US 20210279122A1

a2y Patent Application Publication o) Pub. No.: US 2021/0279122 Al

a9y United States

ZHOU et al.

(54) LIFETIME TELEMETRY ON MEMORY
ERROR STATISTICS TO IMPROVE
MEMORY FAILURE ANALYSIS AND
PREVENTION

(71) Applicant: Intel Corporation, Santa Clara, CA
(US)

(72) Inventors: Shen ZHOU, Shanghai (CN); Cong LI,
Shanghai (CN); Kuljit S. BAINS,
Olympia, WA (US); Xiaoming DU,
Shanghai (CN); Mariusz ORIOL,
Gdynia (PL)

(21) Appl. No.: 17/317,745

(22) Filed: May 11, 2021

Publication Classification

(51) Int. CL

GoO6F 11/07 (2006.01)

Telemetry: Micro-level Error
Statistics Indicators (MESis)

Microcontroller /
Firmware

43) Pub. Date: Sep. 9, 2021
(52) US. CL
CPC ... GOG6F 11/079 (2013.01); GOGF 11/073

(2013.01); G1IC 11/401 (2013.01); GO6F
11/0787 (2013.01); GOGF 11/076 (2013.01)

(57) ABSTRACT

Methods and apparatus for lifetime telemetry on memory
error statistics to improve memory failure analysis and
prevention. Memory error information corresponding to
detected correctable errors and uncorrectable memory errors
are monitored, with the memory error information identify-
ing an associated DRAM device in an associated DIMM.
Corresponding micro-level error bits information from the
memory error information is decoded and Micro-level Error
Statistic Indicators (MESIs) are generated. Information
associated with the MESIs from DRAM devices on the
DIMMs are periodically written to persistent storage on
those DIMMs. The MESIs for a given DIMM are updated
over the lifetime of the DIMM.

Micro-level Error Statistics

Micro-level Memory Error Statistics indicators (MESIs)
Tracking & Calculation .
A Cro8
N
. 102
System & DIMM | CE/DUE with
configuration error bits info
106-0 .
Y 0 ¥ (o6N
(o DIMM 0 DIMM N
7
Correctable and Uncorrectable NVRAM (e.g., SPD) NVRAM (e.g., SPD)
Memory Errors Occurred Micro-leve! Error Micro-~ievel Error
Statistics “os Statistic Indicators
Platform HW (Processor, Memory , QPI, Indicators (MESIs) {MESIs)
PCH+ME, ...) 3 T
¥ 2.
(104 “iaaye) “120yp)

Sep. 9,2021 Sheet 1 of 8 US 2021/0279122 A1

Patent Application Publication

[314

(dh) z1 1y (dA) vLLy Y05
V4 L Y
< = (" "IW+HOd
(sIsan) (sIS3N) s1oreo1py 1dD © Aowspy 108582014) MH WIokEld
SJ0}B2IpUY J1ISNEIS voe sonsiuels
1011 |OAB}-0I0IN 10413 [9AS|-0I0IN pPa.LInd0Q0 Sioug AloWdN
A (ads “6'9) WWHAN 9|gB}1084100UN pUB 9|ge108.1I0D)
(ads “60) WYHAN))
N WWIa 0 WNIa oL
S—% S \
N-901 0-901 ojul S}iq J0JID uoneinbyuco
Uim ANA/A0 | WINIG 8 waelshs
0 rw
S
801
2 v
. uonejnoje) xR bunoel]

(SISTN) sio3edipU]
SO1IS1IBLS 1041 [9AS}-0JOIN

SOIISNEIS 10417 AJOWB) [9AS]-0I0IN

S1eMULIL
/ 19]|0JJUOD0IOIN

(SIS3AN) siojeoipul sonsnels
1013 |9A3}-0.0IN ATBUIRIR | \

Patent Application Publication Sep. 9,2021 Sheet 2 of 8 US 2021/0279122 A1

200 \

Microcontroller or firmware logic monitors CE/DUE and
decodes the corresponding micro-level error bits information

N
(202

A4
Microcontroller or firmware logic calculates and updates

the micro-level error statistics indicators for each of DIMMs
when CE or DUE occurs

.
(204

A
Microcontroller or firmware logic reports out or allows
querying the micro-level error statistics indicators (MESIs)
for each of DIMM

.
(206

A 4

Microcontroller or firmware logic accesses the persistent
storage infrastructure of the DIMM to periodically stores the
micro-level error statistics indicators with various failure
characteristics tracked in perpetuity,
thus allowing to persistently retain the micro-level error
statistics indicators in the DIMM across system power cycles
or throughout DIMM physical replacement or transition in
hardware swap or maintenance.

.
(208

Fig. 2

Sep. 9,2021 Sheet 3 of 8 US 2021/0279122 A1

Patent Application Publication

£ .%.n v 00¢€

\/\
Y0¢
808 N w_\mN Nomnv
m 1 5 | ;Hu|;|m 1SOy 0S80y “ejeg diyp
WvHd m r _m r
|
W T . T ! “sdury ssusg | - g
| B g w - 8LE S
! auypIop - T P r— — - e ¢ J 2
o ouiig w LA Tt P 9 “Teeg | §
\\.\\\.«f . oy -5 w
ULN|oD) —1 . 5 S
Moy || w. B K
o pLe
yueg ——F 0
_) aolneQ d PUBWILICD
m " Nvdad /SS8IPPY
A | Siuey 0 ey
90¢ (syuey Z) NNIa

Patent Application Publication

Sep. 9,2021 Sheet 4 of 8

US 2021/0279122 Al

306 l
\/-* I
T}t Bank
Q ——
[@)] T
S / \\ T~ Row
B { i
=R { . {1 Column
S ML=k z
4 Sense Amps
i P
v/ (310 (312
Bitline fauit
(402 7 | indicator
Wordline | Bitline Pre-charge 7 Ca10
Select -~ Bitline
Line - “}/
TN T TN "\l""':_"i U N T
‘3— X : % i !
vﬁZZg O Y R e | [Wordiine fault
B R E S TS St T D el) - Rt ~ indicator
(for __ | | 0o %
) 1 — pen State (412
Wordiine) | = ™ i B
a L‘" o “‘"J BN “'j | ooe
C l !
404~ ?é _ \ﬁ \D E l> _L—Closed State
o L L ”—l | ! ...”““‘“"
: - il
) i I
Vop (for |2 o \”1 \“ \" | Bank fault
Select ‘\ﬁ N T (T ot T | indicator
Line) i i (\
Bitcell & | ° \’\\\l .l 414
L L] L L] l L 3 ’
v _j\SS(ense Amp8
jEvEvEyEya w‘
(312 + Stuck-at bit
Bitline Bitline Select fault indicator
Address | Decoder Bitline Mux (Optional) / (416
R
(406 408

Fig. 4

Sep. 9,2021 Sheet S of 8 US 2021/0279122 A1

Patent Application Publication

(dAY) 216
(dAY) 016

[s®1Aq X] %o0ig Ble@ N ISIN

[se1Aqg Z] ybus eleg N ISAN

<

[se)Aq X] 3o0ig Bleq 0 ISTIN

v [se1hq g] yibus eleg 0 ISTIN

805’

S s

009

«\\\

ATAE
8y} JO SIs1edIpUl SOISHE]S
10118 |9AS|-00IW SUIBRJLOD 7

(gaw) »ooig eleq ISIN

(aao) |
3ooig eieq uonenbiyuo)

~-90G

N v0S

205°

Patent Application Publication Sep. 9,2021 Sheet 6 of 8 US 2021/0279122 A1

600 \

(System Boot \)
(602

Y
Current._ MESIs € Read MESIs
snapshot from NVRAM

(604

Memory

A

error polling timer

expired?
606
YES
Polling timer reset (4
3
New error reported? NO) (610

YES
v

Reevaluate MES! for impacted DIMM,

update Current_MES!; polling timer reset

l (610

; [optional] trigger detailed raw telemetry |
igeneration for impact DIMM if new reported,
§ error is a DUE ‘

Persistent saving timer

expired?

614

YES
L 4

Write Current_MES! snapshot to
NVRAM; persistent saver timer reset

3
(616

Fig. 6

Patent Application Publication Sep. 9,2021 Sheet 7 of 8 US 2021/0279122 A1

700 \
System Clean
Shutdown Start

(702

Y
System shutdown
notification

N
(704

h 4

Write Current_MESIs to

NVRAM
(706
A4
System Clean
Shutdown End
(708

Fig. 7

Patent Application Publication Sep. 9,2021 Sheet 8 of 8 US 2021/0279122 A1

SYSTEM , e ‘
800 i MEMORY SUBSYSTEM 820 !
PROCESSOR ! . 5
810 ; MEMORY 830 | | |
3 0S 832 5
' | MEMORY :
i CNTR || 5
HIGHER SPEED : 822 e ;
3 8
GRAPHICS INTERFACE ’ PROCESSES '
840 ' i
812 : 836 H
: E
))
s s
NETWORK LOWER SPEED PERIPHERAL
INTERFACE INTERFACE INTERFACE
850 814 870
|
. T | s““““"""““"“"""““"""""}
| | 1o ! n i
BMC : '
| gog | |INTERFACE | | STORAGE 884 5
i | 860 ; CONTROLLER n CODEDATA '
b o e e ' : 882 886 5
; :
; STORAGE SUBSYSTEM 880 !
POWER POWER
SOURCE SUPPLY -3 POWER
802 804

Fig. 8

US 2021/0279122 Al

LIFETIME TELEMETRY ON MEMORY
ERROR STATISTICS TO IMPROVE
MEMORY FAILURE ANALYSIS AND

PREVENTION

BACKGROUND INFORMATION

[0001] Memory failure is among the leading causes of
server failures in datacenters. DIMM (Dual Inline Memory
Module) vendors need to gain insight on the wear-out extent
of the micro-level circuits/components of a memory module
over its lifetime for both the field return-and-replacement
decision and the future reliability design. The insight is also
important to memory controller designers to enhance Intel
RAS code (e.g., ECC algorithm), perform precise memory
failure analysis, and accelerate troubleshooting. The infor-
mation also serves as the building block for datacenter
operators to build sophisticated uncorrectable error predic-
tors in conjunction of using other impactful runtime context
information (e.g., platform RAS settings, memory access
information, etc.).

[0002] Existing platform RAS technologies typically
count runtime errors and compare the error count within a
time period with a pre-defined threshold. Memory test tools
are intrusive, requiring a reboot to run and consequently
impacting the availability of the servers.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The foregoing aspects and many of the attendant
advantages of this invention will become more readily
appreciated as the same becomes better understood by
reference to the following detailed description, when taken
in conjunction with the accompanying drawings, wherein
like reference numerals refer to like parts throughout the
various views unless otherwise specified:

[0004] FIG.1 is a diagram of a logical architecture used to
implement a per-DIMM memory error telemetry data col-
lection and tracking mechanism, according to one embodi-
ment;

[0005] FIG. 2 is a flowchart illustrating high-level opera-
tions for generating and persistently storing MESIs (and/or
associated information), according to one embodiment.
[0006] FIG. 3 is a diagram illustrating selective elements
in a memory subsystem including a memory controller
coupled to a DIMM showing two ranks of DRAM devices;
[0007] FIG. 4 is a schematic diagram of a DRAM memory
structure illustrating four types of MESIs;

[0008] FIG. 5 is a diagram illustrating the format of data
structures that stores MESI telemetry data in a secure
storage accessible by the microcontroller/firmware/soft-
ware, according to one embodiment;

[0009] FIG. 6 is a flowchart illustrating operations and
logic for a high-level process flow on how MESI telemetry
is gathered and maintained, according to one embodiment;
[0010] FIG. 7 is a flowchart illustrating operations per-
formed during and intended clean system shutdown to write
the most current MESIs to NVRAM.

[0011] FIG. 8 is a block diagram of an exemplary system
in which aspects of the embodiments disclosed herein may
be implemented.

DETAILED DESCRIPTION

[0012] Embodiments of methods and apparatus for life-
time telemetry on memory error statistics to improve

Sep. 9, 2021

memory failure analysis and prevention are described
herein. In the following description, numerous specific
details are set forth to provide a thorough understanding of
embodiments of the invention. One skilled in the relevant art
will recognize, however, that the invention can be practiced
without one or more of the specific details, or with other
methods, components, materials, etc. In other instances,
well-known structures, materials, or operations are not
shown or described in detail to avoid obscuring aspects of
the invention.

[0013] Reference throughout this specification to “one
embodiment” or “an embodiment” means that a particular
feature, structure, or characteristic described in connection
with the embodiment is included in at least one embodiment
of the present invention. Thus, the appearances of the
phrases “in one embodiment” or “in an embodiment” in
various places throughout this specification are not neces-
sarily all referring to the same embodiment. Furthermore,
the particular features, structures, or characteristics may be
combined in any suitable manner in one or more embodi-
ments.

[0014] For clarity, individual components in the Figures
herein may also be referred to by their labels in the Figures,
rather than by a particular reference number. Additionally,
reference numbers referring to a particular type of compo-
nent (as opposed to a particular component) may be shown
with a reference number followed by “(typ)” meaning
“typical.” It will be understood that the configuration of
these components will be typical of similar components that
may exist but are not shown in the drawing Figures for
simplicity and clarity or otherwise similar components that
are not labeled with separate reference numbers. Conversely,
“(typ)” is not to be construed as meaning the component,
element, etc. is typically used for its disclosed function,
implement, purpose, etc.

[0015] In accordance with aspects of the embodiments
disclosed herein, a per-DIMM tracking mechanism is pro-
vided to count the micro-level error statistics of the memory
throughout its lifecycle and store the indicators in a persis-
tent storage with the DIMM. A microcontroller or firmware
logic reads system and DIMM configurations, tracks the
memory correctable errors (CEs) and detectable uncorrect-
able errors (DUEs) with micro-level error location informa-
tion, and counts the error statistics down to bitlines, word-
lines, banks, chips, and ranks. The set of indicators tracking
the information are referred to herein as “micro-level error
statistics indicators” (MESIs). The DIMM provides the
persistent storage such as the Serial Presence Detect (SPD)
table or other Non-Volatile Media (NVM). The microcon-
troller or firmware logic persistently stores MESIs to the
persistent storage in the corresponding DIMM and expo-
sures MESIs as the telemetry for DRAM health assessment
and troubleshooting.

[0016] Having such MESIs for a large population of
DIMMs allows DIMM vendors and memory RAS architects
to refine the RAS design based on the field characteristics.
For a single DIMM, the information allows the DIMM
vendor to make a better return-and-replacement decision. It
also allows users of the silicon and Intel to track the fault
status of a DIMM over its lifetime in the field and to gather
the critical information of aging effects of the memory.
[0017] FIG. 1 shows a diagram of a logical architecture
100 used to implement the foregoing per-DIMM memory
error telemetry data collection and tracking mechanism,

US 2021/0279122 Al

according to one embodiment. Architecture 100 includes
microcontroller/firmware 102, platform hardware (HW)
104, and multiple DIMMs 106-0 . . . 106-N. In one embodi-
ment, microcontroller/firmware 102 represents functionality
implemented by platform hardware including a logic block
108 for performing micro-level memory error statistics and
tracking calculations. As described in further detail below,
platform hardware 102 and or the functionality performed
by logic block 108 may be implemented in a memory
controller or may be implemented in platform hardware that
is separate from the memory controller.

[0018] During runtime operations of hardware 104, cor-
rectable and uncorrectable memory errors 110 may occur.
The correctable memory errors are also referred to herein as
Correctable Errors (CEs) and the uncorrectable memory
errors are also referred to herein as Detectable uncorrectable
Errors (DUEs). As explained and illustrated in further detail
below, the correctable and uncorrectable memory errors
occur on DIMMs 106-0 . . . 106-N. In the illustrated
embodiment in FIG. 1, MESIs 112 are stored in NVRAM
(Non-Volatile Random Access Memory, a type of Non-
Volatile Media) 114 on DIMMs 106-0 . . . 106-N.

[0019] During initialization of the platform hardware,
system and DIMM configuration are detected, and associ-
ated information is provided to microcontroller/firmware
102 to be employed by logic block 108. During runtime
operations of the platform, CEs and DUEs produced by
memory in DIMMs 106-0 . . . 106-N are detected, and
corresponding error bits information are generated by plat-
form hardware, such as by a memory controller. The CEs
and DUEs with error bits information is used by logic block
108 to generate the micro-level memory errors statistics. As
described in detail below, MESIs 112 data are periodically
written to NVRAM 114 on DIMMs 106-0 . . . 106-N.
[0020] The platform hardware, including integrated cir-
cuits provides the ability to monitor micro-level error infor-
mation for CEs and DUEs of the memory, as well as detect
system and DIMM configurations. As illustrated in FIG. 1,
the DIMMs provide an accessible persistent storage infra-
structure such as the Serial Presence Detect (SPD) table or
other Non-Volatile Media.

[0021] FIG. 2 shows a flowchart 200 illustrating high-
level operations for generating and persistently storing
MESIs (and/or associated information), according to one
embodiment. In a block 202, the microcontroller or firmware
logic monitors CEs and DUEs and decodes the correspond-
ing micro-level error bits information by using capabilities
provided by the platform hardware. In a block 204, the
microcontroller or firmware logic calculates and updates the
micro-level error statistics indicators for each of DIMMs
106-0 . . . 106-N when a CE or DUE occurs. In a block 206,
the microcontroller or firmware logic reports out or allows
querying the MESIs for each of DIMMs 106-0 . . . 106-N.
In a block 208, the microcontroller or firmware logic
accesses the persistent storage infrastructure of the DIMM
(e.g., SPD or other Non-Volatile Media) to periodically
stores the micro-level error statistics indicators with various
failure characteristics tracked in perpetuity, thus allowing
the DIMM to persistently retain the micro-level error sta-
tistics indicators across system power cycles or throughout
DIMM physical replacement or transition in hardware swap
or maintenance.

[0022] The telemetry of MESIs contains the most infor-
mative error statistics per DIMM to describe different types

Sep. 9, 2021

of faults in micro-level circuits/components. The error sta-
tistics are tracked over a period and are incrementally
counted. Thus, processor vendors, DIMM vendors, OEMs or
end users can consume the data for fast DIMM diagnostics
of DIMM failures, DIMM health evaluation, and uncorrect-
able error prediction over the lifetime of a DIMM. Some
non-limiting examples of the MESIs are shown in FIG. 4
and discussed below.

[0023] FIG. 3 shows selective elements in a memory
subsystem 300 including a memory controller 302 coupled
to a DIMM 304 showing two ranks of DRAM devices 306.
Generally, a DRAM DIMM may have one or more ranks.
Each DRAM device includes a plurality of banks compris-
ing an array of DRAM cells 308 that are organized (laid out)
and as rows and columns. Fach row comprises a Wordline,
while each column comprises a Bitline. Each DRAM device
306 further includes control logic 310 and sense amps 312
that are used to access DRAM cells 308.

[0024] As further shown in FIG. 3, memory controller
provides inputs comprising address/commands 314 and chip
select 316. For memory Writes, the memory controller
inputs further include data 318 that are written to DRAM
cells 308 based on the address and chip select inputs.
Similarly, for Reads, data 318 stored in DRAM cells 308
identified by the address and chip select inputs is returned to
memory controller 302.

[0025] As described herein, reference to memory devices
(e.g., DRAM devices) can apply to different memory types.
Memory devices may refer to volatile memory technologies.
Volatile memory is memory whose state (and therefore the
data stored on it) is indeterminate if power is interrupted to
the device. Nonvolatile memory refers to memory whose
state is determinate even if power is interrupted to the
device. Dynamic volatile memory requires refreshing the
data stored in the device to maintain state. One example of
dynamic volatile memory includes DRAM, or some variant
such as synchronous DRAM (SDRAM). A memory subsys-
tem as described herein may be compatible with a number
of memory technologies or standards, such as DDR3
(double data rate version 3, JESD79-3, originally published
by JEDEC (Joint Electronic Device Engineering Council) on
Jun. 27, 2007), DDR4 (DDR version 4, JESD79-4, origi-
nally published in September 2012 by JEDEC), LPDDR3
(low power DDR version 3, JESD209-3B, originally pub-
lished in August 2013 by JEDEC), LPDDR4 (low power
DDR version 4, JESD209-4, originally published by JEDEC
in August 2014), WIO2 (Wide I/O 2 (WideIO2), JESD229-
2, originally published by JEDEC in August 2014), HBM
(high bandwidth memory DRAM, JESD235, originally pub-
lished by JEDEC in October 2013), LPDDRS (originally
published by JEDEC in February 2019), HBM2 ((HBM
version 2), originally published by JEDEC in December
2018), DDRS (DDR version 5, originally published by
JEDEC in July 2020), or others or combinations of memory
technologies, and technologies based on derivatives or
extensions of such specifications.

[0026] The (S)DRAM DIMM:s that may be used comprise
error correction code (ECC) memory. Error correction codes
protects against undetected memory data corruption, and is
used in computers and servers where such corruption is
unacceptable, for example in some scientific and financial
computing applications, cloud-based services, database and
file servers, etc. ECC also reduces the number of crashes that
are especially unacceptable in multi-user server applications

US 2021/0279122 Al

and maximum-availability systems. The use of ECC
DIMMs is well-known in the art. Existing hardware com-
ponents, including memory controllers and the like and
some DIMMs may be used to detect CEs and DUE:s.
Generally, the particular techniques and mechanisms used
for detecting CEs and DUEs is outside the scope of this
disclosure.
[0027] Under conventional (S)DRAM memory, data are
generally accessed (Read and Written) using cachelines
(also called cache lines) comprising a sequence of memory
cells (bits) in a wordline. The cachelines for a given memory
architecture generally have a predetermined width or size,
such as 64 Bytes, noting other widths/sizes maybe used.
[0028] Referring to FIG. 4, the DRAM device 306 struc-
ture includes a bank 400 including an array of memory cells
called bitcells organized as wordlines and bitlines. A bitcell
may have an open state or closed state. A bitline pre-charge
402 and a word inline decoder 404 are coupled to bank 400.
A bitline decoder 406 is used for selecting bitlines. An
optional bitline mux (multiplexer) 408 may be used to
multiplex the outputs of sense amps 312.
[0029] FIG. 4 shows four examples of MESIs. These
include a bitline fault indicator 410, a wordline fault indi-
cator 412, a bank fault indicator 414, and a stuck-at bit fault
indicator 416.
[0030] A bitline fault indicator 416 comprises the number
of accumulated unique fault locations and the minimum
faulty range for a specific bitline. For a bitline, we track 1)
the number of unique locations with errors observed and 2)
the minimum range that covers those locations (e.g., maxi-
mum wordline index and minimum wordline index with
errors observed). To keep the telemetry concise, one may
only keep a set of bitlines with the largest location numbers
or those with the largest ranges in the persistent storage, in
one embodiment.
[0031] The following is a bitline fault indicator example:
[0032] <bitline ID=128, # of unique fault loca-
tions=200, minimum faulty range <minimum wordline
index=12, maximum wordline index=3000>>
[0033] A wordline fault indicator comprises the number of
accumulated unique fault locations and the minimum faulty
range for a specific wordline. Like the bitline indicator, for
a wordline, we track 1) the number of unique locations with
errors observed and 2) the minimum range that covers those
locations (e.g., maximum bitline index and minimum bitline
index with errors observed). To keep the telemetry concise,
one may only keep a set of wordlines with the largest
location numbers or those with the largest range in the
persistent storage, in one embodiment.

[0034] The following is a wordline fault indicator
example:
[0035] <wordline ID=512, # of unique fault loca-

tions=100, minimum faulty range <minimum bitline

index=500, maximum bitline index=700>>
[0036] A bank fault indicator comprises the number of
accumulated unique fault locations and the minimum faulty
rectangle area. For a bank, we track 1) the number of unique
location with errors observed and 2) the minimum rectangle
covering those locations (maximum/minimum bitline/word-
line index with errors observed).

[0037] The following is an example of a bank fault indi-
cator:
[0038] <Bank ID=10, # of unique fault locations=50,

minimum faulty rectangle area<minimum bitline

Sep. 9, 2021

index=2, maximum bitline index=50, minimum word-

line index=100, maximum wordline index=2000>>
[0039] A struck-at bit fault indicator comprises the number
of accumulated errors observed in a specific bit over pre-
defined stuck-at bit error threshold. To keep the telemetry
concise, one may only keep a set of bits with the largest
numbers in the persistent storage. The following is an
example of a struck-at bit fault indicator:

[0040] <Bit location<bitline index=10,

index=100>, # of accumulated errors=2000>
[0041] The MESIs are not limited to the examples listed
above but could contain other critical memory faulty char-
acteristics over the lifetime of the memory, such as accu-
mulated uptimes of the DIMM, accumulated # of boots, and
O on.
[0042] FIG. 5 shows diagram 500 illustrating the format of
data structures that stores MESI telemetry data in a secure
storage accessible by the microcontroller/firmware/soft-
ware, according to one embodiment. The data structures
include a MESI header 502, configuration data block (CDB)
504, and a MESI data block (MDB) 506. CDB 504 may
contain the runtime context of the memory such as uptimes
and number of boots. MDB 506 contains MESIs of the
DIMM, and includes an MDB header 508 and a plurality of
MESI entries comprising a MESI data length 510 followed
by a MESI data block (data) 512.

[0043] FIG. 6 shows a flowchart 600 illustrating opera-
tions and logic for a high-level process flow on how MESI
telemetry is gathered and maintained, according to one
embodiment. The process begins with a system boot 602. In
a block 604 the current MESIs are read from an MESIs
snapshot from NVRAM on the DIMM for one or more
DIMMs. The remaining operations and logic are imple-
mented on an ongoing, loop-wise manner.

[0044] In this example, a polling timer is used. As shown
by a decision block 606, a determination is made to whether
the memory error polling timer expired. When the polling
timer has expired, the logic proceeds to a decision block 608
in which a determination is made to whether a new error has
been reported. If the answer is NO, the logic proceeds to a
block 609 in which the polling timer is reset, and the logic
flows back to decision block 606.

[0045] In the event one or more new errors are reported,
the logic proceeds to a block 610 in which the MESI is
reevaluated for the impacted DIMM. The current MESI
snapshot is also updated, and the polling timer is reset. In an
optional block 612, detailed raw telemetry generation is
triggered for the impact on the DIM if the new reported error
is a DUE.

[0046] In a decision block 614 a determination is made to
whether a persistent saving time has expired. The persistent
saving timer is used to periodically write the current MESI
snapshot to NVRAM on the DIMM. Thus, upon expiration
of the persistent saving timer, the result of decision block
614 will be YES and the current MESIs snapshot will be
written to NVRAM in a block 616. The process will then
loop back to decision block 606, and the process will be
repeated in an ongoing manner.

[0047] In addition to using a polling timer, other mecha-
nisms may be used. For example, platform hardware used to
detect memory errors may employ an interrupt mechanism
that may be used to inform the telemetry collection mecha-
nism when new CEs and/or DUES are detected.

workline

US 2021/0279122 Al

[0048] FIG. 7 shows a flowchart 700 illustrating opera-
tions performed during and intended clean system shutdown
to write the most current MESIs to NVRAM. The process
begins in a start block 702 in which the clean system
shutdown begins. In a block 704, a system shutdown noti-
fication is sent to the microcontroller/firmware used to
monitor and store the MESIs for the system. In a block 706
the current MESIs for each DIMM for which MESIs are
tracked are written to NVRAM on those DIMMs. As shown
in an end block 708, the process is completed with the end
of the clean system shutdown.

Example Compute Platform

[0049] FIG. 8 illustrates an example compute platform
800 in which aspects of the embodiments may be practiced.
Compute platform 800 represents a computing device or
computing system in accordance with any example
described herein, and can be a server, laptop computer,
desktop computer, or the like. More generally, compute
platform 800 is representative of any type of computing
device or system employing DRAM DIMM:s.

[0050] Compute platform 800 includes a processor 810,
which provides processing, operation management, and
execution of instructions for compute platform 800. Proces-
sor 810 can include any type of microprocessor, central
processing unit (CPU), graphics processing unit (GPU),
processing core, or other processing hardware to provide
processing for compute platform 800, or a combination of
processors. Processor 810 controls the overall operation of
compute platform 800, and can be or include, one or more
programmable general-purpose or special-purpose micro-
processors, digital signal processors (DSPs), programmable
controllers, application specific integrated circuits (ASICs),
programmable logic devices (PLDs), or the like, or a com-
bination of such devices.

[0051] In one example, compute platform 800 includes
interface 812 coupled to processor 810, which can represent
a higher speed interface or a high throughput interface for
system components that needs higher bandwidth connec-
tions, such as memory subsystem 820 or graphics interface
components 840. Interface 812 represents an interface cir-
cuit, which can be a standalone component or integrated
onto a processor die. Where present, graphics interface 840
interfaces to graphics components for providing a visual
display to a user of compute platform 800. In one example,
graphics interface 840 can drive a high definition (HD)
display that provides an output to a user. High definition can
refer to a display having a pixel density of approximately
100 PPI (pixels per inch) or greater and can include formats
such as full HD (e.g., 1080p), retina displays, 4K (ultra-high
definition or UHD), or others. In one example, the display
can include a touchscreen display. In one example, graphics
interface 840 generates a display based on data stored in
memory 830 or based on operations executed by processor
810 or both. In one example, graphics interface 840 gener-
ates a display based on data stored in memory 830 or based
on operations executed by processor 810 or both.

[0052] Memory subsystem 820 represents the main
memory of compute platform 800 and provides storage for
code to be executed by processor 810, or data values to be
used in executing a routine. Memory 830 of memory sub-
system 820 may include one or more memory devices such
as DRAM DIMMs, read-only memory (ROM), flash
memory, or other memory devices, or a combination of such

Sep. 9, 2021

devices. Memory 830 stores and hosts, among other things,
operating system (OS) 832 to provide a software platform
for execution of instructions in compute platform 800.
Additionally, applications 834 can execute on the software
platform of OS 832 from memory 830. Applications 834
represent programs that have their own operational logic to
perform execution of one or more functions. Processes 836
represent agents or routines that provide auxiliary functions
to OS 832 or one or more applications 834 or a combination.
OS 832, applications 834, and processes 836 provide soft-
ware logic to provide functions for compute platform 800. In
one example, memory subsystem 820 includes memory
controller 822, which is a memory controller to generate and
issue commands to memory 830. It will be understood that
memory controller 822 could be a physical part of processor
810 or a physical part of interface 812. For example,
memory controller 822 can be an integrated memory con-
troller, integrated onto a circuit with processor 810.

[0053] While not specifically illustrated, it will be under-
stood that compute platform 800 can include one or more
buses or bus systems between devices, such as a memory
bus, a graphics bus, interface buses, or others. Buses or other
signal lines can communicatively or electrically couple
components together, or both communicatively and electri-
cally couple the components. Buses can include physical
communication lines, point-to-point connections, bridges,
adapters, controllers, or other circuitry or a combination.
Buses can include, for example, one or more of a system bus,
a Peripheral Component Interconnect (PCI) bus, a Hyper-
Transport or industry standard architecture (ISA) bus, a
small computer system interface (SCSI) bus, a universal
serial bus (USB), or an Institute of Electrical and Electronics
Engineers (IEEE) standard 1394 bus.

[0054] In one example, compute platform 800 includes
interface 814, which can be coupled to interface 812.
Interface 814 can be a lower speed interface than interface
812. In one example, interface 814 represents an interface
circuit, which can include standalone components and inte-
grated circuitry. In one example, multiple user interface
components or peripheral components, or both, couple to
interface 814. Network interface 850 provides compute
platform 800 the ability to communicate with remote
devices (e.g., servers or other computing devices) over one
or more networks. Network interface 850 can include an
Ethernet adapter, wireless interconnection components, cel-
Iular network interconnection components, USB (universal
serial bus), or other wired or wireless standards-based or
proprietary interfaces. Network interface 850 can exchange
data with a remote device, which can include sending data
stored in memory or receiving data to be stored in memory.
[0055] In one example, compute platform 800 includes
one or more 1/O interface(s) 860. /O interface(s) 860 can
include one or more interface components through which a
user interacts with compute platform 800 (e.g., audio, alpha-
numeric, tactile/touch, or other interfacing). Peripheral inter-
face 870 can include any hardware interface not specifically
mentioned above. Peripherals refer generally to devices that
connect dependently to compute platform 800. A dependent
connection is one where compute platform 800 provides the
software platform or hardware platform or both on which
operation executes, and with which a user interacts.

[0056] In one example, compute platform 800 includes
storage subsystem 880 to store data in a nonvolatile manner.
In one example, in certain system implementations, at least

US 2021/0279122 Al

certain components of storage subsystem 880 can overlap
with components of memory subsystem 820. Storage sub-
system 880 includes storage device(s) 884, which can be or
include any conventional medium for storing large amounts
of data in a nonvolatile manner, such as one or more
magnetic, solid state, or optical based disks, or a combina-
tion. Storage device(s) 884 holds code or instructions and
data 886 in a persistent state (i.e., the value is retained
despite interruption of power to compute platform 800). A
portion of the code or instructions may comprise platform
firmware that is executed on processor 810. Storage device
(s) 884 can be generically considered to be a “memory,”
although memory 830 is typically the executing or operating
memory to provide instructions to processor 810. Whereas
storage device(s) 884 is nonvolatile, memory 830 can
include volatile memory (i.e., the value or state of the data
is indeterminate if power is interrupted to compute platform
800). In one example, storage subsystem 880 includes
controller 882 to interface with storage device(s) 884. In one
example controller 882 is a physical part of interface 814 or
processor 810 or can include circuits or logic in both
processor 810 and interface 814.

[0057] Compute platform 800 may include an optional
Baseboard Management Controller (BMC) 890 that is con-
figured to effect the operations and logic corresponding to
the flowcharts disclosed herein. BMC 890 may include a
microcontroller or other type of processing element such as
a processor core, engine or micro-engine, that is used to
execute instructions to effect functionality performed by the
BMC. Optionally, another management component (stand-
alone or comprising embedded logic that is part of another
component) may be used.

[0058] Power source 802 provides power to the compo-
nents of compute platform 800. More specifically, power
source 802 typically interfaces to one or multiple power
supplies 804 in compute platform 800 to provide power to
the components of compute platform 800. In one example,
power supply 804 includes an AC to DC (alternating current
to direct current) adapter to plug into a wall outlet. Such AC
power can be renewable energy (e.g., solar power) power
source 802. In one example, power source 802 includes a
DC power source, such as an external AC to DC converter.
In one example, power source 802 can include an internal
battery or fuel cell source.

[0059] In some embodiments, the functionality ascribed to
the firmware discussed in the embodiments herein comprise
firmware instructions that are executed on processor 810 or
an embedded processor, processing element, microcon-
troller, micro-engine, etc. In one embodiment, compute
platform may include other types of management compo-
nents that may collect the memory error telemetry data
and/or generate the MESIs, such as a manageability engine
embedded on processor 810 (not shown).

[0060] Although some embodiments have been described
in reference to particular implementations, other implemen-
tations are possible according to some embodiments. Addi-
tionally, the arrangement and/or order of elements or other
features illustrated in the drawings and/or described herein
need not be arranged in the particular way illustrated and
described. Many other arrangements are possible according
to some embodiments.

[0061] In each system shown in a figure, the elements in
some cases may each have a same reference number or a
different reference number to suggest that the elements

Sep. 9, 2021

represented could be different and/or similar. However, an
element may be flexible enough to have different implemen-
tations and work with some or all of the systems shown or
described herein. The various elements shown in the figures
may be the same or different. Which one is referred to as a
first element and which is called a second element is
arbitrary.

[0062] In the description and claims, the terms “coupled”
and “connected,” along with their derivatives, may be used.
It should be understood that these terms are not intended as
synonyms for each other. Rather, in particular embodiments,
“connected” may be used to indicate that two or more
elements are in direct physical or electrical contact with each
other. “Coupled” may mean that two or more elements are
in direct physical or electrical contact. However, “coupled”
may also mean that two or more elements are not in direct
contact with each other, but yet still co-operate or interact
with each other. Additionally, “communicatively coupled”
means that two or more elements that may or may not be in
direct contact with each other, are enabled to communicate
with each other. For example, if component A is connected
to component B, which in turn is connected to component C,
component A may be communicatively coupled to compo-
nent C using component B as an intermediary component.
[0063] An embodiment is an implementation or example
of the inventions. Reference in the specification to “an
embodiment,” “one embodiment,” “some embodiments,” or
“other embodiments” means that a particular feature, struc-
ture, or characteristic described in connection with the
embodiments is included in at least some embodiments, but
not necessarily all embodiments, of the inventions. The
various appearances “an embodiment,” “one embodiment,”
or “some embodiments” are not necessarily all referring to
the same embodiments.

[0064] Not all components, features, structures, character-
istics, etc. described and illustrated herein need be included
in a particular embodiment or embodiments. If the specifi-
cation states a component, feature, structure, or character-
istic “may”, “might”, “can” or “could” be included, for
example, that particular component, feature, structure, or
characteristic is not required to be included. If the specifi-
cation or claim refers to “a” or “an” element, that does not
mean there is only one of the element. If the specification or
claims refer to “an additional” element, that does not pre-
clude there being more than one of the additional element.
[0065] Generally, the functionality provided by embodi-
ments disclosed herein may be implemented via one or more
forms of embedded logic. As used herein, including the
claims, embedded logic comprises various forms of circuitry
with or configured to implement logic including but not
limited to processors, CPUs, microengines, microcon-
trollers, FPGAs and other programmable logic devices,
ASICs (Application Specific integrated Circuits), Graphic
Processing Units (GPUs), and various forms of accelerators,
etc. The logic may be implemented by programming the
physical hardware (e.g., for FPGAs and other programmable
logic devices and ASICs) and/or via execution of instruc-
tions on one or more processing elements, such as a pro-
cessor core, microengine, microcontroller, and processing
elements in GPUs and accelerators. Hybrid devices may be
implemented with more than one form of embedded logic.
[0066] As discussed above, various aspects of the embodi-
ments herein may be facilitated by corresponding embedded
software and/or firmware components, such as embedded

29 <

US 2021/0279122 Al

software and/or firmware executed by an embedded proces-
sor or the like and firmware executed on a system’s proces-
sor of CPU. Thus, embodiments of this invention may be
used as or to support a software program, software/firmware
modules, and firmware instructions executed upon some
form of processor, processing core or embedded logic a
virtual machine running on a processor or core or otherwise
implemented or realized upon or within a non-transitory
computer-readable or machine-readable storage medium. A
non-transitory computer-readable or machine-readable stor-
age medium includes any mechanism for storing or trans-
mitting information in a form readable by a machine (e.g.,
a computer). For example, a non-transitory computer-read-
able or machine-readable storage medium includes any
mechanism that provides (i.e., stores and/or transmits) infor-
mation in a form accessible by a computer or computing
machine (e.g., computing device, electronic system, etc.),
such as recordable/non-recordable media (e.g., read only
memory (ROM), random access memory (RAM), magnetic
disk storage media, optical storage media, flash memory
devices, etc.). The content may be directly executable (“ob-
ject” or “executable” form), source code, or difference code
(“delta” or “patch” code). A non-transitory computer-read-
able or machine-readable storage medium may also include
a storage or database from which content can be down-
loaded. The non-transitory computer-readable or machine-
readable storage medium may also include a device or
product having content stored thereon at a time of sale or
delivery. Thus, delivering a device with stored content, or
offering content for download over a communication
medium may be understood as providing an article of
manufacture comprising a non-transitory computer-readable
or machine-readable storage medium with such content
described herein.

[0067] The operations and functions performed by various
components described herein may be implemented by soft-
ware running on a processing element, via embedded hard-
ware or the like, or any combination of hardware and
software. Such components may be implemented as soft-
ware modules, hardware modules, special-purpose hardware
(e.g., application specific hardware, ASICs, DSPs, etc.),
embedded controllers, hardwired circuitry, hardware logic,
etc. Software content (e.g., data, instructions, configuration
information, etc.) may be provided via an article of manu-
facture including non-transitory computer-readable or
machine-readable storage medium, which provides content
that represents instructions that can be executed. The content
may result in a computer performing various functions/
operations described herein.

[0068] As used herein, a list of items joined by the term “at
least one of” can mean any combination of the listed terms.
For example, the phrase “at least one of A, B or C” can mean
A;B;C;Aand B; Aand C; B and C; or A, B and C.
[0069] The above description of illustrated embodiments
of the invention, including what is described in the Abstract,
is not intended to be exhaustive or to limit the invention to
the precise forms disclosed. While specific embodiments of,
and examples for, the invention are described herein for
illustrative purposes, various equivalent modifications are
possible within the scope of the invention, as those skilled
in the relevant art will recognize.

[0070] These modifications can be made to the invention
in light of the above detailed description. The terms used in
the following claims should not be construed to limit the

Sep. 9, 2021

invention to the specific embodiments disclosed in the
specification and the drawings. Rather, the scope of the
invention is to be determined entirely by the following
claims, which are to be construed in accordance with estab-
lished doctrines of claim interpretation.

What is claimed is:

1. An apparatus configured to be implemented in a com-
puting platform comprising platform hardware including a
plurality of Dynamic Random Access Memory (DRAM)
devices on one of more Dual Inline Memory Modules
(DIMMs) and a processor having an integrated or separate
memory controller used to access memory in the plurality of
DRAM devices, comprising:

embedded logic to,

monitor memory error information corresponding to at
least one of detected correctable errors and uncor-
rectable memory errors, the memory error informa-
tion for a given correctable or uncorrectable memory
error identifying an associated DRAM device;

decode corresponding micro-level error bits informa-
tion from the memory error information and generate
Micro-level Error Statistic Indicators (MESIs); and

cause information associated with the MESIs generated
for DRAM devices on a given DIMM to be written
to persistent storage on that DIMM.

2. The apparatus of claim 1, wherein the DRAM devices
comprise banks with arrays of memory cells organized in
wordlines and bitlines, and wherein the MESIs include
bitline fault indicators associated with specific bitlines.

3. The apparatus of claim 1, wherein the DRAM devices
comprise banks with arrays of memory cells organized in
wordlines and bitlines, and wherein the MESIs include
wordline fault indicators associated with specific wordlines.

4. The apparatus of claim 1, wherein the DRAM devices
comprise banks with arrays of memory cells organized in
wordlines and bitlines, and wherein the MESIs include bank
fault indicators associated with specific banks or areas on
specific banks.

5. The apparatus of claim 1, wherein the DRAM devices
comprise banks with arrays of memory cells organized in
wordlines and bitlines comprising bits, and wherein the
MESIs include stuck-at bit indicators associated with spe-
cific bits.

6. The apparatus of claim 1, wherein the apparatus com-
prises one of a baseband management controller or other
platform management entity.

7. The apparatus of claim 1, wherein the apparatus com-
prises a microcontroller.

8. The apparatus of claim 1, wherein the apparatus com-
prises the processor, and the embedded logic includes a
portion of platform firmware that is executed on the pro-
Ccessor.

9. The apparatus of claim 1, wherein the MESIs infor-
mation is stored in a data structure including a MESI data
block comprising a plurality of MESI data block entries.

10. The apparatus of claim 1, wherein the embedded logic
is further to:

calculate and update MESIs for each of the one or more

DIMMs when correctable errors or detectable uncor-
rectable memory errors occur; and

periodically cause information associated with the MESIs

including the updated MESIs to be written to persistent
storage in the one or more DIMMs.

US 2021/0279122 Al

11. A compute platform, comprising:
a processor;
a plurality of Dual Inline Memory Modules (DIMMs),
each comprising a plurality of Dynamic Random
Access Memory (DRAM) devices comprising memory
and including a plurality of banks of memory cells
organized in arrays comprising row-wise wordlines and
column-wise bitlines;
a memory controller coupled to the plurality of DIMMs
and used to access the memory, the memory controller
integrated on the processor or coupled to the processor
and enabled to detect correctable errors and uncorrect-
able errors; and
embedded logic to:
monitor memory error information corresponding to at
least one of detected correctable errors and uncor-
rectable memory errors, the memory error informa-
tion for a given correctable or uncorrectable memory
error identifying an associated DRAM device;

decode corresponding micro-level error bits informa-
tion from the memory error information and generate
Micro-level Error Statistic Indicators (MESIs); and

cause information associated with the MESIs generated
for DRAM devices on a given DIMM to be written
to persistent storage on that DIMM.

12. The compute platform of claim 11, wherein the
embedded logic is implemented in one of a baseband
management controller or other platform management
entity.

13. The compute platform of claim 11, wherein the
DRAM devices comprise banks with arrays of memory cells
organized in wordlines and bitlines, and wherein the MESIs
include at least one of bitline fault indicators associated with
specific bitlines and wordline fault indicators associated
with specific wordlines.

14. The compute platform of claim 11, wherein the
DRAM devices comprise banks with arrays of memory cells
organized in wordlines and bitlines, and wherein the MESIs
include bank fault indicators associated with specific banks
or areas on specific banks.

15. The compute platform of claim 11, wherein the
embedded logic is further to:

calculate and update MESIs for each of the one or more
DIMMs when correctable errors or detectable uncor-
rectable memory errors occur; and

Sep. 9, 2021

periodically cause information associated with the MESIs
including the updated MESIs to be written to persistent
storage in the one or more DIMMs.
16. A method implemented in a computing platform
comprising platform hardware including a plurality of
Dynamic Random Access Memory (DRAM) devices on one
of more Dual Inline Memory Modules (DIMMs) compris-
ing:
monitoring memory error information corresponding to at
least one of detected correctable errors and uncorrect-
able memory errors, the memory error information for
a given correctable or uncorrectable memory error
identifying an associated DRAM device in an associ-
ated DIMM;

decoding corresponding micro-level error bits informa-
tion from the memory error information and generating
Micro-level Error Statistic Indicators (MESIs); and

causing information associated with the MESIs generated
for DRAM devices on a given DIMM to be written to
persistent storage on that DIMM.

17. The method of claim 16, wherein the DRAM devices
comprise banks with arrays of memory cells organized in
wordlines and bitlines, and wherein the MESIs include at
least one of bitline fault indicators associated with specific
bitlines and wordline fault indicators associated with spe-
cific wordlines.

18. The method of claim 16, wherein the DRAM devices
comprise banks with arrays of memory cells organized in
wordlines and bitlines, and wherein the MESIs include bank
fault indicators associated with specific banks or areas on
specific banks.

19. The method of claim 16, wherein the DRAM devices
comprise banks with arrays of memory cells organized in
wordlines and bitlines comprising bits, and wherein the
MESIs include at least one of stuck-at bit indicators asso-
ciated with specific bits and bank fault indicators associated
with specific banks or areas on specific banks.

20. The method of claim 16, further comprising

calculating and updating MESIs for each of the one or

more DIMMs when correctable errors or detectable
uncorrectable memory errors occur; and

periodically causing information associated with the

MESIs including the updated MESIs to be written to
persistent storage in the one or more DIMMs.

#* #* #* #* #*

