US 20230409402A1

a2y Patent Application Publication (o) Pub. No.: US 2023/0409402 A1

a9y United States

N et al.

43) Pub. Date: Dec. 21, 2023

(54) METHOD AND SYSTEM FOR PREDICTING
OPTIMAL CONFIGURATION PARAMETERS
FOR A DATA ANALYTICS ENGINE

(71) Applicant: Larsen & Toubro Infotech Ltd,
Mumbai (IN)

(72) Inventors: Sarvesh N, Coimbatore (IN); Sudhir
Kumar Kakumanu, Hyderabad (IN)

(73) Assignee: Larsen & Toubro Infotech Ltd,
Mumbai (IN)

(21) Appl. No.: 17/889,742

(22) Filed: Aug. 17, 2022

(30) Foreign Application Priority Data

Jun. 17,2022 (IN) e 202221034676

Publication Classification

(51) Int. CL
GOGF 9/50
GOGF 11/34

(2006.01)
(2006.01)

(52) US.CL
CPC

GO6F 9/5038 (2013.01); GOGF 9/5072
(2013.01); GOGF 11/3409 (2013.01); GO6F
2209/505 (2013.01)

57 ABSTRACT

The invention relates to a method and system for predicting
optimal configuration parameters for a data analytics engine.
The method and system utilizes Supervised Machine Learn-
ing (ML) techniques for predicting optimal configuration
parameters for the data analytics engine to run a specific
application in a given time frame, wherein the optimal
configuration includes estimating an optimal number of
executor instances in real-time. The invention analyzes input
parameters such as data metrics, software metrics, and
hardware metrics to determine if the input parameters com-
prise a new dataset or a continuous dataset and deploy one
or more models such as a Forecasting Model and a Regres-
sion Model. The one or more models then derive and
allocate the possible number of executor instances. The
executor instances allocated can be a number of executors,
executor cores, the memory of executors, driver memory,
and parallelism.

heare raliig el Ialeare
504 +
% Anaiyye neladats of e wyp
N
S
Y
R
- Erenivie o0 QB numdiet of sxarubyy helaee
\

Patent Application Publication Dec. 21, 2023 Sheet 1 of 5 US 2023/0409402 A1

"

/

P4 %

7 % .
% % Pt
§ [je
H z po]
£ Z R
% 7

i 7

% 7

FiG. 1

[P S

3
&
&
&

2 P
* e
el

Patent Application Publication Dec. 21, 2023 Sheet 2 of 5 US 2023/0409402 A1

fee]

P

2 JEURRIRNURRNEMFRIRRRRRR: "X

T S—

%\\\“\“«“«“«««.u.ﬁ
SO — <

FiG. 2

US 2023/0409402 A1

o0 SRS SRR
RN AR N RN

w0

K2

e ek

gk s

SR

y/.w/ /,/,./

Dec. 21, 2023 Sheet 3 of 5

#
% %

§

279 W

Vi

b
]

o
Yo

Patent Application Publication

US 2023/0409402 A1

Dec. 21,2023 Sheet 4 of 5

Patent Application Publication

FiG. 4

NN

s,

Patent Application Publication Dec. 21, 2023 Sheet 5 of 5 US 2023/0409402 A1

o

:

E
Stop
Fic. 5

™

i .
i :
% ;
‘i’a e
7 " /1
i i ;
// 7 H
L 7
o

P

o

US 2023/0409402 Al

METHOD AND SYSTEM FOR PREDICTING
OPTIMAL CONFIGURATION PARAMETERS
FOR A DATA ANALYTICS ENGINE

TECHNICAL FIELD OF THE INVENTION

[0001] The present invention generally relates to a data
analytics engine. More particularly, the invention relates to
predicting optimal configuration parameters for the data
analytics engine.

BACKGROUND OF THE INVENTION

[0002] At present, data is considered a crucial element
worldwide. From the largest technology companies to small
startups across different industries are desiring to build
applications using vast amounts of data generated world-
wide. Data ranges from various real-time sensor data to
activity logs of users, user profiles on social media plat-
forms, or customers’ data in banks. Petabytes of such data
are generated all over the world daily.

[0003] Similarly, an increase in smartphone usage, social
media applications, and search engines, to name a few, have
contributed to an enormous explosion in data growth. The
volume of data created worldwide is growing exponentially
every day. Such enterprise-size data sets are known as Big
Data, and analyses of the Big Data to derive meaningful
information require leading-edge hardware and software.

[0004] At a hardware layer, architectural techniques such
as Simultaneous Multithreading (SMT) and prefetch are
used to improve overall system performance. At a software
layer, for example, Apache Spark™ by the Apache Software
Foundation is one of the most popular large-scale data
analytics frameworks. However, deriving desired perfor-
mance from Apache Spark™ requires in-depth knowledge to
appropriately set the hardware parameters such as SMT and
prefetch settings.

[0005] While the performance delivered by existing data
analytics engines or platforms has enabled data scientists
and engineers to solve complex problems and analysis on
big and complex data in actionable timeframes, the process
of manually configuring underlying jobs by allotting a
number of executors can be difficult and time-consuming.
This configuration process is heavily based on repeated
trial-and-error. Still, it also requires the developer to have a
low-level understanding of the data analytics engine and
detailed cluster sizing information.

[0006] An existing method for optimizing the hardware
settings to adjust software applications such as Spark™ is,
exhausted searching. For example, the SMT mode can be set
to SMT mode (1 thread per core), SMT2 mode (2 threads per
core), or SMT4 mode (4 threads per core) when running
benchmark jobs with differing system states. The SMT
setting associated with the best benchmark job is recorded,
and when a new job is allotted, it is mapped to a similar
benchmark, which involves huge cost, time, and effort.
[0007] Another method, for example, the static configu-
ration method, runs a Spark™ job multiple times, with the
SMT set to a different setting each time. For instance,
assume a job runs three times, with the SMT set to 1, 4, and
8 threads per core. After all, three runs of the same job, the
data is analyzed to determine which SMT configuration
yielded the best results, then that configuration is selected
for future jobs.

Dec. 21, 2023

[0008] All those mentioned above, and other existing
methods fail to focus on providing and adjusting the right-
sized configuration of a particular application in a data
analytics engine using Supervised Machine Learning (ML)
algorithms. Also, the existing methods fail to efficiently
manage and organize configuration parameters of a data
analytics engine, such as, for example, a number of execu-
tors, cores, executor memory, etc.

[0009] Therefore, the need exists to put forward a meth-
odology to provide the best possible configuration param-
eters for a data analytics engine to run applications most
efficiently in a given time frame.

SUMMARY OF THE INVENTION

[0010] The invention discloses a method and system for
predicting optimal configuration parameters for a data ana-
Iytics engine using Supervised Machine Learning (ML).
Predicting the optimal configuration includes estimating an
optimal number of executor instances in real-time for the
data analytics engine.

[0011] One or more advantages of the prior art are over-
come, and additional advantages are provided through the
invention. Additional features are realized through the tech-
niques of the invention. Other embodiments and aspects of
the disclosure are described in detail herein and are consid-
ered a part of the invention.

BRIEF DESCRIPTION OF THE FIGURES

[0012] The accompanying figures where like reference
numerals refer to identical or functionally similar elements
throughout the separate views and which together with the
detailed description below are incorporated in and form part
of the specification, serve to further illustrate various
embodiments and to explain various principles and advan-
tages all in accordance with the invention.

[0013] FIG. 1 is a diagram that illustrates an environment
in which various embodiments of the invention may func-
tion.

[0014] FIG. 2 illustrates a route analytics model for pre-
dicting optimal configuration parameters for a data analytics
engine, in accordance with an exemplary embodiment of the
invention.

[0015] FIG. 3 is a table that illustrates experimental results
representing performance of SARIMAX model, in accor-
dance with an exemplary embodiment of the invention.
[0016] FIG. 4 is a chart that illustrates a pattern in pre-
dicting optimum executor instances, in accordance with an
exemplary embodiment of the invention.

[0017] FIG. 5 is a flow chart that illustrates a method for
predicting optimal configuration parameters for a data ana-
Iytics engine, in accordance with an exemplary embodiment
of the invention.

[0018] Skilled artisans will appreciate that elements in the
figures are illustrated for simplicity and clarity and have not
necessarily been drawn to scale. For example, the dimen-
sions of some of the elements in the figures may be exag-
gerated relative to other elements to help to improve under-
standing of embodiments of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

[0019] Before describing in detail embodiments that are in
accordance with the present invention, it should be observed

US 2023/0409402 A1

that the embodiments reside primarily in combinations of
method steps and components related to a method and
system for predicting optimal configuration parameters for a
data analytics engine using Supervised Machine Learning
(ML) algorithms. Accordingly, the system components and
method steps have been represented where appropriate by
conventional symbols in the drawings, showing only those
specific details that are pertinent to understanding the
embodiments of the present invention so as not to obscure
the disclosure with details that will be readily apparent to
those of ordinary skill in the art having the benefit of the
description herein.

[0020] In this document, relational terms such as first and
second, top and bottom, and the like may be used solely to
distinguish one entity or action from another entity or action
without necessarily requiring or implying any actual such
relationship or order between such entities or actions. The
terms “comprises,” “comprising,” or any other variation
thereof, are intended to cover a non-exclusive inclusion,
such that a process, method, article, or apparatus that com-
prises a list of elements does not include only those elements
but may include other elements not expressly listed or
inherent to such process, method, article, or apparatus. An
element proceeded by “comprises . . . a” does not, without
more constraints, preclude the existence of additional iden-
tical elements in the process, method, article, or apparatus
that comprises the element.

[0021] Generally speaking, pursuant to various embodi-
ments, the invention provides the possible configuration
parameters for the data analytics engine to run a specific
application in a given time frame. The invention analyzes
one or more input parameters such as data metrics, software
metrics, and hardware metrics to determine if the input
parameters comprise a new dataset or a continuous dataset.
One or more models from a plurality of models are deployed
upon determining the input parameters. The plurality of
models includes models such as a Forecasting Model or a
Regression Model.

[0022] The one or more models are trained using Super-
vised Machine Learning (ML) algorithms such as, but not
limited to, a Linear Regression algorithm, a Ridge Regres-
sion algorithm, an XG Boost algorithm, or a Forecasting
algorithm, which can be a Seasonal Auto-Regressive Inte-
grated Moving Average with eXogenous factor (SARI-
MAX).

[0023] The one or more models then derive and allocate
the possible number of executor instances for building
optimal configuration parameters for the data analytics
engine to run the specific application in the given time
frame. The executor instances that are allocated can be such
as but are not limited to the number of executors, executor
cores, the memory of executors, driver memory, and paral-
lelism.

[0024] The executors provide in-memory storage for
Resilient Distributed Dataset (RDD) of the data analytics
engine and are also configured to register themselves with
drivers of the data analytics engine. The drivers of the data
analytics engine comprise all the information about the
executors at all the times. The executors act as worker nodes
of the data analytics engine, which take charge and run
individual tasks in the given job in response to the user
query. The executors are triggered and launched at the start
of the job execution and they typically run for the entire
lifetime of the job.

Dec. 21, 2023

[0025] In an embodiment, the number of allocated execu-
tors can be referred to as a number of worker nodes that help
to process by being in charge of individual tasks in a given
application. The executors are launched at the start of the
application. They are typically run for the entire lifetime of
the application. The number of executors is allocated based
on a Formula as stated below in Equation (1):

Max (500, rows clos x 16 x DATAMULTIPLIER) (69)
\/ 1024 % 1024
PARTITION SIZE
[0026] Where,
[0027] rows=number of rows in the dataset
[0028] cols=number of columns in the dataset
[0029] DATAMULTIPLIER=4 (tackling OOM)
[0030] PARTITIONSIZE=128 (block size)

[0031] In accordance with an embodiment, the executor
cores are allocated based on the experimentally set rule by
taking available hardware into account. Predicting and allo-
cating an optimal number of executor cores helps in the
parallel execution of the application. However, too many
cores per executor can lead to a large memory pool and
reduced garbage collection leading to slow processing.
[0032] In accordance with an embodiment, the memory of
executors is allocated based on the rule that is experimen-
tally set by taking available hardware into account. Predict-
ing and allocating executor memory depends on physical
memory available in a node, and after considering the
overhead factor and memory of the cluster manager.
[0033] In accordance with yet another exemplary embodi-
ment, the driver memory is allocated based on the experi-
mentally set rule by taking the available hardware into
account. An optimum amount of memory is allocated to use
for the driver process, i.e., where the application is initial-
ized. Setting up too large a memory size would be a waste
of resources as most of the processing is done on the
executors’ side, and the driver is responsible for coordina-
tion.

[0034] In accordance with an embodiment, the parallelism
is allocated based on the formula 4*spark.executor.in-
stances, wherein it is the default number of partitions in
RDDs returned by transformations like join, reduceByKey,
and parallelize when not set explicitly by the user.

[0035] The Forecast Model is deployed in scenarios when
the input parameters are determined to comprise a continu-
ous dataset. The continuous dataset can be an existing and
evolving dataset with emerging trends in its data over a
period of time. Whereas the Regression Model is deployed
upon determining that the input parameters comprise a new
dataset.

[0036] In an exemplary embodiment, the data analytics
engine can be such as, but not limited to, Integrate™,
Atlas™, ZOHO™ Analytics, Microsoft HDInsight™,
Microsoft Azure™, Sky tree, Talend, Splice Machine,
Apache Spark™, Plotly, Apache SAMOA™, Lumity, Elas-
tic Search, R-Programming, and IBM SPSS Modeler™.
[0037] FIG. 1 is a diagram that illustrates an environment
100 in which various embodiments of the invention may
function. Referring to FIG. 1, the environment 100 includes
a user device 102, a network 104, a route analytics model
106, a scheduler 108, a cluster provisioning module 110, an
end infrastructure 112, and a storage 114.

US 2023/0409402 Al

[0038] In an exemplary embodiment, the user device 102
can include a desktop personal computer, workstation, lap-
top, PDA, cell phone, any wireless access protocol (WAP)
enabled device, or any other computing device capable of
interfacing directly or indirectly to the Internet or other
network connection. The user device typically runs an HT'TP
client, e.g., a browsing program, such as Microsoft’s Inter-
net Explorer browser, Netscape’s Navigator browser,
Opera’s browser, or a WAP-enabled browser in the case of
a cell phone, PDA, or other wireless devices, or the like,
allowing the users (e.g., the subscriber of the multi-tenant or
single-tenant database system) of the user device to access,
process and view information, pages and applications avail-
able to it over a network.

[0039] The user device 102 may be implemented using
any device capable of wired or wireless communication,
including but not limited to a cellular telephone, computer,
server, router, laptop, tablet, wearable device, watch appli-
ance, or an automobile.

[0040] The user device 102 may receive inputs or queries
from users in the form of natural language. The received
signals are formatted in accordance with the wireless com-
munication protocol expected by the user device 102. The
received signal can be a backscatter signal, such as but not
limited to a Bluetooth signal (e.g., such as an advertising
packet), a Wi-Fi signal (e.g., such as a beacon frame), and
a ZigBee signal. For example, the backscatter signal may be
an IEEE 802.15.4 beacon frame.

[0041] In accordance with an embodiment, the user device
102 is communicatively coupled to the route analytics model
106 via the network 104. The network (104) is any network
or combination of networks of devices that communicate
with one another. For example, the network may be any one
or any combination of a LAN (local area network), WAN
(wide area network), telephone network, wireless network,
point-to-point network, star network, token ring network,
hub network, or other appropriate configuration. The user
device may communicate via the network using TCP/IP and
use other common Internet protocols to communicate at a
higher network level, such as HTTP, FTP, AFS, WAP, etc.
[0042] The route analytics model 106 is communicatively
coupled to the scheduler 108 and the cluster provisioning
module 110. The end infrastructure 112 is an infrastructure
where all jobs of the data analytics engine are run upon
receiving job schedules by either the scheduler 108 or the
cluster provisioning module 110.

[0043] The route analytics model 106 utilizes one or more
Supervised ML algorithms which provide operations based
on multiple trial-and-error methods and then trains the one
or more models using several types of input data obtained
over the multiple trials-and-errors. The route analytics
model 106 performs one or more pre-processing steps before
triggering the scheduler 108 and the cluster provisioning
module 110. The route analytics model 106 initially gathers
metadata information from the received input parameters,
then analyzes to determine if the input parameters comprise
a new or continuous dataset. Upon determining the datasets,
one or more models are deployed to derive and allocate an
optimum number of executor instances for building optimal
configuration parameters for the data analytics engine.
[0044] In accordance with an embodiment, the scheduler
108, which runs as a persistent service, monitors all tasks
and Direct Acrylic Graphs (DAGs) and triggers the task
instances once their dependencies are complete. The sched-

Dec. 21, 2023

uler 108 spins up a subprocess, which monitors and stays in
sync with all the DAGs in its corresponding DAG directory.
Once per minute, by default, the scheduler collects DAG
parsing results and checks whether any active tasks can be
triggered.

[0045] In an exemplary embodiment, the scheduler 108
can be an add-on, which gives complete flexibility to define
and execute workflows. The scheduler 108 also allows
database administrators to schedule and monitor database
maintenance jobs such as backups. It enables application
developers to create programs and program libraries that end
users can use to create or monitor their jobs.

[0046] In accordance with an embodiment, the cluster
provisioning module 110 receives a time series of past usage
data, determines an upcoming usage data based at least in
part on the time series of past usage data, and provisions the
cluster according to the upcoming usage data. After the
processing job is completed, a measurement is made as to
how well the prediction for executor instances is stored and
used to refine the next prediction. The cluster provisioning
module 110 interacts with other systems using an interface.
The cluster provisioning module 110 comprises a system for
receiving a time series of previous usage data, determining
upcoming usage data based at least in part on the time series
of prior usage data, and provisioning executor instances
according to the upcoming usage data.

[0047] In accordance with an embodiment, the end infra-
structure 112 can be such as, but not limited to, Bigdata
platforms, Hadoop™ Clusters, Elastic Map Reduce (EMR)
clusters, Kubernetes, and other on-premise clusters. The end
infrastructure 112 is an infrastructure where all jobs of the
data analytics engine are run upon receiving job schedules
by either the scheduler 108 or the cluster provisioning
module 110.

[0048] After that, the one or more models utilized for
deriving and allocating the possible number of executor
instances are stored in a storage 114 for future usage and are
retrained periodically when a new dataset is received.
[0049] In an exemplary scenario, the storage 114 can be a
cloud object storage such as an S3 bucket, with capabilities
such as, but not limited to, industry-leading scalability, data
availability security, and performance.

[0050] The storage 114 can be a tangible device that can
retain and store instructions for use by an instruction execu-
tion device. The storage 114 can be but is not limited to an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the storage 114 includes the following: a
portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing.

[0051] FIG. 2 is a diagram that illustrates the route ana-
Iytics model 106 for predicting optimal configuration param-
eters for the data analytics engine, in accordance with an
exemplary embodiment of the invention. Referring to FIG.
2, the route analytics model 106 includes a memory 202, a

US 2023/0409402 A1

processor 204, a communication module 206, a receiving
module 208, an analyzing module 210, a deploying module
212, a feature engineering and selection module 214, a
deriving module 216, and an allocating module 218.

[0052] The memory 202 may comprise suitable logic
and/or interfaces that may be configured to store instructions
(for example, the computer-readable program code) that can
implement various aspects of the present invention.

[0053] The processor 204 may comprise suitable logic,
interfaces, and/or code that may be configured to execute the
instructions stored in the memory 202 to implement various
functionalities of the route analytics model 106 in accor-
dance with various aspects of the present invention. The
processor may be further configured to communicate with
multiple modules of the route analytics model 106 via the
communication module 206.

[0054] The communication module 206 comprises suit-
able logic, interfaces, and/or code that may be configured to
transmit data between modules, engines, databases, memo-
ries, and other components of the route analytics model 106
to perform the function discussed herein. The communica-
tion module 206 may include one or more communication
types and utilizes various communication methods for com-
munication with the route analytics model 106.

[0055] In accordance with an embodiment, the receiving
module 208 receives a query from a user via the user device
102 to run a new job related to data analytics at the end
infrastructure 112. Upon receiving the query from the user
device 102, an Application Programming Interface (API)
call is initiated, which puts the route analytics model 106
into action. The API call is made with a set of input JSON,
which consists of, for instance, a SQL query.

[0056] The route analytics model 106 triggers and initiates
the receiving module 208, which then extracts one or more
input parameters from the user query. The input parameters
comprise data metrics, software metrics, and hardware met-
rics.

[0057] The receiving module 208 also collects data met-
rics from a plurality of previous runs of the data analytics
engine. The data metrics collected from the plurality of prior
runs can be such as but are not limited to a number of rows,
a number of columns, a number of numerical columns, a
number of string columns, and data size, wherein the data
size is derived out of combinations of the number of rows
and columns. The data metrics related to the number of rows
can be such as a number of rows in input data associated
with the previous runs, the number of columns can be such
as a number of columns in input data related to the previous
runs, the number of numerical columns can be such as, a
number of a numeric type of columns in input data associ-
ated with the previous runs, and the number of string
columns can be such as, a number of string type columns in
input data related to the previous runs.

[0058] The receiving module 208 receives software met-
rics from the user via the user device 102. The software
metrics received by the receiving module 208 can be such as
but are not limited to parallelism, a number of partitions, and
runtime of a given application. Details received by the
receiving module 208 related to parallelism can be such as
values of parallelism set in commands by the data analytics
engine, and details related to the number of partitions can be
such as, the value of partition set in commands by the data

Dec. 21, 2023

analytics engine, and details related to the runtime of a given
application can be such as, total runtime of jobs of the data
analytics engine.

[0059] The receiving module 208 receives hardware met-
rics from the user via the user device 102. The hardware
metrics received by the receiving module 208 can be such as
but are not limited to, executor cores, memories, and drivers.
Details received by the receiving module 208 related to
executor cores can be a number of executor cores required
for a given task. Details related to the memories can be such
an amount of memory needed for the executors. Details
related to the drivers can include the amount of driver
memory required for the executors.

[0060] The receiving module 208 filters the input param-
eters using a sequence of steps such as aggregating details
from the JSON to a data frame, removing unwanted and
useless columns from the aggregated data frame, filtering
the useless rows from the aggregated data frame, removing
duplicates, and handling null and empty rows. The receiving
module 208 utilizes filtering models such as, but not limited
to, average filtering technique, local regression filtering
technique, classification filtering technique, association fil-
tering technique, Savitzky-Golay filtering technique, and
Hamming window filtering technique for filtering the input
parameters.

[0061] The analyzing module 210 performs exploratory
data analysis on the filtered input parameters to understand
and analyze the type of dataset present in the input param-
eters. The analyzing module 210 then analyzes the metadata
of the input parameters to determine if the received input
parameters comprise a new dataset or a continuous dataset.
The continuous dataset can be an existing dataset with
emerging trends in its data over a period of time.

[0062] The analyzing module 210, to determine the data-
set of the input parameters, assigns an ID such as, for
instance, dataset D, which is unique for a particular dataset
and remains constant forever for the particular dataset. The
analyzing module 210 compares the assigned ID with a
lookup table to check if it already exists. If the dataset ID is
already present, then it is classified as the old dataset. If the
dataset ID is not present, then a new ID is inserted into the
lookup table, and this data is classified as a new dataset.
[0063] On the other hand, once the dataset is classified as
the old dataset, the analyzing module 210 checks if the old
dataset is showing trends in its data over a period of time and
then deploys the one or more models,

[0064] In an embodiment, the analyzing module 210
employs the Mann Kendall (MK) test to determine if the old
dataset shows a trend. The MK test determines whether or
not a trend exists in time series data. The MK test is a
non-parametric test, which indicates that there is no under-
lying assumption about the data’s normality.

[0065] The null hypothesis for the MK test is that there is
no trend, and the alternative hypothesis is that there is a trend
in the two-sided test or that there is an upward trend (or
downward trend) in the one-sided test.

[0066] The MK test utilizes the following test statistics

0, S=0

(S—1)/se, §>0
z=
S+ 1)jse, S<0

US 2023/0409402 Al

where se=the square root of var, if there is no monotonic
trend (the null hypothesis), then for time series with more
than 10 elements, z~N(0, 1), i.e. z has a standard normal
distribution.

[0067] The deploying module 212, upon determining the
datasets by the analyzing module 210, deploys one or more
models from the plurality of models. The one or more
models can be such as, but not limited to, a Forecasting
model and a Regression model.

[0068] The deploying module 212 further comprises the
feature engineering, and selection model 214 is built based
on various experimentation and trial results. Based on
experimentation and trial results, the feature engineering and
selection model 214 ensures the preparation of a valid and
efficient input dataset.

[0069] The feature engineering and selection model 214
utilizes log transformation, robust scalar, and bucketing to
extract features from the input parameters to prepare a valid
and efficient input data set.

[0070] Log transformation is a data transformation
method that replaces each variable x with a log(x). The
choice of the logarithm base is usually left up to the analyst,
and it depends on the purposes of statistical modeling. For
the present use case, NumPy log() function is used, which
does the natural logarithm of a value, i.e., logarithm using
base ‘e.’

[0071] Robust scalar scales features using statistics that
are robust to outliers. This Scaler removes the median and
scales the data according to the quantile range (defaults to
IQR (Interquartile Range): Interquartile Range). The IQR is
the range between the 1st quartile (25th quantile) and the 3"/
quartile (75th quantile).

[0072] Bucketing is a technique of binning a continuous
numeric feature into a different category. Bucketing, for
instance, in an experiment is applied on the complete
runtime in the range of 200 seconds (about three and a half
minutes), thus getting a more evenly distributed value for
this feature.

[0073] By utilizing log transformation, robust scalar, and
bucketing, the feature engineering and selection model 214
builds its intelligence and assists the deploying module 212
in understanding the impact of the determined dataset and
thereby selecting the one or more models to be deployed in
real-time. The feature engineering and selection model 214
operates in an iterative process and continues to operate until
optimal configuration parameters are obtained.

[0074] The one or more models that are deployed by the
deploying module 212 in real-time, can be such as, the
Forecasting Model and the Regression Model.

[0075] Inaccordance with an embodiment, the forecasting
model, in order to predict optimal configuration parameters
for the data analytics engine, splits the input parameters into
training data and testing data. The training and testing data
are used by SARIMAX (Seasonal Auto-Regressive Inte-
grated Moving Average with eXogenous factor) algorithm to
train the forecasting model to predict the trend in the dataset
and forecast an optimum number of executor instances.
[0076] In accordance with an embodiment, the regression
model, in order to predict optimal configuration parameters
for the data analytics engine, splits the input parameters into
training data and testing data. The training and the testing
data are then used to tune hyperparameters and predict an
optimum number of executor instances.

Dec. 21, 2023

[0077] In an exemplary embodiment, the one or more
models are trained using Supervised ML algorithms. The
Supervised ML algorithms that are used to train the one or
more models can be such as but are not limited to, a Linear
Regression algorithm, a Ridge Regression algorithm an XG
Boost algorithm, or a Forecasting algorithm, which can be
SARIMAX (Seasonal Auto-Regressive Integrated Moving
Average with eXogenous factor).

[0078] Inaccordance with the exemplary embodiment, the
Supervised ML algorithms can also be a group of algorithms
such as, but not limited to, regression and classification
algorithms. Further, the regression algorithms can be such
as, but are not limited to, Linear Regression, Regression
Trees, Non-Linear Regression, Bayesian Linear Regression,
and Polynomial Regression. Furthermore, the classification
algorithms can be such as, but not limited to, Random
Forest, Decision Trees, Logistic Regression, and Support
Vector Machines (SVM).

[0079] Inaccordance with the exemplary embodiment, the
chart below illustrates one or more core features that are
used by the Supervised ML algorithms to train the one or
more models.

Core Feature Name Feature Description

Number of rows in input Data

Number of string type columns in Data
Number of numeric type columns in Data
Total runtime of spark job

Executor memory required

Number of Executor cores required
Number of Executor cores required (to be

NUIM__TOWS
string cols
numerical__cols
complete__run
executor__memory
executor__cores
executor__instances

predicted)

partition_ count Value of partition set in the spark-submit
command

parallelism Value of parallelism set in the spark-submit
command

driver__memory Total driver memory allocated.

data_ size Total Size of Data in Megabytes (derived
from combination on num__rows, string_ col
and numerical__cols)

[0080] The deriving module 216, upon the prediction of

the number of executor instances by the deploying module
212, derives an optimum number of executor instances for
a specific type of application of the data analytics engine in
a given time frame. The optimum number of executor
instances can be such as, but not limited to, a number of
executors, executor cores, a memory of executors, driver
memory, and parallelism.

[0081] In an exemplary embodiment, the executors in the
data analytics engine are responsible for running the one or
more tasks. The executors provide in-memory storage for
Resilient Distributed Dataset (RDD) of the data analytics
engine and are also configured to register themselves with
drivers of the data analytics engine. The drivers of the data
analytics engine comprise all the information about the
executors at all the times. The executors act as worker nodes
of the data analytics engine, which take charge and run
individual tasks in the given job in response to the user
query. The executors are triggered and launched at the start
of the job execution and they typically run for the entire
lifetime of the job.

[0082] The allocating module 218, upon deriving the
optimum number of executor instances by the deriving
module 216, allocates them for the given application of the

US 2023/0409402 A1

data analytics engine. Upon allocating the optimum number
of executor instances, optimal configuration parameters are
built for the data analytics engine for the given application
in the given time frame.

[0083] The allocating module 218 allocates the optimum
number of executor instances for effective execution of

Dec. 21, 2023

scheduled jobs at the end infrastructure 112. The allocation
is performed based on one or more rules to maximize
resource consumption with optimal and minimal cost and
faster execution.

[0084] In an exemplary embodiment, the chart illustrated
below indicates the allocation of optimal configurations
based on respective rules and their impacts.

Configurations Rules

Impact

spark.executor.cores

spark.driver.memory

spark.executor.memory

spark.executor.instances

Where,

rows = number of rows in the dataset
cols = number of columns in the dataset
DATAMULTIPLIER = 4 (tackling OOM)
PARTITIONSIZE = 128 (block size)

spark.default.parallelism 4 * spark.executor.instances

spark.sql.shuffle.partitions 4 * spark.executor.instances

Experimentally set by taking the
available hardware into account

Experimentally set by taking the

available hardware into account

Experimentally set by taking the
available hardware into account

The number of cores per
executor helps in the
parallel execution of a job.
However, too many cores
per executor can lead to
large memory pool and
reduced garbage collection
leading to slow processing.
The amount of memory to
use for the driver process,
i.e. where Spark ™ Context
is initialized. Setting up too
large a memory size would
be a waste of resources as
most of the processing is
done on the executors’ side,
and the driver is responsible
for coordination. However,
the driver memory comes
into play whenever a
collect/pandas operation is
performed.

Executor memory is
dependent on the physical
memory available in a
node, and after taking into
consideration the overhead
factor and memory of the
cluster manager, this is
decided.

max (500, rows x cols x 16 x DATAMULTIPLIER)

Sometimes having many
tiny executors has some

1024 %1024 drawbacks as it will have

PARTITIONSIZE more JVMs running

(overheads) and more
copies of data if broadcast
variables are used. And too
few executors would not be
able to utilize parallelism
effectively.

The default number of
partitions in RDDs
returned by
transformations like join,
reduceByKey, and
parallelize when not set
explicitly by the user. Too
few partitions will not be
able to utilize all the cores
available in the cluster.
And too many partitions
will cause an excessive
overhead in managing
many small tasks.

It configures the number of
partitions used when
shuffling data for joins or
aggregations.

When dealing with a small
amount of data, it should
be small. Otherwise, we
would end up with a
substantial number of small
partition files with fewer
records, which will result

US 2023/0409402 Al

-continued

Dec. 21, 2023

Configurations Rules

Impact

in running many tasks with
fewer data. On the other
hand, having too much data
and having a smaller
number of partitions results
in fewer longer running
tasks, and sometimes you
may also get out of
IMeIory error.

[0085] Thereafter, the allocation module 218 invokes
either the scheduler 108 to trigger scheduled jobs based on
the user query or invokes the cluster provisioning module
110 to create, for instance, an Elastic Map Reduce (EMR)
cluster (in AWS scenario) at the end infrastructure 112 where
all jobs of the data analytics engine are executed.

[0086] FIG. 3 is a table 300 that illustrates experimental
results representing performance of the SARIMAX model,
in accordance with an exemplary embodiment of the inven-
tion.

[0087] As illustrated in FIG. 3, the experimental results
shown in the table 300 represent the performance of the
SARIMAX model while predicting optimal configuration
parameters for the data analytics engine.

[0088] FIG. 4 is a chart 400 that illustrates a pattern in
predicting optimum executor instances, in accordance with
an exemplary embodiment of the invention.

[0089] As illustrated in FIG. 4, upon testing the perfor-
mance and implementing the SARIMAX model in the real
world, a pattern in predicting optimum executor instances
with good accuracy and slight variation is observed. The
chart 400 represents the amount of time (in a sec) taken for
a particular number of executor instances Vs. Time.

[0090] The SARIMAX model is fed various input param-
eters along with the time (in seconds) in which the job is
required to get completed. The SARIMAX model predicted
the best possible executor instance value using all the input
parameters, which can do the job in specified time periods.
All these observations were taken by running the job on
EMR cluster.

[0091] FIG. 5 is a flow chart 500 that illustrates a method
for predicting optimal configuration parameters for the data
analytics engine, in accordance with an exemplary embodi-
ment of the invention.

[0092] At step 502, the receiving module 208 receives
input parameters, wherein the input parameters include data
metrics, software metrics, and hardware metrics.

[0093] The receiving module 208 receives a query from
the user via the user device 102 to run a new job related to
data analytics at the end infrastructure 112. Upon receiving
the query from the user, an Application Programming Inter-
face (API) call is made to the route analytics model 106 with
a set of input JSON, which consists of, for instance, a SQL
query.

[0094] The received query is then utilized by the route
analytics model 106 to trigger and initiate the receiving
module 208 to receive the input parameters.

[0095] In an embodiment, the receiving module 208 col-
lects data metrics from a plurality of previous runs of the
data analytics engine. The data metrics collected from the
plurality of previous runs can be such as but are not limited

to a number of rows, a number of columns, a number of
numerical columns, a number of string columns, and data
size.

[0096] The receiving module 208 receives software met-
rics from a user via a user device. The software metrics
received by the receiving module 208 can be such as but are
not limited to, parallelism, number of partitions, and runtime
of a given application.

[0097] The receiving module 208 receives hardware met-
rics from the user via the user device. The hardware metrics
received by the receiving module 208 can be such as but are
not limited to, executor cores, memories, and drivers.
[0098] At step 504, the analyzing module 210 analyzes the
metadata of the input parameters, wherein the analysis
comprises determining if the input parameters include a new
dataset or a continuous dataset.

[0099] Inanembodiment, the continuous dataset can be an
existing dataset with emerging trends in its data over a
period of time.

[0100] At step 506, the deploying module 212 deploys one
or more models from a plurality of models based on the
determined dataset. The plurality of models includes a
Forecasting Model and a Regression Model.

[0101] The deploying module 212 further comprises a
feature engineering and selection module 214 that is built
based on various experimentation and trial results. By uti-
lizing its data intelligence, the feature engineering and
selection module 214 assists the deploying module 212 in
understanding the impact of the determined dataset and
thereby selecting the one or more appropriate models to be
deployed in real-time. The feature engineering and selection
model 214 operates in an iterative process, and it will
continue to operate until optimal configuration parameters
are obtained.

[0102] Inaccordance with an embodiment, the forecasting
model, in order to predict optimal configuration parameters
for the data analytics engine, initially splits the input param-
eters into training data and testing data. The training and
testing data are then used by SARIMAX (Seasonal Auto-
Regressive Integrated Moving Average with eXogenous
factor) algorithm to train the forecasting model to predict the
trend in the dataset and forecast an optimum number of
executor instances.

[0103] In accordance with an embodiment, the regression
model, in order to predict optimal configuration parameters
for the data analytics engine, initially splits the input param-
eters into training data and testing data. The training and
testing data are then used to tune hyperparameters and
predict an optimum number of executor instances.

[0104] At step 508, the deriving module 216, upon pre-
diction of the number of executor instances by the deploying

US 2023/0409402 Al

module 212, derives an optimum number of executor
instances for a specific type of application in a given time
frame.

[0105] The deriving module 216 then derives an optimum
number of executor instances for a specific type of applica-
tion of the data analytics engine in a given time frame. The
optimum number of executor instances can be such as, but
not limited to, a number of executors, executor cores, the
memory of executors, driver memory, and parallelism.
[0106] In an exemplary embodiment, the executors in the
data analytics engine are responsible for running one or
more tasks. The executors provide in-memory storage for
RDDs of the data analytics engine and are also configured to
register themselves with drivers of the data analytics engine.
The drivers of the data analytics engine include all the
information about the executors at all the times. The execu-
tors act as worker nodes of the data analytics engine, which
take charge and run individual tasks in the given job in
response to the user query. The executors are triggered and
launched at the start of the job execution and they typically
run for the entire lifetime of the job.

[0107] At step 510, the allocation module 218 allocates
the optimum number of executor instances for building
optimal configuration parameters for the data analytics
engine for the specific type of application in the given time
frame.

[0108] The present invention is advantageous in that the
data it collects data from multiple previous runs of a data
analytics application and utilizes various supervised
machine learning algorithms to predict optimal configura-
tion parameters which would complete the job in the given
timeframe. The present invention can predict the optimal
configuration that would complete the job in the given time
range, which in turn helps to assign the right configuration
parameters without any internal cluster sizing information
and removes the manual trial and error, thus saving time and
cost.

[0109] Further, the present invention is targeted to provide
optimal cluster configuration based on a historical run of an
application, such that it can complete in a given time. Thus,
predicting the optimal configuration based on the run time
would allow a user to decide the optimal tradeoff between
the infrastructure cost and job execution time. Thus, the
present invention can further improve the system with
post-processing steps and adding rules to make the model
make even better decisions.

[0110] Those skilled in the art will realize that the above-
recognized advantages and other advantages described
herein are merely exemplary and are not meant to be a
complete rendering of all of the advantages of the various
embodiments of the present invention.

[0111] As described in the invention or any of its compo-
nents, the system may be embodied in the form of a
computing device. The computing device can be, for
example, but is not limited to, the general-purpose computer,
a smartphone, a programmed microprocessor, a micro-con-
troller, a peripheral integrated circuit element, and other
devices or arrangements of devices that can implement the
steps that constitute the method of the invention. The
computing device includes a processor, a memory, a non-
volatile data storage, a display, and a user interface.

[0112] In the foregoing complete specification, specific
embodiments of the present invention have been described.
However, one of ordinary skill in the art appreciates that

Dec. 21, 2023

various modifications and changes can be made without
departing from the scope of the present invention. Accord-
ingly, the specification and figures are to be regarded in an
illustrative rather than a restrictive sense. All such modifi-
cations are intended to be included within the scope of the
present invention.

1. A computer-implemented method for predicting opti-
mal configuration parameters for a data analytics engine, the
method comprising:

receiving, by one or more processors, input parameters,

wherein the input parameters comprise data metrics,
software metrics, and hardware metrics;

analyzing, by the one or more processors, metadata of the

input parameters, wherein the analysis comprises deter-
mining if the input parameters comprise a new dataset
or a continuous dataset;

deploying, by the one or more processors, one or more

models from a plurality of models based on the meta-
data of the input parameters, wherein the plurality of
models comprise at least one of a Forecasting Model,
and a Regression Model;

deriving, by the one or more processors using the one or

more models, an optimum number of executor
instances for a specific type of application in a given
time frame; and

allocating, by the one or more processors, the optimum

number of executor instances for building optimal
configuration parameters for the data analytics engine
for the specific type of application in the given time
frame.

2. The computer-implemented method as claimed in claim
1, wherein the data metrics collected from a plurality of
previous runs of the data analytics engine comprises at least
one metric related to a number of rows in input data related
to the previous runs, a number of columns in input data
related to the previous runs, a number of numerical columns
in input data related to the previous runs, a number of string
columns in input data related to the previous runs, and data
size that is derived out of combinations of the number of
rows and columns.

3. The computer-implemented method as claimed in claim
1, wherein the software metrics comprise at least one metric
related to values of parallelism set in commands by the data
analytics engine, value of partition set in commands by the
data analytics engine, and total runtime of jobs of the data
analytics engine.

4. The computer-implemented method as claimed in claim
1, wherein the hardware metrics comprise at least one metric
related to a number of executor cores required for a given
task, amount of memory required for the executors, and
amount of driver memory that is required for the executors.

5. The computer-implemented method as claimed in claim
1, wherein the continuous dataset can be an existing dataset
with emerging trends in its data over a period of time.

6. The computer-implemented method as claimed in claim
1, the one or more models are trained using a plurality of
Supervised Machine Learning (ML) algorithms, wherein the
Supervised ML algorithms can be at least one of a Linear
Regression algorithm, a Ridge Regression algorithm, and
XG Boost algorithm or a Forecasting algorithm, which can
be SARIMAX (Seasonal Auto-Regressive Integrated Mov-
ing Average with eXogenous factor).

7. The computer-implemented method as claimed in claim
1, wherein the executor instances that are allocated can be a

US 2023/0409402 Al

number of executors, executor cores, the memory of execu-
tors, driver memory, and parallelism.

8. A system comprising:

a memory;

a processor communicatively coupled to the memory, the

processor configured to:

receive input parameters, wherein the input parameters

comprise data metrics, software metrics, and hardware
metrics;
analyze metadata of the input parameters, wherein the
analysis comprises determining if the input parameters
comprise a new dataset or a continuous dataset;

deploy one or models from a plurality of models based on
metadata of the input parameters, wherein the plurality
of models comprise at least one of a Forecasting Model,
and a Regression Model;
derive, using the deployed one or more models, an
optimum number of executor instances for a specific
type of application in a given time frame; and

allocate the optimum number of executor instances for
building optimal configuration parameters for the data
analytics engine for the specific type of application in
the given time frame.

9. The system as claimed in claim 8, wherein the data
metrics collected from a plurality of previous runs of the
data analytics engine comprises at least one metric related to
a number of rows in input data related to the previous runs,
a number of columns in input data related to the previous
runs, a number of numerical columns in input data related to
the previous runs, a number of string columns in input data

Dec. 21, 2023

related to the previous runs, and data size that is derived out
of combinations of the number of rows and columns.

10. The system as claimed in claim 8, wherein the
software metrics comprise at least one metric related to
values of parallelism set in commands by the data analytics
engine, value of partition set in commands by the data
analytics engine, and total runtime of jobs of the data
analytics engine.

11. The system as claimed in claim 8, wherein the
hardware metrics comprise at least one metric related to the
number of executor cores required for a given task, amount
of memory required for the executors, and amount of driver
memory required for the executors.

12. The system as claimed in claim 8, wherein the
continuous dataset can be an existing dataset with emerging
trends in its data over a period of time.

13. The system as claimed in claim 8, the one or more
models are trained using a plurality of Supervised Machine
Learning (ML) algorithms, wherein the Supervised ML
algorithms can be at least one of a Linear Regression
algorithm, a Ridge Regression algorithm and XG Boost
algorithm or a Forecasting algorithm, which can be SARI-
MAX (Seasonal Auto-Regressive Integrated Moving Aver-
age with eXogenous factor).

14. The system as claimed in claim 8, wherein the
executor instances that are allocated can be a number of
executors, executor cores, the memory of executors, driver
memory, and parallelism.

#* #* #* #* #*

