wo 2017/019183 A1 |]IV 0O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

2 February 2017 (02.02.2017)

WIPOIPCT

(10) International Publication Number

WO 2017/019183 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6F 9/30 (2006.01) GO6F 12/08 (2006.01)
GO6F 9/38 (2006.01) GO6T 1/20 (2006.01)

International Application Number:
PCT/US2016/036632

International Filing Date:
9 June 2016 (09.06.2016)

Filing Language: English
Publication Language: English
Priority Data:

14/810,684 28 July 2015 (28.07.2015) US

Applicant: INTELL. CORPORATION [US/US]; 2200
Mission College Boulevard, Santa Clara, California 95054

(US).

Inventors: TSENG, Janet; 16511 NW Canton St., Port-
land, Oregon 97229 (US). DEGROOD, Felix J.; 625 SW
90th Ave., Portland, Oregon 97225 (US). MIN, Alexander
W.; 5566 NW Primino Ave., Portland, Oregon 97229
(US). TSAIL Jr-Shian; 6657 NW 165th Ave., Portland,

(74

(8D

(84)

Oregon 97229 (US). TAIL, Tsung-Yuan C.; 12709 NW
Majestic Sequoia Way, Portland, Oregon 97229 (US).

Agents: TROP, Timothy N. et al.; Trop, Pruner & Hu,
P.C., 1616 S. Voss Rd., Ste. 750, Houston, Texas 77057-
2631 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

[Continued on next page]

(54) Title: PACKET PROCESSING ON GRAPHICS PROCESSING UNITS USING CONTINUOUS THREADS

(57) Abstract: In accordance with some embodiments, a continuous thread

is operated on the graphics processing unit. A continuous thread is launched

one time from the central processing unit and then it runs continuously until

INITIATE GPU
THREAD LAUNCH

GPU THREADS
LAUNCH

COLLECT INCOMING
PACKET

UPDATE GPU VISIBLE
CONTROL FLAG

POLL GPU VISIBLE
TERMINATION CONTROL

SET TERMINATOR
CONTROL FLAG

an application on the central processing unit decides to terminate the thread.
For example, the application may decide to terminate the thread in one of a
variety of situations which may be programmed in advance. For example,
upon error detection, a desire to change the way that the thread on the graph-
ics processing unit operates, or in power off, the thread may terminate. But
unless actively terminated by the central processing umit, the continuous
thread generally runs uninterrupted.

WO 2017/019183 A1 |IWATT 00T 0000 0O T O

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:
with international search report (Art. 21(3))

Declarations under Rule 4.17:
— as to the identity of the inventor (Rule 4.17(i))

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

WO 2017/019183 PCT/US2016/036632

PACKET PROCESSING ON GRAPHICS
PROCESSING UNITS USING CONTINUOUS THREADS

Background
[0001] This relates to graphics processing units and particularly to the use of

graphics processing units to handle latency sensitive applications.

[0002] Because of advances in graphics processing unit architecture, graphics
processing units are being relied upon to handle ever more complex operations.
However, in connection with latency sensitive applications, graphics processing units
have some drawbacks. Typically in order for a task to be handled by the graphics
processing unit, it must be assigned from a central processing unit. This assignment
operation involves the job passing through schedulers and command buffers that are
part of a vertical stack that generally increases the time that many simple operations
require. Because there may be a large number of these simple operations such as
launching threads on graphics processing units, assignment of such tasks to

graphics processing units in latency sensitive applications may not be effective.

[0003] Generally, despite the high programmability and parallel computation
available with graphics processing units, accelerated packet processing on graphics
processing is difficult because of the high central processing to graphics processing
unit communication overhead and high costs of launching threads on a graphics

processing unit.

[0004] The nature of network packet processing application is latency sensitivity.
Typically graphics processing unit working threads rely on the host or central
processing unit to notify the graphics processing unit when the producer data is
ready to be processed. The latency introduced from thousands of thread launches
per second plus the communication overhead between the central processing unit
and the graphics processing unit is inconsistent with the latency requirements of

network applications such as packet forwarding.

[0005] While some techniques such as batching do let kernels process a large

number of tasks in order to amortize this overhead, with streaming-type applications

WO 2017/019183 PCT/US2016/036632

2

like packet forwarding, which is sensitive to latency, batch processing is not practical.
One reason is that one can only batch a certain number of packets before being

processed.

Brief Description Of The Drawings

[0006] Some embodiments are described with respect to the following figures:

Figure 1 is a hardware depiction of one embodiment;

Figure 2 is a flow chart for one embodiment;

Figure 3 is a block diagram of a processing system according to one
embodiment;

Figure 4 is a block diagram of a processor according to one embodiment;

Figure 5 is a block diagram of a graphics processor according to one
embodiment;

Figure 6 is a block diagram of a graphics processing engine according to one
embodiment;

Figure 7 is a block diagram of another embodiment of a graphics processor;

Figure 8 is a depiction thread execution logic according to one embodiment;

Figure 9 is a block diagram of a graphics processor instruction format
according to some embodiments;

Figure 10 is a block diagram of another embodiment of a graphics processor;

Figure 11A is a block diagram of a graphics processor command format
according to some embodiments;

Figure 11B is a block diagram illustrating a graphics processor command
sequence according to some embodiments;

Figure 12 is a depiction of an exemplary graphics software architecture
according to some embodiments;

Figure 13 is a block diagram illustrating an IP core development system
according to some embodiments; and

Figure 14 is a block diagram showing an exemplary system on chip

integrated circuit according to some embodiments.

Detailed Description

WO 2017/019183 PCT/US2016/036632

3

[0007] In accordance with some embodiments, a continuous thread is operated on
the graphics processing unit. A continuous thread is launched one time from the
central processing unit and then it runs continuously until an application on the
central processing unit decides to terminate the thread. For example, the application
may decide to terminate the thread in one of a variety of situations which may be
programmed in advance. For example, upon error detection, a desire to change the
way that the thread on the graphics processing unit operates, or in power off, the
thread may terminate. But unless actively terminated by the central processing unit,

the continuous thread generally runs uninterrupted.

[0008] In some embodiments, the uninterrupted continuous thread may be
implemented by fine grained termination procedures available on some operating
systems such as Windows 8 available from Microsoft Corporation. In some cases,
the thread may be comparable to a hardware thread, at least in terms of life span, in
that the thread continues to live until such time the application decides to terminate
it. Thus it can continuously operate to handle latency sensitive operations without a
lot of communication between the central processing unit and the graphics
processing unit, which communications add to latency. Since there is only one

launch of a continuous thread latency may be reduced in some cases.

[0009] Referring to Figure 1, in some embodiments, a continuous thread is made
possible by using a shared virtual memory 26 between the graphics processing unit
12 and the central processing unit 14 in a processor-based system 10. In Figure 1,
the graphics processing unit 12 communicates with the central processing unit 14
through a level 3 or L3 cache 16 and a shared low level cache (LLC) 18. System
memory 20 may include the shared virtual memory (SVM) 26. Thus a shared virtual
memory may be accessed by both the general processing unit 12 and the central
processing unit 14 are both read and write. Communications between the shared
virtual memory 26 and the central processing unit take place by way of the shared
LLC cache 18, the level 2 cache 22 and the level one cache 24 in some

embodiments.

[0010] In some embodiments, the operating system supports fine grained graphics

processing unit preemption to allow a long running kernel to coexist with other

WO 2017/019183 PCT/US2016/036632

4

rendering display kernels. In the hardware view of the control model, the graphics
processing unit and the central processing unit communicate through a shared
address space model instead of the traditional graphics processing unit command
driven programming model. Thus in some embodiments, the graphics processing
unit can handle continuous streaming workloads. It is not limited to handling one
task at a time. In some embodiments, the model allows a graphics processing unit

and the central processing unit to interact continuously without a lot of overhead.

[0011] In one model, the central processing unit is the producer and the graphics

processing unit is the consumer. Two-way communication is possible.

[0012] When the graphics processing unit finishes processing a task assigned by
the central processing unit, the graphics processing unit makes its output available to
the central processing unit by updating a flag and making the information available to
the central processing unit in the shared virtual memory in one embodiment. At the
same time, when the central processing unit has a workload for the graphics
processing unit to handle, it can update a graphics processing unit visible control flag
that causes the graphics processing unit to obtain the workload from the shared

virtual memory.

[0013] Thus in some embodiments, only one copy of the workload and the results
is ever made. In addition, a control mechanism for communication between the
graphics processing unit and the central processing unit is possible without going
through a latency hungry driver stack. In some embodiments, as opposed to batch
processing, the continuous thread continues to exist beyond any one workload.
Persistent threads generally only last for one workload, commonly called the batch.
One advantage of the continuous thread is that it reduces the overhead involved in
repeatedly launching threads on the graphics processing unit and through the
operation of the shared virtual memory, can reduce the amount of communication

overhead between the graphics processing unit and the central processing unit.

[0014] The central processing unit application initiates determination of the

continuous thread on the graphics processing unit through application scheduling of

WO 2017/019183 PCT/US2016/036632

5

workloads. Thus, the continuous thread continues to process work without being

switched on.

[0015] In some embodiments, the sequence 30 shown in Figure 2, may be
implemented in software, hardware and/or firmware. In software and firmware
embodiments, it may be implemented in computer executed instructions stored in
one or more non-transitory computer readable media such as magnetic, optical or

semiconductor storage.

[0016] The central processing unit portion of the sequence 30 begins by initiating a
graphics processing unit thread launch as indicated in block 32. Then in incoming
packets of a packet-based workload are collected as indicated in block 34. These
packets are then made available to the graphics processing unit in a shared virtual
memory, such as the SVM 26 in Figure 1. Then the graphics processing unit visible
control flag is updated as indicated at block 36. This signals the graphics processing
unit that a workload is available in the shared virtual memory for its use. Once the
output data is ready as determined in diamond 38, the outgoing data is handled as
indicated in block 40.

[0017] Then a check at diamond 42 determines whether there is any application-
based termination in the central processing unit. A termination is a decision that a
condition exists that would cause the continuous thread to be terminated. If not, the
flow iterates and otherwise a termination control flag that is graphics processing unit

visible is updated as indicated in block 44.

[0018] The graphics processing unit flow begins when it receives the initiation of
the thread launch from the central processing unit. The graphics processing unit
thread launches in response as indicated in block 50. Then in diamond 52, the
graphics processing unit determines whether data is ready to be processed. This
may be determined from the GPU visible control flag in one embodiment. If so, the
data is processed as indicated in block 54 and the results are returned to the shared
virtual memory. Then a in a central processing unit visible control flag is updated as
indicated in block 56 to indicate that the workload is ready and to provide its location

within the shared virtual memory.

WO 2017/019183 PCT/US2016/036632

6

[0019] Next the graphics processing unit visible determination control flag is pulled
as indicated in block 58 to determine whether central processing unit based
application desires for some reason to terminate the continuous thread. If there is no
termination control flag, then the flow iterates as determined in diamond 60 and

otherwise the flow ends.

[0020] The graphics processing unit threads spin-wait for the central processing
unit flags to be updated. The central processing unit threads spin-waits for the
graphics processing unit flags to be updated. Thus, coherency for a central
processing unit and graphics processing unit is supplied by the shared virtual

memory.

[0021] In some embodiments, processing throughput for graphics processing unit
accelerated applications can be improved. In some embodiments, host to device

communication may be reduced.

[0022] While the preceding discussion is in terms of graphics and central
processing units, the concepts described herein can be applied to any group of two

more different processing units including any processor, controller or accelerator.

[0023] Figure 3 is a block diagram of a processing system 100, according to an
embodiment. In various embodiments the system 100 includes one or more
processors 102 and one or more graphics processors 108, and may be a single
processor desktop system, a multiprocessor workstation system, or a server system
having a large number of processors 102 or processor cores 107. Inon
embodiment, the system 100 is a processing platform incorporated within a system-

on-a-chip (SoC) integrated circuit for use in mobile, handheld, or embedded devices.

[0024] An embodiment of system 100 can include, or be incorporated within a
server-based gaming platform, a game console, including a game and media
console, a mobile gaming console, a handheld game console, or an online game
console. In some embodiments system 100 is a mobile phone, smart phone, tablet
computing device or mobile Internet device. Data processing system 100 can also
include, couple with, or be integrated within a wearable device, such as a smart

watch wearable device, smart eyewear device, augmented reality device, or virtual

WO 2017/019183 PCT/US2016/036632

7

reality device. In some embodiments, data processing system 100 is a television or
set top box device having one or more processors 102 and a graphical interface

generated by one or more graphics processors 108.

[0025] In some embodiments, the one or more processors 102 each include one or
more processor cores 107 to process instructions which, when executed, perform
operations for system and user software. In some embodiments, each of the one or
more processor cores 107 is configured to process a specific instruction set 109. In
some embodiments, instruction set 109 may facilitate Complex Instruction Set
Computing (CISC), Reduced Instruction Set Computing (RISC), or computing via a
Very Long Instruction Word (VLIW). Multiple processor cores 107 may each process
a different instruction set 109, which may include instructions to facilitate the
emulation of other instruction sets. Processor core 107 may also include other

processing devices, such a Digital Signal Processor (DSP).

[0026] In some embodiments, the processor 102 includes cache memory 104.
Depending on the architecture, the processor 102 can have a single internal cache
or multiple levels of internal cache. In some embodiments, the cache memory is
shared among various components of the processor 102. In some embodiments,
the processor 102 also uses an external cache (e.g., a Level-3 (L3) cache or Last
Level Cache (LLC)) (not shown), which may be shared among processor cores 107
using known cache coherency techniques. A register file 106 is additionally included
in processor 102 which may include different types of registers for storing different
types of data (e.g., integer registers, floating point registers, status registers, and an
instruction pointer register). Some registers may be general-purpose registers, while

other registers may be specific to the design of the processor 102.

[0027] In some embodiments, processor 102 is coupled to a processor bus 110 to
transmit communication signals such as address, data, or control signals between
processor 102 and other components in system 100. In one embodiment the system
100 uses an exemplary ‘hub’ system architecture, including a memory controller hub
116 and an Input Output (I/O) controller hub 130. A memory controller hub 116
facilitates communication between a memory device and other components of

system 100, while an 1/0 Controller Hub (ICH) 130 provides connections to I/O

WO 2017/019183 PCT/US2016/036632

8

devices via a local I/0 bus. In one embodiment, the logic of the memory controller

hub 116 is integrated within the processor.

[0028] Memory device 120 can be a dynamic random access memory (DRAM)
device, a static random access memory (SRAM) device, flash memory device,
phase-change memory device, or some other memory device having suitable
performance to serve as process memory. In one embodiment the memory device
120 can operate as system memory for the system 100, to store data 122 and
instructions 121 for use when the one or more processors 102 executes an
application or process. Memory controller hub 116 also couples with an optional
external graphics processor 112, which may communicate with the one or more
graphics processors 108 in processors 102 to perform graphics and media

operations.

[0029] In some embodiments, ICH 130 enables peripherals to connect to memory
device 120 and processor 102 via a high-speed I/0O bus. The I/O peripherals
include, but are not limited to, an audio controller 146, a firmware interface 128, a
wireless transceiver 126 (e.g., Wi-Fi, Bluetooth), a data storage device 124 (e.g.,
hard disk drive, flash memory, etc.), and a legacy I/0 controller 140 for coupling
legacy (e.g., Personal System 2 (PS/2)) devices to the system. One or more
Universal Serial Bus (USB) controllers 142 connect input devices, such as keyboard
and mouse 144 combinations. A network controller 134 may also couple to ICH 130.
In some embodiments, a high-performance network controller (not shown) couples to
processor bus 110. It will be appreciated that the system 100 shown is exemplary
and not limiting, as other types of data processing systems that are differently
configured may also be used. For example, the I/O controller hub 130 may be
integrated within the one or more processor 102, or the memory controller hub 116
and I/0 controller hub 130 may be integrated into a discreet external graphics

processor, such as the external graphics processor 112.

[0030] Figure 4 is a block diagram of an embodiment of a processor 200 having
one or more processor cores 202A-202N, an integrated memory controller 214, and
an integrated graphics processor 208. Those elements of Figure 4 having the same

reference numbers (or names) as the elements of any other figure herein can

WO 2017/019183 PCT/US2016/036632

9

operate or function in any manner similar to that described elsewhere herein, but are
not limited to such. Processor 200 can include additional cores up to and including
additional core 202N represented by the dashed lined boxes. Each of processor
cores 202A-202N includes one or more internal cache units 204A-204N. In some
embodiments each processor core also has access to one or more shared cached
units 206.

[0031] The internal cache units 204A-204N and shared cache units 206 represent a
cache memory hierarchy within the processor 200. The cache memory hierarchy
may include at least one level of instruction and data cache within each processor
core and one or more levels of shared mid-level cache, such as a Level 2 (L2), Level
3 (L3), Level 4 (L4), or other levels of cache, where the highest level of cache before
external memory is classified as the LLC. In some embodiments, cache coherency

logic maintains coherency between the various cache units 206 and 204A-204N.

[0032] In some embodiments, processor 200 may also include a set of one or more
bus controller units 216 and a system agent core 210. The one or more bus
controller units 216 manage a set of peripheral buses, such as one or more
Peripheral Component Interconnect buses (e.g., PCI, PCI Express). System agent
core 210 provides management functionality for the various processor components.
In some embodiments, system agent core 210 includes one or more integrated
memory controllers 214 to manage access to various external memory devices (not

shown).

[0033] In some embodiments, one or more of the processor cores 202A-202N
include support for simultaneous multi-threading. In such embodiment, the system
agent core 210 includes components for coordinating and operating cores 202A-
202N during multi-threaded processing. System agent core 210 may additionally
include a power control unit (PCU), which includes logic and components to regulate

the power state of processor cores 202A-202N and graphics processor 208.

[0034] In some embodiments, processor 200 additionally includes graphics
processor 208 to execute graphics processing operations. In some embodiments,

the graphics processor 208 couples with the set of shared cache units 206, and the

WO 2017/019183 PCT/US2016/036632

10

system agent core 210, including the one or more integrated memory controllers
214. In some embodiments, a display controller 211 is coupled with the graphics
processor 208 to drive graphics processor output to one or more coupled displays.

In some embodiments, display controller 211 may be a separate module coupled
with the graphics processor via at least one interconnect, or may be integrated within

the graphics processor 208 or system agent core 210.

[0035] In some embodiments, a ring based interconnect unit 212 is used to couple
the internal components of the processor 200. However, an alternative interconnect
unit may be used, such as a point-to-point interconnect, a switched interconnect, or

other techniques, including techniques well known in the art. In some embodiments,

graphics processor 208 couples with the ring interconnect 212 via an 1/0 link 213.

[0036] The exemplary I/0O link 213 represents at least one of multiple varieties of
I/0 interconnects, including an on package I/0 interconnect which facilitates
communication between various processor components and a high-performance
embedded memory module 218, such as an eDRAM module. In some
embodiments, each of the processor cores 202-202N and graphics processor 208

use embedded memory modules 218 as a shared Last Level Cache.

[0037] In some embodiments, processor cores 202A-202N are homogenous cores
executing the same instruction set architecture. In another embodiment, processor
cores 202A-202N are heterogeneous in terms of instruction set architecture (ISA),
where one or more of processor cores 202A-N execute a first instruction set, while at
least one of the other cores executes a subset of the first instruction set or a different
instruction set. In one embodiment processor cores 202A-202N are heterogeneous
in terms of microarchitecture, where one or more cores having a relatively higher
power consumption couple with one or more power cores having a lower power
consumption. Additionally, processor 200 can be implemented on one or more chips
or as an SoC integrated circuit having the illustrated components, in addition to other

components.

[0038] Figure 5 is a block diagram of a graphics processor 300, which may be a

discrete graphics processing unit, or may be a graphics processor integrated with a

WO 2017/019183 PCT/US2016/036632

11

plurality of processing cores. In some embodiments, the graphics processor
communicates via a memory mapped I/O interface to registers on the graphics
processor and with commands placed into the processor memory. In some
embodiments, graphics processor 300 includes a memory interface 314 to access
memory. Memory interface 314 can be an interface to local memory, one or more

internal caches, one or more shared external caches, and/or to system memory.

[0039] In some embodiments, graphics processor 300 also includes a display
controller 302 to drive display output data to a display device 320. Display controller
302 includes hardware for one or more overlay planes for the display and
composition of multiple layers of video or user interface elements. In some
embodiments, graphics processor 300 includes a video codec engine 306 to encode,
decode, or transcode media to, from, or between one or more media encoding
formats, including, but not limited to Moving Picture Experts Group (MPEG) formats
such as MPEG-2, Advanced Video Coding (AVC) formats such as H.264/MPEG-4
AVC, as well as the Society of Motion Picture & Television Engineers (SMPTE)
421M/VC-1, and Joint Photographic Experts Group (JPEG) formats such as JPEG,
and Motion JPEG (MJPEG) formats.

[0040] In some embodiments, graphics processor 300 includes a block image
transfer (BLIT) engine 304 to perform two-dimensional (2D) rasterizer operations
including, for example, bit-boundary block transfers. However, in one embodiment,
2D graphics operations are performed using one or more components of graphics
processing engine (GPE) 310. In some embodiments, graphics processing engine
310 is a compute engine for performing graphics operations, including three-

dimensional (3D) graphics operations and media operations.

[0041] In some embodiments, GPE 310 includes a 3D pipeline 312 for performing
3D operations, such as rendering three-dimensional images and scenes using
processing functions that act upon 3D primitive shapes (e.g., rectangle, triangle,
etc.). The 3D pipeline 312 includes programmable and fixed function elements that
perform various tasks within the element and/or spawn execution threads to a
3D/Media sub-system 315. While 3D pipeline 312 can be used to perform media

operations, an embodiment of GPE 310 also includes a media pipeline 316 that is

WO 2017/019183 PCT/US2016/036632

12

specifically used to perform media operations, such as video post-processing and

image enhancement.

[0042] In some embodiments, media pipeline 316 includes fixed function or
programmable logic units to perform one or more specialized media operations, such
as video decode acceleration, video de-interlacing, and video encode acceleration in
place of, or on behalf of video codec engine 306. In some embodiments, media
pipeline 316 additionally includes a thread spawning unit to spawn threads for
execution on 3D/Media sub-system 315. The spawned threads perform
computations for the media operations on one or more graphics execution units
included in 3D/Media sub-system 315.

[0043] In some embodiments, 3D/Media subsystem 315 includes logic for
executing threads spawned by 3D pipeline 312 and media pipeline 316. In one
embodiment, the pipelines send thread execution requests to 3D/Media subsystem
315, which includes thread dispatch logic for arbitrating and dispatching the various
requests to available thread execution resources. The execution resources include
an array of graphics execution units to process the 3D and media threads. In some
embodiments, 3D/Media subsystem 315 includes one or more internal caches for
thread instructions and data. In some embodiments, the subsystem also includes
shared memory, including registers and addressable memory, to share data between

threads and to store output data.

[0044] Figure 6 is a block diagram of a graphics processing engine 410 of a
graphics processor in accordance with some embodiments. In one embodiment, the
GPE 410 is a version of the GPE 310 shown in Figure 5. Elements of Figure 6
having the same reference numbers (or names) as the elements of any other figure
herein can operate or function in any manner similar to that described elsewhere

herein, but are not limited to such.

[0045] In some embodiments, GPE 410 couples with a command streamer 403,
which provides a command stream to the GPE 3D and media pipelines 412, 416. In
some embodiments, command streamer 403 is coupled to memory, which can be

system memory, or one or more of internal cache memory and shared cache

WO 2017/019183 PCT/US2016/036632

13

memory. In some embodiments, command streamer 403 receives commands from
the memory and sends the commands to 3D pipeline 412 and/or media pipeline 416.
The commands are directives fetched from a ring buffer, which stores commands for
the 3D and media pipelines 412, 416. In one embodiment, the ring buffer can
additionally include batch command buffers storing batches of multiple commands.
The 3D and media pipelines 412, 416 process the commands by performing
operations via logic within the respective pipelines or by dispatching one or more
execution threads to an execution unit array 414. In some embodiments, execution
unit array 414 is scalable, such that the array includes a variable number of

execution units based on the target power and performance level of GPE 410.

[0046] In some embodiments, a sampling engine 430 couples with memory (e.g.,
cache memory or system memory) and execution unit array 414. In some
embodiments, sampling engine 430 provides a memory access mechanism for
execution unit array 414 that allows execution array 414 to read graphics and media
data from memory. In some embodiments, sampling engine 430 includes logic to

perform specialized image sampling operations for media.

[0047] In some embodiments, the specialized media sampling logic in sampling
engine 430 includes a de-noise/de-interlace module 432, a motion estimation
module 434, and an image scaling and filtering module 436. In some embodiments,
de-noise/de-interlace module 432 includes logic to perform one or more of a de-
noise or a de-interlace algorithm on decoded video data. The de-interlace logic
combines alternating fields of interlaced video content into a single fame of video.
The de-noise logic reduces or removes data noise from video and image data. In
some embodiments, the de-noise logic and de-interlace logic are motion adaptive
and use spatial or temporal filtering based on the amount of motion detected in the
video data. In some embodiments, the de-noise/de-interlace module 432 includes

dedicated motion detection logic (e.g., within the motion estimation engine 434).

[0048] In some embodiments, motion estimation engine 434 provides hardware
acceleration for video operations by performing video acceleration functions such as
motion vector estimation and prediction on video data. The motion estimation

engine determines motion vectors that describe the transformation of image data

WO 2017/019183 PCT/US2016/036632

14

between successive video frames. In some embodiments, a graphics processor
media codec uses video motion estimation engine 434 to perform operations on
video at the macro-block level that may otherwise be too computationally intensive to
perform with a general-purpose processor. In some embodiments, motion
estimation engine 434 is generally available to graphics processor components to
assist with video decode and processing functions that are sensitive or adaptive to

the direction or magnitude of the motion within video data.

[0049] In some embodiments, image scaling and filtering module 436 performs
image-processing operations to enhance the visual quality of generated images and
video. In some embodiments, scaling and filtering module 436 processes image and
video data during the sampling operation before providing the data to execution unit

array 414.

[0050] In some embodiments, the GPE 410 includes a data port 444, which
provides an additional mechanism for graphics subsystems to access memory. In
some embodiments, data port 444 facilitates memory access for operations including
render target writes, constant buffer reads, scratch memory space reads/writes, and
media surface accesses. In some embodiments, data port 444 includes cache
memory space to cache accesses to memory. The cache memory can be a single
data cache or separated into multiple caches for the multiple subsystems that access
memory via the data port (e.g., a render buffer cache, a constant buffer cache, etc.).
In some embodiments, threads executing on an execution unit in execution unit array
414 communicate with the data port by exchanging messages via a data distribution

interconnect that couples each of the sub-systems of GPE 410.

[0051] Figure 7 is a block diagram of another embodiment of a graphics processor
500. Elements of Figure 7 having the same reference numbers (or names) as the
elements of any other figure herein can operate or function in any manner similar to

that described elsewhere herein, but are not limited to such.

[0052] In some embodiments, graphics processor 500 includes a ring interconnect
502, a pipeline front-end 504, a media engine 537, and graphics cores 580A-580N.

In some embodiments, ring interconnect 502 couples the graphics processor to other

WO 2017/019183 PCT/US2016/036632

15

processing units, including other graphics processors or one or more general-
purpose processor cores. In some embodiments, the graphics processor is one of

many processors integrated within a multi-core processing system.

[0053] In some embodiments, graphics processor 500 receives batches of
commands via ring interconnect 502. The incoming commands are interpreted by a
command streamer 503 in the pipeline front-end 504. In some embodiments,
graphics processor 500 includes scalable execution logic to perform 3D geometry
processing and media processing via the graphics core(s) 580A-580N. For 3D
geometry processing commands, command streamer 503 supplies commands to
geometry pipeline 536. For at least some media processing commands, command
streamer 503 supplies the commands to a video front end 534, which couples with a
media engine 537. In some embodiments, media engine 537 includes a Video
Quality Engine (VQE) 530 for video and image post-processing and a multi-format
encode/decode (MFX) 533 engine to provide hardware-accelerated media data
encode and decode. In some embodiments, geometry pipeline 536 and media
engine 537 each generate execution threads for the thread execution resources

provided by at least one graphics core 580A.

[0054] In some embodiments, graphics processor 500 includes scalable thread
execution resources featuring modular cores 580A-580N (sometimes referred to as
core slices), each having multiple sub-cores 550A-550N, 560A-560N (sometimes
referred to as core sub-slices). In some embodiments, graphics processor 500 can
have any number of graphics cores 580A through 580N. In some embodiments,
graphics processor 500 includes a graphics core 580A having at least a first sub-
core 550A and a second core sub-core 560A. In other embodiments, the graphics
processor is a low power processor with a single sub-core (e.g., 550A). In some
embodiments, graphics processor 500 includes multiple graphics cores 580A-580N,
each including a set of first sub-cores 550A-550N and a set of second sub-cores
560A-560N. Each sub-core in the set of first sub-cores 550A-550N includes at least
a first set of execution units 552A-552N and media/texture samplers 554A-554N.
Each sub-core in the set of second sub-cores 560A-560N includes at least a second

set of execution units 562A-562N and samplers 564A-564N. In some embodiments,

WO 2017/019183 PCT/US2016/036632

16

each sub-core 550A-550N, 560A-560N shares a set of shared resources 570A-
570N. In some embodiments, the shared resources include shared cache memory
and pixel operation logic. Other shared resources may also be included in the

various embodiments of the graphics processor.

[0055] Figure 8 illustrates thread execution logic 600 including an array of
processing elements employed in some embodiments of a GPE. Elements of
Figure 8 having the same reference numbers (or names) as the elements of any
other figure herein can operate or function in any manner similar to that described

elsewhere herein, but are not limited to such.

[0056] In some embodiments, thread execution logic 600 includes a pixel shader
602, a thread dispatcher 604, instruction cache 606, a scalable execution unit array
including a plurality of execution units 608A-608N, a sampler 610, a data cache 612,
and a data port 614. In one embodiment the included components are
interconnected via an interconnect fabric that links to each of the components. In
some embodiments, thread execution logic 600 includes one or more connections to
memory, such as system memory or cache memory, through one or more of
instruction cache 606, data port 614, sampler 610, and execution unit array 608A-
B608N. In some embodiments, each execution unit (e.g. 608A) is an individual vector
processor capable of executing multiple simultaneous threads and processing
multiple data elements in parallel for each thread. In some embodiments, execution

unit array 608A-608N includes any number individual execution units.

[0057] In some embodiments, execution unit array 608A-608N is primarily used to
execute “shader” programs. In some embodiments, the execution units in array
608A-608N execute an instruction set that includes native support for many standard
3D graphics shader instructions, such that shader programs from graphics libraries
(e.g., Direct 3D and OpenGL) are executed with a minimal translation. The
execution units support vertex and geometry processing (e.g., vertex programs,
geometry programs, vertex shaders), pixel processing (e.g., pixel shaders, fragment

shaders) and general-purpose processing (e.g., compute and media shaders).

WO 2017/019183 PCT/US2016/036632

17

[0058] Each execution unit in execution unit array 608A-608N operates on arrays of
data elements. The number of data elements is the “execution size,” or the number
of channels for the instruction. An execution channel is a logical unit of execution for
data element access, masking, and flow control within instructions. The number of
channels may be independent of the number of physical Arithmetic Logic Units
(ALUs) or Floating Point Units (FPUs) for a particular graphics processor. In some

embodiments, execution units 608A-608N support integer and floating-point data

types.

[0059] The execution unit instruction set includes single instruction multiple data
(SIMD) instructions. The various data elements can be stored as a packed data type
in a register and the execution unit will process the various elements based on the
data size of the elements. For example, when operating on a 256-bit wide vector,
the 256 bits of the vector are stored in a register and the execution unit operates on
the vector as four separate 64-bit packed data elements (Quad-Word (QW) size data
elements), eight separate 32-bit packed data elements (Double Word (DW) size data
elements), sixteen separate 16-bit packed data elements (Word (W) size data
elements), or thirty-two separate 8-bit data elements (byte (B) size data elements).

However, different vector widths and register sizes are possible.

[0060] One or more internal instruction caches (e.g., 606) are included in the thread
execution logic 600 to cache thread instructions for the execution units. In some
embodiments, one or more data caches (e.g., 612) are included to cache thread data
during thread execution. In some embodiments, sampler 610 is included to provide
texture sampling for 3D operations and media sampling for media operations. In
some embodiments, sampler 610 includes specialized texture or media sampling
functionality to process texture or media data during the sampling process before

providing the sampled data to an execution unit.

[0061] During execution, the graphics and media pipelines send thread initiation
requests to thread execution logic 600 via thread spawning and dispatch logic. In
some embodiments, thread execution logic 600 includes a local thread dispatcher
604 that arbitrates thread initiation requests from the graphics and media pipelines

and instantiates the requested threads on one or more execution units 608A-608N.

WO 2017/019183 PCT/US2016/036632

18

For example, the geometry pipeline (e.g., 536 of Figure 7) dispatches vertex
processing, tessellation, or geometry processing threads to thread execution logic
600 (Figure 8). In some embodiments, thread dispatcher 604 can also process

runtime thread spawning requests from the executing shader programs.

[0062] Once a group of geometric objects has been processed and rasterized into
pixel data, pixel shader 602 is invoked to further compute output information and
cause results to be written to output surfaces (e.g., color buffers, depth buffers,
stencil buffers, etc.). In some embodiments, pixel shader 602 calculates the values
of the various vertex attributes that are to be interpolated across the rasterized
object. In some embodiments, pixel shader 602 then executes an application
programming interface (API)-supplied pixel shader program. To execute the pixel
shader program, pixel shader 602 dispatches threads to an execution unit (e.g.,
608A) via thread dispatcher 604. In some embodiments, pixel shader 602 uses
texture sampling logic in sampler 610 to access texture data in texture maps stored
in memory. Arithmetic operations on the texture data and the input geometry data
compute pixel color data for each geometric fragment, or discards one or more pixels

from further processing.

[0063] In some embodiments, the data port 614 provides a memory access
mechanism for the thread execution logic 600 output processed data to memory for
processing on a graphics processor output pipeline. In some embodiments, the data
port 614 includes or couples to one or more cache memories (e.g., data cache 612)

to cache data for memory access via the data port.

[0064] Figure 9 is a block diagram illustrating a graphics processor instruction
formats 700 according to some embodiments. In one or more embodiment, the
graphics processor execution units support an instruction set having instructions in
multiple formats. The solid lined boxes illustrate the components that are generally
included in an execution unit instruction, while the dashed lines include components
that are optional or that are only included in a sub-set of the instructions. In some
embodiments, instruction format 700 described and illustrated are macro-

instructions, in that they are instructions supplied to the execution unit, as opposed

WO 2017/019183 PCT/US2016/036632

19

to micro-operations resulting from instruction decode once the instruction is

processed.

[0065] In some embodiments, the graphics processor execution units natively
support instructions in a 128-bit format 710. A 64-bit compacted instruction format
730 is available for some instructions based on the selected instruction, instruction
options, and number of operands. The native 128-bit format 710 provides access to
all instruction options, while some options and operations are restricted in the 64-bit
format 730. The native instructions available in the 64-bit format 730 vary by
embodiment. In some embodiments, the instruction is compacted in part using a set
of index values in an index field 713. The execution unit hardware references a set
of compaction tables based on the index values and uses the compaction table

outputs to reconstruct a native instruction in the 128-bit format 710.

[0066] For each format, instruction opcode 712 defines the operation that the
execution unit is to perform. The execution units execute each instruction in parallel
across the multiple data elements of each operand. For example, in response to an
add instruction the execution unit performs a simultaneous add operation across
each color channel representing a texture element or picture element. By default,
the execution unit performs each instruction across all data channels of the
operands. In some embodiments, instruction control field 714 enables control over
certain execution options, such as channels selection (e.g., predication) and data
channel order (e.g., swizzle). For 128-bit instructions 710 an exec-size field 716
limits the number of data channels that will be executed in parallel. In some
embodiments, exec-size field 716 is not available for use in the 64-bit compact

instruction format 730.

[0067] Some execution unit instructions have up to three operands including two
source operands, srcO 722, src1 722, and one destination 718. In some
embodiments, the execution units support dual destination instructions, where one of
the destinations is implied. Data manipulation instructions can have a third source
operand (e.g., SRC2 724), where the instruction opcode 712 determines the number
of source operands. An instruction's last source operand can be an immediate (e.g.,

hard-coded) value passed with the instruction.

WO 2017/019183 PCT/US2016/036632

20

[0068] In some embodiments, the 128-bit instruction format 710 includes an
access/address mode information 726 specifying, for example, whether direct
register addressing mode or indirect register addressing mode is used. When direct
register addressing mode is used, the register address of one or more operands is

directly provided by bits in the instruction 710.

[0069] In some embodiments, the 128-bit instruction format 710 includes an
access/address mode field 726, which specifies an address mode and/or an access
mode for the instruction. In one embodiment the access mode to define a data
access alignment for the instruction. Some embodiments support access modes
including a 16-byte aligned access mode and a 1-byte aligned access mode, where
the byte alignment of the access mode determines the access alignment of the
instruction operands. For example, when in a first mode, the instruction 710 may
use byte-aligned addressing for source and destination operands and when in a
second mode, the instruction 710 may use 16-byte-aligned addressing for all source

and destination operands.

[0070] In one embodiment, the address mode portion of the access/address mode
field 726 determines whether the instruction is to use direct or indirect addressing.
When direct register addressing mode is used bits in the instruction 710 directly
provide the register address of one or more operands. When indirect register
addressing mode is used, the register address of one or more operands may be
computed based on an address register value and an address immediate field in the

instruction.

[0071] In some embodiments instructions are grouped based on opcode 712 bit-
fields to simplify Opcode decode 740. For an 8-bit opcode, bits 4, 5, and 6 allow the
execution unit to determine the type of opcode. The precise opcode grouping shown
is merely an example. In some embodiments, a move and logic opcode group 742
includes data movement and logic instructions (e.g., move (mov), compare (cmp)).
In some embodiments, move and logic group 742 shares the five most significant
bits (MSB), where move (mov) instructions are in the form of 0000xxxxb and logic
instructions are in the form of 0001xxxxb. A flow control instruction group 744 (e.g.,

call, jump (jmp)) includes instructions in the form of 0010xxxxb (e.g., 0x20). A

WO 2017/019183 PCT/US2016/036632

21

miscellaneous instruction group 746 includes a mix of instructions, including
synchronization instructions (e.g., wait, send) in the form of 0011xxxxb (e.g., 0x30).
A parallel math instruction group 748 includes component-wise arithmetic
instructions (e.g., add, multiply (mul)) in the form of 0100xxxxb (e.g., 0x40). The
parallel math group 748 performs the arithmetic operations in parallel across data
channels. The vector math group 750 includes arithmetic instructions (e.g., dp4) in
the form of 0101xxxxb (e.g., 0x50). The vector math group performs arithmetic such

as dot product calculations on vector operands.

[0072] Figure 10 is a block diagram of another embodiment of a graphics
processor 800. Elements of Figure 10 having the same reference numbers (or
names) as the elements of any other figure herein can operate or function in any

manner similar to that described elsewhere herein, but are not limited to such.

[0073] In some embodiments, graphics processor 800 includes a graphics pipeline
820, a media pipeline 830, a display engine 840, thread execution logic 850, and a
render output pipeline 870. In some embodiments, graphics processor 800 is a
graphics processor within a multi-core processing system that includes one or more
general purpose processing cores. The graphics processor is controlled by register
writes to one or more control registers (not shown) or via commands issued to
graphics processor 800 via a ring interconnect 802. In some embodiments, ring
interconnect 802 couples graphics processor 800 to other processing components,
such as other graphics processors or general-purpose processors. Commands from
ring interconnect 802 are interpreted by a command streamer 803, which supplies

instructions to individual components of graphics pipeline 820 or media pipeline 830.

[0074] In some embodiments, command streamer 803 directs the operation of a
vertex fetcher 805 that reads vertex data from memory and executes vertex-
processing commands provided by command streamer 803. In some embodiments,
vertex fetcher 805 provides vertex data to a vertex shader 807, which performs
coordinate space transformation and lighting operations to each vertex. In some
embodiments, vertex fetcher 805 and vertex shader 807 execute vertex-processing
instructions by dispatching execution threads to execution units 852A, 852B via a
thread dispatcher 831.

WO 2017/019183 PCT/US2016/036632

22

[0075] In some embodiments, execution units 852A, 852B are an array of vector
processors having an instruction set for performing graphics and media operations.
In some embodiments, execution units 852A, 852B have an attached L1 cache 851
that is specific for each array or shared between the arrays. The cache can be
configured as a data cache, an instruction cache, or a single cache that is partitioned

to contain data and instructions in different partitions.

[0076] In some embodiments, graphics pipeline 820 includes tessellation
components to perform hardware-accelerated tessellation of 3D objects. In some
embodiments, a programmable hull shader 811 configures the tessellation
operations. A programmable domain shader 817 provides back-end evaluation of
tessellation output. A tessellator 813 operates at the direction of hull shader 811 and
contains special purpose logic to generate a set of detailed geometric objects based
on a coarse geometric model that is provided as input to graphics pipeline 820. In
some embodiments, if tessellation is not used, tessellation components 811, 813,

817 can be bypassed.

[0077] In some embodiments, complete geometric objects can be processed by a
geometry shader 819 via one or more threads dispatched to execution units 852A,
852B, or can proceed directly to the clipper 829. In some embodiments, the
geometry shader operates on entire geometric objects, rather than vertices or
patches of vertices as in previous stages of the graphics pipeline. If the tessellation
is disabled the geometry shader 819 receives input from the vertex shader 807. In
some embodiments, geometry shader 819 is programmable by a geometry shader

program to perform geometry tessellation if the tessellation units are disabled.

[0078] Before rasterization, a clipper 829 processes vertex data. The clipper 829
may be a fixed function clipper or a programmable clipper having clipping and
geometry shader functions. In some embodiments, a rasterizer/depth 873 in the
render output pipeline 870 dispatches pixel shaders to convert the geometric objects
into their per pixel representations. In some embodiments, pixel shader logic is
included in thread execution logic 850. In some embodiments, an application can
bypass the rasterizer 873 and access un-rasterized vertex data via a stream out unit
823.

WO 2017/019183 PCT/US2016/036632

23

[0079] The graphics processor 800 has an interconnect bus, interconnect fabric, or
some other interconnect mechanism that allows data and message passing amongst
the major components of the processor. In some embodiments, execution units
852A, 852B and associated cache(s) 851, texture and media sampler 854, and
texture/sampler cache 858 interconnect via a data port 856 to perform memory
access and communicate with render output pipeline components of the processor.
In some embodiments, sampler 854, caches 851, 858 and execution units 852A,

852B each have separate memory access paths.

[0080] In some embodiments, render output pipeline 870 contains a rasterizer and
depth test component 873 that converts vertex-based objects into an associated
pixel-based representation. In some embodiments, the rasterizer logic includes a
windower/masker unit to perform fixed function triangle and line rasterization. An
associated render cache 878 and depth cache 879 are also available in some
embodiments. A pixel operations component 877 performs pixel-based operations
on the data, though in some instances, pixel operations associated with 2D
operations (e.g. bit block image transfers with blending) are performed by the 2D
engine 841, or substituted at display time by the display controller 843 using overlay
display planes. In some embodiments, a shared L3 cache 875 is available to all
graphics components, allowing the sharing of data without the use of main system

memory.

[0081] In some embodiments, graphics processor media pipeline 830 includes a
media engine 837 and a video front end 834. In some embodiments, video front end
834 receives pipeline commands from the command streamer 803. In some
embodiments, media pipeline 830 includes a separate command streamer. In some
embodiments, video front-end 834 processes media commands before sending the
command to the media engine 837. In some embodiments, media engine 337
includes thread spawning functionality to spawn threads for dispatch to thread

execution logic 850 via thread dispatcher 831.

[0082] In some embodiments, graphics processor 800 includes a display engine
840. In some embodiments, display engine 840 is external to processor 800 and

couples with the graphics processor via the ring interconnect 802, or some other

WO 2017/019183 PCT/US2016/036632

24

interconnect bus or fabric. In some embodiments, display engine 840 includes a 2D
engine 841 and a display controller 843. In some embodiments, display engine 840
contains special purpose logic capable of operating independently of the 3D pipeline.
In some embodiments, display controller 843 couples with a display device (not
shown), which may be a system integrated display device, as in a laptop computer,

or an external display device attached via a display device connector.

[0083] In some embodiments, graphics pipeline 820 and media pipeline 830 are
configurable to perform operations based on multiple graphics and media
programming interfaces and are not specific to any one application programming
interface (API). In some embodiments, driver software for the graphics processor
translates API calls that are specific to a particular graphics or media library into
commands that can be processed by the graphics processor. In some
embodiments, support is provided for the Open Graphics Library (OpenGL) and
Open Computing Language (OpenCL) from the Khronos Group, the Direct3D library
from the Microsoft Corporation, or support may be provided to both OpenGL and
D3D. Support may also be provided for the Open Source Computer Vision Library
(OpenCV). A future APl with a compatible 3D pipeline would also be supported if a
mapping can be made from the pipeline of the future API to the pipeline of the

graphics processor.

[0084] Figure 11A is a block diagram illustrating a graphics processor command
format 900 according to some embodiments. Figure 11B is a block diagram
illustrating a graphics processor command sequence 910 according to an
embodiment. The solid lined boxes in Figure 11A illustrate the components that are
generally included in a graphics command while the dashed lines include
components that are optional or that are only included in a sub-set of the graphics
commands. The exemplary graphics processor command format 900 of Figure 11A
includes data fields to identify a target client 902 of the command, a command
operation code (opcode) 904, and the relevant data 906 for the command. A sub-

opcode 905 and a command size 908 are also included in some commands.

[0085] In some embodiments, client 902 specifies the client unit of the graphics

device that processes the command data. In some embodiments, a graphics

WO 2017/019183 PCT/US2016/036632

25

processor command parser examines the client field of each command to condition
the further processing of the command and route the command data to the
appropriate client unit. In some embodiments, the graphics processor client units
include a memory interface unit, a render unit, a 2D unit, a 3D unit, and a media unit.
Each client unit has a corresponding processing pipeline that processes the
commands. Once the command is received by the client unit, the client unit reads
the opcode 904 and, if present, sub-opcode 905 to determine the operation to
perform. The client unit performs the command using information in data field 906.
For some commands an explicit command size 908 is expected to specify the size of
the command. In some embodiments, the command parser automatically
determines the size of at least some of the commands based on the command
opcode. In some embodiments commands are aligned via multiples of a double

word.

[0086] The flow diagram in Figure 11B shows an exemplary graphics processor
command sequence 910. In some embodiments, software or firmware of a data
processing system that features an embodiment of a graphics processor uses a
version of the command sequence shown to set up, execute, and terminate a set of
graphics operations. A sample command sequence is shown and described for
purposes of example only as embodiments are not limited to these specific
commands or to this command sequence. Moreover, the commands may be issued
as batch of commands in a command sequence, such that the graphics processor

will process the sequence of commands in at least partially concurrence.

[0087] In some embodiments, the graphics processor command sequence 910
may begin with a pipeline flush command 912 to cause any active graphics pipeline
to complete the currently pending commands for the pipeline. In some
embodiments, the 3D pipeline 922 and the media pipeline 924 do not operate
concurrently. The pipeline flush is performed to cause the active graphics pipeline to
complete any pending commands. In response to a pipeline flush, the command
parser for the graphics processor will pause command processing until the active
drawing engines complete pending operations and the relevant read caches are

invalidated. Optionally, any data in the render cache that is marked ‘dirty’ can be

WO 2017/019183 PCT/US2016/036632

26

flushed to memory. In some embodiments, pipeline flush command 912 can be
used for pipeline synchronization or before placing the graphics processor into a low

power state.

[0088] In some embodiments, a pipeline select command 913 is used when a
command sequence requires the graphics processor to explicitly switch between
pipelines. In some embodiments, a pipeline select command 913 is required only
once within an execution context before issuing pipeline commands unless the
context is to issue commands for both pipelines. In some embodiments, a pipeline
flush command is 912 is required immediately before a pipeline switch via the

pipeline select command 913.

[0089] In some embodiments, a pipeline control command 914 configures a
graphics pipeline for operation and is used to program the 3D pipeline 922 and the
media pipeline 924. In some embodiments, pipeline control command 914
configures the pipeline state for the active pipeline. In one embodiment, the pipeline
control command 914 is used for pipeline synchronization and to clear data from one
or more cache memories within the active pipeline before processing a batch of

commands.

[0090] In some embodiments, return buffer state commands 916 are used to
configure a set of return buffers for the respective pipelines to write data. Some
pipeline operations require the allocation, selection, or configuration of one or more
return buffers into which the operations write intermediate data during processing. In
some embodiments, the graphics processor also uses one or more return buffers to
store output data and to perform cross thread communication. In some
embodiments, the return buffer state 916 includes selecting the size and number of

return buffers to use for a set of pipeline operations.

[0091] The remaining commands in the command sequence differ based on the
active pipeline for operations. Based on a pipeline determination 920, the command
sequence is tailored to the 3D pipeline 922 beginning with the 3D pipeline state 930,
or the media pipeline 924 beginning at the media pipeline state 940.

WO 2017/019183 PCT/US2016/036632

27

[0092] The commands for the 3D pipeline state 930 include 3D state setting
commands for vertex buffer state, vertex element state, constant color state, depth
buffer state, and other state variables that are to be configured before 3D primitive
commands are processed. The values of these commands are determined at least
in part based the particular 3D API in use. In some embodiments, 3D pipeline state
930 commands are also able to selectively disable or bypass certain pipeline

elements if those elements will not be used.

[0093] In some embodiments, 3D primitive 932 command is used to submit 3D
primitives to be processed by the 3D pipeline. Commands and associated
parameters that are passed to the graphics processor via the 3D primitive 932
command are forwarded to the vertex fetch function in the graphics pipeline. The
vertex fetch function uses the 3D primitive 932 command data to generate vertex
data structures. The vertex data structures are stored in one or more return buffers.
In some embodiments, 3D primitive 932 command is used to perform vertex
operations on 3D primitives via vertex shaders. To process vertex shaders, 3D
pipeline 922 dispatches shader execution threads to graphics processor execution

units.

[0094] In some embodiments, 3D pipeline 922 is triggered via an execute 934
command or event. In some embodiments, a register write triggers command
execution. In some embodiments execution is triggered via a ‘go’ or ‘kick’ command
in the command sequence. In one embodiment command execution is triggered
using a pipeline synchronization command to flush the command sequence through
the graphics pipeline. The 3D pipeline will perform geometry processing for the 3D
primitives. Once operations are complete, the resulting geometric objects are
rasterized and the pixel engine colors the resulting pixels. Additional commands to
control pixel shading and pixel back end operations may also be included for those

operations.

[0095] In some embodiments, the graphics processor command sequence 910
follows the media pipeline 924 path when performing media operations. In general,
the specific use and manner of programming for the media pipeline 924 depends on

the media or compute operations to be performed. Specific media decode

WO 2017/019183 PCT/US2016/036632

28

operations may be offloaded to the media pipeline during media decode. In some
embodiments, the media pipeline can also be bypassed and media decode can be
performed in whole or in part using resources provided by one or more general
purpose processing cores. In one embodiment, the media pipeline also includes
elements for general-purpose graphics processor unit (GPGPU) operations, where
the graphics processor is used to perform SIMD vector operations using
computational shader programs that are not explicitly related to the rendering of

graphics primitives.

[0096] In some embodiments, media pipeline 924 is configured in a similar manner
as the 3D pipeline 922. A set of media pipeline state commands 940 are dispatched
or placed into in a command queue before the media object commands 942. In
some embodiments, media pipeline state commands 940 include data to configure
the media pipeline elements that will be used to process the media objects. This
includes data to configure the video decode and video encode logic within the media
pipeline, such as encode or decode format. In some embodiments, media pipeline
state commands 940 also support the use one or more pointers to “indirect” state

elements that contain a batch of state settings.

[0097] In some embodiments, media object commands 942 supply pointers to
media objects for processing by the media pipeline. The media objects include
memory buffers containing video data to be processed. In some embodiments, all
media pipeline states must be valid before issuing a media object command 942.
Once the pipeline state is configured and media object commands 942 are queued,
the media pipeline 924 is triggered via an execute command 944 or an equivalent
execute event (e.g., register write). Output from media pipeline 924 may then be
post processed by operations provided by the 3D pipeline 922 or the media pipeline
924. In some embodiments, GPGPU operations are configured and executed in a

similar manner as media operations.

[0098] Figure 12 illustrates exemplary graphics software architecture for a data
processing system 1000 according to some embodiments. In some embodiments,
software architecture includes a 3D graphics application 1010, an operating system

1020, and at least one processor 1030. In some embodiments, processor 1030

WO 2017/019183 PCT/US2016/036632

29

includes a graphics processor 1032 and one or more general-purpose processor
core(s) 1034. The graphics application 1010 and operating system 1020 each

execute in the system memory 1050 of the data processing system.

[0099] In some embodiments, 3D graphics application 1010 contains one or more
shader programs including shader instructions 1012. The shader language
instructions may be in a high-level shader language, such as the High Level Shader
Language (HLSL) or the OpenGL Shader Language (GLSL). The application also
includes executable instructions 1014 in a machine language suitable for execution
by the general-purpose processor core 1034. The application also includes graphics

objects 1016 defined by vertex data.

[0100] In some embodiments, operating system 1020 is a Microsoft® Windows®
operating system from the Microsoft Corporation, a proprietary UNIX-like operating
system, or an open source UNIX-like operating system using a variant of the Linux
kernel. When the Direct3D APl is in use, the operating system 1020 uses a front-
end shader compiler 1024 to compile any shader instructions 1012 in HLSL into a
lower-level shader language. The compilation may be a just-in-time (JIT)
compilation or the application can perform shader pre-compilation. In some
embodiments, high-level shaders are compiled into low-level shaders during the

compilation of the 3D graphics application 1010.

[0101] In some embodiments, user mode graphics driver 1026 contains a back-end
shader compiler 1027 to convert the shader instructions 1012 into a hardware
specific representation. When the OpenGL APl is in use, shader instructions 1012 in
the GLSL high-level language are passed to a user mode graphics driver 1026 for
compilation. In some embodiments, user mode graphics driver 1026 uses operating
system kernel mode functions 1028 to communicate with a kernel mode graphics
driver 1029. In some embodiments, kernel mode graphics driver 1029

communicates with graphics processor 1032 to dispatch commands and instructions.

[0102] One or more aspects of at least one embodiment may be implemented by
representative code stored on a machine-readable medium which represents and/or

defines logic within an integrated circuit such as a processor. For example, the

WO 2017/019183 PCT/US2016/036632

30

machine-readable medium may include instructions which represent various logic
within the processor. When read by a machine, the instructions may cause the
machine to fabricate the logic to perform the techniques described herein. Such
representations, known as “IP cores,” are reusable units of logic for an integrated
circuit that may be stored on a tangible, machine-readable medium as a hardware
model that describes the structure of the integrated circuit. The hardware model
may be supplied to various customers or manufacturing facilities, which load the
hardware model on fabrication machines that manufacture the integrated circuit.
The integrated circuit may be fabricated such that the circuit performs operations

described in association with any of the embodiments described herein.

[0103] Figure 13 is a block diagram illustrating an IP core development system
1100 that may be used to manufacture an integrated circuit to perform operations
according to an embodiment. The IP core development system 1100 may be used to
generate modular, re-usable designs that can be incorporated into a larger design or
used to construct an entire integrated circuit (e.g., an SOC integrated circuit). A
design facility 1130 can generate a software simulation 1110 of an IP core design in
a high level programming language (e.g., C/C++). The software simulation 1110 can
be used to design, test, and verify the behavior of the IP core using a simulation
model 1112. The simulation model 1112 may include functional, behavioral, and/or
timing simulations. A register transfer level (RTL) design can then be created or
synthesized from the simulation model 1112. The RTL design 1115 is an abstraction
of the behavior of the integrated circuit that models the flow of digital signals
between hardware registers, including the associated logic performed using the
modeled digital signals. In addition to an RTL design 1115, lower-level designs at
the logic level or transistor level may also be created, designed, or synthesized.

Thus, the particular details of the initial design and simulation may vary.

[0104] The RTL design 1115 or equivalent may be further synthesized by the
design facility into a hardware model 1120, which may be in a hardware description
language (HDL), or some other representation of physical design data. The HDL
may be further simulated or tested to verify the IP core design. The IP core design

can be stored for delivery to a 3" party fabrication facility 1165 using non-volatile

WO 2017/019183 PCT/US2016/036632

31

memory 1140 (e.g., hard disk, flash memory, or any non-volatile storage medium).
Alternatively, the IP core design may be transmitted (e.g., via the Internet) over a
wired connection 1150 or wireless connection 1160. The fabrication facility 1165
may then fabricate an integrated circuit that is based at least in part on the IP core
design. The fabricated integrated circuit can be configured to perform operations in

accordance with at least one embodiment described herein.

[0105] Figure 14 is a block diagram illustrating an exemplary system on a chip
integrated circuit 1200 that may be fabricated using one or more IP cores, according
to an embodiment. The exemplary integrated circuit includes one or more
application processors 1205 (e.g., CPUs), at least one graphics processor 1210, and
may additionally include an image processor 1215 and/or a video processor 1220,
any of which may be a modular IP core from the same or multiple different design
facilities. The integrated circuit includes peripheral or bus logic including a USB
controller 1225, UART controller 1230, an SP1/SDIO controller 1235, and an 1°S/1°C
controller 1240. Additionally, the integrated circuit can include a display device 1245
coupled to one or more of a high-definition multimedia interface (HDMI) controller
1250 and a mobile industry processor interface (MIPI) display interface 1255.
Storage may be provided by a flash memory subsystem 1260 including flash
memory and a flash memory controller. Memory interface may be provided via a
memory controller 1265 for access to SDRAM or SRAM memory devices. Some

integrated circuits additionally include an embedded security engine 1270.

[0106] Additionally, other logic and circuits may be included in the processor of
integrated circuit 1200, including additional graphics processors/cores, peripheral

interface controllers, or general purpose processor cores.
[0107] The following clauses and/or examples pertain to further embodiments:

One example embodiment may be a first processing unit implemented
method comprising initiating a continuous thread on a second processing unit,
collecting packets to be processed on the second processing unit, storing the
packets in a shared virtual memory, and notifying the second processing unit of the

availability of the packets. The method may also include wherein said first

WO 2017/019183 PCT/US2016/036632

32

processing unit is a central processing unit and said second processing unit is a
graphics processing unit. The method may also include wherein notifying includes
updating a graphics processing unit visible flag. The method may also include
determining whether to terminate the continuous thread. The method may also
include terminating the thread by setting a graphics processing unit visible flag. The
method may also include terminating the thread from an application running on the

central processing unit.

[0108] Another example embodiment may be a first processing unit implemented
method comprising receiving a signal from a second processing unit and in response
initiating a continuous thread, in response to a signal from the first processing unit,
accessing packets to be processed in a shared virtual memory, and notifying the
second processing unit when the packets have been processed. The method may
also include wherein said first processing unit is a graphics processing unit and said
second processing unit is a central processing unit. The method may also include
wherein notifying includes setting a flag visible to the central processing unit. The
method may also include storing packet processing results in said shared virtual

memory.

[0109] In another example embodiment one or more non-transitory computer
readable media storing instructions executed by a first processing unit to perform a
sequence comprising initiating a continuous thread on a second processing unit,
collecting packets to be processed on the second processing unit, storing the
packets in a shared virtual memory, and notifying the graphics processing unit of the
availability of the packets. The media may include wherein said first processing unit
IS a graphics processing unit and said second processing unit is a central processing
unit. The media may include wherein notifying includes updating a graphics
processing unit visible flag. The media may include said sequence including
determining whether to terminate the continuous thread. The media may include
said sequence including terminating the thread by setting a graphics processing unit
visible flag. The media may include said sequence including terminating the thread

from an application running on the central processing unit.

WO 2017/019183 PCT/US2016/036632

33

[0110] Another example embodiment may be an apparatus comprising a first
processing unit to receive a signal from a second processing unit and in response
initiate a continuous thread, in response to a signal from the second processing unit,
access packets to be processed in a shared virtual memory, and notify the second
processing unit when the packets have been processed, and a storage coupled to
said graphics processing unit. The apparatus may include wherein said first
processing unit is a graphics processing unit and said second processing unit is a
central processing unit. The apparatus may include wherein notifying includes
setting a flag visible to the central processing unit. The apparatus may include said
processor to store packet processing results in said shared virtual memory. The
apparatus may include a central processing unit to initiate a continuous thread on the
graphics processing unit, collect packets to be processed on the graphics processing
unit, store the packets in the shared virtual memory, and notify the graphics
processing unit of the availability of the packets. The apparatus may include wherein
notifying includes updating a graphics processing unit visible flag. The apparatus
may include said central processing unit to determine whether to terminate the
continuous thread. The apparatus may include said central processing unit to
terminate the thread by setting a graphics processing unit visible flag. The
apparatus may include said central processing unit to terminate the thread from an

application running on the central processing unit.

[0111] The graphics processing techniques described herein may be implemented
in various hardware architectures. For example, graphics functionality may be
integrated within a chipset. Alternatively, a discrete graphics processor may be
used. As still another embodiment, the graphics functions may be implemented by a

general purpose processor, including a multicore processor.

[0112] References throughout this specification to “one embodiment” or “an
embodiment” mean that a particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one implementation
encompassed within the present disclosure. Thus, appearances of the phrase “one
embodiment” or “in an embodiment” are not necessarily referring to the same

embodiment. Furthermore, the particular features, structures, or characteristics may

WO 2017/019183 PCT/US2016/036632

34

be instituted in other suitable forms other than the particular embodiment illustrated

and all such forms may be encompassed within the claims of the present application.

[0113] While a limited number of embodiments have been described, those skilled
in the art will appreciate numerous modifications and variations therefrom. It is
intended that the appended claims cover all such modifications and variations as fall

within the true spirit and scope of this disclosure.

O A WO N =

—_—

O 00 A WODN -

—_—

WO 2017/019183 PCT/US2016/036632

35

What is claimed is:

1. A first processing unit implemented method comprising:
initiating a continuous thread on a second processing unit;
collecting packets to be processed on the second processing unit;
storing the packets in a shared virtual memory; and

notifying the second processing unit of the availability of the packets.

2. The method of claim 1 wherein said first processing unit is a central

processing unit and said second processing unit is a graphics processing unit.

3. The method of claim 2 wherein notifying includes updating a graphics

processing unit visible flag.

4. The method of claim 2 including determining whether to terminate the

continuous thread.

. The method of claim 4 including terminating the thread by setting a graphics

processing unit visible flag.

6. The method of claim 2 including terminating the thread from an application

running on the central processing unit.

7. A first processing unit implemented method comprising:

receiving a signal from a second processing unit and in response Initiating a
continuous thread;

in response to a signal from the first processing unit, accessing packets to be
processed in a shared virtual memory; and

notifying the second processing unit when the packets have been processed.

8. The method of claim 7 wherein said first processing unit is a graphics

processing unit and said second processing unit is a central processing unit.

—_—

O o0 A WODN -

—_—

WO 2017/019183 PCT/US2016/036632

36

9. The method of claim 8 wherein notifying includes setting a flag visible to the

central processing unit.

10. The method of claim 8 including storing packet processing results in said

shared virtual memory.

11. One or more non-transitory computer readable media storing instructions
executed by a first processing unit to perform a sequence comprising:
initiating a continuous thread on a second processing unit;
collecting packets to be processed on the second processing unit;
storing the packets in a shared virtual memory; and

notifying the graphics processing unit of the availability of the packets.

12. The media of claim 11 wherein said first processing unit is a graphics

processing unit and said second processing unit is a central processing unit.

13. The media of claim 12 wherein notifying includes updating a graphics

processing unit visible flag.

14. The media of claim 12, said sequence including determining whether to

terminate the continuous thread.

15. The media of claim 14, said sequence including terminating the thread by

setting a graphics processing unit visible flag.

16. The media of claim 12, said sequence including terminating the thread from

an application running on the central processing unit.

17. An apparatus comprising:
a first processing unit to receive a signal from a second processing unit and in

response initiate a continuous thread, in response to a signal from the second

A WO N -

—_—

WO 2017/019183 PCT/US2016/036632

37

processing unit, access packets to be processed in a shared virtual memory, and
notify the second processing unit when the packets have been processed; and

a storage coupled to said graphics processing unit.

18. The apparatus of claim 17 wherein said first processing unit is a graphics

processing unit and said second processing unit is a central processing unit.

19. The apparatus of claim 18 wherein notifying includes setting a flag visible to

the central processing unit.

20. The apparatus of claim 18, said processor to store packet processing results

in said shared virtual memory.

21. The apparatus of claim 18 including a central processing unit to initiate a
continuous thread on the graphics processing unit, collect packets to be processed
on the graphics processing unit, store the packets in the shared virtual memory, and

notify the graphics processing unit of the availability of the packets.

22. The apparatus of claim 21 wherein notifying includes updating a graphics

processing unit visible flag.

23. The apparatus of claim 21, said central processing unit to determine whether

to terminate the continuous thread.

24. The apparatus of claim 23, said central processing unit to terminate the thread

by setting a graphics processing unit visible flag.

25. The apparatus of claim 21, said central processing unit to terminate the thread

from an application running on the central processing unit.

WO 2017/019183 PCT/US2016/036632

1/14
12 14
4 GPU CPU |/
A
16 24
U 13 cacke L1 CACHE |/
22
12 CACHE [

10_\

U e |
L SHARED LLC CACHE |

g sym [/
SYSTEM MEMORY (DDR3)

FIG. 1

PCT/US2016/036632

WO 2017/019183

/—30

2 /14

DATA
READY TO BE

PROCESSED

94

PROCESS DATA

UPDATE CPU VISIBLE

CONTROL FLAG

POLL GPU VISIBLE
TERMINATION CONTROL

FLAG

NO

60

YES

END

f—34

r
[
' o
I o
L o7
[
[
[
[
|8
[
1 <C
i L
“U or O
ol Z
I |~ D
! <
! o
1 |
[
[
[
[
" J
[
[
I
1
1
1
1
1
! T
1
o
o
L |22
1 GA
1= =
_WT
1©lca
=
EE:
! —
1
1
1
_nél\
' o

COLLECT INCOMING

/f—36

PACKET

UPDATE GPU VISIBLE

CONTROL FLAG

HANDLE OUTGOING

DATA

42

APP
TERMINATES

SET TERMINATOR
CONTROL FLAG

Y

END

FIG. 2

WO 2017/019183

3/14

PCT/US2016/036632

11
PROCESSOR CORE(S) - 107]i1
GRAPHICS cACHE || REGISTER — "
PROCESSOR(S) 104 FILE INSTRUCTION SET 1
108 — 106 109 A
I
__PROCESSOR(S)
102
| PROCESSOR BUS |
10— @
STttt MEMORY - 120
| EXTERNAL | MEMORY
| GRAPHICS ! CONTROLLER INSTRUCTIONS - 121
! PROCESSOR | HUB
L 12 116 DATA - 122
DATA STORAGE @ LEGACY 1/0
CONTROLLER
DEVICE K= -— 140
124
WIRELESS 0 USB COI\ﬂFZQOLLER(S)
TRANSCEIVER K— CONTROLLER = e - |
126 HUB | KEYBOARD /MOUSE 1
130 ! 144 :
FIRMWARE
INTERFACE <:> <:> AUDIO C&l\éTROLLER
128 240
NETWORK
CONTROLLER
134

100

FIG. 3

PCT/US2016/036632

WO 2017/019183

4 /14

/AN]E

80¢
_ ¥0SSI00Ud SOIHYHD
Tie
YITIOULNOD
AY1dSIq
v1¢ 2T — DNIY LOINNOOHILINI
9z Eﬁm_wﬁq,_oo 902 - (S)LINN THOVD QIUYHS
(S)LINN [5os m o0
|
STIRINGY 0z OLUNN! 1, L, | [(SLINN
00 L 3HOVD 5 AHOVO
INJOV W3LSAS | N0z 3400 1 ¥20¢ 30D

€1¢
0/1

81¢
(Wvy@e
“93) AHOW3W
d31ddiging

(oom d0SS3004d

PCT/US2016/036632

WO 2017/019183

5 /14

e Oct
I0IA3a
AY1dsIa
N\
Z_ N\
VIE - JOVAYILNI AYOWIW
"}w H H
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
9o | '| _ HV A__H o _
aNpN3 | 1| OTE gTe 2ie 1| Yoe 20¢
73000 | 1| anm3did WALSAS-ENS INf3did] f| aneNa 4ITI04LNOD
ozain | | “wiaaw VIGIN/ Q€ ac |!| "1ng AY1dSIa
1 1
1 1
“ __ OI€
L 1 ado
N— o0¢

d0SS3004d SOIHAVYHD

PCT/US2016/036632

WO 2017/019183

6 /14

P¥¥ - 1M0d YLvYA

1444
(3719v1v0S)
AVHYY
1IN NOILNJ3X3

ANIONT ONINdNVS

A ——
AMOWAN |
oL !
|
|
| —_
! 9EY
i Y3174/ 3TVIS IDVNI
m YEY
AHOWIN ! NOILYWILST NOILOW
NOYA ! 7ey
U1 130V1¥3LNIAA / ISIONIA
| —
! 0LV
|
|
|

r

T
ANIM3dId g€

1
1
1
“
“ AHOWAW
! WOYA
1

9T “

INMAdId VIAIW ! \

1 —_
! cov
t —{Y3INYIILS
' | |ONYWWOD
1
m
“
1
1
1
1
1
1
1
1

ANIONT ONISS300dd S3IHAYHO

PCT/US2016/036632

WO 2017/019183

7 /14

| NY9G
“mmu4mz<w
_

NO/S

—_————— ——

| NYGG
“meAlz<m
_

=
SN
I'IJLO

009

d40SS3004d
SOIHdVHY

L Ol

Y089 — JH0J S3IHAYHO

Y1799
SHA1dAYS

¥c94
SLE!

Y099 3400-9NS

V0.G

S304N0S3H A3HVYHS

Y1Ga
SHA1dAVS

Va4
SN3

Y0GS 3400-9nS

9€q
ANIT3dId
A41IN0TD

vEG
(N3 LNOY4
03dIA

€€5
XAW

0€S
J0A

€09
dINVIHLS
ANYINNOD

L€G — ANIONT VIAIW

13INNOJYHIINI
ONIY

)

70S

¢0g

PCT/US2016/036632

8 Ol

8 /14

_ ---L_—, | | I
! 1
- | _
719 i “
160d VLG i N8OS | ... aso9 | 9809 909
N3 N3 N3 IHIYD
Fic) | | NOILLONYLSNI
¢19 ! _
MWW | L
|||—|||
1 1
-_— 1 1
muﬂw,zm ?-zwoo m ve. | 0809 | V809 5 =5
1 Dm 1 Dm Dm
| | HOLYdSIa | ¥3avHS
| | QVIYHL | 13XId

WO 2017/019183

— 009

PCT/US2016/036632

WO 2017/019183

9 /14

0G/ — Ui J0j0ep —> nim&vu%s%
87/ — Ul |3]|eled —> Diﬁoﬂvumgao

9%/ — SNOSUBIRISIN—= qxxdT 100 =2p0ado @ mv_n_
1 |
v/ —104U0) MO|{ —> nxxxxgomoumnooao
77/ - 01807/ 9MOp —= GX00XQ00 = 9p0ado
qa* 0|T|C|E|V]|G L
23
300934 340340
¢¢l | 0¢L | 81L 4VA €lL 4vi
[J4S | 004S | 1S4 | T0HLNQD| XAANI|3d03d0
0€L
NOILONYLSNI
1OVdINOQD LIg-¥9
i %L vel |zer | 0e |suz| oz | vz | @
! JAOW SS3¥AAav/ SSAJV ¢OYS | TOYS | 00YS | 1S3d |3Z1S-03X3| TOYINOD | 3ad02d0
01/
NOILONYLSNI 119-8¢1
00/
S1VAYO4

NOILINYLSNI 3400 SJIHAVHO

PCT/US2016/036632

WO 2017/019183

0/8

_

6¢8
dNi3S/ dId

A

¢08

N—

€28

1N0 WVINLS

A

ﬂ

618

Em_m_e._._w A41INO3D

A

(

L18

Q3AVHS NIYINO

A

€18
MOLVT13SSIL

A

-

\

118
d3avHS TINH

)

‘

L08

\Y3AVHS X3LY3A

A

G038

-

] i R] R R R I]

d3HO13d X314¥3A
]

Ol 9l ANION3
¥3ANIY
\
ra
JHOV — |
Hidad || 7z8 || sz8 || €8 || —
——— | Sd0 || 3HOWO | [HLld3a/| [
8.8 T3XId €1 REIR 2
JHOVO | L ‘
yaanzy| | ot 1l }
~
~
o ¥3HOLYdSIC
= | , WERET
oz | ge8 4
gcg | | Ldod 1IN 168
3o | L¥Lva NOLLAJIX3[| | 3Hov)
ER[pINel @ %_m_w I 0€8
ININ3dId
43 1dWVS NOILNJ3X3 VIGIN ﬁ;
— " - Ie8
578 g I 098 N ”W
YITIOYINOD|| INIONT |! g A
AY1dSId ac_ | LE8
1 1

3INIONT
AY1dSId

“ Q m 7e8 e
' (aniona vicaw) \gna-inod oaai)
N] / /

€08

LYINNOJYHALNI
INIH

-_—

Fomw

008
40SS300Yd

dINVIHILS

ANYININGD

SOIHdVHO

WO 2017/019183 PCT/US2016/036632

11/14
GRAPHICS PROCESSOR COMMAND FORMAT
900
CLIENT | OPCODE [SUB-OPCODE] DATA | COMMAND SIZE '
902 | 904 | 905 | 906 908 !
___ I =

GRAPHICS PROCESSORlC())OMMAND SEQUENCE
10

__________________ 1

i_ PIPELINE FLUSH

_________________ 1

:’ PIPELINE SELECT

PIPELINE CONTROL
914
Y
RETURN BUFFER STATE
916
] Y
3D PIPELINE STATE MEDIA PIPELINE STATE
930 940
\]
3D PRIMITIVE MEDIA OBJECT
932 942
\]
EXECUTE EXECUTE
934 944

FIG. 11B

PCT/US2016/036632

WO 2017/019183

12 /14

Y ¥
¥E01 0c0T ¢e0l
(S)340D 3S0d¥Nnd ¥0SSII0YUd 40SS3304d
TYHANTD SOIHdYYH
A
I 4 1
6201
8701 43IAIMA SOIHAYYD
SNOILONN4 JA0W A|_|v AAOWN TINY3IN >
TANYIN SO)
1 /201
=01 7701 4311dN0D E_._w T
(19N3IdO/ A€LOIMIA "9T) [y TIdNOD}== 9201 AMONIN
|dY SOIHdYYD HIAYHS H3AIMA SOIHAYYD
— AA0ON ¥3SN
0¢01
(SO) INILSAS 5HNILYH3dO
A A
9101
S103rdo _
SOIHdVYY9 ¢101
10T SNOILONYLISNI ¥3AVYHS >
SNOILONYLISNI I319¥1LN33X3

0101

NOILYOIlddV SOIHdVHD A€

000T W3LSAS ONISS3004d V1vd

Y

ARNIE

PCT/US2016/036632

WO 2017/019183

13 /14

GOTI
ALITIOV4
NOILYO1dgv4

0ETl
ALITIOYA NDISIA
= STIT
0z1l _
(vlva Noisza |[N9I1S3d 11 oIl
WIISAHd — NOILYTNWIS
4O 1aH) 1IAONW A JUYMLA0S
J4YMAdYH NOILYTNWIS

00TI
— INJNdOTIAIA JHOD dI

PCT/US2016/036632

WO 2017/019183

14 /14

00¢I

7 N)
_ . - 1 " == 1
06T | ! Gger 1| 092l || S9er Jm__mh_um
INQH B _m.__\.,_-.“ HSY14 | [AYOWIN ey
Grel ovel SECl 0c2l Geal
AV1dSIal |oel/ sei| | O1aS 14vN asn

/1dS
Po—-=———-—-- Po—-=———-—--
1 1 1 1
! 0¢el “ ! g1zl “
| Y0SSI0Yd ! | Y0SSIO0Yd !
| 03dIA i L JOVNI
" _ ! _
4 4
0121 G0Z1
¥0SSIV0Yd (S)40SSIV0Yd
SOIHdYYD NOILYDIddV
\ /)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2016/036632

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 9/30(2006.01)I, GOOF 9/38(2006.01)I, GO6F 12/08(2006.01)I, GO6T 1/20(2006.01)I

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 9/30; GOOF 15/16; GO6F 12/02; G09G 5/36; GO6F 12/00; GO6F 15/167; GO6T 1/00; GO6F 9/38; GO6F 12/08; GO6T 1/20

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKOMPASS(KIPO internal) & keywords: continuous thread, CPU, GPU, visible flag, launch, shared
virtual memory, packet, terminate

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2006-0098022 A1 (JEFFERY A. ANDREWS et al.) 11 May 2006 1-3,7-9,11-13
See paragraphs [0063], [0068]-[0075], [0091]-[0095], [0102]-[0105], ,17-19,21-22
[0118]-[0121]; claims 9, 18; and figures 5, 10-12, 15.
Y 4-6,10,14-16, 20
,23-25
Y US 2009-0313440 A1 (YOUNG LAK KIM et al.) 17 December 2009 4-6,14-16,23-25

See paragraphs [0064]-[0071], [0093]-[0095]; and figures 13-16, 22.

Y US 2010-0045682 A1 (SIMON ANDREW FORD et al.) 25 February 2010 10,20
See paragraphs [0003]-[0008], [0048]-[0054]; claim 1; and figures 1-3B.

A US 2013-0027410 A1 (BORIS GINZBURG et al.) 31 January 2013 1-25
See paragraphs [0011]-[0027]; claim 1; and figures 1-3.

A US 2008-0276064 A1 (AAFTAB MUNSHI et al.) 06 November 2008 1-25
See paragraphs [0033]-[0055]; and figures 2-7.

|:| Further documents are listed in the continuation of Box C. See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referting to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
22 September 2016 (22.09.2016) 23 September 2016 (23.09.2016)
Name and mailing address of the [SA/KR Authorized officer
International Application Division
¢ Korean Intellectual Property Office CHIN, Sang Bum

189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea

inb;imile No. +82-42-481-8578 Telephone No. +82-42-481-8398

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2016/036632
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2006-0098022 Al 11/05/2006 EP 1498824 A2 19/01/2005
EP 1498824 A3 20/05/2009
JP 2005-025749 A 27/01/2005
JP 3886988 B2 28/02/2007
US 2004-0263519 Al 30/12/2004
US 2005-0122339 Al 09/06/2005
US 2006-0095672 Al 04/05/2006
US 6862027 B2 01/03/2005
US 7333114 B2 19/02/2008
US 7355601 B2 08/04/2008
US 2009-0313440 Al 17/12/2009 KR 10-1517835 Bl 07/05/2015
KR 10-2009-0128605 A 16/12/2009
US 8230180 B2 24/07/2012
US 2010-0045682 Al 25/02/2010 CN 101667284 A 10/03/2010
CN 101667284 B 05/06/2013
GB 0815442 DO 01/10/2008
GB 0818203 DO 12/11/2008
GB 2462860 A 24/02/2010
GB 2462860 B 16/05/2012
JP 2010-050970 A 04/03/2010
US 8675006 B2 18/03/2014
US 2013-0027410 Al 31/01/2013 CN 103718156 A 09/04/2014
EP 2737396 A2 04/06/2014
EP 2737396 A4 10/06/2015
JP 2014-522038 A 28/08/2014
JP 5933000 B2 08/06/2016
WO 2013-019350 A2 07/02/2013
WO 2013-019350 A3 10/05/2013
US 2008-0276064 Al 06/11/2008 AU 2008-239696 Al 23/10/2008
AU 2008-239696 B2 08/09/2011
AU 2008-239697 Al 23/10/2008
AU 2008-239697 B2 13/10/2011
CN 101657795 A 24/02/2010
CN 101657795 B 23/10/2013
CN 101802789 A 11/08/2010
CN 101802789 B 07/05/2014
CN 103927150 A 16/07/2014
EP 2135163 A2 23/12/2009
EP 2140352 A2 06/01/2010
EP 2146283 A2 20/01/2010
EP 2146283 A3 25/05/2016
US 2008-0276220 Al 06/11/2008
US 2008-0276261 Al 06/11/2008
US 2008-0276262 Al 06/11/2008
US 8108633 B2 31/01/2012

Form PCT/ISA/210 (patent family annex) (January 2015)

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.

PCT/US2016/036632
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 8276164 B2 25/09/2012
US 8286196 B2 09/10/2012
US 8341611 B2 25/12/2012
WO 2008-127604 A2 23/10/2008
WO 2008-127604 A3 05/02/2009
WO 2008-127610 A2 23/10/2008
WO 2008-127622 A2 23/10/2008
WO 2008-127623 A2 23/10/2008

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - wo-search-report
	Page 55 - wo-search-report
	Page 56 - wo-search-report

