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ELIMINATION OF QUERY FRAGMENT DUPLICATION IN 

COMPLEX DATABASE QUERIES 

TECHNICAL FIELD 

[0001] The disclosed implementations relate generally to relational database systems, 

and more specifically to system features that improve query execution performance.  

BACKGROUND 

[0002] A database engine receives queries, and retrieves data from one or more 

database tables to provide the data requested by the query. A database query is expressed in a 

specific query language, such as SQL. In general, a database query specifies the desired data 

without specifying a detailed execution plan about how to retrieve the data. For example, in 

SQL, the query includes a SELECT clause, a FROM clause, and a WHERE clause, which 

specify the data columns desired, the tables that include the desired columns, and conditions 

on how the data is selected. SQL queries may also contain a GROUP By clause, a HAVING 

clause, and/or an ORDER BY clause. It is up to the database engine to parse each query, build 

an execution plan, and execute the plan to retrieve the requested results. This gives the database 

engine substantial flexibility. However, different execution plans for the same query can have 

enormously different execution times to retrieve the results. For example, one execution plan 

may retrieve the results in less than a second, whereas a second plan may take minutes to 

retrieve exactly the same results. To address this issue, database engines typically include one 

or more optimization layers to improve execution performance. Unfortunately, existing 

database engines have difficulty optimizing certain types of complex queries.  

[0002A] Reference to any prior art in the specification is not an acknowledgement or 

suggestion that this prior art forms part of the common general knowledge in any jurisdiction 

or that this prior art could reasonably be expected to be combined with any other piece of prior 

art by a skilled person in the art.  

SUMMARY 

[0002B] In a first aspect of the present invention there is provided a database engine, 

comprising: one or more computing devices, each having one or more processors and memory, 

wherein the memory stores one or more programs configured for execution by the one or more 

processors and the one or more programs comprise instructions for: receiving a database query 
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from a client; parsing the database query to build a query operator tree, the query operator tree 

including a plurality of query operators; performing one or more optimization passes on the 

query operator tree, including a deduplication optimization pass, to form an optimized 

execution plan, the deduplication optimization pass including: creating a list of query operators 

via a first traversal of the query operator tree; determining a first query operator that is 

equivalent to a second query operator, based on a hash map, via a second traversal of the query 

operator tree; and substituting, via a third traversal of the query operator tree, the second query 

operator with a tree node that links to the first query operator; executing the optimized 

execution plan to retrieve a result set from the database; and returning the result set to the client.  

[0002C] In a second aspect of the present invention there is provided a non-transitory 

computer readable storage medium storing one or more programs configured for execution by 

a computer system having one or more processors and memory, the one or more programs 

comprising instructions for: receiving a database query from a client; parsing the database 

query to build a query operator tree, the query operator tree including a plurality of query 

operators; performing one or more optimization passes on the query operator tree, including a 

deduplication optimization pass, to form an optimized execution plan, the deduplication 

optimization pass including: creating a list of query operators via a first traversal of the query 

operator tree; determining a first query operator that is equivalent to a second query operator, 

based on a hash map, via a second traversal of the query operator tree; and substituting, via a 

third traversal of the query operator tree, the second query operator with a tree node that links 

to the first query operator; executing the optimized execution plan to retrieve a result set from 

the database; and returning the result set to the client.  

[0002D] In a third aspect of the present invention there is provided a method of retrieving 

data from a database, comprising: at a computer system having one or more computing devices, 

each computing device having one or more processors and memory storing one or more 

programs configured for execution by the one or more processors: receiving a database query 

from a client; parsing the database query to build a query operator tree, the query operator tree 

including a plurality of query operators; performing one or more optimization passes on the 

query operator tree, including a deduplication optimization pass, to form an optimized 

execution plan, the deduplication optimization pass including: creating a list of query operators 

via a first traversal of the query operator tree; determining a first query operator that is 

equivalent to a second query operator, based on a hash map, via a second traversal of the query 

operator tree; and substituting, via a third traversal of the query operator tree, the second query 
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operator with a tree node that links to the first query operator; executing the optimized 

execution plan to retrieve a result set from the database; and returning the result set to the client.  

[00031 When an SQL query is received by a database engine, the query is parsed and 

translated into an abstract syntax tree. Semantic analysis turns the syntax tree into an operator 

tree. Building the operator tree combines the syntax tree with schema information, resolves 

table and column names, and resolves internal references within the query. During logical 

optimization, the database engine applies constant folding, predicate pushdown, and join 

reordering, as well as other optimization techniques. The database engine described herein is 

able to remove duplicate subqueries, and thereby avoids executing redundant query operations.  

[0004] A method is provided for enhancing real-time data exploration through 

elimination of duplicate query fragments in complex database queries. In accordance with 

some implementations, the method is performed at a database engine having one or more 

computing devices, each having one or more processors and memory. The memory stores one 

or more programs configured for execution by the one or more processors. The one or more 

programs execute to retrieve data from a database (e.g., an SQL database). The database engine 

receives a database query from a client. The database engine parses the database query to build 

a query operator tree that includes a plurality of query operators. The database engine performs 

one or more optimization passes on the query operator tree, including a deduplication 

optimization pass, to form an optimized execution plan. The deduplication optimization pass 

includes (i) creating a list of query operators via a first traversal of the query operator tree, (ii) 

determining that a first query operator is equivalent to a second query operator, based on a hash 

map, via a second traversal of the query operator tree, and (iii) replacing, via a third traversal 

of the query operator tree, the second query operator with a tree node that links to the first 

query operator. The database engine executes the optimized execution plan to retrieve a result 

set from the database, and returns the result set to the client.  

[0005] In some implementations, the database engine computes a list of dependencies 

among the query operators in the list of query operators. The second traversal is a breadth-first 

post-order traversal of the query operator tree based on the list of dependencies so that query 

operators that do not have dependencies are visited before query operators with dependencies.  

In some implementations, when a third query operator has no equivalent query operators, the 

list of dependencies is updated to specify that the third query operator has dependencies so that 
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the parent of the third query operator is not selected during the breadth-first post-order 

traversal.  

[00061 In some implementations, the database engine replaces the second query 

operator with the tree node only when the first query operator can be materialized. For 

example, the database engine employs the heuristic that re-computation (or re-materialization) 

may be better than storing and retrieving a previously computed result because the concerned 

query operator (e.g., a join operator) produces a large result and storing and retrieving the large 

result would lead to memory and/or bandwidth related performance issues. In some 

implementations, the database engine replaces the second query operator when the first query 

operator is either a GROUPBy operator, a GROUPJOIN operator, a SORT operator, a 

WINDOW operator, or a TEMP operator.  
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[0007] In some implementations, the tree node that the database engine uses to link to 

the first query operator reduces the number of execution instances of a portion of the optimized 

execution plan corresponding to the second query operator.  

[0008] In some implementations, the first traversal and the third traversal of the query 

operator are depth-first pre-order traversals of the query operator tree.  

[0009] In some implementations, the database engine performs a tree refactoring 

optimization pass before the deduplication optimization pass to refactor the query operator tree.  

This increases the number of duplicate query operators in the query operator tree. In other 

words, the refactoring increases opportunities for the deduplication optimization pass to 

remove duplicate or redundant query operators. In some implementations, the database engine 

turns off, suppresses, or does not run one or more optimization passes preceding the 

deduplication optimization pass that would inhibit the deduplication optimization pass (e.g., 

passes that would decrease the number of duplicate query operators in the query operator tree, 

reduce opportunities, or make finding duplicates difficult).  

[0010] In some implementations, the database engine determines if the first query 

operator is equivalent to the second query operator based on determining if the input operators 

of the first query operator and the second query operator are equivalent, and/or determining if 

the first query operator and the second query operator have equivalent properties (e.g., the 

operators are selection predicates, join conditions, or scanned tables). In some 

implementations, the database engine determines that the first query operator and the second 

query operator have equivalent properties based on information unit mapping (sometimes 

called IUMapping) of the input operators of the first query operator and the second query 

operator. In some implementations, the database engine takes into consideration 

commutativity, associativity, and similar algebraic properties of query operators in determining 

whether the first query operator is equivalent to the second query operator. While doing so, 

the database engine ignores minor differences between the algebraic representations of the first 

query operator and the second query operator. In some implementations, while determining if 

the first query operator is equivalent to the second query operator, the database engine ignores 

one or more non-matching query operators (sometimes called "transparent" operators) in the 

sub-trees corresponding to the first query operator and the second query operator.  
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[0011] In some implementations, the hash map is indexed by query operator signatures.  

In some implementations, the hash map is updated as query operators are visited during the 

second traversal of the query operator tree.  

[0012] In some implementations, the database engine merges query fragments by 

constructing a fourth query operator that subsumes the first query operator and the second 

query operator, and/or replacing, via the third traversal of the query operator tree, the first query 

operator and the second query operator with the fourth query operator.  

[0013] In some implementations, the database engine optimizes aggregation 

hierarchies in query operator trees by constructing a fifth query operator that subsumes the first 

query operator and the second query operator, constructing a sixth query operator that uses the 

result of the fifth query operator as an input, and/or replacing, via the third traversal of the 

query operator tree, the first query operator with the fifth query operator, and the second query 

operator with the sixth query operator.  

[0014] In some implementations, the database engine removes redundant joins. For 

example, in accordance with a determination that the first query operator and the second query 

operator are input operators of a parent join query operator, the database engine removes the 

parentjoin query operator in the query operator tree and replaces it with the first query operator, 

and deletes the second query operator from the query operator tree.  

[0015] In some implementations, the database engine recycles and/or caches 

intermediate results of execution by caching a first result of executing the first query operator 

using a caching mechanism. For example, the database engine uses a LRU or a similar scheme 

that maximizes cache hit rate. In some implementations, the database engine uses a persistent 

cache (e.g., for packed workbooks) so that future loads or first impressions are fast.  

[0016] In some implementations, the database engine removes duplicate query 

operations across batch queries. The first query operator and the second query operator belong 

to different queries within a query batch, and the query operator tree includes one or more 

query operators (e.g., a UNIONALL operator) that combine different queries within the query 

batch.  

[0017] In accordance with some implementations, a database engine includes one or 

more processors, memory, and one or more programs stored in the memory. The programs are 
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configured for execution by the one or more processors. The programs include instructions for 

performing any of the methods described herein.  

[0018] In accordance with some implementations, a non-transitory computer readable 

storage medium stores one or more programs configured for execution by a computer system 

having one or more processors and memory. The one or more programs include instructions 

for performing any of the methods described herein.  

[0019] Thus methods, systems, and computer readable media are disclosed that provide 

more efficient processing by removal or elimination of query fragment duplicates in complex 

database queries.  

[0020] Both the foregoing general description and the following detailed description 

are exemplary and explanatory and are intended to provide further explanation of the invention 

as claimed.  

BRIEF DESCRIPTION OF THE DRAWINGS 

[0021] For a better understanding of the aforementioned systems and methods that 

provide efficient database query processing, reference should be made to the Description of 

Implementations below, in conjunction with the following drawings in which like reference 

numerals refer to corresponding parts throughout the figures.  

[0022] Figure 1 illustrates the context for a database system in accordance with some 

implementations.  

[0023] Figure 2 is a block diagram of a computing device according to some 

implementations.  

[0024] Figures 3A and 3B are block diagrams of query execution systems implemented 

by a computer system in accordance with some implementations. Figure 3C illustrates an 

example query tree incorporating the concept of IUMappings used in a query deduplication 

optimization pass, according to some implementations.  

[0025] Figures 4A - 4L illustrate query operator trees and how they are optimized by 

eliminating duplicate fragments, in accordance with some implementations.  

[0026] Figures 5A - 51 provide a flowchart of a process for building, optimizing, and 

executing query operator trees according to some implementations.  
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[0027] Figure 6 provides pseudocode for a hash-based deduplication process, in 

accordance with some implementations.  

[0028] Reference will now be made to implementations, examples of which are 

illustrated in the accompanying drawings. In the following description, numerous specific 

details are set forth in order to provide a thorough understanding of the present invention.  

However, it will be apparent to one of ordinary skill in the art that the present invention may 

be practiced without requiring these specific details.  

DESCRIPTION OF IMPLEMENTATIONS 

[0029] Figure 1 illustrates a context in which some implementations operate. A user 

100 interacts with a personal device 102, such as a desktop computer, a laptop computer, a 

tablet computer, or a mobile computing device. A personal device 102 is an example of a 

computing device 200. The term "computing device" also includes server computers, which 

may be significantly more powerful than a personal device used by a single user, and are 

generally accessed by a user only indirectly. An example computing device 200 is described 

below with respect to Figure 2, including various software programs or modules that execute 

on the device 200. In some implementations, the personal device 102 includes one or more 

desktop data sources 224 (e.g., CSV files or spreadsheet files). In some implementations, the 

personal device 102 includes a database engine 120, which provides access to one or more 

relational databases 122 (e.g., SQL databases). In some implementations, the personal device 

includes a data visualization application 222, which the user 100 uses to create data 

visualizations from the desktop data sources 224 and/or the relational databases 122. In this 

way, some implementations enable a user to visualize data that is stored locally on the personal 

device 102.  

[0030] In some cases, the personal device 102 connects over one or more 

communications networks 108 to one or more external database servers 106 and/or a data 

visualization server 104. The communication networks 108 may include local area networks 

and/or wide area networks, such as the Internet. In some implementations, the data 

visualization server 104 provides a data visualization web application that runs within a web 

browser 220 on the personal device 102. In some implementations, data visualization 

functionality is provided by both a local application 222 and certain functions provided by the 

data visualization server 104. For example, the data visualization server 104 may be used for 

resource intensive operations. In some implementations, the one or more database servers 106 
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include a database engine 120, which provides access to one or more databases 122 that are 

stored at the database server 106. As illustrated in Figure 1, a database engine 120 and 

corresponding databases 122 may reside on either a local personal device 102 or on a database 

server 106. In some implementations (not illustrated here), the data visualization server 104 

includes a database engine 120 and one or more databases 122.  

[0031] Figure 2 is a block diagram illustrating a computing device 200 in accordance 

with some implementations. As used herein, the term "computing device" includes both 

personal devices 102 and servers, such as a database server 106 or a data visualization server 

104. A computing device 200 typically includes one or more processing units/cores (CPUs) 

202 for executing modules, programs, and/or instructions stored in the memory 214 and thereby 

performing processing operations; one or more network or other communications interfaces 

204; memory 214; and one or more communication buses 212 for interconnecting these 

components. The communication buses 212 may include circuitry that interconnects and 

controls communications between system components. A computing device 200 may include 

a user interface 206 comprising a display device 208 and one or more input devices or 

mechanisms 210. In some implementations, the input device/mechanism 210 includes a 

keyboard. In some implementations, the input device/mechanism includes a "soft" keyboard, 

which is displayed as needed on the display device 208, enabling a user to "press keys" that 

appear on the display 208. In some implementations, the display 208 and input device / 

mechanism 210 comprise a touch screen display (also called a touch sensitive display). In 

some implementations, the memory 214 includes high-speed random-access memory, such as 

DRAM, SRAM, DDR RAM, or other random access solid state memory devices. In some 

implementations, the memory 214 includes non-volatile memory, such as one or more 

magnetic disk storage devices, optical disk storage devices, flash memory devices, or other 

non-volatile solid-state storage devices. In some implementations, the memory 214 includes 

one or more storage devices remotely located from the CPU(s) 202. The memory 214, or 

alternatively the non-volatile memory device(s) within the memory 214, comprises a non

transitory computer readable storage medium. In some implementations, the memory 214, or 

the computer readable storage medium of the memory 214, stores the following programs, 

modules, and data structures, or a subset thereof: 

• an operating system 216, which includes procedures for handling various basic 

system services and for performing hardware dependent tasks; 
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• a communications module 218, which is used for connecting the computing device 

200 to other computers and devices via the one or more communication network 

interfaces 204 (wired or wireless) and one or more communication networks 108, 

such as the Internet, other wide area networks, local area networks, metropolitan 

area networks, and so on; 

• a web browser 220 (or other client application), which enables a user 100 to 

communicate over a network with remote computers or devices. In some 

implementations, the web browser 220 executes a data visualization web 

application (not shown) downloaded from a data visualization server 104. In some 

implementations, a data visualization web application (not shown) is an alternative 

to storing a data visualization application 222 locally; 

• a data visualization application 222, which enables users to construct data 

visualizations from various data sources. The data visualization application 222 

retrieves data from one or more data sources, such as a desktop data source 224 

(e.g., a CSV file or flat file), a relational database 122 stored locally, or a desktop 

data source or relational database 122 stored on another device (such as a database 

server 106). The data visualization application then generates and displays the 

retrieved information in one or more data visualizations; 

• one or more desktop data sources 224, which have data that may be used and 

displayed by the data visualization application 222. Data sources 224 can be 

formatted in many different ways, such as spreadsheets, XML files, flat files, CSV 

files, text files, JSON files, or desktop database files. Typically, the desktop data 

sources 224 are used by other applications as well (e.g., a spreadsheet application); 

• a database engine 120, which receives database queries 226 (e.g., a query from a 

data visualization application) and returns corresponding data. The database engine 

120 typically includes a plurality of executable modules; 

• the database engine 120 invokes a query parser 240, which parses each received 

query 226 (e.g., SQL database query) to form a query operator tree 228. An 

operator tree is sometimes referred to as an algebra tree. In some implementations, 

the query parser 240 is contained within the query compiler 242; 

8



WO 2020/131243 PCT/US2019/060226 

• the database engine 120 includes a query compiler 242, which translates each query 

operator tree 228 into executable code 230. For brevity, the query compiler 242 is 

also referred to as the compiler. In some implementations, the compiler 242 

includes an optimizer 244, which modifies a query operator tree 228 to produce an 

efficient execution plan. The optimizer is generally capable of identifying multiple 

types of optimization based on the structure of the query operator tree and the data 

requested. For example, some implementations identify when to hoist 

subexpressions, such as a conditional subexpression, outside of a conditional 

expression. When the executable code is executed, a value is computed and saved 

for the hoisted expression, and the saved value is used when the subexpression is 

subsequently encountered. In this way, the subexpression is computed once for 

each row, and that computed value is reused when the same subexpression is 

encountered again. In some instances, the computed value is stored in a register of 

the CPU(s) 202. In some implementations, the compiler 242 and/or the optimizer 

242 store data structures, such as hash maps and lists of the dependencies between 

query operators 228 in the memory 214, to support or guide the optimization passes; 

• the database engine 120 includes a query execution module 250, which executes the 

code 230 (sometimes herein called a query execution plan) generated by the query 

compiler 242; and 

• the database engine 120 also includes a query memory manager 252, which tracks 

memory utilization by each of the processes, and dynamically allocates memory as 

needed. In some implementations, the memory manager 252 detects when there is 

insufficient memory while executing the compiled code. In some implementations, 

the query memory manager 252 communicates with the query execution module 

250.  

[0032] Each of the above identified executable modules, applications, or sets of 

procedures may be stored in one or more of the previously mentioned memory devices, and 

corresponds to a set of instructions for performing a function described above. The above 

identified modules or programs (i.e., sets of instructions) need not be implemented as separate 

software programs, procedures, or modules, and thus various subsets of these modules may be 

combined or otherwise rearranged in various implementations. In some implementations, the 

memory 214 stores a subset of the modules and data structures identified above. Furthermore, 
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in some implementations, the memory 214 stores additional modules or data structures not 

described above.  

[0033] Although Figure 2 shows a computing device 200, Figure 2 is intended more as 

a functional description of the various features that may be present rather than as a structural 

schematic of the implementations described herein. In practice, and as recognized by those of 

ordinary skill in the art, items shown separately could be combined and some items could be 

separated.  

[0034] Standard relational database query engines rely on relational algebra trees (e.g., 

an operator tree 228) for evaluating logically optimized plans. A typical algebra tree 228 has 

the nice property that its leaves correspond to base relations and each node in the tree 228 can 

be evaluated based solely on nodes of its subtree. To evaluate a node in the tree, a typical 

"iterator engine" works by pulling intermediate results from the subtrees corresponding to 

children of the node.  

[0035] Some database engines choose access paths as part of the logical optimization.  

The existence of an index on a joined column can enable the usage of index-nested loop joins 

and thereby influences the optimality of differentjoin orders. Because of this, access paths are 

typically chosen as part of join reordering. Next, the database engine chooses a physical 

implementation for each of the algebraic operators in the operator tree. In some 

implementations, during this phase, the database engine also chooses the appropriate access 

path and indices to retrieve the requested data as fast as possible. The optimized operator tree 

is compiled to native machine code, according to some implementations. This compiled code 

is then loaded and linked with the database engine at runtime and executed. Thus, in some 

implementations, the database engine functions essentially as an optimizing JIT compiler for 

database queries.  

[0036] In some implementations, in order to enable efficient code generation, 

implementations use a produce-consume execution model. In this execution model, the code 

for all operators is fused together, enabling the system to push one tuple at a time through the 

whole operator tree up to the next pipeline breaker.  

[0037] In some implementations, the database engine uses "Morsel-driven 

parallelism." In this parallelization model, work is dynamically balanced between worker 

threads. Tuples are handed out to the worker threads in so-called morsels, which are chunks 
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of a few thousand tuples. Worker threads take thread-locality into account when picking up 

morsels for processing.  

[0038] In some implementations, the database engine's optimizer and query engine are 

decoupled from the database storage layer. This enables the database engine to work on a large 

set of different storage formats.  

[0039] Figures 3A and 3B are block diagrams of query execution systems implemented 

by a computer system 200 in accordance with some implementations. The execution system 

300 includes a query parser 240, which receives database queries 226 (e.g., SQL queries). The 

query parser 240 parses each database query 226 to form a query operator tree 228. An 

optimizer 244 performs one or more optimization passes 308 (e.g., the passes 308-1, 308-D, 

and 308-N) to optimize the query operator tree 228 to produce an optimized query operator 

tree, according to some implementations. A deduplication optimization pass 308-D takes, as 

input, the optimized query operator tree output by one or more initial optimization passes 308

1, and removes one or more duplicate query operators, according to some implementations. In 

some implementations, one or more final optimization passes 308-N following the 

deduplication optimization pass 308-D further optimize the query operator tree output to 

produce an optimized execution plan 230. Although in Figure 3A, the box containing the 

optimization passes 308 is shown to produce the optimized execution plan 230, in some 

implementations, a compiler (e.g., the query compiler 242 described above in reference to 

Figure 2) includes the optimization passes 308 as part of an optimizer (e.g., the optimizer 244), 

and the compiler produces an optimized execution plan (sometimes herein called query 

execution plan or code). As described above in reference to Figure 2, an execution module 

(e.g., module 250) executes the code or optimized execution plan 230 to produce query results 

314, according to some implementations.  

[0040] In some implementations, an intermediate compiler compiles the query operator 

tree output by the optimization passes 308 to form an intermediate representation, which is 

subsequently compiled to an optimized execution plan 230. This step typically includes some 

logical optimization as well. In some implementations, an execution selector is coupled to the 

intermediate compiler. The execution selector identifies one or more query characteristics and 

one or more database characteristics to determine how to execute the query. In some 

implementations, the execution selector selects one of a plurality of execution options to 

process the intermediate representation. In some implementations, the plurality of execution 
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options includes direct interpretation without compilation, compilation with no or little code 

optimization (e.g., "cheap" optimizations), and compilation with a more significant level of 

code optimization. The plurality of execution options have trade-offs between the query 

compilation time and the query execution time.  

[0041] In some implementations, the execution selector implements a heuristic 

process to select an execution plan from the plurality of execution options. In some 

implementations, the heuristic process minimizes the sum of the query compilation time and 

the query execution time. In some implementation, the query compilation time is estimated 

based on the size of the intermediate representation. In some implementations, the query 

execution time is estimated based on the number of tuples (e.g., rows in the database 122) 

that will be accessed or touched for retrieving the result set corresponding to the database 

query 226.  

[0042] In some implementations, the database query 226 is segmented into a plurality 

of subqueries, each of which is translated into an execution block. In some implementations, 

the segments are based on execution pipelines. In some implementations, the execution 

selector mentioned above handles each execution block corresponding to one of the plurality 

of subqueries individually. That is, the execution selector receives each execution block from 

the intermediate compiler, and identifies one or more query characteristics for the respective 

execution block. The execution selector estimates a query execution time and a query 

compilation time for the respective execution block. Then, the estimated query execution 

time and the estimated query compilation time are analyzed to determine whether they satisfy 

one or more of the interpretation criterion, the compilation criterion, and the optimized 

compilation criterion. The execution selector then selects one of a plurality of execution 

options to process the respective execution block corresponding to one of the plurality of 

subqueries. In some implementations, even when the database query 226 is not segmented, 

the intermediate representation is broken into a plurality of execution blocks. The execution 

selector then handles each execution block individually as described above.  

[0043] In some implementations, the execution selector uses a similarity metric to 

compare new queries to previously executed queries when determining an execution option.  

In some implementations, the similarity metric uses time estimate data. In some 

implementations, the similarity metric compares characteristics of the tables accessed, such 

as identicality of the tables, table sizes, or the existence of indexes. In some 

implementations, the similarity metric compares query structure and/or complexity.  
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[0044] Figure 3B is a block diagram illustrating a query deduplication optimization 

pass 308-D in accordance with some implementations. The query deduplication optimization 

pass 308-D includes a depth-first pre-order tree traversal 316 of an input query operator tree 

228 to produce a query operator list 318 (e.g., a list of all query operators in the input query 

operator tree 228). Subsequently, the optimization pass 308-D traverses the query operator 

tree 228 in breadth-first post-order 322, guided by a hash map 324 (e.g., indexed by the query 

operator signatures) and/or a list of dependencies 320. In some implementations, the 

dependencies list 320 and/or the hash map 324 are updated during the course of the tree 

traversal 322. The tree traversal 322 produces a list of equivalent query operators 326. The 

deduplication optimization pass 308-D subsequently traverses the query operator tree 228 in 

depth-first pre-order 328, removing one or more tree equivalent or duplicate query operators 

from the query operator tree 228 to produce an optimized query operator tree 330, according 

to some implementations.  

Example Terminology, Expression Optimization 

[0045] As background information for the discussion below, a short description of the 

example terminology is provided. The term "operator" refers to all query operators (e.g., SQL 

algebra operators), such as JOIN, SORT, SELECT, MAP and KMEANS. Operators operate 

on input sets and produce output sets. In contrast, the term "Expression" refers to scalar 

expressions. Expressions take several scalar arguments and return another scalar value, and 

include conventional expressions, such as "+" and "-". Expressions also include special SQL 

expressions, such as CaseExpressions, and implementation-specific expressions, such as the 

CachingExpressions. Furthermore, expressions also include expressions that take zero 

arguments, such as Constants and special functions such as CURRENTUSER.  

[0046] The other terms that are used in the description below include "aggregates" and 

"Information Units (IUs)." Aggregates are used (e.g., in GROUPBys and Window queries) to 

aggregate a set of tuples into a single value. Example aggregates include SUM, MIN, MAX, 

and AVG. Another concept used in the description is that of an IU. An IU identifies a particular 

scalar value within a tuple during query optimization or code generation time. An IU is 

identified through its identity (e.g., through its memory address). An IU stores type 

information within its member variables. IUs only exist during optimization or code generation 

time, according to some implementations. In some implementations, when translating an 

algebra tree to Virtual Machine or assembly code, the IU abstraction gets removed and 
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individual scalar values are identified by the registers in which they are living at the different 

points of query execution.  

[0047] Some implementations apply Common Sub-Expression Elimination (CSE) to 

optimize expressions. In some implementations, CSE uses a getSignature function that returns 

an equivalence-aware hash of the expression tree. If the expression trees are equivalent, they 

will have the same signature. For example, expression trees "a+b" and "b+a" return the same 

signature. In some implementations, the only case where getSignature returns the same hash 

value for non-equivalent expressions is when there is a hash collision. Some implementations 

of CSE also use a function isEquivalent that checks equivalence for two expressions. This 

function is used because getSignature might return the same signature for non-equivalent 

expressions due to hash collisions.  

Design of Deduplication Algorithm 

[0048] Example implementations or design choices for the deduplication algorithm are 

described herein. Some implementations only deduplicate operators that are materializing 

anyway, and do not introduce temp operators. Some implementations reuse results of a query 

operator tree by scanning a materialized representation of the data multiple times without 

streaming the results of a subtree to multiple upstream consumers. In such cases, de

duplicating an operator (e.g., a JOIN operator) would require the introduction of a TEMP 

operator that materializes the JOIN result so that it can then be reused by multiple 

EXPLICITSCAN operators. Introducing such a TEMP operator, although possible, could 

incur overhead. For example, when the JOIN produces a large result set, the complete result 

set is materialized and kept in memory. In some instances, just re-computing the JOIN result 

is less expensive than materializing and reading the JOIN result (e.g., due to memory 

bandwidth). Some implementations, therefore, do not introduce TEMP operators, and only 

deduplicate operators that must materialize their complete result anyway, such as GROUPBy 

and GROUPJOIN. In some implementations, deduplicating a GROUPBy operator also 

deduplicates all other query operators below that GROUPBy (i.e., child operators of the 

GROUPBy operator), including non-materializing operators, such as JOINs. In case there is 

no upstream materializing operator above the non-materializing duplicated operator, some 

implementations re-execute the non-materializing operator (the JOIN operator in the running 

example). In some implementations, materialized results are reusable, so the results of 
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materializing operators are reused directly, rather than having to copy the results into a TEMP 

operator.  

[0049] Some implementations apply the deduplication optimization pass only for 

complex queries as defined by a predetermined threshold taking into account various factors 

(e.g., the number of query operators). Some implementations detect, as early as possible, if 

query deduplication does not apply for a given query and, in such cases, bail out early.  

[0050] In some implementations, deduplication optimization is one of several 

optimizer passes. In some implementations, the deduplication optimization pass is run after 

most other optimizations (e.g., a join reordering pass).  

[0051] In some implementations, query fragment deduplication (sometimes called 

query operator deduplication or query deduplication) includes detecting query subsumption (or 

equivalence) given two query fragments, efficiently traversing the query operator tree, and de

duplicating all subsumed query fragments. Before eliminating a subtree by replacing it with 

the results of a different subtree, the eliminated subtree and the replacement subtree are verified 

to produce equivalent results. In some implementations, establishing the equivalence of two 

operator trees includes proving syntactic equivalence on the algebra level. Some 

implementations consider two operators as equivalent if and only if (i) the input operators are 

equivalent, and (ii) operator properties (e.g., selection predicates, join conditions, scanned 

tables) are equivalent.  

[0052] For leaf operators, since there are no input operators, condition (i) above is 

trivially true. Condition (ii) should not evaluate to false just because a non-constant value is 

involved in any expression. Some implementations refer to all non-constant values through IUs 

and each operator produces its outputs under unique IUs. This is so that, for example, columns 

from the different join sides can be disambiguated after joining the results table scans on the 

same table. Because IUs are unique, some implementations keep track of IUs that are 

equivalent in order to determine equivalence between query fragments. Some implementations 

use an IUMapping and use a modified form of the two-fold condition specified above, finding 

two operators to be equivalent if and only if (i) the input operators are equivalent, and (ii) 

operator properties (e.g., selection predicates, join conditions, scanned tables) are equivalent, 

given the IUMapping of the concerned input operators. Since this definition of equivalence is 

recursive, each operator provides an output IUMapping mapping its own output IUs onto the 

output IUs of another equivalent operator. In some implementations, each operator combines 
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the IUMappings of its input operators in some operator-dependent way to provide the output 

IUMapping.  

[0053] Figure 3C illustrates an example query tree incorporating the concept of 

IUMappings used in a query deduplication optimization pass, according to some 

implementations. The arrows 332, 334, 336, 338, and 340 indicate the UMappings between 

the output of the various operators. In this example, the three table scans on T2 (the operators 

342, 344, and 346) are equivalent. Some implementations only store two of the three 

IUMappings explicitly, and infer the third mapping by transitivity. In Figure 3C, the mappings 

for the scan on T (the operators 350, 354, and 358) and the respective parent SELECT 

operators (the operators 352, 356, and 360) are hidden for brevity. Also, the three JOIN outputs 

350, 352, and 354 are equivalent. However, the second GROUPBy operator 352 computes a 

different aggregate than the other two GROUPBy operators 350 and 354. Hence, at the top

level, there only exists an IUMapping 332 between the first GROUPBy operator 360 and the 

third GROUPBy operator 362. Some implementations combine the three GROUPBy operators 

360, 362, and 364, into one common GROUPBy operator computing both the MIN and MAX 

at the same time using query fragment merging.  

[0054] In some implementations, IUMappings map IUs from one tree fragment to 

another tree fragment. Conceptually, they are an unordered map that take IUs (or pointers to 

IUs) as arguments and have some utility functions.  

[0055] In some implementations, a function (e.g., a getSignature C++ function) 

provides a semantic-aware hash of the operator sub-tree, and use hash-based structures (an 

unordered map) to index operator trees. Some implementations use a function (e.g., a C++ 

function with the signature establishEquivalenceMapping (Operator& other)), which 

establishes an equivalence mapping between the output IUs of two operators (e.g., "this" 

operator and the "other" operator in the C++ example). Some implementations establish 

equivalence based on the operator's particular semantics and on the IUMappings for its input 

operators. Some implementations distinguish an empty IUMapping from a non-existing 

IUMapping. A non-existing IUMapping means that equivalence for the operator tree could not 

be proven. An empty IUMapping, on the other hand, means that both operator trees produce 

the same number of tuples, but none of their IUs map onto each other. Some implementations 

also handle transitivity of equivalence mappings.  
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[0056] In some implementations, functions used to get signature and/or establish 

equivalence (e.g., the getSignature and establishEquivalenceMapping functions described 

above) ignore minor differences between the algebraic representations. For example, in some 

implementations, the following query fragments: 

.. (SELECT SUM(a) AS s1, MIN(b) AS ml FROM tl)..  

and 

.. (SELECT MIN(b) AS m2, SUM(a) AS s2 FROM tl)..  

are detected as equivalent with the mapping s I-> s2 and ml -> m2, even though the produced 

column names differ and the order of the aggregates differs. Some implementations use this 

equivalence when, at the algebra level, the original order of aggregates within a GROUPBy 

operator is not preserved. Instead, in such cases, the order of aggregates on the algebra tree 

depends on internal, unstable pointers and might be different even if the original query listed 

the aggregates in the same order. Some implementations use a similar concept of equivalence 

for other operators. Some implementations detect equivalence for join operators even if the 

input operators are flipped. Some implementations detect equivalence for the set operations 

UNION [ALL], INTERSECT [ALL], and/or EXCEPT [ALL] without taking the order of the 

produced columns into consideration. Some implementations detect equivalence for 

TABLESCAN operations without taking individual restrictions (for the operation) into 

account.  

[0057] Some implementations optimize the getSignature or a similar function for 

speed. For example, some implementations do not include all parts of an operator that might 

influence the operator's equivalence with another operator. For example, the signature of the 

TableScan does not include the residuals and restrictions; it only includes the scanned relation 

id and the number of predicates. Although there will be hash collisions in some cases, the hash 

collisions don't influence the algorithm's correctness since other functions (e.g., the 

establishEquivalenceMapping function) filters the operators out. Some implementations trade 

off hash collisions for hashing speed. In some implementations, for most operator trees, the 

"cheap" hash is already sufficient to prove that there is no opportunity for query-deduplication.  

So by keeping the signature computation cheap, some implementations make the process of 

bailing out early even faster than without the cheap hash.  
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[0058] In some implementations, in the getSignature or establishEquivalenceMapping 

functions, operators such as Map and Select check if the contained expressions are equivalent.  

Some implementations use functions used by the CSE algorithm (e.g., the getSignature and 

isEquivalent functions described above in reference to CSE) for checking equivalence. Some 

implementations extend the functionality used in CSE to support IUMappings before reusing 

the extensions for checking equivalence. Some implementations take commutativity of 

operators into account when checking for equivalence. For example, the operation (IUl+IU2)

IU3 is equivalent to (IU4+IU5)-IU6, given the mappings {IU1 -> IU4, IU2 -> IU5, IU3 -> 

IU6}, or the mapping {IU1 -> IU5, IU2 -> IU4, IU3 -> IU6}, but the two are not equivalent 

with the mappings {IU1 -> IU6, IU2 -> IU5, IU3 -> IU4}, or {IU1 -> IU5, IU2 -> IU6, IU3 

> IU4}. The second set of mappings leads to equivalence due to the commutativity of the "+" 

operator.  

Example Deduplication Algorithm 

[0059] At the high level, the deduplication algorithm comprises three tree traversals, 

according to some implementations. First, a depth-first pre-order traversal of a query operator 

tree collects operators in the query operator tree (e.g., as a list) and dependencies among the 

operators (e.g., as a list of dependencies). Second, a dependency-aware breadth-first post-order 

traversal of the query operator tree detects equivalent subtrees by utilizing a hash map indexed 

by the operators' signatures. Finally, a third depth-first pre-order traversal of the query 

operator tree removes detected duplicated query fragments detected in the previous step by 

introducing reference nodes (e.g., EXPLICITSCAN) over materializing operators, leaving 

non-materializing operators alone.  

[0060] For the first step, some implementations enumerate potentially duplicated sub

trees within a query. In some implementations, sub-trees are visited in a certain enumeration 

order: an operator is visited only after equivalences for all of its input operators are established.  

Each operator that might be potentially deduplicated is visited at least once, according to some 

implementations. In some implementations, each operator that might be potentially 

deduplicated is visited at most once. Some implementations skip as many ineligible operators 

(e.g., operators that are not candidates for the deduplication optimization pass) as possible.  

Some implementations detect query operator trees that are unlikely to benefit from the query 

deduplication optimization pass as early as possible, and aborting the search and replace 

process.  
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[0061] Some implementations enumerate the query operator tree in a breadth-first post

order traversal. By using a post-order traversal, some implementations ensure that an operator 

is only visited after all its inputs were visited. For example, the UMappings for the operator's 

inputs are available before visiting the operator itself. A breadth-first search is preferred over 

a depth-first search since a breadth-first search allows an implementation to stop the 

exploration of whole subtrees earlier. If the breadth-first search did not find an equivalence 

mapping for all inputs of an operator, there is no point in visiting the operator itself. In most 

queries, the algorithm can therefore already terminate after visiting only the leaf nodes, if it is 

not possible to find any equivalences for those leaf nodes.  

[0062] In some implementations, the breadth-first traversal is implemented by tracking 

a set of outstanding dependencies for each operator. The algorithm picks an operator from the 

list of outstanding operators that has no outstanding dependencies and visits that operator. If 

the visit was successful (i.e., if the algorithm found another operator that is equivalent to the 

given operator) the algorithm marks the dependency as fulfilled, thereby potentially unblocking 

operators that are dependent on the current operator. If the visit was not successful (i.e., if 

there was no other equivalent operator) the algorithm keeps the dependency blocked. Thereby, 

none of the parent operators get visited. With this methodology, the algorithm would not find 

an equivalent operator for the parent operators because the algorithm did not find an 

equivalence for the parent operators' input operator.  

[0063] In some implementations, the initial traversal of the tree takes additional 

dependencies of operators into account. For example, an EARLYPROBE tree node is not 

visited before the left side of a corresponding JOIN node or operator is visited. Some 

implementations ensure this traversal order by adding an artificial dependency between the 

EARLYPROBE tree node and the left side of the JOIN.  

[0064] In some implementations, the functionality of the first tree traversal is folded 

into or performed as part of the second tree traversal. Similarly, some implementations 

combine the second and the third tree traversal into a single step. Combined tree traversals can 

still identify and replace some or all of the redundant duplicate query operators depending on 

the tree structure. Some implementations use a heuristic approach for deciding the type of tree 

traversals based on an initial identification of the query operator tree type (e.g., via pattern 

matching), and/or the application type.  

Hash-based Deduplication 
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[0065] While traversing the tree bottom-up using the previously introduced 

dependency-aware breadth-first traversal, some implementations keep a hash map containing 

all visited operators. This hash map is indexed by an operator's signature (e.g., the 

Operator::getSignature). By looking up the current operator in this hash map, the algorithm 

can quickly get all potentially equivalent operators. For each of those potentially equivalent 

operators, the algorithm checks whether it can establish an equivalence mapping. If such a 

mapping exists, the algorithm remembers that equivalence mapping and marks the 

corresponding dependency in the breadth-first traversal as fulfilled, according to some 

implementations. Example pseudo-code for this process is provided in Figure 6.  

[0066] In the pseudo-code in Figure 6, an operator only gets unblocked if there exists 

an equivalence for it. Otherwise, the operator stays blocked and all dependent operators will 

not get visited, thereby effectively pruning the traversal and aborting the algorithm early.  

Replacing Duplicated Querv Fragments 

[0067] After the previous step, the algorithm has collected a list of equivalent operators 

(e.g., "equivalences" in the Figure 6 pseudo-code). Some implementations subsequently 

perform a depth-first pre-order traversal of the query operator tree. During this traversal, the 

algorithm deduplicates all duplicated operators the algorithm encounters by introducing 

EXPLICITSCAN operators, according to some implementations. Some implementations find 

other operators equivalent to the currently visited operator by using the "equivalences" 

established in the previous step. By eliminating equivalences top-down, some implementations 

ensure that the algorithm does not unnecessarily introduce ExplicitScan operators within 

subtrees that will be removed later because they can be deduplicated further up the tree. Some 

implementations eliminate "materializing" operators that materialize their whole result (e.g., 

GROUPBy, SORT, WINDOW, and TEMP). The results of these operators can be scanned 

multiple times without additional overhead. On the other hand, for non-materializing 

operators, a TEMP operator is introduced that keeps the temporary result around for reuse.  

When this is sub-optimal for performance, some implementations avoid keeping temporary 

results for reuse.  

[0068] In some implementations, introducing EXPLICITSCAN requires re-parenting 

the concerned IUs. This step implicitly invalidates the ITUMappings established by the earlier 

step that established IUMappings (e.g., Operator::establishIUMapping in the previous phase).  
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This invalidation is another reason why some implementations split detection and elimination 

of duplicated query fragments into two separate stages.  

[0069] Some implementations integrate the deduplication optimization pass within a 

join reordering pass and detect more instances of shared sub-trees than possible when the 

deduplication pass is implemented as a stand-alone pass.  

[0070] In some instances, identical query trees are modified by selection 

pushdown/introduction of early probes in ways that make them no longer equivalent. For 

example, for the query 

SELECT sl.sum, s2.sum 

FROM (SELECT SUM(a) AS s FROM tI GROUP BY k) sl 

JOIN (SELECT SUM(a) AS s FROM tI GROUP BY k) s2 ON s1.k=s2.k 

WHERE sl.k <>'exclude' 

the restriction on s1.k is pushed down into s1 first and with the pushed-down restriction, the 

trees for s1 and s2 are no longer equivalent, thereby preventing deduplication. Similarly, the 

introduction of EARLYPROBE operator can interfere with query deduplication. In some 

implementations, EARLYPROBE operations are introduced depending on the estimates and 

thereby seemingly innocent changes to estimates can inhibit query deduplication. Some 

implementations deal with the aforementioned EARLYPROBE issue and similar inhibiting 

upstream transformations/optimizations by either tuning the respective upstream 

optimizations, or by turning off those optimizations, considering performance trade-offs.  

[0071] The algorithms and implementations described here support deduplication for a 

variety of query operator types, including ASSERTSINGLE, EARLYPROBE, 

EXPLICITSCAN, EXTERNALFORMATSCAN (various formats, also including TDEs), 

GROUPBy, JOIN (including all inner/outer/single variants), MAP, SELECT, all set operations 

(UNION [ALL], INTERSECT [ALL], and EXCEPT [ALL]), SORT (also including LIMIT 

without ORDER BY clause), TABLECONSTRUCTION, TABLESCAN, TEMP, and 

VIRTUALTABLE.  

Example Querv Graphs 

[0072] Figures 4A - 4L illustrate several examples of query operator trees (sometimes 

called query graphs) optimized by the query deduplication optimization pass described herein 

in accordance with some implementations. Figure 4B is an optimized version of the query 
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operator tree 400 shown in Figure 4A, in accordance with some implementations. In Figure 

4A, the query operator 402-2 (a GROUPBy operator) with a child query operator 402-4 (a 

TABLESCAN operator) is seen duplicated several times (the operator 402-6 with the child 

operator 402-8, the operator 402-10 with the child operator 402-12, the operator 402-14 with 

the child operator 402-16, and the operator 402-18 with the child operator 402-20). In Figure 

4B, the query operator 402-2 is replaced with a new query operator 404-2 (an EXPLICITSCAN 

operator) with the query operator 402-2 as its child operator. The other duplicate query 

operators (the operators 402-6, 402-10, 402-14, and 402-18) are replaced with new 

"explicitscan" query operators 404-4, 404-6, 404-8, and 404-10, which refer (as indicated by 

the lines) back to the first operator 402-2. In some implementations, the references are 

implemented using an extended query graph representations with cross-references. The cross

references decrease both compilation time and execution time of the affected queries.  

[0073] Query operator trees, such as the tree shown in Figure 4A, are common in 

complex workbooks in data visualization applications 222 and result from queries that involve 

Level-of-Detail computations or Top-N filters. As described above, at a high level, the 

identification and replacement or removal of duplicates queries (sometimes called query 

fragments) include proving the equivalence of two different relational operator trees, a process 

that is implemented via query subsumption, according to some implementations. In some 

implementations, query subsumption is shared with other optimization passes, such as multi

query optimization, which optimizes query batches for dashboards, caching of query fragments 

across queries, query optimization in the presence of materialized views, and generation of 

optimal update plans for materialized views.  

[0074] Figure 4C illustrates an example query operator tree with several duplicate 

query operations, according to some implementations. The dashed lines 406-2, 406-4, and 

406-6 from EXPLICITSCAN operators on the right hand-side of the query operator tree to the 

left-hand side of the query operator tree indicate the right sub-tree is mostly a duplicate of the 

left sub-tree of the query operator tree. Removing duplicate operations and replacing the 

operations with cross-references (e.g., EXPLICITSCAN operators), as illustrated in Figure 4C, 

substantially reduces compile time as well as query execution time. Figure 4D illustrates 

another example query operator tree where duplicate GROUPBy operators are replaced with 

EXPLICITSCAN operator nodes. The nodes 408-4, 408-6, 408-8, and 408-10 (originally 

GROUPBy operators) are EXPLICITSCAN operator nodes that refer to the result of 

GROUPBy operator 408-2. Similarly, the nodes 410-4, 410-6, 410-8, 410-10, 410-12, 410-14, 
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410-16, and 410-18 (originally GROUPBy operators) are EXPLICITSCAN operator nodes that 

refer to the result of GROUPBy operator 410-2. The tree could be further optimized, but the 

EARLYPROBE operators indicated by the lines 412-2, 412-4, 412-6, and 412-8 inhibit query 

fragment deduplication in the respective fragments.  

[0075] Figures 4E-4K provide further illustrative examples of query fragment 

deduplication, according to some implementations. Figure 4F shows an operator tree that is an 

optimized version of the query operator tree shown in Figure 4E. In Figure 4E, the sub-tree 

412-2 (a GROUPBy operator) with a child query operator (a TABLESCAN operator) is seen 

duplicated several times (in the sub-trees 412-4, 412-6, 412-8, and 412-10). In Figure 4F, the 

sub-trees 412-4, 412-6, 412-8, and 412-10 are replaced with EXPLICITSCAN operator nodes 

412-12, 412-14, 412-16, and 412-18, with references to the sub-tree 412-2. Similarly, Figure 

4H shows an optimized version of the query operator tree shown in Figure 4G, and Figure 4J 

shows an optimized version of the query operator tree shown in Figure 41, according to some 

implementations.  

[0076] Figure 4K shows an example optimized operator tree (the lines across the sub

trees show deduplicated operators) with redundant joins, according to some implementations.  

In Figure 4K, one or more GROUPBY operators are joined with itself, and the join condition 

turns this join into a Key-Key-Join. Since both sides of the JOIN operator are identical, the 

join is removed altogether in some implementations.  

Querv Fragment Merging 

[0077] Instead of only deduplicating identical subqueries, some implementations 

construct subqueries that subsume both subqueries at hand and replace both scans by this 

combined query. For example, in the following query 

SELECT a, SUM(b), COUNT(b) FROM Extract GROUP BY a UNION ALL 

SELECT a, SUM(b), AVG(b) FROM Extract GROUP BY a 

the two GROUPBy operators are combined into just one GROUPBy operator as follows: 

WITH combined AS (SELECT a, SUM(b), COUNT(b), AVG(b) FROM Extract 

GROUP BY a) 

SELECT a, sum, count FROM combined UNION ALL 

SELECT a, sum, avg FROM combined 
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[0078] Some implementations recognize that it is cheaper to compute multiple 

aggregates with one table scan instead of computing them separately using multiple table scans.  

Besides being able to merge the aggregate lists of GROUPBy operators, some implementations 

use "transparent" operators that are transparent for the purpose of tree comparison (i.e., the 

presence of these operators would not cause the tree comparison to fail. For example, for the 

query: 

SELECT a, SUM(calc) FROM (SELECT a, b+c AS calc FROM Extract) GROUP BY 

a UNION ALL 

SELECT a, SUM(b), AVG(b) FROM Extract GROUP BY a 

the query plan has the form shown in Figure 4L, according to some implementations. Note 

how the left sub-tree 444 and the right sub-tree 446 of the UNIONALL operator 442 have a 

different shape. The sub-tree 444 contains an additional MAP operator. This operator should 

not inhibit the merging of both trees, since it only adds additional columns but passes on all 

other columns unchanged. Similarly, the following operators have the same property: 

• WINDOW operators: By definition, they only add columns while forwarding all pre

existing columns; 

• Key-Foreign Key-Joins: A KFK-Join only adds columns. It does not filter out or 

duplicate tuples. In particular, all joins used for LOD-calcs (common in a data 

visualization application 222) are KFK-joins. Some implementations track foreign

keys in the optimizer and detect KFK-joins.  

[0079] Furthermore, some implementations adjust tree traversals in order to discover 

additional opportunities (e.g., to handle recursive operations or nested GROUPBy operators) 

for query fragment merging and/or query fragment deduplication.  

Aggregation Hierarchies 

[0080] Some implementations introduce aggregation hierarchies. For example, some 

implementations rewrite the query 

SELECT a, b, SUM(c) FROM Extract GROUP BY a, b UNION ALL 

SELECT a, NULL, SUM(c) FROM Extract GROUP BY a 

by using the first GROUPBy's result to compute the second GROUPBy as follows: 

WITH aggi AS (SELECT a, b, SUM(c) FROM Extract GROUP BY a, b) 
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SELECT a, b, sum FROM agg UNION ALL 

SELECT a, NULL, SUM(sum) FROM aggI GROUP BY a 

[0081] Some implementations use a hash table indexing the inputs of all GROUPBys 

and then merge GROUPBys that are applied on top of equivalent inputs.  

[0082] In some implementations, aggregate functions are annotated with information 

on how to compose/decompose them. For example, the optimizer knows that SUMs can be 

computed on top of other SUMs, but AVGs first need to be decomposed into SUM/COUNT.  

Recycling and Intermediate Result Caching 

[0083] Some implementations cache intermediate results such as GROUPBy hash 

tables and SORT heaps and reuse them between queries. Some implementations persist this 

cache (for example to accommodate packed workbooks so that future loads and first 

impressions are fast). Some implementations separate how or where memory is allocated for 

HashTables or SORT operators from a query state. Some implementations use a caching 

strategy, such as an LRU algorithm, to cache intermediate results.  

[0084] Some implementations use Temp-Tables for result caching. When temporary 

tables (e.g., filter tables, group tables) are part of a query, some implementations prove that 

two temp tables across different session are equivalent. Some implementations do not prove 

this equivalence, and instead use other techniques to improve cache hit rate, such as crossDB 

temporary database, or non-persisted shared tables.  

Inter-Querv Optimization 

[0085] Some implementations deduplicate subqueries across queries within a query 

batch. By construction, query batches tend to contain a lot of duplication. By deduplicating 

and/or merging query fragments across query boundaries, some implementations avoid 

duplicate computations. Some implementations turn a predefined operation (e.g., 

ExecutionTarget) into an algebra operator, and combine individual queries using a top-level 

operator (e.g., a UNIONALL operator). Some implementations manage (for example, using 

Postgres* or a similar protocol) the sending of query batches and receipt of results in such a 

way so as to enable this inter-query optimization. Some implementations perform inter-query 

optimization for dashboard scenarios where all queries are available. Because all of the queries 

are available at the same time, some implementations merge GROUPBy operators (see the 

section above on "Query Fragment Merging").  

25



WO 2020/131243 PCT/US2019/060226 

[0086] Some implementations avoid propagating errors between merged but otherwise 

unrelated queries. For example, if an exception occurs within a subtree only used by one of 

the merged queries, some implementations continue executing the other queries that might still 

finish successfully. When temporary tables (e.g., filter tables or group tables) are part of a 

query, some implementations prove that two temp tables across different session are 

equivalent, and other implementations avoid combining queries involving temp tables across 

sessions.  

Materialized View Updates 

[0087] Similar to inter-query optimization, some implementations combine queries for 

updating of materialized views. For example, in the following scenario: 

CREATE MATERIALIZED VIEW viz IAS queryry1) WITH NO DATA; 

CREATE MATERIALIZED VIEW viz2 AS (<query2>) WITH NO DATA; 

CREATE MATERIALIZED VIEW viz3 AS (<query3>) WITH NO DATA; 

REFRESH MATERIALIZED VIEW viz1, viz2, viz3; 

some implementations optimize all three underlying queries together.  

[0088] Some implementations (e.g., Tableau applications) use this feature by declaring 

one materialized view for each visualization (sometimes called a "viz") or filter in a dashboard.  

As soon as all views are in place, all views are refreshed at once. Thereby, the database server 

system can optimize all queries necessary for a workbook at once. Some implementations rely 

on Postgres© representations for optimizations related to materialized views. In some 

implementations, Insert, Delete, or similar operations in algebra representations are used for 

materialized view optimizations. Some implementations use temporary tables ("Temp 

Tables") for implementing these features.  

Deduplication within SQL and Database User Defined Functions 

[0089] User defined functions allow specifying multiple statements within one 

function. Consider the following example: 

CREATE FUNCTION updateMaterializedDatao AS $$ 

TRUNCATE tab1; 

TRUNCATE tab2; 

INSERT INTO tabI (<query1>); 
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INSERT INTO tab2 (<query2>); 

$$ language sql; 

[0090] Some implementations apply query deduplication across the individual 

statements, factoring out common subqueries from <queryl> and <query2>. Some 

implementations determine if the queries refer to table or tab2 to ensure that both queries see 

the tables in the correct state.  

[0091] Figures 5A - 51 provide a flowchart of a process 500 for building, optimizing, 

and executing a query operator tree to retrieve data from a database, according to some 

implementations. The process 500 is performed at a database engine having one or more 

computing devices, each having one or more processors and memory. The memory stores one 

or more programs configured for execution by the one or more processors. The one or more 

programs execute to retrieve data from a database (e.g., an SQL database).  

[0092] The database engine 120 receives (502) a database query 226 from a client. The 

database engine 120 (or the query parser 240 within the database engine) parses (504) the 

database query 226 to build a query operator tree 228, which includes a plurality of query 

operators. The database engine performs (506) one or more optimization passes 308 on the 

query operator tree, including performing a deduplication optimization pass 308-D, to form an 

optimized execution plan 230.  

[0093] In some implementations, the deduplication optimization pass includes creating 

(520) a list of query operators 318 via a first traversal 316 of the query operator tree 228, 

determining (524) a first query operator that is equivalent to a second query operator, based on 

a hash map, via a second traversal (e.g., traversal 322) of the query operator tree 228, and 

replacing (532), via a third traversal (e.g., traversal 328) of the query operator tree 228, the 

second query operator with a tree node (e.g., an EXPLICITSCAN operator) that links to the 

first query operator. The database engine executes (514) the optimized execution plan to 

retrieve a result set from the database, and returns (518) the result set to the client.  

[0094] Referring to Figure 5C, in some implementations, the database engine 120 

computes (536) a list of dependencies 320 among the query operators in the list of query 

operators 318. The second traversal comprises a breadth-first post-order traversal (e.g., 

traversal 322) of the query operator tree 228 based on the list of dependencies 320 so that the 

query operators that do not have dependencies are visited before the query operators with 

dependencies. In some implementations, in accordance with a determination that a third query 
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operator has no equivalent query operators, the database engine 120 updates (538) the list of 

dependencies 320 to indicate that the third query operator has dependencies. In this way, the 

parent of the third query operator is not selected during the breadth-first post-order traversal.  

[0095] Referring to Figure 5E, in some implementations, the database engine 120 

replaces (548) the second query operator with the tree node only when the first query operator 

can be materialized. For example, the database engine employs the heuristic that re

computation (or re-materialization) is better than storing and retrieving a previously computed 

result because the concerned query operator (e.g., a join operator) produces a large result and 

storing and retrieving the large result would lead to memory and bandwidth related 

performance issues. In some implementations, the database engine replaces (550) the second 

query operator when the first query operator is either a GROUPBy operator, a GROUPJOIN 

operator, a SORT operator, a WINDOW Operator, or a TEMP operator.  

[0096] Referring to Figure 5F, the tree node (e.g., EXPLICITSCAN operator) that the 

database engine 120 uses to link to the first query operator reduces (552) the number of 

execution instances of a portion of the optimized execution plan corresponding to the second 

query operator, in accordance with some implementations.  

[0097] Referring now back to Figure 5B, in some implementations, the first traversal 

and the third traversal of the query operator are (522, 534) depth-first pre-order traversal of the 

query operator tree.  

[0098] Referring now back to Figure 5A, in some implementations, the database engine 

120 performs (508) a tree refactoring optimization pass before the deduplication optimization 

pass to refactor the query operator tree so as to increase the number of duplicate query operators 

in the query operator tree. In other words, the refactoring increases opportunities for the 

deduplication optimization pass to remove duplicate or redundant query operators. In some 

implementations, the database engine turns off, suppresses, or does not run (510) one or more 

optimization passes preceding the deduplication optimization pass that would inhibit the 

deduplication optimization pass (e.g., decrease the number of duplicate query operators in the 

query operator tree, reduce opportunities, or make finding duplicates difficult).  

[0099] Referring now to Figure 5D, in some implementations, the database engine 120 

determines (524) if the first query operator is equivalent to the second query operator based on 

determining (540) if the respective input operators of the first query operator and the second 

query operator are equivalent, and/or determining (544) if the first query operator and the 
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second query operator have equivalent properties (e.g., the operators are selection predicates, 

join conditions, or scanned tables). In some implementations, the database engine 120 

determines (546) the first query operator to have equivalent properties as that of the second 

query operator based at least on information unit mapping (sometimes called IUMapping) of 

the input operators of the first query operator and the second query operator. In some 

implementations, the database engine takes into consideration (542) commutativity, 

associativity, and similar algebraic properties of query operators for determining whether the 

first query operator is equivalent to the second query operator. While doing so, the database 

engine ignores minor differences between the algebraic representations of the first query 

operator and the second query operator.  

[00100] Referring now back to Figure 5B, in some implementations, while determining 

if the first query operator is equivalent to the second query operator, the database engine ignores 

(528) one or more non-matching query operators (sometimes called "transparent" operators) in 

the sub-trees corresponding to the first query operator and the second query operator.  

[00101] In some implementations, the hash map 324 is indexed by query operator 

signatures (e.g., using one of the signature compute functions). In some implementations, the 

hash map is updated (526) as query operators are visited during the second traversal of the 

query operator tree.  

[00102] Referring next to Figure 5G, in some implementations, the database engine 120 

merges query fragments by constructing (554) a fourth query operator that subsumes the first 

query operator and the second query operator, and/or replacing (556), via the third traversal of 

the query operator tree, the first query operator and the second query operator with the fourth 

query operator.  

[00103] As shown in Figure 5H, in some implementations, the database engine 120 

optimizes aggregation hierarchies in query operator trees by constructing (558) a fifth query 

operator that subsumes the first query operator and the second query operator, constructing 

(560) a sixth query operator that uses the result of the fifth query operator as an input, and/or 

replacing (562), via the third traversal of the query operator tree, the first query operator with 

the fifth query operator, and the second query operator with the sixth query operator.  

[00104] In some implementations, the database engine 120 removes redundant joins, as 

indicated in Figure 5I. For example, in accordance with a determination that the first query 

operator and the second query operator are input operators of a parent join query operator, the 
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database engine 120 removes (564) the parent join query operator in the query operator tree 

and replaces it with the first query operator, and deleting the second query operator from the 

query operator tree.  

[00105] Referring back to Figure 5A, in some implementations, the database engine 120 

recycles and/or caches intermediate results of execution by caching (516) a first result of 

executing the first query operator using a caching mechanism. For example, the database 

engine uses a LRU or a similar scheme that maximizes cache hit rate. In some 

implementations, the database engine uses a persistent cache (e.g., in packed workbooks) so 

that future loads or first impressions are fast.  

[00106] Referring to Figure 5B, in some implementations, the database engine 120 

removes (530) duplicate query operations across batch queries. The first query operator and 

the second query operator belong to different queries within a query batch, and the query 

operator tree comprises one or more query operators (e.g., a UNIONALL operator), which 

combine different queries within the query batch.  

[00107] The terminology used in the description of the invention herein is for the 

purpose of describing particular implementations only and is not intended to be limiting of the 

invention. As used in the description of the invention and the appended claims, the singular 

forms "a," "an," and "the" are intended to include the plural forms as well, unless the context 

clearly indicates otherwise. It will also be understood that the term "and/or" as used herein 

refers to and encompasses any and all possible combinations of one or more of the associated 

listed items. It will be further understood that the terms "comprises" and/or "comprising," 

when used in this specification, specify the presence of stated features, steps, operations, 

elements, and/or components, but do not preclude the presence or addition of one or more other 

features, steps, operations, elements, components, and/or groups thereof 

[00108] The foregoing description, for purpose of explanation, has been described with 

reference to specific implementations. However, the illustrative discussions above are not 

intended to be exhaustive or to limit the invention to the precise forms disclosed. Many 

modifications and variations are possible in view of the above teachings. The implementations 

were chosen and described in order to best explain the principles of the invention and its 

practical applications, to thereby enable others skilled in the art to best utilize the invention and 

various implementations with various modifications as are suited to the particular use 

contemplated.  
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What is claimed is: 

1. A database engine, comprising: 

one or more computing devices, each having one or more processors and memory, 

wherein the memory stores one or more programs configured for execution by the one or 

more processors and the one or more programs comprise instructions for: 

receiving a database query from a client; 

parsing the database query to build a query operator tree, the query operator tree 

including a plurality of query operators; 

performing one or more optimization passes on the query operator tree, including a 

deduplication optimization pass, to form an optimized execution plan, the deduplication 

optimization pass including: 

creating a list of query operators via a first traversal of the query operator tree; 

determining a first query operator that is equivalent to a second query 

operator, based on a hash map, via a second traversal of the query operator tree; and 

substituting, via a third traversal of the query operator tree, the second query 

operator with a tree node that links to the first query operator; 

executing the optimized execution plan to retrieve a result set from the database; and 

returning the result set to the client.  

2. The database engine of claim 1, further comprising computing a list of dependencies 

among the query operators in the list of query operators, wherein the second traversal 

comprises a breadth-first post-order traversal of the query operator tree based on the list of 

dependencies so that query operators that do not have dependencies are visited before query 

operators with dependencies.  

3. The database engine of claim 2, further comprising: 

in accordance with a determination that a third query operator has no equivalent query 

operators in the query operator tree, updating the list of dependencies to specify that the third 

query operator has dependencies so that the parent of the third query operator is not selected 

during the breadth-first post-order traversal.  

4. The database engine of any one of claims 1 to 3, further comprising: 
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substituting the second query operator with the tree node only when the first query 

operator can be materialized.  

5. The database engine of any one of claims I to 4, wherein the first query operator is 

one of: a GROUPBy operator, a GROUPJOIN operator, a SORT operator, a WINDOW 

operator, or a TEMP operator.  

6. The database engine of any one of claims 1 to 5, wherein the tree node that links to 

the first query operator reduces a count of execution instances of a portion of the optimized 

execution plan corresponding to the second query operator.  

7. The database engine of any one of claims 1 to 6, wherein the first traversal and the 

third traversal comprise depth-first pre-order traversals of the query operator tree.  

8. The database engine of any one of claims I to 7, further comprising performing a tree 

refactoring optimization pass before the deduplication optimization pass to refactor the query 

operator tree so as to increase duplicate query operators in the query operator tree.  

9. The database engine of any one of claims I to 8, further comprising turning off one or 

more optimization passes preceding the deduplication optimization pass that inhibit the 

deduplication optimization pass.  

10. The database engine of any one of claims 1 to 9, wherein determining if the first 

query operator is equivalent to the second query operator comprises: 

determining if input operators of the first query operator and the second query 

operator are equivalent; and 

determining if the first query operator and the second query operator have equivalent 

properties.  

11. The database engine of claim 10, wherein determining if the first query operator and 

the second query operator have equivalent properties uses an information unit mapping of the 

input operators of the first query operator and the second query operator.  
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12. The database engine of either one of claims 10 to 11, wherein determining if the first 

query operator is equivalent to the second query operator uses commutativity and 

associativity rules.  

13. The database engine of any one of claims 1 to 12, wherein the hash map is updated 

when new query operators are visited during the second traversal of the query operator tree.  

14. The database engine of any one of claims 1 to 13, wherein determining if the first 

query operator is equivalent to the second query operator ignores one or more non-matching 

query operators in the sub-trees corresponding to the first query operator and the second 

query operator.  

15. The database engine of claim 1, further comprising: 

constructing a fourth query operator that subsumes the first query operator and the 

second query operator; and 

substituting, via the third traversal of the query operator tree, the first query operator 

and the second query operator with the fourth query operator.  

16. The database engine of claim 1, further comprising: 

constructing a fifth query operator that subsumes the first query operator and the 

second query operator; 

constructing a sixth query operator that uses the result of the fifth query operator as an 

input; and 

substituting, via the third traversal of the query operator tree, the first query operator 

with the fifth query operator, and the second query operator with the sixth query operator.  

17. The database engine of any one of claims 1 to 14, further comprising: 

in accordance with a determination that the first query operator and the second query 

operator are input operators of a parent join query operator, removing the parent join query 

operator in the query operator tree, replacing the parent join query operator with the first 

query operator, and deleting the second query operator from the query operator tree.  
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18. The database engine of any one of claims I to 14, wherein the first query operator and 

the second query operator belong to different queries within a query batch, and wherein the 

query operator tree comprises one or more query operators that combine different queries 

within the query batch.  

19. A non-transitory computer readable storage medium storing one or more programs 

configured for execution by a computer system having one or more processors and memory, 

the one or more programs comprising instructions for: 

receiving a database query from a client; 

parsing the database query to build a query operator tree, the query operator tree 

including a plurality of query operators; 

performing one or more optimization passes on the query operator tree, including a 

deduplication optimization pass, to form an optimized execution plan, the deduplication 

optimization pass including: 

creating a list of query operators via a first traversal of the query operator tree; 

determining a first query operator that is equivalent to a second query 

operator, based on a hash map, via a second traversal of the query operator tree; and 

substituting, via a third traversal of the query operator tree, the second query 

operator with a tree node that links to the first query operator; 

executing the optimized execution plan to retrieve a result set from the database; and 

returning the result set to the client.  

20. A method of retrieving data from a database, comprising: 

at a computer system having one or more computing devices, each computing device 

having one or more processors and memory storing one or more programs configured for 

execution by the one or more processors: 

receiving a database query from a client; 

parsing the database query to build a query operator tree, the query operator tree 

including a plurality of query operators; 

performing one or more optimization passes on the query operator tree, including a 

deduplication optimization pass, to form an optimized execution plan, the deduplication 

optimization pass including: 

creating a list of query operators via a first traversal of the query operator tree; 
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determining a first query operator that is equivalent to a second query 

operator, based on a hash map, via a second traversal of the query operator tree; and 

substituting, via a third traversal of the query operator tree, the second query 

operator with a tree node that links to the first query operator; 

executing the optimized execution plan to retrieve a result set from the database; and 

returning the result set to the client.  
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