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(57) ABSTRACT

Techniques are provided for deep neural network (DNN)
identification of realistic synthetic images generated using a
generative adversarial network (GAN). According to an
embodiment, a system is described that can comprise a
memory that stores computer executable components and a
processor that executes the computer executable compo-
nents stored in the memory. The computer executable com-
ponents can comprise, a first extraction component that
extracts a subset of synthetic images classified as non-real
like as opposed to real-like, wherein the subset of synthetic
images were generated using a GAN model. The computer
executable components can further comprise a training
component that employs the subset of synthetic images and
real images to train a DNN network model to classify
synthetic images generated using the GAN model as either
real-like or non-real like
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/ 760

102

EXTRACTING, BY A SYSTEM OPERATIVELY COUPLED TO
A PROCESSOR, A SUBSET OF SYNTHETIC IMAGES
CLASSIFIED AS NON-REAL LIKE AS OPPOSED TOREAL-
LIKE, WHEREIN THE SUBSET OF SYNTHETIC IMAGES
WERE GENERATED USING A GENERATIVE
ADVERSARIAL NETWORK (GAN) MODEL

é - 704

EMPLOYING, BY THE SYSTEM, THE SUBSET OF
SYNTHETIC IMAGES AND REAL IMAGES TO TRAIN A
DEEP NEURAL NETWORK MODEL TO CLASSIFY
SYNTHETIC IMAGES GENERATED USING THE GAN
MODEL AS EITHER REAL-LIKE OR NON-REAL LIKE

FIG. 7
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802

GENERATING, BY A SYSTEM OPERATIVELY COUPLED
TO APROCESSOR, FIRST SYNTHETIC IMAGES USING A
GENERATIVE ADVERSARIAL NETWORK (GAN) MODEL

I e

CLASSIFYING, BY THE SYSTEM, THE FIRST SYNTHETIC
IMAGES AS EITHER REAL-LIKE OR NON-REAL-LIKE
USING ARTIFICIAL INTELLIGENCE

g e 806

EXTRACTING, BY THE SYSTEM, A SUBSET OF THE FIRST
SYNTHETIC IMAGES CLASSIFIED AS NON-REAL LIKE AS
OPPOSED TO REAL-LIKE

é o 8038

EMPLOYING, BY THE SYSTEM, THE SUBSET OF THE
FIRST SYNTHETIC IMAGES AND REAL IMAGES TO TRAIN
A DEEP NEURAL NETWORK MODEL TO CLASSIFY
SECOND SYNTHETIC IMAGES GENERATED USING THE
GAN MODEL AS REAL LIKE OR NON-REAL-LIKE
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EXTRACTING, BY A SYSTEM OPERATIVELY COUPLED TO

APROCESSOR, AFIRST SUBSET OF SYNTHETIC IMAGES
FROM FIRST SYNTHETIC IMAGES BASED ON THE FIRST
SUBSET OF SYNTHETIC IMAGES BEING CLASSIFIED AS
NON-REAL LIKE AS OPPOSED TO REAL-LIKE, WHEREIN

THE FIRST BYNTHETIC IMAGES WERE GENERATED
USING A GENERATIVE ADVERSARIAL NETWORK (GAN)
MODEL

% P 904

EMPLOYING, BY THE SYSTEM, THE FIRST SUBSET OF
SYNTHETIC IMAGES AND REAL IMAGES TO TRAIN A
DEEP NEURAL NETWORK {DNN) MODEL TO CLASSIFY
SECOND SYNTHETIC IMAGES GENERATED USING THE
GAN MODEL AS EITHER REAL-LIKE OR NON-REAL LIKE

@ e 9086

EMPLOYING, BY THE SYSTEM, THE DNN MODELTO
CLASSIFY THE SECOND SYNTHETIC IMAGES AS REAL-
LIKE OR NON-REAL-LIKE

@ P 808

EXTRACTING, BY THE SYSTEM, A SECOND SUBSET OF
SYNTHETIC IMAGES FROM THE SECOND SYNTHETIC
IMAGES BASED ON THE SECOND SUBSET OF
SYNTHETIC IMAGES BEING CLASSIFIED AS REAL LIKE
AS OPPOSED TO NON-REAL-LIKE
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1002

EMPLOYING, BY A SYSTEM OQPERATIVELY COUPLED TG
A PROCESSOR, FIRST REAL IMAGES AND FIRST
SYNTHETIC IMAGES CLASSIFIED AS NON-REAL-LIKETO
TRAIN A DEEP NEURAL NETWORK (DNN)MODELTO
CLASSIFY SECOND SYNTHETIC IMAGES AS EITHER
REAL-LIKE OR NON-REAL LIKE, WHEREIN THE FIRST
SYNTHETIC IMAGES AND THE SECOND SYNTHETIC
IMAGES COMPRISE SYNTHETIC IMAGES GENERATED
USING A GAN MODEL

é o 1004

EMPLOYING, BY THE SYSTEM, THE DNN MODEL TC
CLASSIFY THE SECOND SYNTHETIC IMAGES AS REAL
LIKE OR NON-REAL-LIKE

é P 1008

EXTRACTING, BY THE SYSTEM, A SUBSET OF THE
SECOND SYNTHETIC IMAGES CLASSIFIED AS REAL-LIKE

é e 1008

EMPLOYING, BY THE SYSTEM, THE SUBSET OF THE
SECOND SYNTHETIC IMAGES TO TRAIN A TARGET
MACHINE LEARNING MODEL TO PERFORM ARTIFICIAL
INTELLIGENCE ANALYTICS ON SECOND REAL IMAGES

FIG. 10
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DEEP NEURAL NETWORK BASED
IDENTIFICATION OF REALISTIC
SYNTHETIC IMAGES GENERATED USING
A GENERATIVE ADVERSARIAL NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of and claims
priority to U.S. patent application Ser. No. 16/370,082 filed
on May 29, 2019, entitled “DEEP NEURAL NETWORK
BASED IDENTIFICATION OF REALISTIC SYNTHETIC
IMAGES GENERATED USING A GENERATIVE
ADVERSARIAL NETWORK.” The entirety of the afore-
mentioned application is incorporated by reference herein.

TECHNICAL FIELD

[0002] This application generally relates to artificial intel-
ligence image analytics and more particularly to computer-
implemented techniques for employing a deep neural net-
work (DNN) for identification of realistic synthetic images
generated using a generative adversarial network (GAN).

SUMMARY

[0003] The following presents a summary to provide a
basic understanding of one or more embodiments of the
invention. This summary is not intended to identify key or
critical elements or to delineate any scope of the particular
embodiments or any scope of the claims. Its sole purpose is
to present concepts in a simplified form as a prelude to the
more detailed description that is presented later. In one or
more embodiments described herein, systems, computer-
implemented methods, apparatus and/or computer program
products are provided that employ a DNN for identification
of realistic synthetic images generated using a GAN.
[0004] According to an embodiment, a system can com-
prise a memory that stores computer executable components
and a processor that executes the computer executable
components stored in the memory. The computer executable
components can comprise, a first extraction component that
extracts a subset of synthetic images classified as non-real
like as opposed to real-like, wherein the subset of synthetic
images were generated using a GAN model. The computer
executable components can further comprise a training
component that employs the subset of synthetic images and
real images to train a DNN network model to classify
synthetic images generated using the GAN model as either
real-like or non-real like. In one or more embodiments, the
DNN comprise a very deep convolutional neural network.
[0005] In various implementations, the computer execut-
able components further comprise a synthetic image gen-
erator that generates first synthetic images using the GAN
model, and an annotation component that labels the first
synthetic images as either real-like or non-real like. With
these implementations, wherein the first extraction compo-
nent extracts the subset of synthetic images from the first
synthetic images in response to labeling of respective syn-
thetic images included in the subset set as non-real like. In
some embodiments, the annotation component labels the
first synthetic images based on reception of manual input
that classifies the first synthetic images as either real-like or
non-real-like.

[0006] In one or more embodiments, the synthetic image
generator further generates second synthetic images using
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the GAN model, and the computer executable components
further comprise an inference component that employs the
DNN model to classify the second synthetic images as either
real-like or non-real-like. With these embodiments, the
subset of synthetic images comprises a first subset of syn-
thetic images, and the computer executable components
further comprise a second extraction component that
extracts, from the second synthetic images, a second subset
of synthetic images classified as real-like as opposed to
non-real-like by the inference component. In some imple-
mentations, the computer executable components further
comprise a target model training component that employs
the second subset of synthetic images to train a machine
learning model to perform artificial intelligence analytics on
real images. For example, in various embodiments, the first
synthetic images, the second synthetic images and the real
images comprise medical images, and the target model
training component employs the second subset of synthetic
images to train the machine learning model to diagnose
medical conditions reflected in the real images.

[0007] In some embodiments, elements described in con-
nection with the system can be embodied in different forms
such as a computer-implemented method, a computer pro-
gram product, or another form.

DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 illustrates a block diagram of an example,
non-limiting system that facilitates developing a deep neural
network (DNN) model that facilitates identifying realistic
synthetic images generated using a GAN in accordance with
one or more embodiments of the disclosed subject matter.
[0009] FIG. 2 illustrates example real-like and non-real-
like synthetic medical images generated using a GAN model
in accordance with one or more embodiments of the dis-
closed subject matter.

[0010] FIG. 3 illustrates a flow diagram of an example,
non-limiting process for developing a DNN model that
facilitates identifying realistic synthetic images generated
using a GAN in accordance with one or more embodiments
of the disclosed subject matter.

[0011] FIG. 4 illustrates a block diagram of an example,
non-limiting system that facilitates employing a DNN model
to identify realistic synthetic images generated using a GAN
model in accordance with one or more embodiments of the
disclosed subject matter.

[0012] FIG. 5 illustrates a flow diagram of an example,
non-limiting process for employing a DNN model to iden-
tify realistic synthetic images generated using a GAN model
in accordance with one or more embodiments of the dis-
closed subject matter.

[0013] FIG. 6 illustrates a block diagram of an example,
non-limiting system that facilitates training a machine learn-
ing model using realistic synthetic images to make infer-
ences on real images in accordance with one or more
embodiments of the disclosed subject matter.

[0014] FIG. 7 provides a flow diagram of an example,
non-limiting computer-implemented method that for devel-
oping a DNN model that facilitates identifying realistic
synthetic images generated using a GAN in accordance with
one or more embodiments of the disclosed subject matter.
[0015] FIG. 8 provides a flow diagram of another
example, non-limiting computer-implemented method that
facilitates evaluating and defining the scope of data-driven
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deep learning models in accordance with one or more
embodiments of the disclosed subject matter.

[0016] FIG. 9 provides a flow diagram of an example,
non-limiting computer-implemented method for employing
a DNN model to identify realistic synthetic images gener-
ated using a GAN model in accordance with one or more
embodiments of the disclosed subject matter.

[0017] FIG. 10 provides a flow diagram of an example,
non-limiting computer-implemented method for training a
machine learning model using realistic synthetic images to
make inferences on real images in accordance with one or
more embodiments of the disclosed subject matter.

[0018] FIG. 11 illustrates a block diagram of an example,
non-limiting operating environment in which one or more
embodiments described herein can be facilitated.

DETAILED DESCRIPTION

[0019] The following detailed description is merely illus-
trative and is not intended to limit embodiments and/or
application or uses of embodiments. Furthermore, there is no
intention to be bound by any expressed or implied informa-
tion presented in the preceding Background or Summary
sections, or in the Detailed Description section.

[0020] The subject disclosure provides systems, com-
puter-implemented methods, apparatus and/or computer
program products that facilitate automatically identifying
and extracting realistic synthetic images as opposed to
non-realistic synthetic images using a deep neural network
(DNN) model trained on real images and previously iden-
tified synthetic images classified as non-real-like. The syn-
thetic images can include images generated using a genera-
tive adversarial network (GAN) model. The identified and
extracted realistic synthetic images can be combined with
real images to form a comprehensive training dataset that
can be used to train a target machine learning model to
perform various automated image analysis functions. For
example, in various embodiments, synthetic images can
include synthetic medical images generated using a GAN
model and the target machine learning model can include a
medical image analysis model configured to automatically
evaluate and diagnose medical conditions reflected in real
(e.g., not synthetic) medical images.

[0021] In this regard, artificial intelligence (AI) and
machine learning (ML) is a rapidly progressing technical
field impacting a wide range of industries. Advancements in
machine learning technologies, such as deep neural net-
works (DNN)s, have recently shown impressive perfor-
mance, sometimes exceeding humans, in various Al
domains, including computer vision, speech, natural lan-
guage processing (NPL), bioinformatics, drug design, medi-
cal image analysis, and more. These achievements were
made possible by significant improvement in computation
power as well as the availability of massive scale annotated
datasets, leading to better inferencing performance than
traditional models. However, one of the fundamental prob-
lems in data-driven based machine learning approaches such
as DNNs is that the final model inferencing capability is
limited by the scope of the training data used to develop the
model. With respect to the medical imaging sector, due to
various regulatory and privacy restrictions associated with
accessing and using patient data, it can be difficult to obtain
enough medical images for model training that provide a
comprehensive representation of a target medical condition
across different patient populations. As a result, techniques
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for generating synthetic medical images have been devel-
oped to increase the amount and distribution of the available
training images.

[0022] One technique for generating synthetic medical
images involves the usage of generative adversarial network
(GAN) models. GAN models are powerful latent variable
models that can be used to learn complex real-world data
distributions. In computer vision, GANs have emerged as
one of the dominant approaches for generating realistically
looking samples after learning the training image data
distribution. However, it is very challenging to generate high
quality synthetic images. For example, in healthcare, every
patient and their medical conditions are different from the
rest of the population. Many variables play a vital role in the
image appearance, such as medical history, family history,
daily activity, or work environment. During the GAN model
training, the sole responsibility of the algorithm is to mimic
input data distribution so that the output data distribution is
similar to the input data distribution.

[0023] Different types of GAN models have been explored
to increase the realistic quality and resolution of the output
synthetic images. However, GANs can be hard to train in
practice, and despite improvements, it has been observed
that the optimization does not lead to convergence all the
time. One common failure mode involves the generator
collapsing to produce only a single sample or a small family
of very similar samples. Although some GAN models have
demonstrated local convergence on training for absolutely
continuous data and generator distributions, even if the
convergence is achieved there is a possibility that the
generator will produce non-realistic synthetic images. These
non-realistic synthetic images can contaminate the training
dataset and significantly reduce the performance of the final
machine learning model trained thereon.

[0024] The disclosed subject matter provides techniques
for automatically identifying and removing these non-real-
istic looking GAN model generated synthetic images from a
training dataset, particularly under the context in which the
GAN model has demonstrated convergence. In one or more
embodiments, the disclosed techniques involve training a
DNN to filter non-realistic looking synthetic images. In
some implementations, the DNN model can include a very
complex convolutional DNN model that is a binary classi-
fier. The trained model can provide for classifying synthetic
images as either real-like (e.g., realistic looking) or non-
real-like (e.g., not realistic looking). For example, as applied
to medical images, the trained DNN model can mimic a
radiologist which classifies realistically and non-realistically
looking synthetic medical images. In some embodiments in
which the DNN model is trained to classify synthetic
medical images in this way, the DNN model is referred to
herein as a virtual radiologist network (VRN).

[0025] This problem can be modelled as a fine-grained
classification problem. In this regard, the DNN model can be
trained using real (e.g., not synthetic) images and non-real-
like synthetic images previously classified and labeled as
being non-real-like. In some embodiments, the non-real-like
synthetic training images can be automatically identified and
selected from a set of GAN model generated synthetic
images using Al techniques. For example, the non-real-like
synthetic images can be identified and extracted from real-
like synthetic images using one or more supervised, semi-
supervised, or unsupervised learning machine learning mod-
els. In other embodiments, the non-real-like synthetic



US 2021/0279869 Al

training images can be manually labeled. For example, in
implementations in which the synthetic images comprise
medical images, a radiologist expert and/or a non-domain
expert can manually review the synthetic images as label
them either real-like or non-real-like.

[0026] Once there are enough synthetic training images
for non-real-like class, the DNN model can be trained, using
real images in the training set for the real-like image class.
The trained DNN model can then be used to separate
real-like and non-real-like synthetic images by running in an
inferencing mode. All the categorized real-like synthetic
images can then be used to augment training datasets for
clinical models to improve their performance.

[0027] Various embodiments of the disclosed subject mat-
ter are directed to filtering real-like verses non-real-like
synthetic medical images. These can include various types
of synthetic medical images associated with a variety of
different capture modalities, including, (but not limited to),
x-ray, computerized tomography (CT), mammography
(MG), magnetic resonance imaging (MRI), and the like.
However, the disclosed techniques are not limited to medical
images. In this regard, the disclosed techniques can be
applied to automatically classify essentially any type of
GAN model based synthetic image as real-like or non-real-
like.

[0028] One or more embodiments are now described with
reference to the drawings, wherein like referenced numerals
are used to refer to like elements throughout. In the follow-
ing description, for purposes of explanation, numerous spe-
cific details are set forth in order to provide a more thorough
understanding of the one or more embodiments. It is evident,
however, in various cases, that the one or more embodiments
can be practiced without these specific details.

[0029] Turning now to the drawings, FIG. 1 illustrates a
block diagram of an example, non-limiting system 100 that
facilitates developing a DNN model that for identifying
realistic synthetic images generated using a GAN in accor-
dance with one or more embodiments of the disclosed
subject matter. Embodiments of systems described herein
can include one or more machine-executable components
embodied within one or more machines (e.g., embodied in
one or more computer-readable storage media associated
with one or more machines). Such components, when
executed by the one or more machines (e.g., processors,
computers, computing devices, virtual machines, etc.) can
cause the one or more machines to perform the operations
described.

[0030] For example, system 100 includes a synthetic
image generation module 102 and a DNN development
module 112. The synthetic image generation module 102
and the DNN development module 112 can respectively be
and include machine-executable components stored in
memory (not shown) associated with the one or more
machines (not shown). The memory can further be opera-
tively coupled to at least one processor (not shown), such
that the components (e.g., the synthetic image generation
module 102, the DNN development module 112, and the
components associated therewith), can be executed by the at
least one processor to perform the operations described.
Examples of said and memory and processor as well as other
suitable computer or computing-based elements, can be
found with reference to FIG. 11, and can be used in
connection with implementing one or more of the systems or

Sep. 9, 2021

components shown and described in connection with FIG. 1
or other figures disclosed herein.

[0031] System 100 and/or one or more components of the
system 100 or other systems disclosed herein can be
employed to use hardware and/or software to solve problems
that are highly technical in nature, that are not abstract, and
that cannot be performed as a set of mental acts by a human.
In this regard, system 100 and/or components of system 100
can employ a GAN model (e.g., GAN model 108) to
generate synthetic images and further train a DNN model
(e.g., DNN model 126) to automatically identify and extract
realistic synthetic images as opposed to non-realistic looking
synthetic images. These DNN model selected real-like syn-
thetic images can be used for further clinical model training
Prior solution involved asking domain experts (e.g., radi-
ologists in the context of medical images) or non-domain
experts to manually review and segregate the real-like and
not real-like synthetic images based on visual observations.
They then chose the real-like images for clinical model
training. However, this is highly labor intensive and thus not
a scalable solution as there is a need of reviewing the
synthetic images again when they are generated for different
clinical model trainings. Technically, a trained GAN model
can generate countably infinite synthetic images that can be
used to augment training datasets for clinical Al model
training. Therefore, the trained DNN model can be used to
filter these countably infinite synthetic images appropriately
and select only the real-like images to use for model
training.

[0032] Accordingly, system 100 and/or components of
system 100 (and other systems described herein) can facili-
tate improving the quality and quantity of training data sets
by augmenting them with realistic looking synthetic images
in an efficient an automated manner. As a result, system 100
and/or components of system 100 provide for improving the
performance accuracy and specificity of final target models
trained using the real-like synthetic images. In this regard,
system 100 and/or components of system 100 or other
systems described herein can be employed to solve new
problems that arise through advancements in technology,
computer networks, the Internet, and the like, particularly
advancement in Al solutions in which real-like synthetic
images can be used to augment model training and perfor-
mance.

[0033] In this regard, the synthetic image generation mod-
ule 102 can provide for generating synthetic images. The
synthetic image generation module 102 can include a syn-
thetic image generator component 106, a database or data-
store comprising latent random variable data 104, and a
GAN model 108. The synthetic image generator component
106 can be configured to apply the GAN model 108 to the
latent random variable data 104 to generate the synthetic
images. For example, in the embodiment shown, the syn-
thetic image generator component 106 can generate first
synthetic images 110 using the GAN model 108 and the
latent random variable data 104. In various exemplary
embodiments, the first synthetic images 110 can include
synthetic medical images.

[0034] GAN models such as GAN model 108 can be
configured to generate realistically looking synthetic images
after learning the training image data distribution. A GAN
generally involves two neural networks, a generative net-
work and a discriminative network. The generator produces
a sample, such as a synthetic image, from latent code (e.g.,
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latent random variable data 104). The distribution of the
synthetic images generated from the latent code should
ideally be indistinguishable from the training distribution.
Since it is generally infeasible to engineer a function that
tells where that is the case, a discriminator network is trained
to do the assessment. Because neural networks are differ-
entiable, a gradient can be used to steer both networks to the
right direction. The generator network is of main interest.
The discriminator network is an adaptive loss function that
is relatively week classifier. The discriminator network gets
discarded once the generator network has been trained. In
this regard, the GAN model 108 can included the trained
generator network of the model configured to generate the
synthetic images.

[0035] During the GAN model training, the sole respon-
sibility of the algorithm is to mimic input data distribution
so that the output data distribution is similar to the input data
distribution. However, GANs can be hard to train in practice,
and despite improvements, it has been observed that the
optimization does not lead to convergence all the time. One
common failure mode involves the generator collapsing to
produce only a single sample or a small family of very
similar samples. Although some GAN models have demon-
strated local convergence on training for absolutely continu-
ous data and generator distributions, even if the convergence
is achieved there is a possibility that the generator will
produce non-realistic synthetic images.

[0036] For example, FIG. 2 illustrates example real-like
and non-real-like synthetic medical images generated using
a GAN model (e.g., GAN model 108) in accordance with
one or more embodiments of the disclosed subject matter.
The synthetic images shown in FIG. 2 were generated by a
GAN model that had converged. The synthetic images
respectively correspond to real chest x-rays Image 201
provides an example real-like looking synthetic image gen-
erated by the GAN model and images 202-204 demonstrate
non-real-like synthetic images generated by the same GAN
model. As it can be noticed by comparison with image 201,
image 202 has a lot of irregularities such as mangled lung,
ribs, and heart features. Images 203 and 204 may seem very
real-like at first glance, but they also possess unavoidable
issues such as vanished rib parts, two hearts like features,
etc.

[0037] With reference again to FIG. 1, the DNN develop-
ment module 112 can receive and process the first synthetic
images 110 to identify and segregate the non-real-like syn-
thetic images from the real-like synthetic images. The DNN
development module 112 can further employ the non-real-
like synthetic images 120 to train a DNN model 126 to
automatically classify synthetic images as either real-like or
non-real-like. In the embodiment shown the DNN develop-
ment module 112 can include annotation component 114,
first extraction component 116 and training component 122.
[0038] The annotation component 114 can facilitate anno-
tating or labeling the first synthetic images 110 as either
real-like or non-real-like. In some embodiments, the anno-
tation component 114 can label the first synthetic images as
either real-like or non-real-like based on reception of user
input identifying or classifying the respective images as
either real-like or non-real-like. For example, in some
embodiments, the first synthetic images 110 can be manually
reviewed and annotated by a domain expert (e.g., a radiolo-
gist) or non-domain expert. With these embodiments, the
annotation component 114 can apply or otherwise associate
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labels (e.g., metadata) with the respective first synthetic
images that classifies them as either real-like or non-real-like
based on the manual input.

[0039] In other embodiments, the annotation component
114 can employ Al and one or more machine learning
techniques to label the respective first synthetic images 110
as either real-like or non-real-like. With these embodiments,
the annotation component 114 can include provide for
automatically (e.g., without manual input) classifying the
first synthetic images 110 as either real-like or non-real-like
using one or more machine learning models. For example,
the one or more machine learning class models can include
one or more Al/machine learning classification models con-
figured to identify distinguishing features associated with
the synthetic images that can be used to classify them as
real-like or non-real-like. With these embodiments, the
annotation component 114 can employ the one or more
machine learning classification models to classify respective
images of the first synthetic images as either real-like or
non-real-like, and then label the respective images according
to the classification determined by using the one or more
machine learning models classification models.

[0040] In this regard, the one or more machine learning
classification models can employ various classification (ex-
plicitly and/or implicitly trained) schemes and/or systems
(e.g., support vector machines, neural networks, expert
systems, Bayesian belief networks, fuzzy logic, data fusion
engines, etc.) in connection with classifying a synthetic
image as either real-like or non-real-like. For example, the
one or more machine learning classification models can map
an input attribute vector, x=(x1, x2, x4, x4, xn), to a
confidence that the input belongs to a class of either real-like
or non-real-like, such as by f(x)=confidence(class). Such
classification can employ a probabilistic and/or statistical-
based analysis (e.g., factoring into the analysis utilities and
costs) to prognose or infer an action that a user desires to be
automatically performed. A support vector machine (SVM)
is an example of a classifier that can be employed. The SVM
operates by finding a hyper-surface in the space of possible
inputs, where the hyper-surface attempts to split the trigger-
ing criteria from the non-triggering events. Intuitively, this
makes the classification correct for testing data that is near,
but not identical to training data. Other directed and undi-
rected model classification approaches that can be used by
the annotation component 114 to classify and label the first
synthetic images 110 as real-like or non-real-like can include
but are not limited to, naive Bayes, Bayesian networks,
decision trees, neural networks, fuzzy logic models, and
probabilistic classification models providing different pat-
terns of independence can be employed. Classification as
used herein also is inclusive of statistical regression that is
utilized to develop models of priority.

[0041] Regardless of the manner in which the first syn-
thetic images 110 are classified and labeled as either real-
like or non-real-like (e.g., using manual annotation input
and/or automatically using one or more Al based classifi-
cation techniques), the first extraction component 116 can
further filter the synthetic images to separate the real-like
synthetic images and the non-real-like synthetic images. In
various embodiments, the first extraction component can
identify and extract all (or in some implementations one or
more) of the first synthetic images 110 classified/labeled as
non-real-like and collect them into a training dataset. In the
embodiment shown, the extracted non-real-like synthetic
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images are shown in a separate database comprising (only)
non-real-like synthetic images 120. The first extraction
component 116 can also identify and extract all (or in some
implementations one or more) of the first synthetic images
classified/labeled as real-like add them to the target model
dataset 118. For example, the target model dataset can
include all of the “good” images that will be used to train a
target model, such as a clinical model designed to diagnose
medical condition reflected in real (not synthetic) images.
[0042] The training component 122 can further employ the
non-real-like synthetic images 120 and real images 124 to
train a DNN model 126 to classify synthetic images as either
real-like or non-real-like. Unlike the discriminator network
used to train the GAN model 108 (which is a week classi-
fier), the DNN model 126 can include a very deep convo-
Iutional neural network that is a binary classifier. In this
regard, the training component 122 can train the DNN model
126 to distinguish between non-real-like synthetic images
using the non-real-like synthetic images 120 to represent the
“non-real” class and real images (e.g., not synthetic) to
represent the real class. For example, in implementations in
which the non-real-like synthetic images are medical images
of'a specific type (e.g., chest x-rays), the real images 124 can
include real medical images of the same specific type. As
described in greater detail infra, once the DNN model 126
training is complete, the DNN model 126 can be used to
automatically classify synthetic images generated using the
GAN model 108 as either real-like or non-real-like.

[0043] FIG. 3 illustrates a flow diagram of an example,
non-limiting process 300 for developing a DNN model (e.g.,
DNN model 126) that facilitates identifying realistic syn-
thetic images generated using a GAN in accordance with
one or more embodiments of the disclosed subject matter. In
one or more embodiments, process 300 provide an exem-
plary process that can be performed by system 100 to
generate DNN model 126. Repetitive description of like
elements employed in respective embodiments is omitted for
sake of brevity.

[0044] At 302, first synthetic images 110 can be generated
(e.g., via synthetic image generator component 106) based
on the latent random variable data 104 using a GAN model
108. At 304, the respective first synthetic images of the first
synthetic images 110 can be labeled as either real-like or
non-real-like (e.g., via annotation component 114). For
example, in some embodiments, the respective first synthetic
images can be manually reviewed and annotated (e.g., by a
radiologist or non-domain expert). In other embodiments,
one or more machine learning techniques can be applied to
automatically classify the synthetic images as either real-like
or non-real-like. At 306, each (or in some implementations
one or more) of the first synthetic images can be filtered
based on their classification as either real-like or non-real
like. For example, at 306, if a synthetic image is classified/
labeled as real-like, then at 308, the real-like synthetic image
can be extracted (e.g., via first extraction component 116)
and added to the target model dataset 118.

[0045] However, if at 306, a first synthetic image is
classified as non-real-like, the non-real-like synthetic image
can be extracted and added to the non-real-like synthetic
images 120 training dataset. Once there is enough non-real-
like synthetic images 120 (e.g., based on a defined minimum
amount, or another deterministic criterion), then at 312, the
DNN model can be trained (e.g., via training component
122). In this regard, the DNN model 126 can be trained to
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classify synthetic images as either real-like or non-real-like
using the real images 124 (e.g., not synthetic images) and the
non-real-like synthetic images 120 as input.

[0046] FIG. 4 illustrates a block diagram of an example,
non-limiting system 400 that facilitates employing a DNN
model to identify realistic synthetic images generated using
a GAN model in accordance with one or more embodiments
of the disclosed subject matter. System 400 includes at least
some same or similar components as system 100. In one or
more embodiments, system 100 can include system 400, or
vice versa. Repetitive description of like elements employed
in respective embodiments is omitted for sake of brevity.
[0047] Similar to system 100, system 400 can include the
synthetic image generation module 102 and the target model
dataset 118. System 400 further include a DNN application
module 404 which can include an inference component 406
and a second extraction component 408. The DNN applica-
tion module 404 can be and include machine-executable
components stored in memory (not shown) associated with
the one or more machines (not shown). The memory can
further be operatively coupled to at least one processor (not
shown), such that the components (e.g., DNN application
module 404 and the components associated therewith), can
be executed by the at least one processor to perform the
operations described. Examples of said and memory and
processor as well as other suitable computer or computing-
based elements, can be found with reference to FIG. 11, and
can be used in connection with implementing one or more of
the systems or components shown and described in connec-
tion with FIG. 4 or other figures disclosed herein.

[0048] The DNN application module 404 can be config-
ured to apply the DNN model 126 after training and devel-
opment thereof (e.g., by the DNN development module 112)
to separate real-like and non-real-like synthetic images by
running in an inferencing mode. In this regard, after the
DNN model 126 has been trained, the synthetic image
generation module 102 can generate second synthetic
images using the synthetic image generator component 106,
the GAN model 108 and the latent random variable data 104.
The inference component 406 can further employ the DNN
model 126 to classify each (or in some implementations one
or more) of the second synthetic images as either real-like or
non-real-like. The second extraction component 408 can
further extract all (or in some implementations one or more)
of the second synthetic images classified as real-like,
depicted in FIG. 4 as real-like synthetic images 410. These
real-like synthetic images can further be added to the target
model dataset 118. In some embodiments, the second extrac-
tion component 408 can discard the second synthetic images
402 classified as non-real-like.

[0049] FIG. 5 illustrates a flow diagram of an example,
non-limiting process for employing a DNN model to iden-
tify realistic synthetic images generated using a GAN model
in accordance with one or more embodiments of the dis-
closed subject matter. In one or more embodiments, process
500 provide an exemplary process that can be performed by
system 400 to generate a target model dataset that includes
real-like synthetic images and excludes non-real-like syn-
thetic images (e.g., target model dataset 118). Repetitive
description of like elements employed in respective embodi-
ments is omitted for sake of brevity.

[0050] At 502, second synthetic images 402 can be gen-
erated (e.g., via synthetic image generator component 106)
based on the latent random variable data 104 using a GAN
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model 108. At 504, using the DNN model 126, the respec-
tive second synthetic images 402 can classified as either
real-like or non-real-like (e.g., by the inference component
406). At506, each (or in some implementations one or more)
of the second synthetic images can be filtered based on their
classification as either real-like or non-real like. For
example, at 506, if a second synthetic image is classified as
real-like, then at 508, the real-like synthetic image can be
extracted (e.g., via second extraction component 408) and
added to the target model dataset 118. However, if at 506, a
second synthetic image is classified as non-real-like, the
non-real-like synthetic image can be discarded (e.g., added
to the trash 512).

[0051] FIG. 6 illustrates a block diagram of an example,
non-limiting system 600 that facilitates training a machine
learning model using realistic synthetic images to make
inferences on real images in accordance with one or more
embodiments of the disclosed subject matter. System 600
includes same or similar components as system 400 with the
addition of target model training module 602 and second real
images 608. In one or more embodiments, system 100 can
include system 600, or vice versa. Repetitive description of
like elements employed in respective embodiments is omit-
ted for sake of brevity.

[0052] The target model training module 602 can be and
include machine-executable components stored in memory
(not shown) associated with the one or more machines (not
shown). The memory can further be operatively coupled to
at least one processor (not shown), such that the components
(e.g., the target model training module 602 and the compo-
nents associated therewith), can be executed by the at least
one processor to perform the operations described.
Examples of said and memory and processor as well as other
suitable computer or computing-based elements, can be
found with reference to FIG. 11, and can be used in
connection with implementing one or more of the systems or
components shown and described in connection with FIG. 6
or other figures disclosed herein.

[0053] The target model training module 602 can include
target model training component 604 and a target model
606. The target model training component 604 be configured
to apply the target model dataset 118, including the real-like
synthetic images 410, to train the target model 606. For
example, in one embodiment, the target model 606 can
include a machine learning model configured to identify
and/or diagnose medical conditions reflected in real medical
images (e.g., in a clinical context). With these embodiments,
the target model dataset 118 can include real-like synthetic
medical images and the target model training component
604 can train the target model 606 to identify and/or
diagnose the medical conditions in real medical images
based on representations of the medical conditions reflected
in the real-like synthetic images 410. In some implementa-
tions, the target model dataset 118 and also include real
images. In this regard, the real-like synthetic images 410 can
be used to increase the size and distribution of the training
images in scenarios in which the real medical images for the
training sample are unavailable or are limited. As a result,
the final performance of the (trained) target model 606 can
be improved.

[0054] FIG. 7 provides a flow diagram of an example,
non-limiting computer-implemented method 800 that facili-
tates DNN identification of realistic synthetic images gen-
erated using a GAN in accordance with one or more embodi-

Sep. 9, 2021

ments of the disclosed subject matter. Repetitive description
of like elements employed in respective embodiments is
omitted for sake of brevity.

[0055] At 702, a system operatively coupled to a processor
(e.g., system 100, or the like), can extract a subset of
synthetic images (e.g., non-real-like synthetic images 120)
classified as non-real like as opposed to real-like (e.g., using
first extraction component 116), wherein the subset of syn-
thetic images were generated (e.g., by the synthetic image
generation module 102) using a GAN model (e.g., GAN
model 108). At 702, the system can employ the subset of
synthetic images and real images (e.g., real images 124) to
train (e.g., using training component 122) a DNN model
(e.g., DNN model 126) to classify synthetic images gener-
ated using the generative adversarial network model as
either real-like or non-real like.

[0056] FIG. 8 provides a flow diagram of another
example, non-limiting computer-implemented method 800
that facilitates DNN identification of realistic synthetic
images generated using a GAN in accordance with one or
more embodiments of the disclosed subject matter. Repeti-
tive description of like elements employed in respective
embodiments is omitted for sake of brevity.

[0057] At 802, a system operatively coupled to a processor
(e.g., system 100, or the like), can generate (e.g., using the
synthetic image generation module 102), first synthetic
images (e.g., first synthetic images 110) using a GAN model
(e.g., GAN model 108). At 804, the system can classify the
first synthetic images as either real-like or non-real-like
using artificial intelligence. At 806, the system can extract
(e.g., using first extraction component 116) a subset of the
first synthetic images (e.g., non-real-like synthetic images
120) classified as non-real like as opposed to real-like (e.g.,
using first extraction component 116). At 808, the system
can employ the subset of the first synthetic images and real
images (e.g., real images 124) to train (e.g., using training
component 122) a DNN model (e.g., DNN model 126) to
classify second synthetic images generated using the GAN
model as either real-like or non-real like.

[0058] FIG. 9 provides a flow diagram of another
example, non-limiting computer-implemented method 900
that facilitates DNN identification of realistic synthetic
images generated using a GAN in accordance with one or
more embodiments of the disclosed subject matter. Repeti-
tive description of like elements employed in respective
embodiments is omitted for sake of brevity.

[0059] At 902, a system operatively coupled to a processor
(e.g., system 100 and/or system 400), can extract (e.g., using
first extraction component 116) a first subset of synthetic
images (e.g., non-real-like synthetic images 120) from first
synthetic images (e.g., first synthetic images 110) based on
the first subset of synthetic images being classified as
non-real-like as opposed to real-like, wherein the first syn-
thetic images were generated using a GAN model (e.g.,
GAN model 108). At 904, the system can employ the first
subset of synthetic images and real images (e.g., real images
124) to train (e.g., using training component 122) a DNN
model (e.g., DNN model 126) to classify second synthetic
images generated using the GAN model as either real-like or
non-real like. At 906, the system can employ the DNN
model to classify the second synthetic images as real-like or
non-real-like (e.g., using the inference component 406). At
908, the system can extract (e.g., using second extraction
component 408), a second subset of synthetic images (e.g.,
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real-like synthetic images 410) from the second synthetic
based on the second subset of synthetic images being
classified as real-like as opposed to non-real-like.

[0060] FIG. 10 provides a flow diagram of another
example, non-limiting computer-implemented method 1000
that facilitates DNN identification of realistic synthetic
images generated using a GAN in accordance with one or
more embodiments of the disclosed subject matter. Repeti-
tive description of like elements employed in respective
embodiments is omitted for sake of brevity.

[0061] At 1002, a system operatively coupled to a proces-
sor (e.g., system 100, system 400 and/or system 600), can
employ first real images (e.g., real images 124) and the first
synthetic images classified as non-real-like (e.g., non-real-
like synthetic images 120) to train (e.g., using training
component 122) a DNN model (e.g., DNN model 126) to
classify second synthetic images as either real-like or non-
real like, wherein the first synthetic images and the second
synthetic images comprise synthetic images generated using
a GAN model (e.g., GAN model 108). At 1004, the system
can employ the DNN model to classify the second synthetic
images as real-like or non-real-like (e.g., using the inference
component 406). At 1006, the system can extract (e.g., using
second extraction component 408), a subset of the second
synthetic images classified as real-like (e.g., real-like syn-
thetic images 410). At 1008, the system can employ the
subset of the second synthetic images to train (e.g., using
target model training component 604) a target machine
learning model (e.g., target model 606) to perform Al
analytics on second real images.

[0062] One or more embodiments can be a system, a
method, and/or a computer program product at any possible
technical detail level of integration. The computer program
product can include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

[0063] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium can be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0064] Computer readable program instructions described
herein can be downloaded to respective computing/process-
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ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network can
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0065] Computer readable program instructions for carry-
ing out operations of the present invention can be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written in any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions can execute entirely
on the user’s computer, partly on the user’s computer, as a
stand-alone software package, partly on the user’s computer
and partly on a remote computer or entirely on the remote
computer or server. In the latter scenario, the remote com-
puter can be connected to the user’s computer through any
type of network, including a local area network (LAN) or a
wide area network (WAN), or the connection can be made
to an external computer (for example, through the Internet
using an Internet Service Provider). In some embodiments,
electronic circuitry including, for example, programmable
logic circuitry, field-programmable gate arrays (FPGA), or
programmable logic arrays (PLLA) can execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

[0066] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven-
tion. It can be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0067] These computer readable program instructions can
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions can also be stored in
a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
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instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0068] The computer readable program instructions can
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0069] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams can represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the blocks can occur out of the order
noted in the Figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur-
rently, or the blocks can sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.

[0070] In connection with FIG. 11, the systems and pro-
cesses described below can be embodied within hardware,
such as a single integrated circuit (IC) chip, multiple ICs, an
application specific integrated circuit (ASIC), or the like.
Further, the order in which some or all of the process blocks
appear in each process should not be deemed limiting.
Rather, it should be understood that some of the process
blocks can be executed in a variety of orders, not all of
which can be explicitly illustrated herein.

[0071] With reference to FIG. 11, an example environment
1100 for implementing various aspects of the claimed sub-
ject matter includes a computer 1102. The computer 1102
includes a processing unit 1104, a system memory 1106, a
codec 1135, and a system bus 1108. The system bus 1108
couples system components including, but not limited to, the
system memory 1106 to the processing unit 1104. The
processing unit 1104 can be any of various available pro-
cessors. Dual microprocessors and other multiprocessor
architectures also can be employed as the processing unit
1104.

[0072] The system bus 1108 can be any of several types of
bus structure(s) including the memory bus or memory
controller, a peripheral bus or external bus, or a local bus
using any variety of available bus architectures including,
but not limited to, Industrial Standard Architecture (ISA),
Micro-Channel Architecture (MSA), Extended ISA (EISA),
Intelligent Drive Electronics (IDE), VESA Local Bus
(VLB), Peripheral Component Interconnect (PCI), Card
Bus, Universal Serial Bus (USB), Advanced Graphics Port
(AGP), Personal Computer Memory Card International
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Association bus (PCMCIA), Firewire (IEEE 1394), and
Small Computer Systems Interface (SCSI).

[0073] The system memory 1106 includes volatile
memory 1110 and non-volatile memory 1112, which can
employ one or more of the disclosed memory architectures,
in various embodiments. The basic input/output system
(BIOS), containing the basic routines to transfer information
between elements within the computer 1102, such as during
start-up, is stored in non-volatile memory 1112. In addition,
according to present innovations, codec 1135 can include at
least one of an encoder or decoder, wherein the at least one
of an encoder or decoder can consist of hardware, software,
or a combination of hardware and software. Although, codec
1135 is depicted as a separate component, codec 1135 can be
contained within non-volatile memory 1112. By way of
illustration, and not limitation, non-volatile memory 1112
can include read only memory (ROM), programmable ROM
(PROM), electrically programmable ROM (EPROM), elec-
trically erasable programmable ROM (EEPROM), Flash
memory, 3D Flash memory, or resistive memory such as
resistive random access memory (RRAM). Non-volatile
memory 1112 can employ one or more of the disclosed
memory devices, in at least some embodiments. Moreover,
non-volatile memory 1112 can be computer memory (e.g.,
physically integrated with computer 1102 or a mainboard
thereof), or removable memory. Examples of suitable
removable memory with which disclosed embodiments can
be implemented can include a secure digital (SD) card, a
compact Flash (CF) card, a universal serial bus (USB)
memory stick, or the like. Volatile memory 1110 includes
random access memory (RAM), which acts as external
cache memory, and can also employ one or more disclosed
memory devices in various embodiments. By way of illus-
tration and not limitation, RAM is available in many forms
such as static RAM (SRAM), dynamic RAM (DRAM),
synchronous DRAM (SDRAM), double data rate SDRAM
(DDR SDRAM), and enhanced SDRAM (ESDRAM) and so
forth.

[0074] Computer 1102 can also include removable/non-
removable, volatile/non-volatile computer storage medium.
FIG. 11 illustrates, for example, disk storage 1114. Disk
storage 1114 includes, but is not limited to, devices like a
magnetic disk drive, solid state disk (SSD), flash memory
card, or memory stick. In addition, disk storage 1114 can
include storage medium separately or in combination with
other storage medium including, but not limited to, an
optical disk drive such as a compact disk ROM device
(CD-ROM), CD recordable drive (CD-R Drive), CD rewrit-
able drive (CD-RW Drive) or a digital versatile disk ROM
drive (DVD-ROM). To facilitate connection of the disk
storage 1114 to the system bus 1108, a removable or
non-removable interface is typically used, such as interface
1116. It is appreciated that disk storage 1114 can store
information related to a user. Such information might be
stored at or provided to a server or to an application running
on a user device. In one embodiment, the user can be notified
(e.g., by way of output device(s) 1136) of the types of
information that are stored to disk storage 1114 or transmit-
ted to the server or application. The user can be provided the
opportunity to opt-in or opt-out of having such information
collected or shared with the server or application (e.g., by
way of input from input device(s) 1128).

[0075] It is to be appreciated that FIG. 11 describes
software that acts as an intermediary between users and the
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basic computer resources described in the suitable operating
environment 1100. Such software includes an operating
system 1118. Operating system 1118, which can be stored on
disk storage 1114, acts to control and allocate resources of
the computer 1102. Applications 1120 take advantage of the
management of resources by operating system 1118 through
program modules 1124, and program data 1126, such as the
boot/shutdown transaction table and the like, stored either in
system memory 1106 or on disk storage 1114. It is to be
appreciated that the claimed subject matter can be imple-
mented with various operating systems or combinations of
operating systems.

[0076] A user enters commands or information into the
computer 1102 through input device(s) 1128. Input devices
1128 include, but are not limited to, a pointing device such
as a mouse, trackball, stylus, touch pad, keyboard, micro-
phone, joystick, game pad, satellite dish, scanner, TV tuner
card, digital camera, digital video camera, web camera, and
the like. These and other input devices connect to the
processing unit 1104 through the system bus 1108 via
interface port(s) 1130. Interface port(s) 1130 include, for
example, a serial port, a parallel port, a game port, and a
universal serial bus (USB). Output device(s) 1136 use some
of the same type of ports as input device(s) 1128. Thus, for
example, a USB port can be used to provide input to
computer 1102 and to output information from computer
1102 to an output device 1136. Output adapter 1134 is
provided to illustrate that there are some output devices 1136
like monitors, speakers, and printers, among other output
devices 1136, which require special adapters. The output
adapters 1134 include, by way of illustration and not limi-
tation, video and sound cards that provide a means of
connection between the output device 1136 and the system
bus 1108. It should be noted that other devices or systems of
devices provide both input and output capabilities such as
remote computer(s) 1138.

[0077] Computer 1102 can operate in a networked envi-
ronment using logical connections to one or more remote
computers, such as remote computer(s) 1138. The remote
computer(s) 1138 can be a personal computer, a server, a
router, a network PC, a workstation, a microprocessor based
appliance, a peer device, a smart phone, a tablet, or other
network node, and typically includes many of the elements
described relative to computer 1102. For purposes of brevity,
only a memory storage device 1140 is illustrated with
remote computer(s) 1138. Remote computer(s) 1138 is logi-
cally connected to computer 1102 through a network inter-
face 1142 and then connected via communication connec-
tion(s) 1144. Network interface 1142 encompasses wire or
wireless communication networks such as local-area net-
works (LAN) and wide-area networks (WAN) and cellular
networks. LAN technologies include Fiber Distributed Data
Interface (FDDI), Copper Distributed Data Interface
(CDDI), Ethernet, Token Ring and the like. WAN technolo-
gies include, but are not limited to, point-to-point links,
circuit switching networks like Integrated Services Digital
Networks (ISDN) and variations thereon, packet switching
networks, and Digital Subscriber Lines (DSL).

[0078] Communication connection(s) 1144 refers to the
hardware/software employed to connect the network inter-
face 1142 to the bus 1108. While communication connection
1144 is shown for illustrative clarity inside computer 1102,
it can also be external to computer 1102. The hardware/
software necessary for connection to the network interface
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1142 includes, for exemplary purposes only, internal and
external technologies such as, modems including regular
telephone grade modems, cable modems and DSL modems,
ISDN adapters, and wired and wireless Ethernet cards, hubs,
and routers.

[0079] While the subject matter has been described above
in the general context of computer-executable instructions of
a computer program product that runs on a computer and/or
computers, those skilled in the art will recognize that this
disclosure also can or can be implemented in combination
with other program modules. Generally, program modules
include routines, programs, components, data structures, etc.
that perform particular tasks and/or implement particular
abstract data types. Moreover, those skilled in the art will
appreciate that the inventive computer-implemented meth-
ods can be practiced with other computer system configu-
rations, including single-processor or multiprocessor com-
puter systems, mini-computing devices, mainframe
computers, as well as computers, hand-held computing
devices (e.g., PDA, phone), microprocessor-based or pro-
grammable consumer or industrial electronics, and the like.
The illustrated aspects can also be practiced in distributed
computing environments where tasks are performed by
remote processing devices that are linked through a com-
munications network. However, some, if not all aspects of
this disclosure can be practiced on stand-alone computers. In
a distributed computing environment, program modules can
be located in both local and remote memory storage devices.

[0080]

“system,” “platform,” “interface,” and the like, can refer to
and/or can include a computer-related entity or an entity
related to an operational machine with one or more specific
functionalities. The entities disclosed herein can be either
hardware, a combination of hardware and software, soft-
ware, or software in execution. For example, a component
can be, but is not limited to being, a process running on a
processor, a processor, an object, an executable, a thread of
execution, a program, and/or a computer. By way of illus-
tration, both an application running on a server and the
server can be a component. One or more components can
reside within a process and/or thread of execution and a
component can be localized on one computer and/or dis-
tributed between two or more computers. In another
example, respective components can execute from various
computer readable media having various data structures
stored thereon. The components can communicate via local
and/or remote processes such as in accordance with a signal
having one or more data packets (e.g., data from one
component interacting with another component in a local
system, distributed system, and/or across a network such as
the Internet with other systems via the signal). As another
example, a component can be an apparatus with specific
functionality provided by mechanical parts operated by
electric or electronic circuitry, which is operated by a
software or firmware application executed by a processor. In
such a case, the processor can be internal or external to the
apparatus and can execute at least a part of the software or
firmware application. As yet another example, a component
can be an apparatus that provides specific functionality
through electronic components without mechanical parts,
wherein the electronic components can include a processor
or other means to execute software or firmware that confers
at least in part the functionality of the electronic compo-

As used in this application, the terms “component,”
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nents. In an aspect, a component can emulate an electronic
component via a virtual machine, e.g., within a cloud
computing system.

[0081] In addition, the term “or” is intended to mean an
inclusive “or” rather than an exclusive “or.” That is, unless
specified otherwise, or clear from context, “X employs A or
B” is intended to mean any of the natural inclusive permu-
tations. That is, if X employs A; X employs B; or X employs
both A and B, then “X employs A or B” is satisfied under any
of the foregoing instances. Moreover, articles “a” and “an”
as used in the subject specification and annexed drawings
should generally be construed to mean “one or more” unless
specified otherwise or clear from context to be directed to a
singular form. As used herein, the terms “example” and/or
“exemplary” are utilized to mean serving as an example,
instance, or illustration and are intended to be non-limiting.
For the avoidance of doubt, the subject matter disclosed
herein is not limited by such examples. In addition, any
aspect or design described herein as an “example” and/or
“exemplary” is not necessarily to be construed as preferred
or advantageous over other aspects or designs, nor is it
meant to preclude equivalent exemplary structures and tech-
niques known to those of ordinary skill in the art.

[0082] As it is employed in the subject specification, the
term “processor” can refer to substantially any computing
processing unit or device comprising, but not limited to,
single-core processors; single-processors with software mul-
tithread execution capability; multi-core processors; multi-
core processors with software multithread execution capa-
bility; multi-core processors with hardware multithread
technology; parallel platforms; and parallel platforms with
distributed shared memory. Additionally, a processor can
refer to an integrated circuit, an application specific inte-
grated circuit (ASIC), a digital signal processor (DSP), a
field programmable gate array (FPGA), a programmable
logic controller (PLC), a complex programmable logic
device (CPLD), a discrete gate or transistor logic, discrete
hardware components, or any combination thereof designed
to perform the functions described herein. Further, proces-
sors can exploit nano-scale architectures such as, but not
limited to, molecular and quantum-dot based transistors,
switches and gates, in order to optimize space usage or
enhance performance of user equipment. A processor can
also be implemented as a combination of computing pro-
cessing units. In this disclosure, terms such as “store,”
“storage,” “data store,” data storage,” “database,” and sub-
stantially any other information storage component relevant
to operation and functionality of a component are utilized to
refer to “memory components,” entities embodied in a
“memory,” or components comprising a memory. It is to be
appreciated that memory and/or memory components
described herein can be either volatile memory or nonvola-
tile memory, or can include both volatile and nonvolatile
memory. By way of illustration, and not limitation, nonvola-
tile memory can include read only memory (ROM), pro-
grammable ROM (PROM), electrically programmable
ROM (EPROM), electrically erasable ROM (EEPROM),
flash memory, or nonvolatile random access memory
(RAM) (e.g., ferroelectric RAM (FeRAM). Volatile memory
can include RAM, which can act as external cache memory,
for example. By way of illustration and not limitation, RAM
is available in many forms such as synchronous RAM
(SRAM), dynamic RAM (DRAM), synchronous DRAM
(SDRAM), double data rate SDRAM (DDR SDRAM),
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enhanced SDRAM (ESDRAM), Synchlink DRAM (SL-
DRAM), direct Rambus RAM (DRRAM), direct Rambus
dynamic RAM (DRDRAM), and Rambus dynamic RAM
(RDRAM). Additionally, the disclosed memory components
of systems or computer-implemented methods herein are
intended to include, without being limited to including, these
and any other suitable types of memory.

[0083] What has been described above include mere
examples of systems and computer-implemented methods. It
is, of course, not possible to describe every conceivable
combination of components or computer-implemented
methods for purposes of describing this disclosure, but one
of ordinary skill in the art can recognize that many further
combinations and permutations of this disclosure are pos-
sible. Furthermore, to the extent that the terms “includes,”
“has,” “possesses,” and the like are used in the detailed
description, claims, appendices and drawings such terms are
intended to be inclusive in a manner similar to the term
“comprising” as “comprising” is interpreted when employed
as a transitional word in a claim. The descriptions of the
various embodiments have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations can be apparent to those of ordinary skill in the art
without departing from the scope and spirit of the described
embodiments. The terminology used herein was chosen to
best explain the principles of the embodiments, the practical
application or technical improvement over technologies
found in the marketplace, or to enable others of ordinary
skill in the art to understand the embodiments disclosed
herein.

What is claimed is:

1. A system, comprising:

a memory that stores computer executable components;

and

a processor that executes the computer executable com-

ponents stored in the memory, wherein the computer

executable components comprise:

an inference component that employs a deep neural
network model to classify synthetic images as either
real-like or non-real-like; and

a target model training component that employs a
subset of the synthetic images classified as real-like
to train a machine learning model to perform artifi-
cial intelligence analytics on real images.

2. The system of claim 1, wherein the real images and the
synthetic images comprise medical images.

3. The system of claim 1, wherein the synthetic images
were generated using a generative adversarial network
model.

4. The system of claim 1, wherein the computer execut-
able components further comprise:

a synthetic image generator that generates the synthetic

images using a generative adversarial network model.

5. The system of claim 1, wherein the synthetic images
comprise second synthetic images and the real images
comprise second real images, and wherein the deep neural
network model was trained on a training dataset comprising
first real images and first synthetic images classified as
non-real like.

6. The system of claim 5, wherein the first synthetic
images and the second synthetic images were generated
using a generative adversarial network model.
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7. The system of claim 5, wherein the computer execut-
able components further comprise:

a training component that employs the training dataset to
train the deep neural network model to classify test
synthetic images as either real-like or non-real like.

8. The system of claim 1, wherein the deep neural network
model comprises a very deep convolutional neural network
model configured for binary classification.

9. The system of claim 2, wherein the artificial intelli-
gence analytics comprise automated evaluation of one or
more medical conditions reflected in the real images.

10. A method, comprising:

classifying, by a system operatively coupled to a proces-
sor, synthetic images as either real-like or non-real-like
using a deep neural network model; and

employing, by the system, a subset of the synthetic
images classified as real-like to train a machine learn-
ing model to perform artificial intelligence analytics on
real images.

11. The method of claim 10, wherein the real images and

the synthetic images comprise medical images.

12. The method of claim 10, wherein the synthetic images
were generated using a generative adversarial network
model.

13. The method of claim 10, further comprising:

generating, by the system, the synthetic images using a
generative adversarial network model.

14. The method of claim 10, wherein the synthetic images

comprise second synthetic images and the real images
comprise second real images, and wherein the deep neural
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network model was trained on a training dataset comprising
first real images and first synthetic images classified as
non-real like.

15. The method of claim 14, wherein the first synthetic
images and the second synthetic images were generated
using a generative adversarial network model.

16. The method of claim 14, further comprising:

employing, by the system, the training dataset to train the

deep neural network model to classify test synthetic
images as either real-like or non-real like.

17. The method of claim 10, wherein the deep neural
network model comprises a very deep convolutional neural
network model configured for binary classification.

18. The method of claim 11, wherein the artificial intel-
ligence analytics comprise automated evaluation of one or
more medical conditions reflected in the real images.

19. A machine-readable storage medium, comprising
executable instructions that, when executed by a processor,
facilitate performance of operations, comprising:

classifying synthetic images as either real-like or non-

real-like using a deep neural network model; and
employing a subset of the synthetic images classified as

real-like to train a machine learning model to perform

artificial intelligence analytics on real images.

20. The machine-readable storage medium of claim 19,
wherein the synthetic images comprise second synthetic
images and the real images comprise second real images,
and wherein the deep neural network model was trained on
a training dataset comprising first real images and first
synthetic images classified as non-real like.
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