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TILE REGION PROTECTION USING
MULTIPLE GPUS

BACKGROUND

[0001] A processor is a device for executing machine code
instructions. A given processor is configured to recognize a
certain predefined set of instruction types, referred to as the
instruction set of the processor. Each instruction type is
defined by a respective opcode and zero or more operand
fields. The processor is configured to fetch instructions from
memory for execution. The processor may comprise a
number of different kinds of sub unit for preforming differ-
ent categories of operations, depending on the type of the
instruction being executed. E.g. the processor may comprise
an integer arithmetic logic unit for performing integer arith-
metic operations in response to arithmetic instruction types,
a floating point arithmetic logic unit for performing floating
point operations in response to floating point instruction
types, and a load-store unit for performing memory access
operations in response to load and store instruction types.
[0002] For instance, in a reduced instruction set computer
(RISC), a load instruction takes at least two operands: a
source memory address and an identifier specifying a des-
tination register in a register file of the processor. When
executed, the load instruction acts on the load-store unit to
load a value from the source address into the destination
register. Logic instructions may take different numbers of
operands depending on the type of instruction. E.g. a logic
instruction such as an add or multiply instruction, etc., may
take three operands: two specifying two respective source
registers in the register file, and one specifying a destination
register in the register file. When executed the logic instruc-
tion acts on the relevant logic unit, such as an integer or
floating point arithmetic logic unit, in order to perform the
relevant logic operation on the values in the specified source
registers, and place the result in the specified destination
register. The operation to be performed, and which logic unit
is triggered to perform this operation, will depend on the
opcode of the instruction in question. To store the result of
a logic operation back to memory involves a store instruc-
tion. A store instruction takes at least two operands: one
specifying a source register in the register file and one a
destination address in memory. When executed the store
instruction acts on the load-store unit to store the value in the
specified source register to the destination memory address.
[0003] One way in which an application-specific proces-
sor, such as a graphics processing unit (GPU), can be
tailored to a specific application, is to include one or more
specialised instruction types in the instruction set of the
processor. Such an instruction type will perform a more
complex operation than a simple load, store, add or multiply,
etc., triggered in response to a single instance of a single
machine code instruction of the type in question. E.g. this
could be a particular mathematical operation, such as a
multiply-accumulate (MAC), that comes up frequently in
the application in question. The same operation could be
built from a combination of general purpose add and mul-
tiply instructions, or the like, but that would reduce the code
density compared to using instructions of a more specialised
instruction set.

[0004] In some kinds of processor, such as a vector
processor, SIMD (single instruction multiple data) or SIMT
(single instruction multiple thread) processor, the processor
comprises multiple parallel processing channels. Each of the
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parallel processing channels may comprise a respective
instance of at least one of the same kind of logic unit. For
example, each channel may comprise a respective arithmetic
logic unit (ALU) such as an integer arithmetic logic unit or
floating point arithmetic logic unit. In response to execution
of the same instance of the same instruction, fetched in a
single fetch operation, some or all of the logic units in the
different parallel channels are triggered to perform the same
operation on different data, e.g. on different elements of a
vector in a vector register specified as the source of the
operation. For example, each ALU may be operable to
perform a multiply-accumulate (MAC), also known as a
multiply-add. This takes two multiplication inputs (some-
times referred to as the multiplier and multiplicand) and an
addend input (also known as the accumulator), and adds the
addend to the product of the two multiplication inputs. The
MAC may be implemented as a fused-multiply add whereby
the multiply-accumulate is performed in one fused step. The
result of the MAC by each parallel logic unit may be placed
in a respective element of a destination vector register.

[0005] Tile-based rendering refers to the process of divid-
ing the rendering space of a scene (e.g. an image, video
frame, computer graphic, etc.) into a grid, and rendering
each sub-division (i.e. tile) of the grid separately. The scene
may then be output to a display screen, or otherwise dis-
played. The scene may be two-dimensional or three-dimen-
sional. The grid may be any shape, e.g. a rectangle, and each
tile normally has the same shape and size of every other tile,
however this is not essential and may depend on the shape
of'the scene and/or display screen. Tile-based rendering is an
alternative to rendering an entire scene at once. Tile-based
rendering per se, is known in the art. A brief overview is
provided below with reference to FIGS. 1 and 2.

[0006] Workload repetition redundancy (WRR) refers to
the rendering of a scene twice, and ensuring that both
renders match. In other words, the geometry processing
phase is performed twice, as is the fragment processing
phase. This is particularly important if the scene includes
safety-related elements, i.e. elements that serve a safety-
related purpose, or otherwise impact a user’s safety. For
instance, an element may be safety-related if its mis-render-
ing could affect the user’s safety. An example of a scene
comprising safety-related elements is a computer-generated
vehicle instrument cluster. A vehicle instrument cluster may
comprise a speedometer, one or more warning lights, a fuel
level indicator, as well as other elements such as an indica-
tion of the current radio station that is playing, or a navi-
gation icon. The speedometer may be designated as safety-
related because, if it is not rendered correctly, the driver of
the vehicle may not know the speed at which the vehicle is
travelling. Therefore it is beneficial to render the instrument
cluster twice, and check that the renders match, so as to
ensure that any faults are not present in the rendering. WRR

is described in detail in UK patent application
GB2579590A.
[0007] Tile region protection (TRP) refers to an optimi-

sation of WRR and is described in detail in UK patent
application GB2579592A. An optimisation of WRR is
achieved by marking, as safety-related, those primitives that
describe safety-related elements. The primitives may be
marked by the application. TRP involves rendering the
entire geometry processing phase twice because, at the start
of the geometry pipeline, it is not yet known which tiles
contain safety-related primitives. At the end of the geometry
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processing phase, it is known which tiles contain safety-
related primitives. During the fragment processing phase,
only the tiles that contain safety-related primitives are
rendered twice. TRP is described in more detail with refer-
ence to FIGS. SA to 7.

[0008] Rendering faults are often caused by temporary
(i.e. transient) errors. A temporary error may be caused by,
for example, a cosmic ray hitting the GPU’s memory (e.g.
RAM) and causing random bit flipping. Temporary errors
may also be caused by voltage spikes or magnetic pulses.
Since the error is temporary, when the scene is rendered
again, the same fault should not be present. Faults may also
be caused by permanent errors. Permanent errors arise when
the hardware itself experiences a problem.

SUMMARY

[0009] Tile-based rendering typically involves two
phases: a geometry processing phase and a fragment pro-
cessing phase. An overview of the geometry processing
phase and the fragment processing phase is provided below
with reference to FIGS. 1 and 2 respectively. Each phase
may be performed using a single core (i.e. single GPU) or
using multiple cores (i.e. multiple GPUs).

[0010] TRP has been used for the geometry processing
phase in single core and dual core configurations. As will be
discussed in more detail below, TRP provides temporary
fault coverage when used in a single core configuration.
Permanent faults are not detected because when the geom-
etry processing phase is repeated on the same core, a
permanent hardware error will result in the same permanent
fault for both renderings. The outputs will match, but still
contain the fault. TRP provides both temporary and perma-
nent fault coverage when used in a dual core configuration
because the geometry processing phase is performed by
different cores, and therefore a fault caused by a permanent
error on one core will not exist in the output produced by the
other core that does not have the same permanent error.
[0011] TRP has also been used for the fragment processing
phase in a single core configuration. For reasons similar to
those given above, this only provides temporary fault cov-
erage. However until now, TRP has not been expanded to
work in a dual-core configuration, or more generally, a
multi-core configuration. Thus existing tile-based rendering
systems are prone to faults caused by permanent errors. This
is particularly problematic when the scene to be rendered
includes safety-critical elements.

[0012] According to one aspect disclosed herein, there is
provided a graphics processing system for performing tile-
based rendering of a scene that comprises safety-related
primitives. The system comprises a plurality of graphics
processing units. Each graphics processing unit is config-
ured to 1) receive tile data identifying one or more protected
tiles, each protected tile comprising at least part of a
safety-related primitive, ii) process two respective sets of the
protected tiles, and iii) based on said processing, generate
two respective checksums, one for each respective set of
protected tiles, wherein the two respective sets of protected
tiles are mutually exclusive, wherein each respective set of
protected tiles is processed by two different graphics pro-
cessing units, and wherein each protected tile is processed
by two different graphics processing units. The system
further comprises a comparison unit configured to compare
one or more pairs of checksums, wherein each pair com-
prises a respective checksum generated based on a same
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respective set of protected tiles and generated by different
graphics processing units. The graphics processing system is
configured to perform one or more actions based on an
outcome of said comparison.

[0013] One or more graphics processing units (GPUs)
among the plurality of GPUs may process the input data to
determine which tiles contain safety-related elements. The
GPUs may be performing a first processing phase which is
a geometry processing phase. For instance, the input data
may comprise identifiers (e.g. in the form of markers, flags,
etc.) that are associated with the primitives that are to be
positioned within a grid of tiles. The identifiers may be
generated by the application wanting to render the scene. For
instance, if the scene is a vehicle instrument cluster, the
vehicle manufacturer may have deemed which elements of
the scene are to be classed as safety-related, e.g. to satisfy
safety regulations. The one or more GPU(s) output tile data
that identifies which of the tiles contain at least part of a
safety-related element. Tiles containing safety-related ele-
ments are referred to as “protected tiles”, since it is impor-
tant to “protect” these tiles from faults. The one or more
GPU(s) may also perform some or all of the processes
involved in the geometry processing phase of tile-based
rendering.

[0014] The graphics processing units (GPUs) are config-
ured to process (e.g. render) two sets (i.e. groups) of the
protected tiles. The GPUs may be performing a second
processing phase which is a fragment processing phase. The
two sets of protected tiles processed by a given GPU are
mutually exclusive. That is, a given protected tile is not
processed more than once by the same GPU. However, each
protected tile is processed by two different GPUs. Moreover,
each set of protected tiles is processed by two different
GPUs. For instance, each protected tile may be associated
with a tile number. In a system of two GPUs, each GPU may
process a first set consisting of protected tiles having an even
tile number, and a second set consisting of protected tiles
having an odd tile number. Since each set is processed twice,
each protected tile is also processed twice, and by different
GPUs. Each GPU may also perform some or all of the
processes involved in the fragment processing phase of
tile-based rendering.

[0015] Each GPU generates two checksums, one for each
of'the two sets of protected tiles processed by that GPU. That
is, each GPU generates a pair of checksums. Given that each
set of protected tiles is processed by two different GPUs, a
pair of checksums for each set of protected tiles is generated.
The pairs of checksums generated based on the same sets of
protected tiles are compared by the comparison unit. The
graphics processing system (e.g. a GPU, a host CPU, etc.) is
configured to perform one or more actions based on the
comparison. For example, if the comparison unit detects that
a pair of checksums do not match, a fault signal may be
raised, e.g. to alert the application that there is a fault.
Additionally or alternatively, one or more of the protected
tiles may be re-processed, i.e. re-rendered. The protected
tiles that are re-processed may be limited to those which
have non-matching checksums, or rather those which belong
to a set of protected tiles upon which non-matching check-
sums have been generated.

[0016] Processing each protected tile on two different
GPUs and checking for faults between checksums generated
by different GPUs provides both temporary fault coverage
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and permanent fault coverage, thus solving the problem of
existing tile-based rendering systems.

[0017] In some embodiments, each graphics processing
unit may be configured to: during a first fragment processing
pass, process a first one of the two respective sets of
protected tiles and generate the respective checksum gener-
ated based on the first set of protected tiles; and during a
second fragment processing pass, process a second one of
the two respective sets of protected tiles and generate the
respective checksum generated based on the second set of
protected tiles, wherein the second fragment processing pass
begins after the first fragment processing pass has ended.
[0018] In other words, TRP may be implemented for the
fragment processing phase by splitting the fragment pro-
cessing phase into two fragment processing passes. During
the first fragment processing pass, each graphics processing
unit processes a respective set of protected tiles and gener-
ates a corresponding checksum. Then, during a second
fragment processing pass, each graphics processing unit
processes the other set of protected tiles and generates a
corresponding checksum.

[0019] In alternative embodiments, each graphics process-
ing unit may be configured to, during a single fragment
processing pass: process a first one of the two respective sets
of protected tiles and generate the respective checksum
based on the first set of protected tiles; and process a second
one of the two respective sets of protected tiles and generate
the respective checksum based on the second set of pro-
tected tiles.

[0020] That is, TRP may be implemented for the fragment
processing phase using only a single fragment processing
pass. The protected tiles are split into respective sets,
whereby each respective set of protected tiles is processed
by two different graphics processing units, and whereby a
checksum for each respective set is generated by each
graphics processing unit.

[0021] The graphics processing system may be embodied
in hardware on an integrated circuit. There may be provided
a method of manufacturing, at an integrated circuit manu-
facturing system, a graphics processing system. There may
be provided an integrated circuit definition dataset that,
when processed in an integrated circuit manufacturing sys-
tem, configures the system to manufacture a graphics pro-
cessing system. There may be provided a non-transitory
computer readable storage medium having stored thereon a
computer readable description of a graphics processing
system that, when processed in an integrated circuit manu-
facturing system, causes the integrated circuit manufactur-
ing system to manufacture an integrated circuit embodying
a graphics processing system.

[0022] There may be provided an integrated circuit manu-
facturing system comprising: a non-transitory computer
readable storage medium having stored thereon a computer
readable description of the graphics processing system; a
layout processing system configured to process the computer
readable description so as to generate a circuit layout
description of an integrated circuit embodying the graphics
processing system; and an integrated circuit generation
system configured to manufacture the graphics processing
system according to the circuit layout description.

[0023] There may be provided computer program code for
performing any of the methods described herein. There may
be provided non-transitory computer readable storage
medium having stored thereon computer readable instruc-
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tions that, when executed at a computer system, cause the
computer system to perform any of the methods described
herein.

[0024] The above features may be combined as appropri-
ate, as would be apparent to a skilled person, and may be
combined with any of the aspects of the examples described
herein.

[0025] This Summary is provided merely to illustrate
some of the concepts disclosed herein and possible imple-
mentations thereof. Not everything recited in the Summary
section is necessarily intended to be limiting on the scope of
the disclosure. Rather, the scope of the present disclosure is
limited only by the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0026] Examples will now be described in detail with
reference to the accompanying drawings in which:

[0027] FIG. 1 schematically illustrates an example of a
GPU implementing the geometry processing phase of tile-
based rendering,

[0028] FIG. 2 schematically illustrates an example of a
GPU implementing the fragment processing phase of tile-
based rendering,

[0029] FIG. 3 schematically illustrates an example param-
eter buffer including protected tiles,

[0030] FIG. 4 schematically illustrates a view of a scene
comprising both safety-related and non-safety-related ele-
ments,

[0031] FIGS. 5A and 5B schematically illustrate examples
of'a GPU implementing TRP with first and second passes of
the geometry processing phase, respectively,

[0032] FIGS. 6A and 6B schematically illustrate examples
of'a GPU implementing TRP with first and second passes of
the fragment processing phase, respectively,

[0033] FIG. 7 schematically illustrates an example of two
GPUs implementing TRP with a single pass of the geometry
processing phase,

[0034] FIGS. 8A and 8B schematically illustrate example
of two GPUs implementing TRP with first and second passes
of the fragment processing phase, respectively,

[0035] FIGS. 9A to 9D schematically illustrate example
distributions of sets of protected tiles amongst different
GPUs according to some embodiments,

[0036] FIGS. 10A to 10C also schematically illustrate
example distribution of sets of protected tiles amongst
different GPUs according to some embodiments,

[0037] FIG. 11 is a schematic block diagram of a computer
system in which a graphics processing system is imple-
mented; and

[0038] FIG. 12 is a schematic block diagram of an inte-
grated circuit manufacturing system for generating an inte-
grated circuit embodying a graphics processing system.
[0039] The accompanying drawings illustrate various
examples. The skilled person will appreciate that the illus-
trated element boundaries (e.g., boxes, groups of boxes, or
other shapes) in the drawings represent one example of the
boundaries. It may be that in some examples, one element
may be designed as multiple elements or that multiple
elements may be designed as one element. Common refer-
ence numerals are used throughout the figures, where appro-
priate, to indicate similar features.
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DETAILED DESCRIPTION

[0040] The following description is presented by way of
example to enable a person skilled in the art to make and use
the invention. The present invention is not limited to the
embodiments described herein and various modifications to
the disclosed embodiments will be apparent to those skilled
in the art.

[0041] Embodiments will now be described by way of
example only.
[0042] FIG. 1 schematically illustrates an example of a

graphics processing unit (GPU) 100 performing a first
processing phase which is a geometry processing phase. The
geometry processing phase involves, amongst other things,
sending a sequence of primitives (represented schematically
as black triangles) 102 down a pipeline 106, 104, 108 to
generate a set of transformed and projected primitives, and
to determine the rendering space tiles into which they fall.
That is, a tile is a division of the rendering space. Primitives
102 describe the elements (e.g. objects) that make up the
scene to be rendered, and may comprise, for example,
points, lines, and/or triangles that represent those elements.
An element may be, e.g. a computer-generated graphic, such
as an icon. The GPU 100 comprises a geometry front-end
106, a geometry pipeline 104, and a tiling component 108.
Input data describing the elements are read from memory,
e.g. one or more buffers. For instance, a set of indices may
be read from an index buffer 110 and supplied to the
geometry front-end 106, and then passed to the geometry
pipeline 104. Similarly, a set of vertices may be read from
a vertex buffer 111 and supplied to the geometry pipeline
104. These buffers are typically stored in memory of the
application wanting to render the scene. The geometry
pipeline 104 produces a set of primitives 102. The geometry
pipeline 104 comprises a series of components (not shown)
that translate the input data into primitives 102 and trans-
forms those primitives to form a view of the scene, e.g. a
camera view. The camera view may be from the perspective
of a user looking at the scene. The geometry pipeline 104
may also project the primitives from the three-dimensional
camera space into the two dimensional rendering space (or
screen space). The tiling component 108 determines the
positions of the screen space primitives 102 within or across
one or more tiles 112 of the screen space grid. In other
words, a primitive 102 is associated with one or more tiles.
Primitives 102 are normally polygons, e.g. triangles. The
primitives and their associations with tiles are stored within
a buffer, e.g. a parameter buffer 116. The tiles 112 may be
stored in a list, e.g. starting with the first tile, and ending with
the last tile. The tiles 112 need not be stored in sequential
order. Lists of primitives, or references to primitives, that
fall within or across each tile may be stored for each tile in
the rendering space. The parameter buffer 116 may be stored
in memory of the GPU 100. Note that whilst only nine tiles
(labelled TO to T8) are shown in FIG. 1, in general a grid
may be made up on any number of tiles 112.

[0043] FIG. 2 schematically illustrates a graphics process-
ing unit (GPU) 200 performing a second processing phase
which is a fragment processing phase. The fragment pro-
cessing phase involves, amongst other things, sending
primitive data associated with tiles 112 down a fragment
pipeline 202 to render those tiles. This may involve by
reading a list of references (e.g. pointers) to primitives, and
then reading the corresponding primitives from the param-
eter buffer 116. The GPU comprises a fragment front-end
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204 and the fragment pipeline 202. Data for a tile, including
the primitives in that tile, is read from the parameter buffer
116 and supplied to the fragment front-end 204 one primi-
tive at a time, before being passed onto the fragment pipeline
202. The fragment pipeline 202 comprises a rasterization
component (not shown) configured to perform rasterization
and a fragment shader (not shown) configured to perform
fragment shading. Rasterization involves converting a
primitive described in terms of, e.g. indices and vertices,
into a raster image (i.e. a series of pixels that represent the
corresponding element). A primitive may be sampled, e.g. at
sample positions corresponding to the pixel positions of the
rendering space, to generate a series of fragments, each with
a screen space position and depth value. Fragment shading
involves assigning one or more colour values to each
fragment. The fragment pipeline may apply textures to the
fragments to determine the colour values that are assigned.
The textures are read from a texture data store 208, which is
typically stored in application memory. Hidden surface
removal may be applied, according to the depth values of the
fragments. Finally, colours of one or more fragments may be
blended together before being stored in a buffer, e.g. as
rendered pixel values 206 in a pixel buffer 210. The pixel
buffer 210 may be stored in memory of the GPU 200. Each
tile may be rendered independently of other tiles in the
rendering space. When each tile has been rendered the
render is complete, e.g. the pixel buffer 210 contains a
rendered image.

[0044] Although described as being performed by separate
GPUs 100, 200, part or all of the geometry processing phase
and fragment processing phase may be performed by the
same GPU. In other words, one GPU may be configured to
perform both a first graphics processing phase and a second
graphics processing phase, either concurrently or at different
times. Moreover, each GPU may be configured to perform
part of all of one or more of the following: depth processing,
vertex processing, tile acceleration, clipping, culling, primi-
tive assembly, colour processing, stencil processing, anti-
aliasing, ray tracing, pixelization and tessellation. The GPU
100 or 200 are processors with hardware features specifi-
cally designed for the generation of raster images. In par-
ticular, GPUs 100 or 200 include hardware for processing,
e.g. shading, fragments of primitives in order to output pixel
values.

[0045] WRR and TRP have been briefly discussed above.
As mentioned, one or more primitives 102 may be marked,
flagged, or otherwise indicated as being safety-related, i.e. a
primitive that describes or is otherwise associated with a
safety-related element of the scene to be rendered. Tech-
niques are known in the art for processing primitives 102
that are marked as being safety-related so as to determine
which tiles contain safety-related primitives 102s. For
instance, such techniques are described in GB2579590A and
GB2579592A. Tiles 112 comprising at least part of a safety-
related primitive 102s are referred to as protected tiles 112s,
as these tiles need to be protected from faults.

[0046] FIG. 3 schematically illustrates a parameter buffer
116 comprising a plurality of tiles 112. In this example, two
primitives PO and P2 are marked as safety-related primitives
102s. Tiles TO, T1, T4 and T5 contain at least part of the
safety-related primitives 102s. Those tiles are therefore
classed as protected (or safety) tiles 112s, as representing by
the patterned fill. In contrast, primitives P1 and P3 are not
marked as safety-related, and hence are standard, non-



US 2022/0374304 Al

safety-related primitives 102x. Tiles T2, T3, T6, T7 and T8
are classed as unprotected (or non-safety-related) tiles 102
because they do not contain safety-related primitives 102s.
[0047] FIG. 4 illustrates an example of a scene 400 to be
rendered, e.g. on a display screen such as, for example, a
mobile device, laptop monitor, computer monitor, television
screen, heads-up display, etc. The scene is divided into a
plurality of sub-divisions, i.e. tiles 112. Each tile may be the
same shape and size, as shown in FIG. 4. For instance, each
tile may be a square. The shape and size of the tiles may vary
depending on the screen on which the scene is to be
displayed. For instance, if the display screen has curved
edges, at least some of the tiles (e.g. along the edge) may
vary compared to others (e.g. within the centre). The scene
shown in FIG. 4 is that of a vehicle instrument cluster, e.g.
for a car. The scene comprises several different elements,
including a fuel level indicator 402, a speedometer 404, a
navigation icon 406, and two warning lights 408, 410. In this
example, only the speedometer 404 and the warning lights
are safety-related 408, 410. That is, in this example, the
application has indicated that those elements are important
for the driver’s safety, the safety of other road users,
pedestrians, etc.

[0048] An element may not necessarily be important to the
safety of a user, and may additionally or alternatively be
important for the safety of a device, apparatus, machine etc.
that comprises the display screen, or for the safety of a
device, apparatus, machine etc. that is controlled at least
partly based on what is displayed on the display screen. It
will be appreciated that whether an element is safety-related
will vary with use case. In any case, the scene in FIG. 4
comprises safety-related elements and non-safety-related
elements. Therefore the grid of tiles comprises protected,
safety-related tiles (tiles containing safety-related elements)
1125 and non-protected tiles (tiles that do not contain
safety-related elements) 1127.

[0049] FIGS. 5A and 5B illustrate TRP used in a single
core (single GPU 100) configuration for the geometry pro-
cessing phase. FIG. 5A represents a first pass of the geom-
etry processing phase or a first geometry processing pass,
and FIG. 5B represents a second pass of the geometry
processing phase or a second geometry processing pass. The
first pass of the geometry processing phase is similar to the
geometry processing phase described with reference to FIG.
1. In addition, the GPU 100 comprises a checksum compo-
nent 502 configured to generate a first checksum based on
the tiles 112 (i.e. the data associated with those tiles) that are
to be output to the parameter buffer 116. The checksum
represents, e.g. encodes, the contents of the parameter buffer
116, e.g. data associated with tiles. For example, the check-
sum may be a hash of the data representing the primitives
associated with the tiles 112. Other checksums may be used,
and will be discussed further below. The first checksum is
output to a checksum store 504. The checksum store 504
may be in memory of the GPU 100.

[0050] Note that data associated with tiles may be held in
multiple linked lists in the parameter buffer so that primi-
tives and other associated data can be reused across tiles.
[0051] Note also that all primitives (safety and non-safety)
are sent to the checksum block during the geometry pro-
cessing phase. This is because a non-safety related primitive
could interfere with a safety related tile, so it is important
that all geometry data is added to (or otherwise encoded by)
the checksum.
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[0052] The GPU 100 is also configured to identity which
of'the tiles are protected tiles 112 during tiling. The tiles, and
their primitives, are written to the parameter buffer 116. Note
that it is not possible to know which tiles are safety-related
tiles upfront as this is only determined during tiling. Hence
why the checksum takes into account all primitives during
the geometry processing phase.

[0053] The second pass is similar to the first pass except
that the primitives 102 are not written to the parameter buffer
116, in order to reduce bandwidth. The primitives 102 are
still processed, and a second checksum is generated based on
the data representing the primitives associated with the tiles
112. The second checksum is output to the checksum store
504. The first and second checksums are compared, e.g. by
a comparison function (not shown). The comparison func-
tion may be implemented by hardware or software. If the
first and second checksums do not match, then a fault signal
is raised. For instance, the fault signal may be output to the
application. The application can then respond to the fault
signal by, e.g. causing the geometry processing phase to be
repeated. Together, the first and second pass provide cover-
age against temporary faults during the geometry processing
phase.

[0054] It is not excluded that the primitives 102 may be
written to the parameter buffer 116 during the second pass
instead of the first pass. In some examples, the second pass
cannot begin until the first pass has ended.

[0055] FIGS. 6A and 6B illustrate TRP used in a single
core (single GPU 200) configuration for the fragment pro-
cessing phase. FIG. 6 A represents a first pass of the fragment
processing phase, and FIG. 6B represents a second pass of
the fragment processing phase. The first pass of the fragment
processing phase is similar to the fragment processing phase
described with reference to FIG. 2. However, unlike the
scenario in FIG. 2, the GPU 200 of FIG. 6a is aware of
which tiles are safety-related tiles 112s. During the geometry
processing phase, tile data is written to the parameter buffer
indicating which tiles are protected, i.e. safety-related. The
GPU 200 can therefore access this data for use in the
fragment processing phase. In the first pass, only the pro-
tected tiles 112s are processed, i.e. rendered. The rendered
tiles 112 are not written to the pixel buffer 210 during the
first pass. A checksum component 602 generates a separate
first checksum for each protected tile 1125, and outputs the
first checksums to a checksum store 604, e.g. in memory of
the GPU 200.

[0056] In the second pass, all of the tiles 112 are rendered.
That is, both the protected tiles 112s and non-protected tiles
112n are rendered. The rendered tiles 112 are written to the
pixel buffer 210. Similar to the first pass, a separate second
checksum is generated for each protected tile and output to
the checksum store 604. A comparison function compares
the pairs of checksums, i.e. the checksum of the safety tiles
generated in the first pass against the checksum of the safety
tiles generated in the second pass. The comparison function
may be implemented by hardware or software. A fault signal
is raised if one or more pairs of checksums do not match. In
some examples, the fault signal may indicate the protected
tile upon which the non-matching checksums are based.
Together, the first and second pass provide coverage against
temporary faults during the fragment processing phase.

[0057] Insome embodiments a fault signal is not raised if
non-matching checksums are found. In these embodiments
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a different action is taken, such as re-rendering one or more
protected tiles, or re-rendering all tiles.

[0058] It is also not excluded that a fault signal may be
raised, and an additional action is taken, such as the re-
rendering of one or more tiles.

[0059] It is not excluded that the rendered tiles may be
written to the pixel buffer 210 during the first pass instead of
the second pass. In some examples, the second pass cannot
begin until the first pass has ended.

[0060] FIG. 7 illustrates TRP used in a dual-core configu-
ration for the geometry processing phase. That is, the system
700 comprises two instances of the GPU performing the
geometry processing phase, GPUs 100q, 1005. Each GPU
100a, 1005 executes concurrent geometry processing
passes. Only one of the GPUs 10056 writes to the parameter
buffer 116. As for the single-core configuration, two check-
sums are generated based on the entire set of primitives, one
by each GPU 100qa, 1005. The checksums are then compared
by a comparison function. Running the geometry processing
phase on two GPUs 1004, 1005 and comparing the check-
sums provides both temporary and permanent fault coverage
during the geometry processing phase. This is because
permanent faults are caused by a hardware error on one GPU
100a, which will not be present on the other GPU 1005. The
safety-related tiles 112s are determined during tiling.
[0061] FIGS. 8A and 8B illustrate TRP being used in a
dual-core configuration for the fragment processing phase
according to some embodiments of the present invention.
Whilst only two GPUs performing the fragment processing
phase, GPUs 200qa, 2005 are shown in this example, more
generally the system may comprise any number of GPUs
200. In these embodiments, TRP is split across two fragment
processing passes: a first pass illustrated in FIG. 8A and a
second pass illustrated in FIG. 8B. The parameter buffer 116
comprises one or more protected tiles 112s and one or more
non-protected tiles 1127. The protected tiles 112s are marked
as such by the one or more GPUs 100 during the geometry
processing phase. During the first pass of the fragment
processing phase, each GPU 200a and 2005 processes a
respective set of the protected tiles 112s. The sets are
mutually exclusive. For instance, as shown in FIG. 8A, one
GPU 200a process protected tiles T1, T5, whilst the other
GPU 2005 processes protected tiles T0, T4. Each protected
tile 1125 may be associated with a tile number, e.g. T0, T1,
etc. One of the GPUs 2006 may process all of the even
numbered protected tiles 112s, and the other GPU 200a may
process all of the odd numbered protected tiles 112s. It will
be appreciated that the sets may be formed in different ways,
e.g. one set comprising the first half of the protected tiles
1125, and the other set comprising the second half of the
protected tiles 112s.

[0062] Processing of tiles 112 includes rendering those
tiles. The rendered tiles are not, however, written to the pixel
buffer 210 during the first pass. Each GPU 200 is configured
to generate a first checksum based on the set of protected
tiles 112s processed by that GPU 200 during the first pass.
The first checksums are output such that they are accessible
by a comparison function. For instance, the first checksums
may be written to one or more checksum stores 604, e.g.
stored in GPU memory.

[0063] During the second pass of the fragment processing
phase, each GPU 200 processes the set of protected tiles
1125 that was processed by other GPU 200 during the first
pass. That is, the sets of protected tiles 112s remain the same,
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but now the sets are processed by different GPUs. For
instance, as shown in FIG. 8B, the GPU 200q that processed
protected tiles T1, T5 during the first pass now processes
protected tiles T0, T4 during the second pass, and the GPU
2005 that processed protected tiles T0, T4 during the first
pass now processes protected tiles T1, T5 during the second
pass. In other words, the workload distribution is altered so
that protected tiles 112s are rendered on a different GPU 200
compared to the first pass. The rendered tiles are output to
the pixel buffer 202.

[0064] As is the case with the first pass, each GPU 200
generates a second checksum based on the set of protected
tiles 112s processed by that GPU 200 during the second
pass. The second checksums are output for access by the
comparison function. The comparison function compares
the first and second checksums, i.e. pairs of checksums, and
outputs a fault signal if a pair of checksums comprises
non-matching checksums. This provides both temporary and
permanent fault coverage during the fragment processing
phase. The comparison function may output a signal which
causes the system to perform additional or alternative
actions, e.g. the signal may cause a GPU 200 to re-process
one or both sets of protected tiles. The set of protected tiles
that are re-processed may be those which are known to
contain an error due to non-matching checksums.

[0065] It is not excluded that the rendered tiles may be
output to the pixel buffer 210 during the first pass instead of
the second pass.

[0066] In addition to the protected tiles 112s, the non-
protected tiles 1127 may also be processed during the first
and/or second pass. For instance, FIGS. 8A and 8B show
that the non-protected tiles 112% are only processed during
the second pass. Alternatively, the non-protected tiles 112
may be processed during the first pass only. Workload
distribution may be applied such that one GPU 200a pro-
cesses (renders) a first set of non-protected tiles 1127 whilst
the other GPU 2005 processes a second, mutually exclusive
set of non-protected tiles 1127.

[0067] The examples of FIGS. 8A and 8B illustrate a first
and second pass of the fragment processing phase in a
dual-core configuration. It is also not excluded that a first
and second pass of the fragment processing phase may be
implemented across a configuration of three or more cores.
In general, any configuration of multiple cores (i.e. GPUs)
can be used as long as each protected tile 112s is processed
twice, once by one core and once by another core. L.e. each
protected tile 112s is processed by two different GPUs 200.
[0068] FIGS. 9A to 9D illustrate an example of TRP being
implemented across multiple cores during a single fragment
processing phase according to some embodiments of the
present invention.

[0069] FIG. 9A illustrates a parameter buffer which com-
prises a plurality of tiles 112, some of which have been
marked as protected (safety-related) tiles 112s (shaded), and
some of which have not been marked as such (tiles 1127, not
shaded). In this example, the tiles 112 are processed in order
according to the zig-zag like pattern shown in FIG. 9A. It
will be appreciated that this is merely an example, and in
general the tiles may be processed in any order. For illus-
tration purposes, the protected tiles 112s are numbered
consecutively according to the order in which they would be
processed.

[0070] FIG. 9B illustrates an example dual-core configu-
ration. A first one of the GPUs 200 performing a fragment



US 2022/0374304 Al

processing phase, GPU 200q is labelled GPUO0, and a second
GPU 20056 is labelled GPU1. Each GPU 200 is configured
to process two sets of protected tiles 112s. The two sets of
protected tiles 1125 are mutually exclusive to one another.
For instance, GPUO processes a first set comprising pro-
tected tiles TO, T2, T4, and a second set comprising pro-
tected tiles T1, T3, T5. Each set of protected tiles 1125 is
processed by a different GPU. For instance, GPU1 processes
a first set comprising protected tiles T1, T3, T5, and a second
set comprising protected tiles T2, T4, T0. In some examples,
only the first set of protected tiles 112s (shown surrounded
by a solid line) is output to the pixel buffer, whereas the
second set of protected tiles 112s (shown surrounded by a
dotted line) are not output to the pixel buffer 202.

[0071] Each GPU 200 is configured to compute a check-
sum for each of the two sets of protected tiles 112s that it
processes. For instance, GPUO computes a first checksum
CS0 based on the first set of protected tiles 112s and a second
checksum CS1 based on the second set of protected tiles
112s. Similarly, GPU1 computes a first checksum CS0 based
on the first set of protected tiles 112s and a second checksum
CS1 based on the second set of protected tiles 112s.

[0072] Whilst not shown in FIG. 9B, the non-protected
tiles 1127 are also processed. The checksums are not based
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[0074] FIGS. 9C and 9D respectively illustrate a three-
core and four-core configuration for processing the same set
of tiles shown in FIG. 9A. As shown in FIG. 9C, each GPU
processes two sets of protected tiles 112s. Given that the
number of GPUs 200 has increased relative to the dual-core
configuration, in this example the effect is that the number
of protected tiles 112s in a set has decreased. However this
will depend on the number of protected tiles 1125 to be
processed. FIG. 9D illustrates an example wherein the
number of protected tiles 112s may differ between the sets
processed by each GPU. Again, this depends on the number
of protected tiles 112s in a given set.

[0075] FIG. 10A illustrates another example of a param-
eter buffer comprising a mixture of protected tiles 112s and
non-protected tiles 1127. FIG. 10B illustrates how TRP may
be implemented by executing two concurrent fragment
processing passes in a single fragment processing phase
using a dual-core configuration. FIG. 10C illustrates how
TRP may be implemented in a single fragment processing
phase by executing five concurrent fragment processing
passes using a five-core configuration

[0076] In these embodiments, each core 200 may render
up to two consecutive protected tiles 112s, as described by
the following pseudo code:

FOR PROTECTED_TILE in 0 to NUM_PROTECTED_TILES_TO_RENDER - 1
FOR GPU_ID in 0 to NUM_GPUS - 1
IF GPU_ID = (PROTECTED_TILE mod NUM_GPUS)

Process PROTECTED_TILE
Write tile to frame buffer
Collate result to checksum 0

END IF

IF ((GPU_ID+1) mod NUM_GPUS) = (PROTECTED_TILE mod NUM_GPUS)

Process PROTECTED_TILE
(Tile not written to frame buffer)
Collate result to checksum 1

END IF
END FOR
END FOR
on the non-protected tiles 112z. Each non-protected tile [0077] That is, each protected tile 1125 may be associated

1127 may be processed only a single time. In some
examples, the non-protected tiles 1127 are processed by only
one of the GPUs 200. In other examples, the processing of
the non-protected tiles may be distributed across the GPUs,
e.g. across each of the GPUs.

[0073] A comparison component is configured to compare
pairs of checksums. Each pair comprises one checksum
generated by one GPU 200, and one checksum generated by
a different GPU. In the dual-core configuration of FIG. 9B,
that means that each pair of checksums comprises a check-
sum generated by GPUO and a checksum generated by
GPU1. Furthermore, each checksum in a pair of checksums
corresponds to the same set of protected tiles 112s. That is,
CS0 generated by GPUO based on protected tiles T0, T2, T4
is compared with CS1 generated by GPU1 based on pro-
tected tiles T2, T4, T0. Similarly, CS1 generated by GPUO0
based on protected tiles T1, T3, T5 is compared with CS0
generated by GPU1 based on protected tiles T1, T3, T5. If
the comparison component determines that a pair of check-
sums do not match, or otherwise correspond with one
another, the comparison unit may raise a fault signal, e.g. to
be output to the application or to the GPU to cause re-
rendering of the protected tiles. That is, the same fault signal
may alert the application and cause re-rendering.

with a respective tile number (PROTECTED_TILE) and
each GPU may be associated with a respective GPU number
(GPU_ID). Each protected tile is placed into a set based on
a set identifier calculated as the respective tile number
modulo by a total number of the graphics processing units
(PROTECTED_TILE mod NUM_GPUS). For each GPU,
the first one of the two respective sets of protected tiles 1125
comprises one or more protected tiles 112s having a respec-
tive set identifier corresponding to the respective GPU
number (GPU_ID). In addition, for each GPU, the second
one of the two respective sets of protected tiles 112s com-
prises one or more protected tiles 112s having a respective
set identifier corresponding to the respective GPU number
plus one (GPU_ID+1), modulo the total number of the
GPUs.

[0078] Any given core 200 may render two consecutive
protected tiles 112s if they exist. However if a second
consecutive protected tile doesn’t exist, then no action is
taken as shown in the examples of FIGS. 9A to 9D, and
FIGS. 10A to 10C. If a core doesn’t encounter two protected
tiles 112s within its allocated workload distribution scheme
(WDS), then it may continue to check tiles until two
protected tiles 1125 have been encountered and processed—
processing any non-protected tiles according to its WDS as
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it progresses. Cores may dynamically filter every second
protected tile such that it doesn’t get written out to the frame
buffer twice. In order to collect checksums for each pair of
protected tiles 112s, two checksums are maintained per
GPU. One for the first protected tile in a sequence and one
for the second protected tile in a sequence. Checksums may
then be compared as described by the following pseudo
code:

FOR N in 0 to NUM_GPUS-1

[0079] Compare checksum 1 for GPU_ID:N against
checksum 0 for GPU_ID:((N+1) mod NUM_GPUs)

END FOR

[0080] One or more of the following advantages are
achieved by at least some examples of these embodiments:

[0081] An even number of protected tiles 112s is not
required.

[0082] Works with any number of cores

[0083] Balances the load of rendering protected tiles

1125 across all cores

[0084] Provides a high degree of hardware separation
between the same fragment tiles
[0085] Requires only a single fragment processing
phase to perform TRP.
[0086] The following is a table showing the calculations
for determining which GPU processes which protected tiles
1125 according to the pseudo code provided above, and for
the example set up of FIGS. 9A to 9D. “R” is used to denote
that this GPU will render the numbered tile. CS0 and CS1
are used to indicate checksum O and checksum 1 respec-
tively, checksum O being the checksum generated based on
a first second of tiles and checksum 1 being the checksum
generated based on a second set of'tiles, by a given GPU. To
avoid unnecessary consumption of memory bandwidth,
frame buffer memory writes corresponding to those tiles
with a destination checksum of CS1 may be filtered out.

Desti-

Protected_Tile_ Number 0 1 2 3 4 5 nation

2 GPU Protected_Tile_Number mod O 1 0 1 0 1

system Num_GPUs

GPUO GPU_ID =0 R R R CSo0
GPU_ID +1 mod2 =1 R R R CS1

GPU1 GPU_ID=1 R R R CSO
GPU_ID +1 mod 2 =0 R R R CS1

3 GPU Protected_Tile_Number mod O 1 2 0 1 2

system Num_GPUs

GPUO  GPU_ID =0 R R CSo0
GPU_ID +1 mod 3 =1 R R CS1

GPU1 GPU_ID=1 R R CSo0
GPU_ID + 1 mod 3 =2 R R CS1

GPU2 GPU_ID =2 R R CSO
GPU_ID +1 mod 3 =0 R R CS1

4 GPU Protected_Tile Number mod 0 1 2 3 0 1

system Num_GPUs

GPUO  GPU_ID =0 R R CSo0
GPU_ID +1 mod 4 =1 R R CS1

GPU1 GPU_ID=1 R R CSO
GPU_ID + 1 mod 4 =2 R CS1

GPU2 GPU_ID =2 R CSo0
GPU_ID +1 mod 4 =3 R CS1

GPU3 GPU_ID =3 R CSo0
GPU_ID +1 mod 4 =0 R R CS1
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[0087] As mentioned earlier, in general any type of check-
sum that enables the determination of whether data on which
one checksum is generated does not match the data on which
another checksum is generated may be used. The data on
which the checksums are generated may be a data stream
inside the GPU as the GPU processes a set of protected tiles
1125, or it may be an output of the GPU, such as pixel data
generated by the fragment processing phase for each of the
set of protected tiles 112s. For instance, the checksum may
be generated by hashing the data using a hash function (e.g.
a hash function belonging to the SHA family). Alternatively,
the checksum may be generated by summing and/or con-
catenating the data. As another example, a digital signature
generated based on the data may be used. As yet another
example, the checksum may be generated by applying an
XOR function to the data.

[0088] The checksum may be order dependent (e.g. a hash
function). Alternatively, the checksum may be non-order
dependent (e.g. summation). In general either may be used.
If an order-dependent checksum is used, the GPUs are
configured to process the sets of tiles in the same order. For
example, FIG. 10B shows GPU0 and GPU1 processing the
set of tiles 1, 3, 5, 7 in the same order. Note that processing
the tiles in the same order allows for the use of an order-
dependent checksum or a non-order dependent checksum. In
other examples the GPU completion of tiles may be out of
order. For instance, FIG. 10B shows GPU0O and GPU1
processing the set of tiles 0, 2, 4, 6, 8 in different orders. If
the tiles are processed in different orders, a non-order
dependent checksum must be used. In some examples, an
order-dependent signature may be generated for each pro-
tected tile, and a non-order dependent checksum may be
used to collate tile signatures.

[0089] In some examples, the checksum is generated
based on the pixel data that is output to the pixel buffer 210.
In some examples, the pixel data is output to the pixel buffer,
then read back from the pixel buffer 210, with the checksum
being generated based on the pixel data read back from the
pixel buffer 210. This allows the memory and memory
interface of the pixel buffer 210 to be assessed by checking
that the data (for the non-filtered writes) can be read back
correctly.

[0090] The graphics processing system may comprise a
host CPU (or an equivalent component) configured to deter-
mine which tiles (protected and non-protected) are to be
processed by which GPU. Alternatively, at least one of the
GPUs may be configured to determine which tiles to pro-
cess.

[0091] FIG. 11 shows a computer system in which the
graphics processing systems described herein may be imple-
mented. The computer system comprises a CPU 1102, a
GPU 200, a memory 1106 and other devices 1114, such as
a display 1116, speakers 1118 and a camera 1119. A pro-
cessing block 1110 (corresponding to processing blocks 202,
204, 208, 502 of FIGS. 2, 6A, 6B, 8A and 8B) is imple-
mented on the GPU 200. In other examples, at least part of
the processing block 1110 may be implemented on the CPU
1102. Only one GPU 200 is shown, but it will be appreciated
that the system comprises at least two GPUs 200a, 2005.
The components of the computer system can communicate
with each other via a communications bus 1120. A store 1112
(corresponding to stores 110, 116, 112 and 504) is imple-
mented as part of the memory 1106. Each store 110, 116, 112
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and 504 may be a separate store. The computer system also
comprises a GPU 100 (not shown).

[0092] The graphics processing system comprising the
GPUs of FIGS. 1, 5A, 5B and 7, and the GPUs of FIGS. 2,
and 8A-10C are shown as comprising a number of func-
tional blocks. This is schematic only and is not intended to
define a strict division between different logic elements of
such entities. Each functional block may be provided in any
suitable manner.

[0093] The graphics processing system described herein
may be embodied in hardware on an integrated circuit. The
graphics processing system described herein may be con-
figured to perform any of the methods described herein.
Generally, any of the functions, methods, techniques or
components described above can be implemented in soft-
ware, firmware, hardware (e.g., fixed logic circuitry), or any
combination thereof. The terms “module,” “functionality,”
“component”, “element”, “unit”, “block” and “logic” may
be used herein to generally represent software, firmware,
hardware, or any combination thereof. In the case of a
software implementation, the module, functionality, compo-
nent, element, unit, block or logic represents program code
that performs the specified tasks when executed on a pro-
cessor. The algorithms and methods described herein could
be performed by one or more processors executing code that
causes the processor(s) to perform the algorithms/methods.
Examples of a computer-readable storage medium include a
random-access memory (RAM), read-only memory (ROM),
an optical disc, flash memory, hard disk memory, and other
memory devices that may use magnetic, optical, and other
techniques to store instructions or other data and that can be
accessed by a machine.

[0094] The terms computer program code and computer
readable instructions as used herein refer to any kind of
executable code for processors, including code expressed in
a machine language, an interpreted language or a scripting
language. Executable code includes binary code, machine
code, bytecode, code defining an integrated circuit (such as
a hardware description language or netlist), and code
expressed in a programming language code such as C, Java
or OpenCL. Executable code may be, for example, any kind
of software, firmware, script, module or library which, when
suitably executed, processed, interpreted, compiled,
executed at a virtual machine or other software environment,
cause a processor of the computer system at which the
executable code is supported to perform the tasks specified
by the code.

[0095] A processor, computer, or computer system may be
any kind of device, machine or dedicated circuit, or collec-
tion or portion thereof, with processing capability such that
it can execute instructions. A processor may be any kind of
general purpose or dedicated processor, such as a CPU,
GPU, System-on-chip, state machine, media processor, an
application-specific integrated circuit (ASIC), a program-
mable logic array, a field-programmable gate array (FPGA),
or the like. A computer or computer system may comprise
one or more processors.

[0096] It is also intended to encompass software which
defines a configuration of hardware as described herein, such
as HDL (hardware description language) software, as is used
for designing integrated circuits, or for configuring program-
mable chips, to carry out desired functions. That is, there
may be provided a computer readable storage medium
having encoded thereon computer readable program code in
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the form of an integrated circuit definition dataset that when
processed (i.e. run) in an integrated circuit manufacturing
system configures the system to manufacture a graphics
processing system configured to perform any of the methods
described herein, or to manufacture a graphics processing
system comprising any apparatus described herein. An inte-
grated circuit definition dataset may be, for example, an
integrated circuit description.

[0097] Therefore, there may be provided a method of
manufacturing, at an integrated circuit manufacturing sys-
tem, a graphics processing system as described herein.
Furthermore, there may be provided an integrated circuit
definition dataset that, when processed in an integrated
circuit manufacturing system, causes the method of manu-
facturing a graphics processing system to be performed.
[0098] An integrated circuit definition dataset may be in
the form of computer code, for example as a netlist, code for
configuring a programmable chip, as a hardware description
language defining hardware suitable for manufacture in an
integrated circuit at any level, including as register transfer
level (RTL) code, as high-level circuit representations such
as Verilog or VHDL, and as low-level circuit representations
such as OASIS® and GDSII. Higher level representations
which logically define hardware suitable for manufacture in
an integrated circuit (such as RTL) may be processed at a
computer system configured for generating a manufacturing
definition of an integrated circuit in the context of a software
environment comprising definitions of circuit elements and
rules for combining those elements in order to generate the
manufacturing definition of an integrated circuit so defined
by the representation. As is typically the case with software
executing at a computer system so as to define a machine,
one or more intermediate user steps (e.g. providing com-
mands, variables etc.) may be required in order for a
computer system configured for generating a manufacturing
definition of an integrated circuit to execute code defining an
integrated circuit so as to generate the manufacturing defi-
nition of that integrated circuit.

[0099] An example of processing an integrated circuit
definition dataset at an integrated circuit manufacturing
system so as to configure the system to manufacture a
graphics processing system will now be described with
respect to FIG. 12.

[0100] FIG. 12 shows an example of an integrated circuit
(IC) manufacturing system 1202 which is configured to
manufacture a graphics processing system as described in
any of the examples herein. In particular, the IC manufac-
turing system 1202 comprises a layout processing system
1204 and an integrated circuit generation system 1206. The
IC manufacturing system 1202 is configured to receive an IC
definition dataset (e.g. defining a graphics processing system
as described in any of the examples herein), process the IC
definition dataset, and generate an IC according to the IC
definition dataset (e.g. which embodies a graphics process-
ing system as described in any of the examples herein). The
processing of the IC definition dataset configures the IC
manufacturing system 1202 to manufacture an integrated
circuit embodying a graphics processing system as described
in any of the examples herein.

[0101] The layout processing system 1204 is configured to
receive and process the IC definition dataset to determine a
circuit layout. Methods of determining a circuit layout from
an IC definition dataset are known in the art, and for example
may involve synthesising RTL code to determine a gate level
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representation of a circuit to be generated, e.g. in terms of
logical components (e.g. NAND, NOR, AND, OR, MUX
and FLIP-FLOP components). A circuit layout can be deter-
mined from the gate level representation of the circuit by
determining positional information for the logical compo-
nents. This may be done automatically or with user involve-
ment in order to optimise the circuit layout. When the layout
processing system 1204 has determined the circuit layout it
may output a circuit layout definition to the IC generation
system 1206. A circuit layout definition may be, for
example, a circuit layout description.

[0102] The IC generation system 1206 generates an IC
according to the circuit layout definition, as is known in the
art. For example, the IC generation system 1206 may
implement a semiconductor device fabrication process to
generate the IC, which may involve a multiple-step
sequence of photo lithographic and chemical processing
steps during which electronic circuits are gradually created
on a wafer made of semiconducting material. The circuit
layout definition may be in the form of a mask which can be
used in a lithographic process for generating an IC according
to the circuit definition. Alternatively, the circuit layout
definition provided to the IC generation system 1206 may be
in the form of computer-readable code which the IC gen-
eration system 1206 can use to form a suitable mask for use
in generating an IC.

[0103] The different processes performed by the IC manu-
facturing system 1202 may be implemented all in one
location, e.g. by one party. Alternatively, the IC manufac-
turing system 1202 may be a distributed system such that
some of the processes may be performed at different loca-
tions, and may be performed by different parties. For
example, some of the stages of: (i) synthesising RTL code
representing the IC definition dataset to form a gate level
representation of a circuit to be generated, (ii) generating a
circuit layout based on the gate level representation, (iii)
forming a mask in accordance with the circuit layout, and
(iv) fabricating an integrated circuit using the mask, may be
performed in different locations and/or by different parties.
[0104] In other examples, processing of the integrated
circuit definition dataset at an integrated circuit manufac-
turing system may configure the system to manufacture a
graphics processing system without the IC definition dataset
being processed so as to determine a circuit layout. For
instance, an integrated circuit definition dataset may define
the configuration of a reconfigurable processor, such as an
FPGA, and the processing of that dataset may configure an
IC manufacturing system to generate a reconfigurable pro-
cessor having that defined configuration (e.g. by loading
configuration data to the FPGA).

[0105] In some embodiments, an integrated circuit manu-
facturing definition dataset, when processed in an integrated
circuit manufacturing system, may cause an integrated cir-
cuit manufacturing system to generate a device as described
herein. For example, the configuration of an integrated
circuit manufacturing system in the manner described above
with respect to FIG. 12 by an integrated circuit manufac-
turing definition dataset may cause a device as described
herein to be manufactured.

[0106] In some examples, an integrated circuit definition
dataset could include software which runs on hardware
defined at the dataset or in combination with hardware
defined at the dataset. In the example shown in FIG. 12, the
IC generation system may further be configured by an
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integrated circuit definition dataset to, on manufacturing an
integrated circuit, load firmware onto that integrated circuit
in accordance with program code defined at the integrated
circuit definition dataset or otherwise provide program code
with the integrated circuit for use with the integrated circuit.
[0107] The implementation of concepts set forth in this
application in devices, apparatus, modules, and/or systems
(as well as in methods implemented herein) may give rise to
performance improvements when compared with known
implementations. The performance improvements may
include one or more of increased computational perfor-
mance, reduced latency, increased throughput, and/or
reduced power consumption. During manufacture of such
devices, apparatus, modules, and systems (e.g. in integrated
circuits) performance improvements can be traded-off
against the physical implementation, thereby improving the
method of manufacture. For example, a performance
improvement may be traded against layout area, thereby
matching the performance of a known implementation but
using less silicon. This may be done, for example, by reusing
functional blocks in a serialised fashion or sharing func-
tional blocks between elements of the devices, apparatus,
modules and/or systems.

[0108] Conversely, concepts set forth in this application
that give rise to improvements in the physical implementa-
tion of the devices, apparatus, modules, and systems (such
as reduced silicon area) may be traded for improved per-
formance. This may be done, for example, by manufacturing
multiple instances of a module within a predefined area
budget.

[0109] The applicant hereby discloses in isolation each
individual feature described herein and any combination of
two or more such features, to the extent that such features or
combinations are capable of being carried out based on the
present specification as a whole in the light of the common
general knowledge of a person skilled in the art, irrespective
of whether such features or combinations of features solve
any problems disclosed herein. In view of the foregoing
description it will be evident to a person skilled in the art that
various modifications may be made within the scope of the
invention.

[0110] According to one aspect disclosed herein, there is
provided a graphics processing system as set out in the
Summary section.

[0111] In embodiments, the one or more actions may
comprise, if any of the pairs of checksums comprise non-
matching checksums: raising a fault signal, and/or causing
one or more protected tiles to be re-processed by one, some
or each graphic processing unit.

[0112] In embodiments, the one or more protected tiles to
be re-processed may belong to a set of protected tiles upon
which non-matching checksums are generated.

[0113] In embodiments, each graphics processing unit
may be configured to: output pixel data generated based on
the second set of protected tiles to one or more buffers
during the second fragment processing pass but not during
the first fragment processing pass.

[0114] In embodiments, each graphics processing unit
may be configured to: output pixel data generated based on
the first set of protected tiles to one or more buffers during
the first fragment processing pass but not during the second
fragment processing pass.

[0115] In embodiments, at least one graphics processing
unit may be configured to: during the first and/or second
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fragment processing pass, process one or more non-pro-
tected related tiles, each non-protected tile containing no
safety-related primitives, and output pixel data generated
based on the one or more non-protected tiles to one or more
buffers.

[0116] In embodiments, each graphics processing unit
may be configured to: during the first and/or second frag-
ment processing pass, process one or more non-protected
tiles, and output pixel data generated based on the one or
more non-protected tiles to one or more buffers.

[0117] In embodiments, each graphics processing unit
may be configured to: output pixel data generated based on
the first set of protected tiles to a pixel buffer but not pixel
data generated based on the second set of protected tiles,
wherein the respective pixel data generated based on each
set of protected tiles is written to a pixel buffer by only one
graphics processing unit.

[0118] In embodiments, at least one graphics processing
unit may be configured to: process one or more non-
protected related tiles, each non-protected tile containing no
safety-related primitives, and output pixel data generated
based on the one or more non-protected tiles to one or more
buffers.

[0119] In embodiments, each graphics processing unit
may be configured to: process one or more non-protected
related tiles, each non-protected tile containing no safety-
related primitives, and output pixel data generated based on
the one or more non-protected tiles to one or more buffers.

[0120] In embodiments, each protected tile may be asso-
ciated with a respective tile number and each graphics
processing unit is associated with a respective graphics
processing unit number, wherein each protected tile is
associated with a set identifier calculated as the respective
tile number modulo a total number of the graphics process-
ing units, and wherein, for each graphics processing unit, the
first one of the two respective sets of protected tiles com-
prises one or more protected tiles having a respective set
identifier corresponding to the respective graphics process-
ing unit number, and wherein for each graphics processing
unit, the second one of the two respective sets of protected
tiles comprises one or more protected tiles having a respec-
tive set identifier corresponding to the respective graphics
processing unit number plus one, modulo the total number
of the graphics processing units.

[0121] In embodiments, each non-protected tile may only
be processed once.

[0122] In embodiments, each graphics processing unit
may be configured to: generate respective pixel data based
on said processing of the two respective sets of the protected
tiles; and generate each respective checksum based on at
least one of the following: a hash of the respective pixel data,
a summation of the respective pixel data, a concatenation of
the respective pixel data, a signature generated based on the
respective pixel data, and an XOR operation applied to the
respective pixel data.

[0123] In embodiments, each graphic processing unit may
be configured to output the respective checksums to a data
store of that graphics processing unit, and wherein the
comparison unit may be configured to access the respective
checksums from the respective data stores.

[0124] In embodiments, the system may comprises one or
more graphics processing units configured to 1) process input
data relating to the scene to generate the one or more
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safety-related primitives, and ii) based on said processing of
the input data, output the tile data identifying the one or
more protected tiles.

[0125] In embodiments, said one or more graphics pro-
cessing units may be distinct from the plurality of graphics
processing units. That is, the graphics processing unit(s)
configured to perform the geometry processing phase may
be different to the graphics processing units configured to
perform the fragment processing phase.

[0126] In embodiments, the plurality of graphics process-
ing units may comprise said one or more graphics process-
ing units. That is, at least one of the graphics processing
units configured to perform the fragment processing phase
may also be configured to perform the geometry processing
phase.

[0127] Inembodiments, the input data relating to the scene
may comprise geometry data describing elements in the
scene, and wherein the one or more graphics processing
units may be configured to process the geometry data to
produce the one or more primitives representing the ele-
ments from a point of view of a frame to be rendered.
[0128] Inembodiments, the one or more graphics process-
ing units may consist of a single graphics processing units,
and wherein the single graphics processing unit may be
configured to: during a first geometry processing pass,
process all of the geometry data to generate the one or more
primitives and generate a first checksum based on the one or
more primitives; and during a second geometry processing
pass, process all of the geometry data to generate the one or
more primitives and generate a second checksum based on
the one or more primitives; wherein the second geometry
processing pass begins after the first geometry processing
pass has ended, and wherein a comparison unit is configured
to compare the first and second checksums, and wherein the
graphics processing system is configured to perform one or
more actions based on an outcome of said comparison.
[0129] Inembodiments, the one or more graphics process-
ing units may comprise two graphics processing units, and
wherein each of the two graphics processing units may be
configured to, during a single geometry processing pass: i)
process all of the geometry data to generate the one or more
primitives, and ii) generate a respective checksum based on
the one or more primitives, and wherein a comparison unit
is configured to compare the respective checksums, and
wherein the graphics processing system is configured to
perform one or more actions based on an outcome of said
comparison.

[0130] In embodiments, the graphics processing system
may be embodied in hardware on an integrated circuit.
[0131] According to further aspects disclosed herein, there
may be provided a corresponding method of operating the
graphics processing system, and a corresponding computer
program configured to operate the graphics processing sys-
tem. According to yet further aspects there may be provided
a corresponding method of manufacturing the graphics
processing system, a corresponding manufacturing facility
arranged to manufacture the graphics processing system,
and a corresponding circuit design data set embodied on
computer-readable storage.

[0132] For instance according to one aspect there may be
provided a non-transitory computer readable storage
medium having stored thereon a computer readable descrip-
tion of the graphics processing system of any embodiment
herein which, when processed in an integrated circuit manu-
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facturing system, causes the integrated circuit manufactur-
ing system to: process, using a layout processing system, the
computer readable description of the graphics processing
system so as to generate a circuit layout description of an
integrated circuit embodying said graphics processing sys-
tem; and manufacture, using an integrated circuit generation
system, the graphics processing system according to the
circuit layout description.

[0133] According to another aspect, there may be pro-
vided an integrated circuit manufacturing system compris-
ing: a non-transitory computer readable storage medium
having stored thereon a computer readable description of the
graphics processing system of any embodiment disclosed
herein; a layout processing system configured to process the
computer readable description so as to generate a circuit
layout description of an integrated circuit embodying said
graphics processing system; and an integrated circuit gen-
eration system configured to manufacture the graphics pro-
cessing system according to the circuit layout description.
[0134] According to another aspect there may be provided
a method of manufacturing, using an integrated circuit
manufacturing system, a graphics processing system of any
embodiment disclosed herein, the method comprising: pro-
cessing, using a layout processing system, a computer
readable description of said circuit so as to generate a circuit
layout description of an integrated circuit embodying the
graphics processing system; and manufacturing, using an
integrated circuit generation system, the graphics processing
system according to the circuit layout description.

[0135] According to another aspect there may be provided
a layout processing system configured to determine posi-
tional information for logical components of a circuit
derived from the integrated circuit description so as to
generate a circuit layout description of an integrated circuit
embodying the graphics processing system of any embodi-
ment disclosed herein.

[0136] Other variants, implementations and/or applica-
tions of the disclosed techniques may become apparent to a
person skilled in the art once given the disclosure herein.
The scope of the present disclosure is not limited by the
above-described embodiments but only by the claims.

What is claimed is:

1. A graphics processing system for performing tile-based
rendering of a scene that includes safety-related primitives,
the system comprising:

a plurality of graphics processing units, wherein each
graphics processing unit is configured to 1) receive tile
data identifying one or more protected tiles, each
protected tile comprising at least part of a safety-related
primitive, ii) process two respective sets of the pro-
tected tiles, and iii) based on said processing, generate
two respective checksums, one for each respective set
of protected tiles, wherein the two respective sets of
protected tiles are mutually exclusive, wherein each
respective set of protected tiles is processed by two
different graphics processing units, and wherein each
protected tile is processed by two different graphics
processing units; and

a comparison unit configured to compare one or more
pairs of checksums, wherein each pair comprises a
respective checksum generated based on a same respec-
tive set of protected tiles and generated by different
graphics processing units, and wherein the graphics
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processing system is configured to perform one or more
actions based on an outcome of said comparison.

2. The graphics processing system of claim 1, wherein the
one or more actions comprise, if any of the pairs of check-
sums comprise non-matching checksums:

raising a fault signal, and/or

causing one or more protected tiles to be re-processed by

one, some or each graphic processing unit.

3. The graphics processing system of claim 2, wherein the
one or more protected tiles to be re-processed belong to a set
of protected tiles upon which non-matching checksums are
generated.

4. The graphics processing system of claim 1, wherein
each graphics processing unit is configured to:

during a first fragment processing pass, process a first one

of the two respective sets of protected tiles and generate
the respective checksum generated based on the first set
of protected tiles; and

during a second fragment processing pass, process a

second one of the two respective sets of protected tiles
and generate the respective checksum generated based
on the second set of protected tiles, wherein the second
fragment processing pass begins after the first fragment
processing pass has ended.

5. The graphics processing system of claim 1, wherein
each graphics processing unit is configured to:

output pixel data generated based on the second set of

protected tiles to one or more buffers during the second
fragment processing pass but not during the first frag-
ment processing pass.

6. The graphics processing system of claim 4, wherein
each graphics processing unit is configured to:

output pixel data generated based on the first set of

protected tiles to one or more buffers during the first
fragment processing pass but not during the second
fragment processing pass.

7. The graphics processing system of claim 4, wherein at
least one graphics processing unit is configured to:

during the first and/or second fragment processing pass,

process one or more non-protected related tiles, each
non-protected tile containing no safety-related primi-
tives, and output pixel data generated based on the one
or more non-protected tiles to one or more buffers.

8. The graphics processing system of claim 7, wherein
each graphics processing unit is configured to:

during the first and/or second fragment processing pass,

process one or more non-protected tiles, and output
pixel data generated based on the one or more non-
protected tiles to one or more buffers.

9. The graphics processing system of claim 1, wherein
each graphics processing unit is configured to, during a
single fragment processing pass:

process a first one of the two respective sets of protected

tiles and generate the respective checksum based on the
first set of protected tiles; and

process a second one of the two respective sets of pro-

tected tiles and generate the respective checksum based
on the second set of protected tiles.

10. The graphics processing system of claim 9, wherein
each graphics processing unit is configured to:

output pixel data generated based on the first set of

protected tiles to a pixel buffer but not pixel data
generated based on the second set of protected tiles,
wherein the respective pixel data generated based on
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each set of protected tiles is written to a pixel buffer by
only one graphics processing unit.

11. The graphics processing system of claim 9, wherein at
least one graphics processing unit is configured to:

process one or more non-protected related tiles, each

non-protected tile containing no safety-related primi-
tives, and output pixel data generated based on the one
or more non-protected tiles to one or more buffers.

12. The graphics processing system of claim 9, wherein
each protected tile is associated with a respective tile num-
ber and each graphics processing unit is associated with a
respective graphics processing unit number, wherein each
protected tile is associated with a set identifier calculated as
the respective tile number modulo a total number of the
graphics processing units, and wherein, for each graphics
processing unit, the first one of the two respective sets of
protected tiles comprises one or more protected tiles having
a respective set identifier corresponding to the respective
graphics processing unit number, and wherein for each
graphics processing unit, the second one of the two respec-
tive sets of protected tiles comprises one or more protected
tiles having a respective set identifier corresponding to the
respective graphics processing unit number plus one,
modulo the total number of the graphics processing units.

13. The graphics processing system of claim 7, wherein
each non-protected tile is processed only once.

14. The graphics processing system of claim 1, wherein
each graphics processing unit is configured to:

generate respective pixel data based on said processing of

the two respective sets of the protected tiles; and
generate each respective checksum based on at least one

of the following:

a hash of the respective pixel data,

a summation of the respective pixel data,

a concatenation of the respective pixel data,

a signature generated based on the respective pixel

data, and

an XOR operation applied to the respective pixel data.

15. The graphics processing system of claim 1, wherein
the system comprises one or more graphics processing units
configured to i) process input data relating to the scene to
generate the one or more safety-related primitives, and ii)
based on said processing of the input data, output the tile
data identifying the one or more protected tiles.

16. The graphics processing system of claim 15, wherein
the input data relating to the scene comprises geometry data
describing elements in the scene, and wherein the one or
more graphics processing units are configured to process the
geometry data to produce the one or more primitives rep-
resenting the elements from a point of view of a frame to be
rendered.

17. The graphics processing system of claim 16, wherein
the one or more graphics processing units consists of a single
graphics processing units, and wherein the single graphics
processing unit is configured to:

during a first geometry processing pass, process all of the

geometry data to generate the one or more primitives
and generate a first checksum based on the one or more
primitives; and

during a second geometry processing pass, process all of

the geometry data to generate the one or more primi-
tives and generate a second checksum based on the one
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or more primitives; wherein the second geometry pro-
cessing pass begins after the first geometry processing
pass has ended, and

wherein a comparison unit is configured to compare the
first and second checksums, and wherein the graphics
processing system is configured to perform one or more
actions based on an outcome of said comparison.

18. The graphics processing system of claim 16, wherein
the one or more graphics processing units comprises two
graphics processing units, and wherein each of the two
graphics processing units is configured to, during a single
geometry processing pass: i) process all of the geometry data
to generate the one or more primitives, and ii) generate a
respective checksum based on the one or more primitives,
and

wherein a comparison unit is configured to compare the
respective checksums, and wherein the graphics pro-
cessing system is configured to perform one or more
actions based on an outcome of said comparison.

19. A non-transitory computer readable storage medium
having stored thereon a computer readable dataset descrip-
tion of a graphics processing system for performing tile-
based rendering of a scene that includes safety-related
primitives that, when processed in an integrated circuit
manufacturing system, causes the integrated circuit manu-
facturing system to manufacture an integrated circuit
embodying the graphics processing system, wherein the
graphics processing system comprises:

a plurality of graphics processing units, wherein each
graphics processing unit is configured to 1) receive tile
data identifying one or more protected tiles, each
protected tile comprising at least part of a safety-related
primitive, ii) process two respective sets of the pro-
tected tiles, and iii) based on said processing, generate
two respective checksums, one for each respective set
of protected tiles, wherein the two respective sets of
protected tiles are mutually exclusive, wherein each
respective set of protected tiles is processed by two
different graphics processing units, and wherein each
protected tile is processed by two different graphics
processing units; and

a comparison unit configured to compare one or more
pairs of checksums, wherein each pair comprises a
respective checksum generated based on a same respec-
tive set of protected tiles and generated by different
graphics processing units, and wherein the graphics
processing system is configured to perform one or more
actions based on an outcome of said comparison.

20. A method of performing tile-based rendering of a
scene that includes safety-related elements, the method
comprising:

each of a plurality of graphics processing units receiving
tile data identifying one or more protected tiles, each
protected tile comprising at least part of a safety-related
primitive, processing two respective sets of the pro-
tected tiles, and based on said processing, generating
two respective checksums, one for each respective set
of protected tiles, wherein each set of protected is
mutually exclusive and is processed by two different
graphics processing units, and wherein each protected
tile is processed by two different graphics processing
units;

comparing one or more pairs of checksums, wherein each
pair comprises a respective checksum generated based
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on a same respective set of protected tiles and gener-
ated by a different graphics processing units; and

performing one or more actions based on an outcome of
said comparison.

#* #* #* #* #*
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