
IN 
US 20200236165A1 

( 19 ) United States 
( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 2020/0236165 A1 

STOLCENBURG ( 43 ) Pub . Date : Jul . 23 , 2020 

Publication Classification ( 54 ) SYSTEM AND METHOD FOR 
SYNCHRONIZATION OF MEDIA OBJECTS 
BETWEEN DEVICES OPERATING IN A 
MULTIROOM SYSTEM 

( 71 ) Applicant : Advanced Digital Broadcast SA , 
Bellevue ( CH ) 

( 72 ) Inventor : Adam STOLCENBURG , Zielona Gora 
( PL ) 

( 51 ) Int . Ci . 
H04L 29/08 ( 2006.01 ) 
GOF 16/27 ( 2006.01 ) 
G06F 16/23 ( 2006.01 ) 

( 52 ) U.S. Ci . 
CPC H04L 67/1095 ( 2013.01 ) ; H04L 67/26 

( 2013.01 ) ; G06F 16/2358 ( 2019.01 ) ; G06F 
16/27 ( 2019.01 ) ; H04L 67/2804 ( 2013.01 ) 

( 57 ) ABSTRACT 
A method for synchronization of media objects between 
devices , the method comprising the steps of providing ( 601 ) 
a plurality of data objects in a database ; providing ( 602 ) at 
least one container comprising at least one object ; receiving 
( 603 ) a notification that at least one of the objects of said at 
least one container has changed ; verifying ( 604 ) whether a 
client device has subscribed for notifications regarding 
changes concerning said container , and for each subscribed 
client providing ( 605 ) a push notification , comprising meta 
data of said container's objects , informing that said contain 
er's data has changed . 

( 21 ) Appl . No .: 16 / 747,037 

( 22 ) Filed : Jan. 20 , 2020 

( 30 ) Foreign Application Priority Data 

Jan. 22 , 2019 ( EP ) 19153090.6 

110 120 130 
Server Client 1 Client 2 

121 
Subscribe for containers A and B 

111 
Synchronize data of the container A 

122 
Confirm 

131 
Subscribe for containers A and B 

112 
Synchronize data of the container B 

113 
Synchronize data of the container B 

123 
Confirm 

132 
Confirm 

111 
Synchronize data of the container A 

133 
Confirm 

115 Update changed data 
of the container B 

116 Update changed data 
of the container B 

124 
Confirm 

134 
Confirm 



Patent Application Publication Jul . 23 , 2020 Sheet 1 of 7 US 2020/0236165 A1 

110 120 130 
Server Client 1 Client 2 

121 1 ** 

** 

*** Subscribe for containers A and B * 

} 
th 

] 

111 3 
1 Synchronize data of the container A 1 

1 1 
1 122 *** 

Confirm 
1 

1 1 
1 
1 131 
1 Subscribe for containers A and B 
1 * 

*** 112 * 

1 
3 

Synchronize data of the container B 
*** 

* *** 

113 I 1 
1 

Synchronize data of the container B 
1 1 

123 1 1 

Confirm 
ww 

1 ** 

++ w 

1 132 1 
1 

Confirm 1 

} 
** 111 ** 

*** • Synchronize data of the container A ** 

1 
1 133 { 

Confirm *** 

*** 

115 
1 
1 Update changed data 

of the container B 
* 1 

1 *** 

1 1 
1 

1 

116 1 
*** Update changed data 

of the container B 
1 
** 

w 

124 1 1 
1 

Confirm *** 

3 
1 134 

Confirm I 

Fig . 1 



Patent Application Publication Jul . 23 , 2020 Sheet 2 of 7 US 2020/0236165 A1 

u Start 

Receive information about a change 
of an object belonging to a container 

201 
202 

Ignore the change 

210 
No Yes Is the container 

monitored by 
a client ? 

220 

No 
Does 

the container 
map have information 
about the change of 

the object ? 
Put the object change information 

to the container map 
Yes 

230 

Update the change information in the 
container map by merging the already 
present information with the new one 

240 

Fig . 2 



Patent Application Publication Jul . 23 , 2020 Sheet 3 of 7 US 2020/0236165 A1 

Start 

301 Wait until there is a need to fully 
synchronize at least one container or 

a change information appears 
in the container map 

302 Obtain and remove information about 
the need of synchronization or change 
of a container in the container map 

303 
Proceed if the memory amount needed 
to prepare a notification together with 
the current size of the outgoing queue 

is within pre - defined limits 
304 

Yes No 
Does 

the container 
need a full synchroni 

zation ? 320 

Retrieve metadata of all added or 
updated objects and append them to 
the corresponding change information 310 

321 Retrieve metadata of all objects belonging 
to the container , remove information about 

changes of the container from 
the container map and prepare 

a full synchronization notification 
Prepare a change notification 

containing information about all objects 
which changed in the container 

305 

Put the notification to the outgoing queue 

Fig . 3 



Patent Application Publication Jul . 23 , 2020 Sheet 4 of 7 US 2020/0236165 A1 

Start 

401 Await data presence 
in the outgoing queue 

402 Get notification from 
the outgoing queue 

403 Send notification to all clients 
subscribed for the container which 

the notification concerns 

404 Wait for responses from all notified 
clients for a limited amount of time 

405 Remove sent notification from 
the outgoing queue 

Fig . 4 



Patent Application Publication Jul . 23 , 2020 Sheet 5 of 7 US 2020/0236165 A1 

501 507 
Subscriptions 
Register 506 

Outgoing Notifications 
Queue Manager 504 

Memory 
502 

Containers Map 
Manager 506 

Controller 
503 

Communication 
Module 508 

Change Information 
Merger Module 

Fig . 5 



Patent Application Publication Jul . 23 , 2020 Sheet 6 of 7 US 2020/0236165 A1 

Start 

601 Providing a plurality of data 
objects in a database 

602 Providing at least one container 
comprising at least one object 

603 
Receiving a notification that at least 

one of the objects of said at 
least one container has changed 

604 
Verifying whether a client device has 
subscribed for notifications regarding 
changes concerning said container 

605 
For each subscribed client providing , 

a push notification that said 
container data has changed 

Fig . 6 



Patent Application Publication Jul . 23 , 2020 Sheet 7 of 7 US 2020/0236165 A1 

Container id 

Object id 
Object id 

( ... ) 
Object id 
Object id 
Object id 

Container id 

Object change type 
Object change type 
Object change type 
Object change type 
Object change type 
Object change type 
Object change type 
Object change type 
Object change type 
Object change type 
Object change type 
Object change type 

Object id 
Object id 
Object id 

( ... ) 
Object id 
Object id 
Object id 

( ... ) 
Object id 

Container id 

Object change type 
Object change type 
Object change type 
Object change type 

Fig . 7 



US 2020/0236165 A1 Jul . 23 , 2020 

SYSTEM AND METHOD FOR 
SYNCHRONIZATION OF MEDIA OBJECTS 
BETWEEN DEVICES OPERATING IN A 

MULTIROOM SYSTEM 

TECHNICAL FIELD 

[ 0001 ] The present invention relates to a system and 
method for synchronization of media objects between 
devices operating in a multiroom system . In particular , the 
present invention relates to improving performance and 
utilization of related resources when considering such syn 
chronization . 

Background of the Invention 
[ 0002 ] A multimedia home network is typically composed 
of multiple devices , which may directly communicate with 
each other . There are situations , in which multiple devices 
work together to provide a richer user experience , e.g. set 
top boxes working together as part of the Multiroom net 
work . Such cooperation requires sharing of metadata of 
objects between devices , e.g. recordings shared by DVRs . 
[ 0003 ] The most widely used method for sharing of such 
metadata is the UPnP Content Directory Service ( CDS ) , 
which provides a number of actions allowing to retrieve 
metadata of objects as well as a notification mechanism that 
informs other devices when any of the shared objects ' 
metadata have changed . 
[ 0004 ] The method of sharing metadata of objects defined 
by UPnP Content Directory Service is not efficient in cases 
when there is a need to replicate a large amount of metadata , describing objects which change frequently , to multiple 
clients . In case of the UPnP Content Directory Service , a 
notification of a change requires sending a change notifica 
tion to each of the subscribed clients , which in turn causes 
each client to execute an action on the CDS server . Multiple 
clients asking for the same data may severely degrade 
performance of the CDS server device , especially when 
metadata of the shared object are retrieved from an under 
lying database engine . 
[ 0005 ] The aim of the development of the present inven 
tion is an improved and effective system and method for 
synchronization of media objects between devices operating 
in a multiroom system . 

which are being monitored by clients and information about 
changes of objects belonging to that container . 
[ 0009 ] Preferably , said information about changes of 
objects belonging to that container is one of the following : 

[ 0010 ] an object was added to the container ; 
[ 0011 ] an object belonging to the container was 

updated ; 
[ 0012 ] an object was removed from the container . 

[ 0013 ] Preferably , the method further comprises the steps 
of verifying whether an object , for which a new change 
notification is to be generated , is already present in the 
container map and the already present change information is 
the “ object added ” information and when it is and the new 
object change information is : 
a ) object updated information — then the object added infor 
mation is kept ; 
b ) object removed information then the change informa 
tion is removed from the container . 
[ 0014 ] Preferably , the method further comprises the steps 
of verifying whether an object , for which a new change 
notification is to be generated , is already present in the 
container map and the already present change information is 
the " object updated " information and when it is and the new 
object change information is : 
a ) object updated information — then the information is not 
modified ; 
b ) object removed information then the object removed 
information is kept . 
[ 0015 ] Preferably , the method further comprises the steps 
of verifying whether an object , for which a new change 
notification is to be generated , is already present in the 
container map and the already present change information is 
the “ object removed ” information and when it is and the new 
object change information is : 
a ) object added information — then the object updated infor 
mation is kept . 
[ 0016 ] Preferably , the containers have a priority of pro 
cessing assigned wherein the most important objects are 
transferred first and all the other objects are transferred 
according to the round robin algorithm . 
[ 0017 ] Preferably , the push notification sent to each client 
comprises a sequence number , which is a value associated 
with the client and is incremented before a notification is 
sent to that client . 
[ 0018 ] Another object of the present invention is a com 
puter program comprising program code means for perform 
ing all the steps of the computer - implemented method 
according to the present invention when said program is run 
on a computer . 
[ 0019 ] Another object of the present invention is a com 
puter readable medium storing computer - executable instruc 
tions performing all the steps of the computer - implemented 
method according to the present invention when executed on 
a computer . 
[ 0020 ] A last object of the present invention is a system for 
synchronization of media objects between devices , the sys 
tem being characterized in that it comprises : a data bus 
communicatively coupled to a Memory as well as other 
components of the system so that they may be managed by 
a Controller ; a Communication Module is configured to 
facilitate communication between the system and clients that 
register in a Subscriptions Register by providing their 
address data as well as containers subscription parameters ; 
a Containers Map Manager responsible for managing a 

SUMMARY AND OBJECTS OF THE PRESENT 
INVENTION 

[ 0006 ] An object of the present invention is a method for 
synchronization of media objects between devices , the 
method comprising the steps of : providing plurality of data 
objects in a database ; providing at least one container 
comprising at least one object ; receiving a notification that 
at least one of the objects of said at least one container has 
changed ; verifying whether a client device has subscribed 
for notifications regarding changes concerning said con 
tainer ; and for each subscribed client providing a push 
notification , comprising metadata of said container's 
objects , informing that said container's data has changed . 
[ 0007 ] Preferably , the method further comprises a step of 
awaiting confirmations of the push notifications received by 
the respective clients . 
[ 0008 ] Preferably , said a container map is provided being 
a structure , which holds information about all containers 



US 2020/0236165 A1 Jul . 23 , 2020 
2 

containers map according the notifications from an under 
lying database ; a Change Information Merger Module con 
figured to merge information comprised in the containers 
map ; an Outgoing Notifications Queue Manager responsible 
for managing the outgoing queue notifications under control 
of the Controller configured to execute all steps of the 
method according to the present invention . 

form , although the device may change its physical state . 
Thus , for example , non - transitory refers to a device remain 
ing tangible despite a change in state . 
[ 0033 ] As utilized herein , the term “ example ” means serv 
ing as a non - limiting example , instance , or illustration . As 
utilized herein , the terms “ for example ” and “ e.g. ” introduce 
a list of one or more non - limiting examples , instances , or 
illustrations . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0021 ] These and other objects of the invention presented 
herein , are accomplished by providing a system and method 
for synchronization of media objects between devices oper 
ating in a multiroom system . Further details and features of 
the present invention , its nature and various advantages will 
become more apparent from the following detailed descrip 
tion of the preferred embodiments shown in a drawing , in 
which : 
[ 0022 ] FIG . 1 presents a sequence diagram with interac 
tions between exemplary entities ; 
[ 0023 ] FIG . 2 presents a diagram of a process for gather 
ing information about changes of objects belonging to 
monitored containers ; 
[ 0024 ] FIG . 3 presents a method for managing an outgoing 
queue ; 
[ 0025 ] FIG . 4 shows a process for monitoring content of 
an outgoing queue and sending notifications to subscribed 
clients ; 
[ 0026 ] FIG . 5 depicts a diagram of the system according 
to the present invention ; 
[ 0027 ] FIG . 6 presents a high level method according to 
the present invention ; and 
[ 0028 ] FIG . 7 shows an example of a containers map . 

NOTATION AND NOMENCLATURE 
[ 0029 ] Some portions of the detailed description which 
follows are presented in terms of data processing proce 
dures , steps or other symbolic representations of operations 
on data bits that can be performed on computer memory . 
Therefore , a computer executes such logical steps thus 
requiring physical manipulations of physical quantities . 
( 0030 ) Usually these quantities take the form of electrical 
or magnetic signals capable of being stored , transferred , 
combined , compared , and otherwise manipulated in a com 
puter system . For reasons of common usage , these signals 
are referred to as bits , packets , messages , values , elements , 
symbols , characters , terms , numbers , or the like . 
[ 0031 ] Additionally , all of these and similar terms are to be 
associated with the appropriate physical quantities and are 
merely convenient labels applied to these quantities . Terms 
such as " processing " or " creating " or " transferring " or 
“ executing " or " determining " or " detecting " or " obtaining " 
or " selecting " or " calculating ” or “ generating ” or the like , 
refer to the action and processes of a computer system that 
manipulates and transforms data represented as physical 
( electronic ) quantities within the computer's registers and 
memories into other data similarly represented as physical 
quantities within the memories or registers or other such 
information storage . 
[ 0032 ] A computer - readable ( storage ) medium , such as 
referred to herein , typically may be non - transitory and / or 
comprise a non - transitory device . In this context , a non 
transitory storage medium may include a device that may be 
tangible , meaning that the device has a concrete physical 

DESCRIPTION OF EMBODIMENTS 
[ 0034 ] The present invention relates in general to a 
method , in which a multiroom server pushes metadata of 
selected objects , to its clients , whenever the data have been 
changed , while taking into account problems such as serv 
er's processing power and limited amount of memory , as 
well as problems related to the difference in processing 
power between said server and its clients . 
[ 0035 ] The invention presents how metadata describing 
objects may be efficiently transferred from a server device to 
multiple client devices . It is assumed that the objects , which 
are being transferred are grouped in a number of containers . 
Moreover the solution assumes that objects , which need to 
be synchronized are stored in a database , e.g. an SQL 
database , which is able to notify whether a specific object 
was added , modified , or removed from the database e.g. 
through SQL triggers . 
[ 0036 ] From the network's perspective , the process is 
divided into a number of steps depicted in FIG . 1 , where 
clients subscribe to receive and monitor changes in objects 
belonging to selected containers ( 121 , 131 ) , and are later 
notified by the server with metadata of objects belonging to 
the subscribed containers ( 111 , 112 , 113 , 114 , 115 , 116 ) . 
[ 0037 ] Objects may be added to respective containers to 
different events in a given system . For example , in case of 
a set top box such events may be : ( a ) reading a recordings 
list from a storage device , ( b ) receiving electronic program 
guide data update , ( c ) inserting a removable drive to a USB 
slot as well as ( d ) similar events . 
[ 0038 ] The server may either send full contents of the 
subscribed container ( 111 , 112 , 113 , 114 ) , or only changes 
which can be applied to the previously transferred contents 
of a container ( 115 , 116 ) . The change information may be 
one of the following : 

[ 0039 ] an object was added to the subscribed container ; 
[ 0040 ] an object belonging to the subscribed container 
was updated ; 

[ 0041 ] an object was removed from the subscribed 
container . 

[ 0042 ] Each time the server sends a notification , it waits 
for a confirmation that the data were received and processed 
by the client ( 122 , 123 , 124 , 132 , 133 , 134 ) . The confirma 
tion may be sent either through the connection initiated by 
the server , which transferred the notification , or it may be a 
new connection initiated by the client . 
[ 0043 ] Preparation and sending of change information is 
divided into three processes ( depicted in FIGS . 2 , 3 and 4 
respectively ) . These processes run in parallel and commu 
nicate with each other through structures further called a 
container map and an outgoing queue . 
[ 0044 ] The container map is a structure , which holds 
information about all containers which are being monitored 
by clients and information about changes of objects belong 
ing to that container . The changes only keep information 
about type of the change and the identifier of the changed 



US 2020/0236165 A1 Jul . 23 , 2020 
3 

object . The outgoing queue is a queue which comprises 
ready to send notifications and is preferably organized as a 
FIFO queue . 
[ 0045 ] The first process ( of the three ) is shown in FIG . 2 
and concerns updating a container map at the server . 
[ 0046 ] The containers map may be organized such that an 
identifier of a container is related to one or more objects ( in 
some case a container may be empty and comprise zero 
objects ) comprising an identifier of an object as well as 
information on a type of the respective change ( as shown in 
FIG . 7 ) . Such relation may be effected by means of a 
relational database wherein an object may be present only 
once in a given container ( i.e. only a merged , single status 
update is present ) but may be present in more than one 
container . 
[ 0047 ] The process starts from receiving a change infor 
mation delivered by the underlying database ( 201 ) and 
checks if the relevant container , to which the changed object 
belongs , is a container which is being monitored by at least 
one client ( 202 ) , if not then the change information is 
ignored ( 210 ) , otherwise it is checked whether the container 
map already comprises information about a change of the 
object ( 220 ) . In case the information is not present , then the 
change information is put in the container map ( 230 ) , 
otherwise the information is merged ( 240 ) according to the 
following formula : 
1. If the already present object change information , in the 
container map , is the “ object added ” information and the 
new object change information is : 
a ) object updated information then the object added infor 
mation is kept ; 
b ) object removed information — then the change informa 
tion is removed from the container i.e. the object is non 
existent because it has not yet been communicated to the 
clients ( if any ) before its removal has been requested . 
2. If the already present object change information , in the 
container map , is the " object updated ” information and the 
new object change information is : 
a ) object updated information — then the information is not 
modified ; 
b ) object removed information — then the object removed 
information is kept ; 
3. If the already present object change information , in the 
container map , is the “ object removed ” information and the 
new object change information is : 
a ) object added information — then the object updated infor 
mation is kept . 
[ 0048 ] Thus , in case a client has not yet received a 
notification regarding an object , and another notification 
regarding the same object is received , the server will merge 
the notifications so that a single interaction with the client is 
present . Therefore , such approach saves clients ' as well as 
network resources . 
[ 0049 ] The second process ( managing an outgoing queue ) 
waits until there is a need to fully synchronize at least one 
container or a change information appears in the container 
map ( 301 ) , and then obtains and removes this information 
( 302 ) . By analyzing the type of the change it estimates how 
much memory is needed to prepare a notification and 
proceeds only when the sum of the estimated amount of 
memory plus the amount of memory used by the notifica 
tions already placed in the outgoing queue is within pre 

defined limits ( 303 ) . Thus , the amount of memory used for 
supporting notifications may be monitored and limited if 
needed . 
[ 0050 ] Then the process starts preparation of the notifica 
tion by first checking if the contents of a container need to 
be fully synchronized with at least one client ( 304 ) . In that 
case a notification , holding metadata of all objects belonging 
to that container is prepared and any information about 
changes of the container in the containers map are removed 
( 310 ) , otherwise the process goes through all changes of 
objects belonging to the container , and retrieves metadata of 
objects which have been added or updated ( 320 ) ( it does not 
have to be done for objects which have been removed ) and 
prepares a change notification comprising information about 
all changed objects belonging to the container ( 321 ) . The 
prepared notification is then put in the outgoing queue ( 305 ) . 
[ 0051 ] A process , which selects the next container to 
process ( 302 ) may prioritize containers in such a manner 
that the most important objects are transferred first and all 
the other are transferred according to the round robin 
algorithm . 
[ 0052 ] The third process monitors contents of the outgoing 
queue ( 401 ) and if the outgoing queue is not empty then the 
process receives a notification from that queue ( 402 ) and 
sends it to all clients which are subscribed to the container , 
which the notification concerns ( 403 ) . After all clients 
confirm reception of the notification , or a timeout occurs 
( 404 ) the notification is removed from the outgoing queue 
( 405 ) . 
[ 0053 ] If a client does not respond within a predefined 
amount of time ( 404 ) then it may be marked as stalled , as it 
is assumed that there is a problem with a connection to that 
client . Stalled clients may be later ignored while sending 
notifications to clients subscribed for a given container ( 403 ) 
to avoid too long breaks between notifications send to active 
clients . A stalled client may again become an active client if 
the server detects its activity in the network e.g. the client 
may send a subscription renewal request to the server . 
[ 0054 ] The notification sent to each client ( 403 ) may by 
enriched by a sequence number , which is a value associated 
with the client and is incremented before a notification is 
sent to that client . Thanks to this value , the client may notice 
that it missed some notifications and perform a rescue 
procedure e.g. it may unsubscribe and subscribe again to the 
observed containers . 
[ 0055 ] FIG . 5 presents a diagram of the system according 
to the present invention . The system is a synchronization 
server machine . 
[ 0056 ] The system may be realized using dedicated com 
ponents or custom made FPGA or ASIC circuits . The system 
comprises a data bus ( 501 ) communicatively coupled to a 
Memory ( 504 ) . Additionally , other components of the sys 
tem are communicatively coupled to the system bus ( 501 ) so 
that they may be managed by a Controller ( 505 ) . 
[ 0057 ] The Memory ( 504 ) may store computer program or 
programs executed by the Controller ( 505 ) in order to 
execute steps of the method according to the present inven 
tion . 
[ 0058 ] A Communication Module ( 503 ) is configured to 
facilitate communication between the server and the clients 
that register in a Subscriptions Register ( 507 ) by providing 
their address data as well as containers subscription param 
eters . 



US 2020/0236165 A1 Jul . 23 , 2020 
4 

[ 0059 ] A Containers Map Manager ( 502 ) is responsible for 
managing the containers map according the notifications 
from the underlying database . 
[ 0060 ] Another unit is a Change Information Merger Mod 
ule ( 508 ) configured to merge information comprised in the 
containers map as shown with reference to FIG . 2 . 
[ 0061 ] Lastly , an Outgoing Notifications Queue Manager 
( 506 ) is responsible for managing the outgoing queue as per 
details shown with reference to FIG . 4 . 
[ 0062 ] FIG . 6 presents a high level method according to 
the present invention . The process starts at step ( 601 ) from 
providing a plurality of data objects in a database . Subse 
quently , there is provided ( 602 ) at least one container 
comprising at least one object . Next , there is a step of 
receiving ( 603 ) a notification that at least one of the objects 
of said at least one container has changed and verifying 
( 604 ) whether a client device has subscribed for notifications 
regarding changes concerning said container . Lastly , for 
each subscribed client , there is executed a step of providing 
( 605 ) a push notification , comprising metadata of said 
objects , that said container data has changed . 
[ 0063 ] Thanks to the merging of the update information 
( 240 ) the server may skip preparation of some notifications . 
Owing to the fact that change notifications and in some cases 
synchronization notifications are prepared only once regard 
less of the number of clients , the server may reduce the 
number of accesses to the underlying database which are the 
most CPU intensive tasks ( 310 , 320 ) . By keeping track of 
the amount of memory used by the notifications ( 303 ) this 
solution guarantees that the server does not exceed its 
memory limits . 
[ 0064 ] Waiting for confirmation that notifications send to 
clients were received and processed by them ( 404 ) guaran 
tees that clients with lower processing power are not over 
loaded by the notifications send by the server . Keeping the 
process which prepares notifications ( FIG . 3 ) separate from 
the process which sends those notifications ( FIG . 4 ) guar 
antees that operations which may be potentially blocked for 
the longest periods of time like the database access and the 
network access do not influence each other . Therefore , the 
invention provides a useful , concrete and tangible result . 
[ 0065 ] At least parts of the methods according to the 
invention may be computer implemented . Accordingly , the 
present invention may take the form of an entirely hardware 
embodiment , an entirely software embodiment ( including 
firmware , resident software , micro - code , etc. ) or an embodi 
ment combining software and hardware aspects that may all 
generally be referred to herein as a “ circuit ” , “ module ” or 
" system ” . 
[ 0066 ] Furthermore , the present invention may take the 
form of a computer program product embodied in any 
tangible medium of expression having computer usable 
program code embodied in the medium . 
[ 0067 ] It can be easily recognized , by one skilled in the art , 
that the aforementioned method for synchronization of 
media objects between devices operating in a multiroom 
system may be performed and / or controlled by one or more 
computer programs . Such computer programs are typically 
executed by utilizing the computing resources in a comput 
ing device . Applications are stored on a non - transitory 
medium . An example of a non - transitory medium is a 
non - volatile memory , for example a flash memory while an 
example of a volatile memory is RAM . The computer 
instructions are executed by a processor . These memories 

are exemplary recording media for storing computer pro 
grams comprising computer - executable instructions per 
forming all the steps of the computer - implemented method 
according the technical concept presented herein . 
[ 0068 ] While the invention presented herein has been 
depicted , described , and has been defined with reference to 
particular preferred embodiments , such references and 
examples of implementation in the foregoing specification 
do not imply any limitation on the invention . It will , how 
ever , be evident that various modifications and changes may 
be made thereto without departing from the broader scope of 
the technical concept . The presented preferred embodiments 
are exemplary only , and are not exhaustive of the scope of 
the technical concept presented herein . 
[ 0069 ] Accordingly , the scope of protection is not limited 
to the preferred embodiments described in the specification , 
but is only limited by the claims that follow . 

1. A method for synchronization of media objects between 
devices , the method being characterized in that it comprises 
the steps of : 

providing ( 601 ) a plurality of data objects in a database ; 
providing ( 602 ) at least one container comprising at least 

one object ; 
receiving ( 603 ) a notification that at least one of the 

objects of said at least one container has changed ; 
verifying ( 604 ) whether a client device has subscribed for 

notifications regarding changes concerning said con 
tainer ; and 

for each subscribed client providing ( 605 ) a push notifi 
cation , comprising metadata of said container's objects , 
informing that said container's data has changed . 

2. The method according to claim 1 wherein the method 
further comprises a step of awaiting confirmations ( 124 ) of 
the push notifications received by the respective clients . 

3. The method according to claim 1 wherein said a 
container map is provided being a structure , which holds 
information about all containers which are being monitored 
by clients and information about changes of objects belong 
ing to that container . 

4. The method according to claim 3 wherein said infor 
mation about changes of objects belonging to that container 
is one of the following : 

an object was added to the container ; 
an object belonging to the container was updated ; 
an object was removed from the container . 
5. The method according to claim 4 further comprising the 

steps of verifying whether an object , for which a new change 
notification is to be generated , is already present in the 
container map and the already present change information is 
the " object added ” information and when it is and the new 
object change information is : 

a ) object updated information — then the object added 
information is kept ; 

b ) object removed information — then the change infor 
mation is removed from the container . 

6. The method according to claim 4 further comprising the 
steps of verifying whether an object , for which a new change 
notification is to be generated , is already present in the 
container map and the already present change information is 
the “ object updated ” information and when it is and the new 
object change information is : 

a ) object updated information — then the information is 
not modified ; 



US 2020/0236165 A1 Jul . 23 , 2020 
5 

b ) object removed information — then the object removed 
information is kept . 

7. The method according to claim 4 further comprising the 
steps of verifying whether an object , for which a new change 
notification is to be generated , is already present in the 
container map and the already present change information is 
the “ object removed ” information and when it is and the new 
object change information is : 

a ) object added information — then the object updated 
information is kept . 

8. The method according to claim 1 wherein the contain 
ers have a priority of processing assigned wherein the most 
important objects are transferred first and all the other 
objects are transferred according to the round robin algo 
rithm . 

9. The method according to claim 1 wherein the push 
notification sent to each client ( 403 ) comprises a sequence 
number , which is a value associated with the client and is 
incremented before a notification is sent to that client . 

10. A computer program comprising program code means 
for performing all the steps of the computer - implemented 
method according to claim 1 when said program is run on a 
computer . 

11. A computer readable medium storing computer - ex 
ecutable instructions performing all the steps of the com 
puter - implemented method according to claim 1 when 
executed on a computer . 

12. A system for synchronization of media objects 
between devices , the system being characterized in that it 
comprises : 

a data bus ( 501 ) communicatively coupled to a Memory 
( 504 ) as well as other components of the system so that 
they may be managed by a Controller ( 505 ) ; 

a Communication Module ( 503 ) is configured to facilitate 
communication between the system and clients that 
register in a Subscriptions Register ( 507 ) by providing 
their address data as well as containers subscription 
parameters ; 

a Containers Map Manager ( 502 ) responsible for manag 
ing a containers map according the notifications from 
an underlying database ; 

a Change Information Merger Module ( 508 ) configured to 
merge information comprised in the containers map ; 

an Outgoing Notifications Queue Manager ( 506 ) respon 
sible for managing the outgoing queue notifications 
under control of the Controller ( 505 ) configured to 
execute all steps of the method according to claim 1 . 


