US 20120102274A1

a2y Patent Application Publication o) Pub. No.: US 2012/0102274 A1l

a9 United States

Nonogaki 43) Pub. Date: Apr. 26, 2012
(54) MEMORY MANAGING APPARATUS, (52) US.CL 711/152; 711/147,711/E12.001;
MULTIPROCESSOR SYSTEM, AND METHOD 711/E12.091
FOR CAUSING MEMORY MANAGING
APPARATUS TO MANAGE SHARED
MEMORY
57 ABSTRACT
(75) Inventor: Nobuhiro Noenogaki, Tokyo (JP)
A memory managing apparatus manages a memory shared by
(73) Assignee: KABUSHIKI KAISHA processors. The apparatus includes an allocator, an updater
TOSHIBA, Tokyo (JP) and a releaser. The allocator secures a memory area in the
memory allocated to each processor based on a request of
(21) Appl. No.: 13/027,482 each processor and registers reference counters correspond-
ing one-to-one to the processors. The updater adds 1 to a value
(22) Filed: Feb. 15, 2011 of the reference counter corresponding to the processor man-
aging the memory area when the memory area is allocated to
(30) Foreign Application Priority Data each processor and subtracts 1 from the value of the reference
counter corresponding to the processor managing the
Oct. 26,2010 (JP) weveevvcierveeecineercenae 2010-239488 memory area when the memory area is released from the

Publication Classification

(51) Int.CL
GOGF 12/00 (2006.01)
GOGF 12/14 (2006.01)

processor to which the memory area is allocated. The releaser
releases the memory area from the processor to which the
memory area is allocated when a sum of the values of the
reference counters in the memory area updated by the updater
is 0.

~M

P_COUNT =K

AU_SIZE = AS

AU_MAX_SCALE = n

>Vs

F1 =0

FREE[1] = NULL

FREE[2] = NULL

e ©

>FL

FREE[Nn-11 = NULL

FREELn] = PNT[1,1]

PPL1]

® e

PPS

PPIK]

ELT,1]

® o

ES

ELK,N]

S=n |F2=0|(PREV = EPNTLj-1,1],NEXT = EPNT[j+1,11)

US 2012/0102274 Al

Apr. 26,2012 Sheet1o0f 17

Patent Application Publication

91

1 "9l

71— AHOW3W Q3HVHS

HOSSIO0Nd H0SSI00Hd
azl T ezl |
SNLYHYddY SNLYHYddY

INISS3I04d V1V

INIDYNYN AHOW3W

Gl

€l

Patent Application Publication Apr. 26,2012 Sheet 2 of 17 US 2012/0102274 A1

N\

INITIALIZER ——131

ALLOCATOR ——132

SHARER ——133

SEARCHER ——134

RELEASER ——135

UPDATER ——136

FIG. 2

US 2012/0102274 Al

Apr. 26,2012 Sheet 3 of 17

Patent Application Publication

H
H
H
i
| H
| H
_ i
. t
. 1
. 1
_]
_ 1]
|]
i]
_]
_ i
_]
_ H
| H
_ 1
| H
| i
| I
| I
— I
. I
. 1
| - — — — i
i . _
| |
i — rd - . N., |
|) ° ® o X pi !
i — — . "
| ° | i
_ > !
| oD - .
“ i
_]
m H
m H
m i
m]
m i
m i
m {
| — S i
| L L i
m]
“] S “
i 2 “
| <L _
" !
| 1]
1]
_ i
| H
| H
e o
e
e,
b e v ——

FIG. 3

US 2012/0102274 Al

Apr. 26,2012 Sheet 4 of 17

Patent Application Publication

—————

c
S:
ol
1 4| 9O | — —
T::A/.| C | — | -
Wl o= e | —=]e=]o0o|x]|—| oo |
MN 7L CQ EL rr_ L boed » ~
|7 |=| |2 |28 |85 |5
O 1l < | LT o L L
PWUM
<
-
<{

i e et ot 40t e e . e e S B S O ot S e S0 5 S04 4 S . . e et e 2 S0 . o .t e e e e ot e)

LP (PREV,NEXT)

F2=1/0

S

FIG. 4

Patent Application Publication Apr. 26,2012 Sheet 5 of 17 US 2012/0102274 A1

START OF
MEMORY MANAGEMENT

CONSTRUCTING MEMORY BLOCK ——S501
INITIALIZING ——S5502
ALLOCATING MEMORY ——S503
SHARING MEMORY ——S504
RELEASING MEMORY ——S505

Cw

FIG.5

Patent Application Publication Apr. 26,2012 Sheet 6 of 17 US 2012/0102274 A1

START OF
INTIALZING

UNLOCKING ——S601
SETTING POINTER ——S602
SETTING ENTRY ——S603

(END >

FIG. 6

Patent Application Publication

Apr. 26,2012

P_COUNT =K

AU_SIZE = AS

AU_MAX_SCALE = n

F1=0

FREE[1] = NULL

FREE[2] = NULL

® ©

FREE[n-11 = NULL

FREELn] = PNTL[1,1]

PPL1]

@ o

PPIK]

ELT,1]

Sheet 7 of 17

US 2012/0102274 Al

(PREV = EPNTLi-1,11,NEXT = EPNT[j+1,11)

FIG.7

Patent Application Publication Apr. 26,2012 Sheet 8 of 17 US 2012/0102274 A1

START OF
ALLOCATING MEMORY

CALCULATING REQUESTED CALE [—~—S801

LOCKING ——S802

S803
IS UNUSED ENTRY NO

REGISTERED?
YEs S804 S805
OBTAINING UNUSED DIVIDING
ENTRY
ALLOCATING @
MEMORY AREA —S806

< END)

FIG. 8

6 'Old

(IP°L1INd3 “[Z2°11LNdT) d1 0

24 S (€113

US 2012/0102274 Al

)
> m
8 ([S°1JINdT “[2°L1INGD d1 | L=2d4 | S |[¥*113
: M
v — R T
1 ([P'11INT [Z°LIINdD dT [0=24 | S |[E1]3
b e o o e o s o e o e e e o | . | I —— J

| ([P LTINS ‘L1 LIINdD d1 | L =2d SN TN E

e e e o e e e e et o et i e 8 e e s s s

Patent Application Publication

US 2012/0102274 Al

Apr. 26,2012 Sheet 10 of 17

Patent Application Publication

FL
PPS

1

c fon

1 n

KS__ o A

< | Wl 0 .

1 —l = b
T.M_AO Z | — — | T} 1|]
ul | © 1 o | L | = | @ | ¥ | — I N | T | o | &
= S__ o o N " . -
- | N ™ 1] — | e | - N~
o lm|x|o|lo]° nill IR -l B R R L =

L]

o= | o L

) LL L

<C o-

L

FIG.10

US 2012/0102274 Al

Apr. 26,2012 Sheet 11 of 17

Patent Application Publication

L1914

‘fi1usne uaniald

‘AppPNQ = }X8U<¢-Ad1d< AppNq ¢Appnq = A8Jd¢-1Xaug Appng

‘ [8]e9S733Y4 § = A8Id<-ApPpPNg ¢ 1XaU-[8]e9S]3TY4 = 1Xau<-Appng
0 = N<-Appnq

‘9|e9S = S<-Appng

‘9|eOS = S¢-AJjusne

£(8]B3S »> 2) % (AJ1Ud(y)40982IS + NE = Appng

‘(1 + 9|BOS)1l|dS = AJiusne

STINN waniad (] - 37YIS XYW NY == 8|BOS) J!I

{

i

1

‘ne uianial
‘Aipudne = 1xsu<-Aaid¢-AJpuene ‘Aijusne = Asldg¢-1Xaug-KAiiuane

‘[81e2S]3344% = AdJd¢-KJlusne ‘1xau-[8|BdS]33Y4 = 1Xaug-AJjuane

} (7NN =j Ad1usne) i
:[8e9s]d344 = AJjusne

CTINN uin3ad (I7Y0S XYW NV =< 8|BOoS)}!

} (9|e0S)1I|dS x Aijue(y

Patent Application Publication

Apr. 26,2012 Sheet 12 of 17 US 2012/0102274 A1

C

START OF
ALLOCATING MEMORY AREA

)

SECURING MEMORY AREA ——S1201
REGISTERING ENTRY POINTER ——S1202
REGISTERING REFERENCE COUNTER ——S1203
SETTING REFERENCE COUNTER ——S1204
RESPONSING ——S1205

(END >

FIG. 12

Patent Application Publication Apr. 26,2012 Sheet 13 of 17 US 2012/0102274 A1

-
/

RCa =1

RCb =0

EPNT

FIG. 13

REQ_S

p+2 XAS

START OF
SHARING MEMORY

)

SEARCHING

——351401

UPDATING REFERENCE COUNTER
(RC+1)

——51402

< END

FIG. 14

Patent Application Publication Apr. 26,2012 Sheet 14 of 17 US 2012/0102274 A1

START OF
SEARCHING
DETERMINING REFERENCE SCALE ~—S1501

CALCULATING TAIL ADDRESS [—~—S1502

CALCULATING ENTRY POINTER [—~—S1503

CALCULATING HEAD ADDRESS [—~—S1504

NO

YES 51506
NO

S1511
YES 51507

CHANGING REFERENCE SCALE

VEs S1508

/
DETERMINING SCALE @

< END >

FIG. 15

Patent Application Publication Apr. 26,2012 Sheet 15 of 17 US 2012/0102274 A1

pv

qv

START OF
RELEASING MEMORY

SEARCHING ——S1701

UPDATING REFERENCE COUNTER

(RC - 1) 51702
$1703
>RC = 0? NO
YES S1704

RETURNING FREE LIST

< END)

FIG. 17

Patent Application Publication Apr. 26,2012 Sheet 16 of 17 US 2012/0102274 A1

START OF
RETURNING FREE LIST

LOCKING ——S1801
SETTING USE FLAG ——S1802
MERGING ——S1803
UNLOCKING ——S1804

< END >

FIG. 18

US 2012/0102274 Al

Apr. 26,2012 Sheet 17 of 17

Patent Application Publication

61 "9ld

{
‘uaniad
$(l + 8|BOS ‘AJjusene pasiow)osiow
‘| + ©|BOS = S¢-AJiusne pasgiou
{
‘RJlusne = AJluane~pagisl
y ®sp9 {
‘Appng = AJjusne~pesgioul
} (Xepul > Xapu1=Appng) 4!
11X8UC-APPNQ = }X8UC-ABIAC-APPNG ‘ABJd<-APPNQ = A81d(-1X8UL-APPNQ
}espe {

‘udniau
(AIJUBNE = 1XBUL-ABIAC-A4IUBNR ‘AIIUBNE = ABIA<-1XBU<-AJ1UBNE
:[81B9S]33H4B = ABUd(<-AJlUBNE ‘1X8U'[8]|ROS]IIUL = 1X8U¢-AJjuane
} (1 == N<-ApPPNQ) 41
‘[Xepul~Appng]pesyAliusne = Appnq
‘(®|BOS >> |) _ Xapul = Xapul~Appng
(K1rueny)408zis / (peay Aijuane - AJjusne) = xapul
{
‘uinieu
(AJlUene = 1XeU<-Asdd<-A4lusne ‘AJlUBNE = ABId¢-1XOU<-AJluane
:[91B0S]93Y4B = AdId¢-AJlUBNE ‘1X0U"[8]BOS]IIH4 = 1X8uU-Kilusne
} (1= 3TVISTXVW NV == 8]|BIS) I
} (®]|BOS ‘A4jusne)asiall PIOA

US 2012/0102274 Al

MEMORY MANAGING APPARATUS,
MULTIPROCESSOR SYSTEM, AND METHOD
FOR CAUSING MEMORY MANAGING
APPARATUS TO MANAGE SHARED
MEMORY

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is based upon and claims the ben-
efit of priority from the prior Japanese Patent Application No.
2010-239488, filed on Oct. 26, 2010, the entire contents of
which are incorporated herein by reference.

FIELD

[0002] The present invention relates to amemory managing
apparatus, a multiprocessor system, and a method for causing
memory managing apparatus to manage a shared memory.

BACKGROUND

[0003] Recently, a multiprocessor system including a
shared memory and plural processors is used to process large-
capacity data such as image data. In such multiprocessor
system, it is necessary to satisfy the following first to sixth
requirements.

[0004] <First requirement> Allocation and release of the
shared memory are mutually exclusive among processors.
[0005] <Second requirement>A 16 KB to 12 MB memory
area is secured in the shared memory with respect to one piece
of'data. For example, it is necessary to secure the at least 1.3
MB continuous memory area in the shared memory with
respect to image data having 1280 by 720 pixels.

[0006] <Third requirement> The shared memory can prop-
erly be allocated even if pieces of data having different sizes
are mixed. For example, in order to simultaneously deal with
image data of 16 KB for static image and image data of 12 MB
for moving image, it is necessary to properly allocate the
shared memory even if the image data of 16 KB and the image
data of 12 MB are mixed.

[0007] <Fourth requirement> Fragmentation of the shared
memory can be prevented. Particularly, in the case that large-
capacity data such as the image data is dealt with, the frag-
mentation tends to be easily generated because of a large ratio
of'a data capacity to a capacity of the shared memory. Accord-
ingly, it is important to prevent the fragmentation in order to
deal with the large-capacity data such as the image data.
[0008] <Fifth requirement>The number of data copy times
is decreased. Particularly, in the large-capacity data such as
the image data, an amount of data transferred between the
shared memory and the processor is increased when the data
is copied. Accordingly, it is important to decrease the number
of data copy times in order to reduce a load on the multipro-
cessor system.

[0009] <Sixth requirement> Alignment between a bound-
ary of a size (for example, 256 bytes or 1024 bytes) requested
by a DMA (Direct Memory Access) module and a head
address of data is established when the data is transferred with
the DMA module. For example, in the case that the head
address of the data is “0x400100”, the alignment is estab-
lished at the boundary of a unit (256 bytes) requested by the
DMA module, thereby improving data transfer efficiency.

Apr. 26, 2012

[0010] However, the conventional memory managing
apparatus does not satisfy all the first to sixth requirements.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1isablock diagram illustrating a configuration
of'a multiprocessor system 10 of the embodiment.

[0012] FIG. 2isablock diagram illustrating a configuration
of'a memory managing apparatus 13.

[0013] FIG. 3 is a schematic diagram illustrating a data
structure of the allocation memory block A.

[0014] FIG. 4 is a schematic diagram illustrating a data
structure of the management memory block M.

[0015] FIG. 5 is a flowchart illustrating a procedure of
memory managing processing of the embodiment.

[0016] FIG. 6 is a flowchart illustrating a procedure of
initializing (S502).

[0017] FIG. 7 is a schematic diagram illustrating the data
structure of the management memory block M obtained in
initializing (S502).

[0018] FIG. 8 is a flowchart illustrating a procedure of
allocating memory (S503).

[0019] FIG. 9 is a schematic diagram illustrating a data
structure of the entry E.

[0020] FIG. 10 is a schematic diagram illustrating a data
structure of the management memory block M obtained in
obtaining unused entry.

[0021] FIG. 11 illustrates the pseudo code indicating a pro-
cedure of dividing.

[0022] FIG. 12 is a flowchart illustrating a procedure of
allocating memory area (S806).

[0023] FIG. 13 is a schematic diagram illustrating a data
structure of the memory area obtained in allocating memory
area.

[0024] FIG. 14 is a flowchart illustrating a procedure of
sharing memory (S504).

[0025] FIG. 15 is a flowchart illustrating a procedure of
searching (S1401).

[0026] FIG. 16 is a schematic diagram illustrating a data
structure of the tentative entry Ev obtained in calculating head
address.

[0027] FIG. 17 is a flowchart illustrating a procedure of
releasing memory (S505).

[0028] FIG. 18 is a flowchart illustrating a procedure of
returning free list (S1704).

[0029] FIG. 19 illustrates the pseudo code indicating a pro-
cedure of merging.

DETAILED DESCRIPTION

[0030] Embodiments will now be explained with reference
to the accompanying drawings.

[0031] Ingeneral, according to one embodiment, a memory
managing apparatus manages a memory shared by proces-
sors. The apparatus includes an allocator, an updater and a
releaser. The allocator secures a memory area in the memory
allocated to each processor based on a request of each pro-
cessor and registers reference counters corresponding one-to-
one to the processors. The updater adds 1 to a value of the
reference counter corresponding to the processor managing
the memory area when the memory area is allocated to each
processor and subtracts 1 from the value of the reference
counter corresponding to the processor managing the
memory area when the memory area is released from the
processor to which the memory area is allocated. The releaser

US 2012/0102274 Al

releases the memory area from the processor to which the
memory area is allocated when a sum of the values of the
reference counters in the memory area updated by the updater
is 0.

[0032] A multiprocessor system according to an embodi-
ment will be explained below. FIG. 1 is a block diagram
illustrating a configuration of a multiprocessor system 10 of
the embodiment.

[0033] The multiprocessor system 10 includes plural pro-
cessors 12a and 126, and a shared memory 14. The processors
12a and 125 are connected to a shared memory 14 through a
connection line 16 such as a bus or interconnect. That is, the
shared memory 14 is shared by the processors 12a and 124.
[0034] Each ofthe processors 12a and 125 is a module that
realizes a memory managing apparatus 13 and a data process-
ing apparatus 15 by starting an application program stored in
the shared memory 14. The processors 12a and 126 can
execute plural applications in parallel.

[0035] The memory managing apparatus 13 manages the
shared memory 14 shared by the plural processors 12a and
125 using a buddy system. FIG. 2 is a block diagram illus-
trating a configuration of a memory managing apparatus 13.
The memory managing apparatus 13 includes an initializer
131, an allocator 132, a sharer 133, a searcher 134, a releaser
135, and an updater 136.

[0036] Thedataprocessing apparatus 15 performs data pro-
cessing with respect to data stored in the shared memory 14.
For example, the data processing apparatus 15 is an image
processing apparatus that performs image processing to
pieces of image data such as static image data and moving
image data.

[0037] Various application programs and various pieces of
data dealt with by the data processing apparatus 15 can be
stored in the shared memory 14. For example, the shared
memory 14 is a DRAM (Direct Random Access Memory).
[0038] An allocation memory block A and a management
memory block M are constructed on the shared memory 14.
FIG. 3 is a schematic diagram illustrating a data structure of
the allocation memory block A. FIG. 4 is a schematic diagram
illustrating a data structure of the management memory block
M. The allocation memory block A is one that is allocated to
the data processing apparatus 15. The management memory
block M is one that is used by the memory managing appa-
ratus 13. The management memory block M and the alloca-
tion memory block A can be referred to by all the processors
12a and 125.

[0039] The allocation memory block A includes plural
pages. In each page, a memory area of the shared memory 14
is divided into predetermined page sizes PS. Each page may
be constructed by continuous memory areas or discontinuous
memory areas. Each page is divided into N (N=2") (n is a
positive integer) fixed-length memories (hereinafter referred
to as “allocation unit™) AUTj,1] to AU[j,N] (=1 to K, K is an
integer of at least 2). The symbol “n” is a maximum scale of
the allocation unit.

[0040] The management memory block M includes a vari-
able section VS, a free list FL, a page pointer section PPS, and
an entry section ES.

[0041] The variable section VS includes plural variables
indicating information on the allocation memory block A.
Specifically, the variable section VS includes a variable
P_COUNT indicating a page count, a variable AU_SIZE
indicating a size of the allocation unit, a variable AU_MAX_
SCALE indicating the maximum scale of the allocation unit,

Apr. 26, 2012

and a lock flag F1 of the free list. A page count K is set to the
variable P_COUNT. AS (AS=PS/N) is set to the variable
AU_SIZE. The symbol n is set to the variable AU_MAX_
SCALE. A value of 1 or O is set to the lock flag F1. The free
list FL is locked when the value of the lock flag F1 is 1, and the
free list FL is unlocked when the value of the lock flag F1 is
0.

[0042] The free list FL includes n pieces of free list infor-
mation FREE[1] to FREE[n] in each scale of the allocation
unit. Each of the pieces of free list information FREE[1] to
FREE|n] indicates an allocatable memory area. For example,
the free list information FREE[1] indicates the allocatable
memory area when the number of allocation units of one page
is 2! (that is, when the allocation unit has the scale of 1), and
the free list information FREE[n] indicates the allocatable
memory area when the number of allocation units of one page
is 2" (that is, when the allocation unit has the maximum scale).
Hereinafter, the free list information FREE[n] is referred to as
“free list information for maximum scale”.

[0043] The page pointer section PPS includes (K) page
pointers PP[1] to PP[K] as many as the pages. A head address
of each page of the allocation memory block A is set to each
of the page pointers PP[1] to PP[K]. For example, a head
address of page 1 is set to the page pointer PP[1], and a head
address of page K is set to the page pointer PP[K].

[0044] The entry section ES includes (KxN) entries E[1,1]
to E[K,N] as many as the allocation units. Each of the entries
E[1,1] to E[K,N] corresponds one-on-one to the allocation
unit. For example, the entry E[1,1] corresponds to the first
allocation unit AU[1,1] of the page 1, and the entry E[K,N]
corresponds to the Nth allocation unit AU[K,N] of page K.
[0045] Each of the entries E[1,1] to E[K,N] includes a
variable S indicating a scale of the allocation units AU[1,1] to
AU[K,N], an use flag F2, and a link pointer LP. A value of 1
or 0 is set to the use flag F2. When the value of the use flag F2
is 1, the allocation units AU[1,1] to AU[K,N] corresponding
to the entries E[1,1] to E[K,N] are in use (not allocatable).
When the value of the use flag F2 is 0, the allocation units
AU[1,1] to AU[K,N] corresponding to the entries E[1,1] to
E[K,N] are not in use (allocatable). The link pointer LP
includes a first link pointer PREV and a second link pointer
NEXT. A head address of an associated preceding entry is set
to the first link pointer PREV. A head address of an associated
subsequent entry is set to the second link pointer NEXT.
[0046] A memory managing apparatus of the embodiment
will be explained below. FIG. 5 is a flowchart illustrating a
procedure of memory managing processing of the embodi-
ment.

[0047] <Constructing memory block (S501)> The memory
managing apparatus 13 constructs the allocation memory
block A and the management memory block M on the shared
memory 14. At this point, values are set to the variable
P_COUNT, variable AU_SIZE, variable AU_MAX_SCALE,
and page pointers PP[1] to PP[K] of the management memory
block M in response to the request from the data processing
apparatus 15, respectively. No value is set to the lock flag F1.
[0048] <Initializing (S502)> The initializer 131 initializes
the management memory block M constructed in construct-
ing memory block (S501). FIG. 6 is a flowchart illustrating a
procedure of initializing (S502).

US 2012/0102274 Al

[0049] <Unlocking (S601)> The initializer 131 sets 0 (un-
locking) to thelock flag F1 of the management memory block
M.

[0050] <Setting pointer (S602)> The initializer 131 sets the
pointer APNT[1,1] with respect to the first allocation unit
AU[1,1] of page 1 to the free list information FREE|[n] for
maximum scale, and sets NULL (invalid value) to the pieces
of free list information FREE[1] to FREE[n-1] except the
free list information FREE[n] for maximum scale.

[0051] <Setting entry (S603)> The initializer 131 sets a
predetermined value to the first entry E[j,1] of each page.
Specifically, n is set to the variable S, 0 (unused) is set to the
use flag F2, the pointer (hereinafter referred to as “entry
pointer”) EPNT[j-1,1] with respect to the first entry of the
preceding page is set to the first link pointer PREV, and the
pointer EPNT[j+1,1] with respect to the first entry of the
subsequent page is set to the second link pointer NEXT. No
value is set to the entries E[1,2] to E[},N] of each page.
Therefore, the management memory block M illustrated in
FIG. 7 is obtained. FIG. 7 is a schematic diagram illustrating
the data structure of the management memory block M
obtained in initializing (S502). When setting entry (S603) is
ended, initializing (S502) is ended and allocating memory
(S503) is performed.

[0052] <Allocating memory (S503)> The allocator 132
allocates the memory area having the predetermined size to
the data processing apparatus 15 in response to the request of
the data processing apparatus 15. FIG. 8 is a flowchart illus-
trating a procedure of allocating memory (S503).

[0053] <Calculating requested scale (S801)> The allocator
132 calculates a requested scale REQ_S based on a size
(hereinafter referred to as “requested size”) REQ in a byte
unit of the memory area requested by the data processing
apparatus 15. The requested scale REQ_S is one that is nec-
essary to secure the requested size REQ. That is, the allocator
132 converts the requested size REQ in the byte unit into the
requested scale REQ_S in the scale unit. Specifically, the
allocator 132 calculates a minimum value of x satisfying
“REQ<2*xAS” of 2°xAS to 2"xAS using the requested size
REQ and the value AS of the variable AU_SIZE of FIG. 7.
The symbol “x” means a scale that is necessary to secure the
requested size REQ. The minimum value of X is the requested
scale REQ_S.

[0054] <Locking (S802)> The allocator 132 sets 1 (lock-
ing) to the lock flag F1 of the management memory block M.
Inthe casethat 1 is set to the lock flag F1 before S802 (that is,
the free list is used by another memory managing apparatus
13), the allocator 132 stands by until O (unlocking) is set to the
lock flag F1, and sets 1 to the lock flag F1 after 0 is set to the
lock flag F1.

[0055] <S803> The allocator 132 searches the entry (here-
inafter referred to as “unused entry”) in which 0 (unused) is
set to the use flag F2 of the entries registered in the free list
information FREE[REQ_S] corresponding to the requested
scale REQ_S calculated in calculating requested scale
(S801). When the unused entry is registered in the free list
information FREE[REQ_S] (YES in S803), obtaining
unused entry (S804) is performed. When the unused entry is
notregistered in the free list information FREE[REQ_S]| (NO
in S803), dividing (S805) is performed.

[0056] <Obtaining unused entry (S804)>The allocator 132
obtains the entry of a range indicated by the allocation unit
corresponding to the lead unused entry of the free list of the
unused entries registered in the free list information FREE

Apr. 26, 2012

[REQ_S] and the variable S of the first unused entry. FIG. 9 is
a schematic diagram illustrating a data structure of the entry
E. For example, as illustrated in FIG. 9, in the case that the
third entry E[1,3] of page 1 is obtained, the allocator 132 sets
the value EPNT[1,4] of the second link pointer NEXT of the
entry E[1,3] to the second link pointer NEXT of the entry
E[1,2] preceding the entry E[1,3], and sets the value EPNT
[1,2] of the first link pointer PREV of the entry E[1,3] to the
first link pointer PREV of the entry E[1,4] subsequent to the
entry E[1,3]. In other words, the allocator 132 obtains the
entry E[1,3] by rewriting the link pointers of the entries E[1,2]
and E[1,3] preceding and subsequent to the entry E[1,3].
Then, the allocator 132 sets O to the lock flag F1 (that is, the
free list is unlocked). Therefore, the management memory
block M illustrated in FIG. 10 is obtained. FIG. 10 is a
schematic diagram illustrating a data structure of the man-
agement memory block M obtained in obtaining unused
entry.

[0057] <Dividing (S805)> The allocator 132 divides the
allocation unit based on a pseudo code. FIG. 11 illustrates the
pseudo code indicating a procedure of dividing. Specifically,
the allocator 132 obtains an unused entry of the entries reg-
istered in the free list information (for example, free list
information FREE[REQ_S+1]) corresponding to a scale (for
example, scale REQ_S+1) that is larger than the scale (for
example, requested scale REQ_S) referred to in S803 by 1,
and divides the allocation unit corresponding to the unused
entry. In other words, the allocator 132 divides the allocation
unit satisfying the requested size with the scale that is larger
than the scale referred to in S803 by 1. When dividing (S805)
is ended, S803 is performed. When the unused entry does not
exist even if a set of S803 and S805 is repeated, an error
determination is made, O is set to the lock flag F1, and the
memory managing processing is ended.

[0058] <Allocating memory area (S806)> The allocator
132 allocates the memory area to the data processing appa-
ratus 15 based on the unused entry obtained in obtaining
unused entry (S804). FIG. 12 is a flowchart illustrating a
procedure of allocating memory area (S806).

[0059] <Securingmemory area (S1201)>The allocator 132
secures the memory area from a head address p correspond-
ing to the unused entry obtained in obtaining unused entry
(S804) to p+27FC—xAS. That is, the secured memory area
has the size of 2852—5xAS.

[0060] <Registering entry pointer (S1202)> The allocator
132 registers the entry pointer (that is, the head address of the
unused entry) EPNT with respect to the unused entry in a tail
end of the memory area secured in securing memory area
(S1201). That is, the allocator 132 provides the entry pointer
EPNT in the tail end of the memory area with respect to the
entry corresponding to the allocation unit appropriate for the
head address p of the memory area. Registering entry pointer
(S1202) may be omitted.

[0061] <Registering reference counter (S1203)> The allo-
cator 132 registers the reference counters (that is, the plural
reference counters that correspond one-on-one to the plural
processors 12a and 125) as many as the pieces of the memory
managing apparatus 13 in front of the entry pointer registered
in registering entry pointer (S1202). For example, in the case
that the processors 12a and 125 realize the pieces of the
memory managing apparatus 13 (that is, two pieces of the
memory managing apparatus 13 are realized), respectively,
the reference counter RCa corresponds to the processor 12a,
and the reference counter RCb corresponds to the processor

US 2012/0102274 Al

1254. At this point, O (initial value) is set to each of the plural
reference counters RCa and ROD. In the case that registering
entry pointer (S1202) is omitted, the plural reference counters
are registered in the tail end of the memory area secured in
securing memory area (S1201).

[0062] <Setting reference counter (S1204)> The allocator
132 sets 1 to the reference counter corresponding to the pro-
cessor that realizes the memory managing apparatus 13
which is a target in allocating memory area (S806). For
example, in the case that the memory managing apparatus 13
realized by the processor 12a is the target in allocating
memory area, 1 is set to the reference counter RCa corre-
sponding to the processor 12a.

[0063] <Responding (S1205)> The allocator 132 issues a
response to return the head address p corresponding to the
unused entry obtained in obtaining unused entry (S804) to the
data processing apparatus 15. Therefore, the memory area is
allocated to the data processing apparatus 15. FIG. 13 is a
schematic diagram illustrating a data structure of the memory
area obtained in allocating memory area. As illustrated in
FIG. 13, the memory area allocated to the data processing
apparatus 15 includes a data block D in which the data (for
example, image data) dealt with by the data processing appa-
ratus 15 is stored, reference counters RCa and RCb that
correspond to the processors 12a¢ and 124, and an entry
pointer EPNT with respect to the unused entry. That is, based
on the request of each of the processors 12a and 124, the
allocator 132 secures the memory area of the shared memory
14 allocated to each of the processors 12¢ and 124, and
provides the reference counters RCa and RCb which corre-
spond one-on-one to the processors 12a and 125, in each
memory area. When responding (S1205) is ended, allocating
memory (S503) is ended, and sharing memory (S504) is
performed.

[0064] <Sharing memory (S504)> The sharer 133 enables
the plural pieces of data processing apparatus 15 to share the
allocated memory area in order to avoid data copy. FIG. 14 is
a flowchart illustrating a procedure of sharing memory
(S504).

[0065] <Searching (S1401)> The searcher 134 searches the
entry corresponding to the memory area that is allocated to
the data processing apparatus 15 in allocating memory
(S503). FIG. 15 is a flowchart illustrating a procedure of
searching (S1401).

[0066] <Determining reference scale (S1501)> The
searcher 134 determines a reference scale Sr. A value of the
reference scale Sr is a minimum value of 1 of the scale or a
maximum value of n of the scale. For example, the searcher
134 determines the reference scale Sr as n.

[0067] <Calculating tail address (S1502)> The searcher
134 calculates a tentative tail address qv of a tentative entry
Ev corresponding to the reference scale Srusing the reference
scale Sr determined in determining reference scale (S1501)
and the head address p of the unused entry obtained in obtain-
ing unused entry (S804).

[0068] <Calculating entry pointer (S1503)> The searcher
134 calculates a tentative entry pointer EPNTv with respect to
the tentative entry Ev based on the tentative tail address qv
calculated in calculating tail address (S1502).

[0069] <Calculating head address (S1504)> The searcher
134 calculates a tentative head address pv of the tentative
entry Ev using the tentative tail address qv calculated in
calculating tail address (S1502), thereby obtaining the tenta-
tive entry Ev. FIG. 16 is a schematic diagram illustrating a

Apr. 26, 2012

data structure of the tentative entry Ev obtained in calculating
head address. The tentative entry Ev includes a tentative scale
Sv, a tentative use flag F2v, and a tentative link pointer LPv.
The tentative head address pv and the tentative tail address qv
mean that the tentative entry Ev is stored in a area from the
tentative head address pv to the tentative tail address qv.
[0070] <S1505> The searcher 134 compares the tentative
head address pv calculated in calculating head address
(S1504) with the head address p of the unused entry obtained
in obtaining unused entry (S804). When the tentative head
address pv is matched with the head address p of the unused
entry (YES in S1505), S1506 is performed. When the tenta-
tive head address pv is not matched with the head address p of
the unused entry (NO in S1505), changing reference scale
(S1511) is performed.

[0071] <S1506> The searcher 134 compares the reference
scale Sr determined in determining reference scale (S1501)
with the tentative scale Sv. When the tentative scale Sv is
matched with the reference scale Sr (YES in S1506), S1507 is
performed. When the tentative scale Sv is not matched with
the reference scale Sr (NO in S1506), changing reference
scale (S1511) is performed.

[0072] <S1507> The searcher 134 determines whether the
value of the use flag F2 of the actual entry E corresponding to
the tentative entry pointer EPNTv calculated in calculating
entry pointer (S1503) is 1 or not. When such value is 1 (YES
in S1507), determining scale (S1508) is performed. When
such value 0 (NO in S1507), the memory managing process-
ing is ended.

[0073] <Determining scale (S1508)> The searcher 134
determines the reference scale Sr determined in determining
reference scale (S1501) as the scale corresponding to the head
address p of unused entry obtained in obtaining unused entry
(S804). That is, the searcher 134 determines the scale of the
memory area based on the entry pointer EPNT. When deter-
mining scale (S1508) is ended, searching entry is ended, and
updating reference counter (S1402) is performed.

[0074] <Changing reference scale (S1511)> The searcher
134 changes a value of a reference scale Sr. Specifically, the
releaser 135 subtracts 1 from the value of the reference scale
Sr or adds 1 to the value of the reference scale Sr. When
changing reference scale (S1511) is ended, calculating tail
address (S1502) is performed.

[0075] <Updating reference counter (S1402)> The updater
136 adds 1 to the value of the reference counter corresponding
to the processor that realizes the memory managing apparatus
13. That is, when the memory area is allocated to each of the
processors 12a and 125, the updater 136 adds 1 to the value of
the reference counter corresponding to the processor that
manages the memory area. For example, in the case that the
processor 12a realizes the memory managing apparatus 13,
the updater 136 adds 1 to the value of the reference counter
RCa corresponding to the processor 12a. When updating
reference counter (S1402) is ended, sharing memory (S504)
is ended, and releasing memory (S505) is performed.

[0076] <Releasing memory (S505)> The releaser 135
releases the memory area from the data processing apparatus
15. FIG. 17 is a flowchart illustrating a procedure of releasing
memory (S505).

[0077] <Searching (S1701)> The searcher 134 performs
searching similarly to S1401.

[0078] <Updating reference counter (S1702)> The updater
136 subtracts 1 from the value of the reference counter cor-
responding to the processor that realizes the memory manag-

US 2012/0102274 Al

ing apparatus 13. That is, when the memory area is released
from the processor to which the shared memory 14 is allo-
cated, the updater 136 subtracts 1 from the value of the ref-
erence counter corresponding to the processor that manages
the memory area. For example, in the case that the processor
12a realizes the memory managing apparatus 13, the updater
136 subtracts 1 from the value of the reference counter RCa
corresponding to the processor 12a.

[0079] <S1703> The releaser 135 determines whether a
sum of the values of all the reference counters (for example,
reference counters RCa and RCb) is 0 or not. When the sum
is 0 (YES in S1703), returning free list (S1704) is performed.
When the sum is not 0 (NO in S1703), the memory managing
processing is ended. That is, when the sum of the values of the
plural reference counters in the memory area updated by the
updater 136 is 0, the releaser 135 releases the memory area
from the processor to which the memory area is allocated.
[0080] <Returning free list (S1704)> The releaser 135
returns the free list. FIG. 18 is a flowchart illustrating a
procedure of returning free list (S1704).

[0081] <Locking (S1801)> The releaser 135 sets the lock
flag F1 to 1 (locking). When 1 is set to the lock flag F1 (that is,
the free list is used by another memory managing apparatus
13), the releaser 135 stands by until O (unlocking) is set to the
lock flag F1, and sets 1 to the lock flag F1 after 0 is set to the
lock flag F1.

[0082] <Setting use flag (S1802)> The releaser 135 sets O
(unused) to the use flag F2 of the actual entry E corresponding
to a tentative entry pointer EPNTv.

[0083] <Merging (S1803)> The releaser 135 merges the
allocation units based on the pseudo code. FIG. 19 illustrates
the pseudo code indicating a procedure of merging. The
pseudo code of FIG. 19 indicates that merging is performed
by processing the reverse of dividing (S805) indicated by the
pseudo code of FIG. 11.

[0084] <Unlocking (S1804)> The releaser 135 sets the lock
flag F1 to 0. When unlocking is ended, the memory managing
processing is ended.

[0085] At least a portion of a memory managing apparatus
13 according to the above-described embodiments may be
composed of hardware or software. When at least a portion of
the memory managing apparatus 13 is composed of software,
a program for executing at least some functions of the
memory managing apparatus 13 may be stored in a recording
medium, such as a flexible disk or a CD-ROM, and a com-
puter may read and execute the program. The recording
medium is not limited to a removable recording medium, such
as a magnetic disk or an optical disk, but it may be a fixed
recording medium, such as a hard disk or a memory.

[0086] In addition, the program for executing at least some
functions of the memory managing apparatus 13 according to
the above-described embodiment may be distributed through
a communication line (which includes wireless communica-
tion) such as the Internet. In addition, the program may be
encoded, modulated, or compressed and then distributed by
wired communication or wireless communication such as the
Internet. Alternatively, the program may be stored in a record-
ing medium, and the recording medium having the program
stored therein may be distributed.

[0087] While certain embodiments have been described,
these embodiments have been presented by way of example
only, and are not intended to limit the scope of the inventions.
Indeed, the novel methods and systems described herein may
be embodied in a variety of other forms; furthermore, various

Apr. 26, 2012

omissions, substitutions and changes in the form of the meth-
ods and systems described herein may be made without
departing from the spirit of the inventions. The accompanying
claims and their equivalents are intended to cover such forms
or modifications as would fall within the scope and spirit of
the inventions.

1. A memory managing apparatus configured to manage a
shared memory shared by a plurality of processors, the appa-
ratus comprising:

an allocator configured to secure a memory area in the

shared memory allocated to each of the processors based
on a request of each of the processors, and register a
plurality of reference counters corresponding one-to-
one to the processors;

an updater configured to add 1 to a value of the reference

counter corresponding to the processor managing the
memory area when the memory area is allocated to each
of the processors and subtract 1 from the value of the
reference counter corresponding to the processor man-
aging the memory area when the memory area is
released from the processor to which the memory area is
allocated; and

a releaser configured to release the memory area from the

processor to which the memory area is allocated when a
sum of the values of the reference counters in the
memory area updated by the updater is O.

2. The apparatus of claim 1, wherein the allocator registers
the reference counters in a tail end of the memory area.

3. The apparatus of claim 1, wherein in a tail end of the
memory area, the allocator registers an entry pointer with
respect to an entry corresponding to an allocation unit appro-
priate for a head address of the memory area and the reference
counters in front of the entry pointer.

4. The apparatus of claim 3, further comprising a searcher
configured to determine a scale of the memory area based on
the entry pointer.

5. The apparatus of claim 4, wherein the searcher deter-
mines a reference scale, calculates a tentative tail address of a
tentative entry corresponding to the reference scale using the
reference scale and a head address of an unused entry, calcu-
lates a tentative entry pointer with respect to the tentative
entry and a tentative head address of the tentative entry based
on the tentative tail address, compares a set of the tentative
head address and the head address of the unused entry with a
set of the reference scale and a tentative scale of the tentative
entry, and determines the scale of the memory area.

6. The apparatus of claim 5, wherein the searcher deter-
mines the reference scale as the scale of the memory area
when the set of the tentative head address and the head
address of the unused entry is matched with the set of the
reference scale and the tentative scale.

7. The apparatus of claim 1, wherein the sheared memory
comprises an allocation memory block and a management
memory block, and

the allocator sets a head address of each page of the allo-

cation memory block, a scale of an allocation unit and
free list information indicative of an allocatable memory
area in each scale of the allocation unit into the manage-
ment memory block.

8. A multiprocessor system comprising:

a shared memory comprising a allocation memory block

and a management memory block; and

a plurality of processors configured to share the shared

memory, wherein each of the processors comprises:

US 2012/0102274 Al

an allocator configured to secure a memory area in the
shared memory allocated to each of the processors based
on a request of each of the processors, and register a
plurality of reference counters corresponding one-to-
one to the processors;

an updater configured to add 1 to a value of the reference

counter corresponding to the processor managing the
memory area when the memory area is allocated to each
of the processors and subtract 1 from the value of the
reference counter corresponding to the processor man-
aging the memory area when the memory area is
released from the processor to which the memory area is
allocated; and

a releaser configured to release the memory area from the

processor to which the memory area is allocated when a
sum of the values of the reference counters in the
memory area updated by the updater is O.

9. The system of claim 8, wherein the allocator registers the
reference counters in a tail end of the memory area.

10. The system of claim 8, wherein in a tail end of the
memory area, the allocator registers an entry pointer with
respect to an entry corresponding to an allocation unit appro-
priate for a head address of the memory area and the reference
counters in front of the entry pointer.

11. The system of claim 10, further comprising a searcher
configured to determine a scale of the memory area based on
the entry pointer.

12. The system of claim 11, wherein the searcher deter-
mines a reference scale, calculates a tentative tail address of a
tentative entry corresponding to the reference scale using the
reference scale and a head address of an unused entry, calcu-
lates a tentative entry pointer with respect to the tentative
entry and a tentative head address of the tentative entry based
on the tentative tail address, compares a set of the tentative
head address and the head address of the unused entry with a
set of the reference scale and a tentative scale of the tentative
entry, and determines the scale of the memory area.

13. The system of claim 12, wherein the searcher deter-
mines the reference scale as the scale of the memory area
when the set of the tentative head address and the head
address of the unused entry is matched with the set of the
reference scale and the tentative scale.

14. The system of claim 8, wherein the sheared memory
comprises an allocation memory block and a management
memory block, and

the allocator sets a head address of each page of the allo-

cation memory block, a scale of an allocation unit and

Apr. 26, 2012

free list information indicative of an allocatable memory
area in each scale of the allocation unit into the manage-
ment memory block.

15. A method for causing a memory managing apparatus to
manage a shared memory shared by a plurality of processors,
the method comprising:

securing a memory area in the shared memory allocated to

each of the processors based on a request of each of the
processors;

registering a plurality of reference counters corresponding

one-to-one to the processors;
adding 1 to a value of the reference counter corresponding
to the processor managing the memory area when the
memory area is allocated to each of the processors;

subtracting 1 from the value of the reference counter cor-
responding to the processor managing the memory area
when the memory area is released from the processor to
which the memory area is allocated; and

releasing the memory area from the processor to which the

memory area is allocated when a sum of the values ofthe
reference counters in the memory area updated by the
updater is 0.

16. The method of claim 15, wherein the reference counters
in a tail end of the memory area are registered.

17. The method of claim 15, wherein in a tail end of the
memory area, an entry pointer with respect to an entry corre-
sponding to an allocation unit appropriate for a head address
of'the memory area and the reference counters in front of the
entry pointer are registered.

18. The method of claim 17, further comprising determin-
ing a scale of the memory area based on the entry pointer.

19. The method of claim 18, wherein in determining the
scale, a reference scale is determined, a tentative tail address
of a tentative entry corresponding to the reference scale is
calculated using the reference scale and a head address of an
unused entry, a tentative entry pointer with respect to the
tentative entry and a tentative head address of the tentative
entry are calculated based on the tentative tail address, a set of
the tentative head address and the head address of the unused
entry is compared with a set of the reference scale and a
tentative scale of the tentative entry to determine the scale of
the memory area.

20. The method of claim 19, wherein in determining the
scale, the reference scale is determined as the scale of the
memory area when the set of the tentative head address and
the head address ofthe unused entry is matched with the set of
the reference scale and the tentative scale.

sk sk sk sk sk

