hidden error row to O,
increasing a magnitude of LLRs of the remaining rows of
the first data to a value having a higher magnitude; and
applying the first data and the LLRs to the iterative
decoder.
5. The method of claim 1, where determining whether
zero or more first hidden error rows are present in the first
data from the second visible error rows comprises:
completing each of the second visible error rows to a
weight-3 vector using the first visible error rows;

applying a Hamming decoder to flip first bits of the
weight-3 vectors to generate weight-4 vectors;

mapping the first bits to second bits in the first data using
an inverse of the permutation to generate predictions of
row indexes of the at least one hidden error row; and

determining a location of the zero or more first hidden
error rows from the predictions that agree with one
another.

6. The method of claim 1, the correcting comprising:

determining a number of second hidden error rows in the

second data based on a total number of the first hidden
error rows, a total number of the first visible error rows,
a total number of corrections attempted on the first
visible error rows by the decoder, and a total number of
corrections attempted on the second visible error rows
by the decoder.

7. The method of claim 6, the correcting further compris-
ing:

choosing one of the rows of the second data to represent

a first one of the second hidden error rows;

selecting the first visible error rows in the first data that

have 3 known coordinates;

using a Hamming decoder on the 3 known coordinates to

deduce a 4™ coordinate for each of the selected first
visible error rows; and

correcting the first data using the deduced coordinates.

8. The method of claim 7, the correcting further compris-
ing flipping bits of the first data having the 3 known
coordinates.

9. The method of claim 8, wherein the coordinates are
used in the correcting only if the 4” coordinates map to a
same row in the second data.

10

15

20

25

30

35

40

45

50

55

60

65

22

10. The method of claim 1, wherein the iterative decoder
is configured to decode a generalized low-density parity-
check (GLDPC) code based on a Hamming code.

11. The method of claim 10, wherein the Hamming code
is a shortened extended Hamming code.

12. A memory system comprising:

a nonvolatile memory (NVM); and

a controller configured to read data from the NVM,

wherein the controller comprises an iterative decoder,

wherein the controller is configured to apply the iterative
decoder to the read data and determine whether the
iterative decoder is oscillating, and

wherein the controller is configured to determine a total

number of rows in first data the decoder attempted to
correct to generate second data, estimate residual error
rows among the total number that no longer have an
error after the attempt, determine second visible error
rows in the second data that continue to have an error
by permuting indices of the residual error rows accord-
ing to a permutation, determine whether zero or more
first hidden error rows are present in the first data from
the second visible error rows, and correct the first data
using the first visible error rows and the determined
number of first hidden error rows when it is determined
that the iterative decoder is oscillating,

wherein each hidden error row has an error and is a valid

Hamming codeword.

13. The memory system of claim 12, wherein the con-
troller reads the data and outputs the corrected data to the
host in response to a request from a host.

14. The memory system of claim 12, wherein the iterative
decoder is determined to be oscillating when the decoder
attempts to correct a first number of errors in the read data
to generate the first data, the decoder permutes the first data
to generate the second data, and the decoder attempts to
correct a second number of errors in the second data to
restore the first data including the first number of errors.

15. The memory system of claim 12, wherein the correc-
tion of the first data is performed by setting log-likelihood
ratios (LLRs) of rows of the first data determined to be the
first visible error rows to 0, setting L.L.Rs of rows of the first
data determined to be a hidden error row to 0, increasing a
magnitude of LLRs of the remaining rows of the first data to
a value having a higher magnitude, and applying the first
data and the LLRs to the iterative decoder.

16. The memory system of claim 12, wherein the iterative
decoder is configured to decode a generalized low-density
parity-check (GLDPC) code based on a Hamming code.

17. The memory system of claim 16, wherein the Ham-
ming code is a shortened extended Hamming code.

18. A nonvolatile memory (NVM) device comprising:

a nonvolatile memory (NVM) array;

an iterative decoder; and

a logic circuit configured to apply the iterative decoder to

decode data read from the NVM array, and

wherein the logic circuit is configured to determine a total

number of rows in first data the decoder attempted to
correct to generate second data, estimate residual error
rows among the total number that no longer have an
error after the attempt, determine second visible error
rows in the second data that continue to have an error
by permuting indices of the residual error rows accord-
ing to a permutation, and correct the first data using the
first visible error rows when the iterative decoder is
repeatedly changing between two states during the
decode.

US 11,750,221 Bl

23

19. The NVM device of claim 18, wherein the iterative
decoder is repeatedly changing between two states when the
decoder attempts to correct a first number of errors in the
read data to generate the first data, permutes the first data to
generate the second data, and attempts to correct a second
number of errors in the second data to restore the first data
including the first number of errors.

20. The NVM device of claim 18, wherein the correction
of the first data is performed by setting log-likelihood ratios
(LLRs) of rows of the first data determined to be the first
visible error rows to 0, increasing a magnitude of LLRs of
the remaining rows of the first data to a value having a higher
magnitude, and applying the first data and the LLRs to the
iterative decoder.

10

15

24

