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Participants as requestors using a requesting network ele-
ment request one or more tokenization processors to gener-
ate tokens that represent a sanitized version of data such that
the resultant tokens are amenable to comparison across
participants. As circumstances warrant, one or more such
tokens can be submitted to the tokenization processor(s) to
privately retrieve the original data. Role-based access con-
trol scope parameters and tokenization processor-specific
tokenization processor secrets can be embedded into revers-
ible tokens that remain invariant under updating of the
tokenization processor secrets across tokenization proces-
sors. By another approach, role-based access control scope
parameters and tokenization processor-specific tokenization
processor secrets are embedded into tokens and correspond-
ing key tokens such that upon authorized presentation of a
token by a requestor, the corresponding key token is recov-

(51) Int. CL ered so that the keying material that was used to generate
HO4L 9/32 (2006.01) ciphertext is retrievable in order to recover the correspond-
HO4L 9/40 (2006.01) ing plaintext.
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METHOD AND APPARATUS FOR
REVERSIBLE TOKENIZATION WITH
SUPPORT FOR EMBEDDABLE ROLE-BASED
ACCESS CONTROL

CROSS REFERENCE TO RELATED
APPLICATION

[0001] This application claims the benefit of U.S. Provi-
sional application No. 63/393,734 filed Jul. 29, 2022, which
is incorporated by reference in its entirety herein.

TECHNICAL FIELD

[0002] These teachings relate generally to accessing data
and more particularly to the preservation of privacy.

BACKGROUND

[0003] It is known in the prior art to tokenize data via
multiple processors such that the one or more secrets used by
each processor to effect tokenization can be updated without
requiring previously tokenized data to be retokenized to
enable effective matching of tokenized data across instances
of tokenization regardless of when tokenization occurred. It
is also known to have a requestor of tokenization ephemer-
ally blind the input data to hide its value during the tokeni-
zation process without affecting the finalized value of the
resultant token. The applicant has determined that it can be
desirable, however, to retain these properties while satisfy-
ing additional ones as explained below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 comprises a flow diagram as configured in
accordance with various embodiments of these teachings
and that illustrates the architecture of Tokenization Proces-
sors and the topology of the communications. In this par-
ticular example, the enabling apparatus includes Tokeniza-
tion Processors configured to effect tokenization,
detokenization or token translation via a corresponding
network;

[0005] FIG. 2 comprises a flow chart with a signal flow
diagram as configured in accordance with various embodi-
ments of these teachings and that illustrates parallelizable
single-round tokenization involving a Requestor, a Backend
1 and a Backend 2. A reversible token is a final output, and
its derivation involves addition and unblinding on the part of
the Requestor. The transmissions depicted in FIG. 2 may
include an overlay such as authenticated or non-authenti-
cated encryption that is subsequently decrypted, that is not
explicitly shown;

[0006] FIG. 3 comprises a flow chart with a signal flow
diagram as configured in accordance with various embodi-
ments of these teachings and that illustrates parallelizable
single-round detokenization, intended to recover a represen-
tation of the Data that was tokenized as corresponding to
FIG. 2 and involving a Requestor, a Backend 1 and a
Backend 2. The transmissions depicted in FIG. 3 may
include an overlay such as authenticated or non-authenti-
cated encryption that is subsequently decrypted, that is not
explicitly shown;

[0007] FIG. 4 comprises a flow chart with a signal flow
diagram as configured in accordance with various embodi-
ments of these teachings and that illustrates parallelizable
two-round tokenization involving a Requestor, a Backend 1
and a Backend 2. The final outputs comprise a reversible
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token and a cryptographic integrity token, and their deriva-
tion involves addition, unblinding and hashing on the part of
the Requestor. The transmissions depicted in FIG. 4 may
include an overlay such as authenticated or non-authenti-
cated encryption that is subsequently decrypted, that is not
explicitly shown;

[0008] FIG. 5 comprises a flow chart with a signal flow
diagram as configured in accordance with various embodi-
ments of these teachings and that illustrates parallelizable
two-round detokenization, intended to recover a represen-
tation of the Data that was tokenized as corresponding to
FIG. 4 and involving a Requestor, a Backend 1 and a
Backend 2. The transmissions depicted in FIG. 5 may
include an overlay such as authenticated or non-authenti-
cated encryption that is subsequently decrypted, that is not
explicitly shown;

[0009] FIG. 6 comprises a flow chart with a signal flow
diagram as configured in accordance with various embodi-
ments of these teachings and that illustrates parallelizable
two-round tokenization involving a Requestor, a Backend 1
and a Backend 2. The final outputs comprise a reversible
token and a cryptographic integrity token, and their deriva-
tion involves verification, unblinding and hashing on the
part of the Requestor. The transmissions depicted in FIG. 6
may include an overlay such as authenticated or non-
authenticated encryption that is subsequently decrypted, that
is not explicitly shown;

[0010] FIG. 7 comprises a flow chart with a signal flow
diagram as configured in accordance with various embodi-
ments of these teachings and that illustrates parallelizable
two-round detokenization, intended to recover a represen-
tation of the Data that was tokenized as corresponding to
FIG. 6 and involving a Requestor, a Backend 1 and a
Backend 2. The transmissions depicted in FIG. 7 may
include an overlay such as authenticated or non-authenti-
cated encryption that is subsequently decrypted, that is not
explicitly shown;

[0011] FIG. 8 comprises a flow chart with a signal flow
diagram as configured in accordance with various embodi-
ments of these teachings and that illustrates parallelizable
two-round tokenization involving a Requestor, a Backend 1
and a Backend 2. A reversible token is a final output, and its
derivation involves verification and unblinding on the part of
the Requestor. The transmissions depicted in FIG. 8 may
include an overlay such as authenticated or non-authenti-
cated encryption that is subsequently decrypted, that is not
explicitly shown;

[0012] FIG. 9 comprises a flow chart with a signal flow
diagram as configured in accordance with various embodi-
ments of these teachings and that illustrates parallelizable
two-round detokenization, intended to recover a represen-
tation of the Data that was tokenized as corresponding to
FIG. 8 and involving a Requestor, a Backend 1 and a
Backend 2. The transmissions depicted in FIG. 9 may
include an overlay such as authenticated or non-authenti-
cated encryption that is subsequently decrypted, that is not
explicitly shown;

[0013] FIG. 10 comprises a flow chart with a signal flow
diagram as configured in accordance with various embodi-
ments of these teachings and that illustrates parallelizable
two-round tokenization involving a Requestor, a Backend 1
and a Backend 2. A reversible token is a final output, and its
derivation involves verification and unblinding on the part of
the Requestor that follows unblinding on the part of Back-
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end 1 and Backend 2. The transmissions depicted in FIG. 10
may include an overlay such as authenticated or non-
authenticated encryption that is subsequently decrypted, that
is not explicitly shown;

[0014] FIG. 11 comprises a flow chart with a signal flow
diagram as configured in accordance with various embodi-
ments of these teachings and that illustrates parallelizable
two-round detokenization, intended to recover a represen-
tation of the Data that was tokenized as corresponding to
FIG. 10 and involving a Requestor, a Backend 1 and a
Backend 2. The transmissions depicted in FIG. 11 may
include an overlay such as authenticated or non-authenti-
cated encryption that is subsequently decrypted, that is not
explicitly shown;

[0015] FIG. 12 comprises a flow chart with a signal flow
diagram as configured in accordance with various embodi-
ments of these teachings and that illustrates parallelizable
two-round tokenization involving a Requestor, a Backend 1
and a Backend 2. A reversible token is a final output, and its
derivation involves verification and unblinding on the part of
the Requestor that follows unblinding on the part of Back-
end 1 and Backend 2. The transmissions depicted in FIG. 12
may include an overlay such as authenticated or non-
authenticated encryption that is subsequently decrypted, that
is not explicitly shown;

[0016] FIG. 13 comprises a flow chart with a signal flow
diagram as configured in accordance with various embodi-
ments of these teachings and that illustrates parallelizable
two-round detokenization, intended to recover a represen-
tation of the Data that was tokenized as corresponding to
FIG. 12 and involving a Requestor, a Backend 1 and a
Backend 2. The transmissions depicted in FIG. 13 may
include an overlay such as authenticated or non-authenti-
cated encryption that is subsequently decrypted, that is not
explicitly shown;

[0017] FIG. 14 comprises a flow chart with a signal flow
diagram as configured in accordance with various embodi-
ments of these teachings and that illustrates parallelizable
two-round tokenization involving a Requestor, a Backend 1
and a Backend 2. Derivation of the final outputs involves
addition and unblinding on the part of the Requestor, where
these outputs comprise a key token usable to derive keying
material and a token usable during detokenization to recover
the key token. The processing of FIG. 14 is related to the
direct tokenization of Data depicted in FIG. 2. The trans-
missions depicted in FIG. 14 may include an overlay such as
authenticated or non-authenticated encryption that is subse-
quently decrypted, that is not explicitly shown;

[0018] FIG. 15 comprises a flow chart with a signal flow
diagram as configured in accordance with various embodi-
ments of these teachings and that illustrates parallelizable
two-round detokenization, intended to recover the keying
material as derived from the key token of FIG. 14 and
involving a Requestor, a Backend 1 and a Backend 2. The
transmissions depicted in FIG. 15 may include an overlay
such as authenticated or non-authenticated encryption that is
subsequently decrypted, that is not explicitly shown;
[0019] FIG. 16 comprises a flow chart with a signal flow
diagram as configured in accordance with various embodi-
ments of these teachings and that illustrates parallelizable
two-round tokenization involving a Requestor, a Backend 1
and a Backend 2. Derivation of the final outputs involves
verification and unblinding on the part of the Requestor,
where these outputs comprise a key token usable to derive
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keying material and a token usable during detokenization to
recover the key token. The processing of FIG. 16 is related
to the direct tokenization of Data depicted in FIG. 12. The
transmissions depicted in FIG. 16 may include an overlay
such as authenticated or non-authenticated encryption that is
subsequently decrypted, that is not explicitly shown;

[0020] FIG. 17 comprises a flow chart with a signal flow
diagram as configured in accordance with various embodi-
ments of these teachings and that illustrates parallelizable
two-round detokenization, intended to recover the keying
material as derived from the key token of FIG. 16 and
involving a Requestor, a Backend 1 and a Backend 2. The
transmissions depicted in FIG. 17 may include an overlay
such as authenticated or non-authenticated encryption that is
subsequently decrypted, that is not explicitly shown;

[0021] FIG. 18 comprises a flow chart with a signal flow
diagram as configured in accordance with various embodi-
ments of these teachings and that illustrates parallelizable
two-round token translation involving a Requestor, a Back-
end 1 and a Backend 2. Derivation of the final outputs
involves verification, unblinding and hashing on the part of
the Requestor, where these outputs comprise a reversible
token and a cryptographic integrity token. The processing of
FIG. 18 is related to the tokenization depicted in FIG. 6,
where the scope t of FIG. 6 is converted to the scope t,,,,, of
FIG. 18. The transmissions depicted in FIG. 18 may include
an overlay such as authenticated or non-authenticated
encryption that is subsequently decrypted, that is not explic-
itly shown;

[0022] FIG. 19 comprises a flow chart with a signal flow
diagram as configured in accordance with various embodi-
ments of these teachings and that illustrates parallelizable
two-round token translation involving a Requestor, a Back-
end 1 and a Backend 2. Derivation of a reversible token as
a final output involves verification and unblinding on the
part of the Requestor that follows unblinding on the part of
Backend 1 and Backend 2. The processing of FIG. 19 is
related to the tokenization depicted in FIG. 12, where the
scope t of FIG. 12 is converted to the scope t,,,,, of FIG. 19.
The transmissions depicted in FIG. 19 may include an
overlay such as authenticated or non-authenticated encryp-
tion that is subsequently decrypted, that is not explicitly
shown;

[0023] FIG. 20 comprises a flow chart with a signal flow
diagram as configured in accordance with various embodi-
ments of these teachings and that illustrates third-party setup
of Backend 1 and Backend 2 and resetting and storage of
tokenization processor secrets. The processing of FIG. 20 is
compatible with the tokenization and detokenization of FIG.
2 and FIG. 3, respectively, as well as compatible with the
tokenization and detokenization of FIG. 4 and FIG. 5,
respectively. The transmissions depicted in FIG. 20 may
include an overlay such as authenticated or non-authenti-
cated encryption that is subsequently decrypted, that is not
explicitly shown;

[0024] FIG. 21 comprises a flow chart with a signal flow
diagram as configured in accordance with various embodi-
ments of these teachings and that illustrates third-party setup
of Backend 1 and Backend 2 and resetting and storage of
tokenization processor secrets. The processing of FIG. 21 is
compatible with the tokenization and detokenization of FIG.
14 and FIG. 15, respectively. The transmissions depicted in
FIG. 21 may include an overlay such as authenticated or
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non-authenticated  encryption that is
decrypted, that is not explicitly shown;
[0025] FIG. 22 comprises a flow chart configured in
accordance with various embodiments of these teachings
and that illustrates generating a reversible elliptic curve
point representation of Data that incorporates an optional
integrity check.

[0026] FIG. 23 comprises a flow chart configured in
accordance with various embodiments of these teachings
and that illustrates, as an alternative flow to that depicted in
FIG. 22, generating a reversible elliptic curve point repre-
sentation of Data that incorporates an optional integrity
check.

[0027] FIG. 24 comprises a flow chart configured in
accordance with various embodiments of these teachings
and that illustrates generating a non-reversible elliptic curve
point representation of Data for use in generating a token
and key token.

subsequently

DETAILED DESCRIPTION

[0028] Role-Based Access Control (RBAC) herein is actu-
ated using scope that designates one or more attributes
purportedly associated with a Requestor as submitted as part
of a tokenization request and/or a detokenization request
and/or a token translation request. Scope is used as a
qualifying or disqualifying feature in responding to such
requests. It is known to supplement Data to be tokenized
with metadata that designates purported permissions or
attributes of a tokenization Requestor, but that alone is
insufficient to achieve the desired properties. A goal of the
current invention is to embed scope-specific indicia (aka
labels) as parameters into a TOKEN if the Requestor pos-
sesses permission to tokenize the source Data under the
requested scope, and preferably to do so without need to
observe the source Data. A further goal of the current
invention is to take advantage of the scope-specific indicium
that has been embedded into a TOKEN to render the
underlying Data inaccessible without proving possession of
that scope by the Requestor, and to preferably do so without
need to observe the TOKEN. As a yet further goal, TOKENs
should be endowed with a non-malleability property in that
operating over morphed versions of TOKENSs during tokeni-
zation and/or detokenization does not offer practically
exploitable adversarial advantage. More specifically,
attempts to tokenize a TOKEN or one or more morphed
versions of such TOKEN and/or to detokenize a TOKEN or
one or more morphed versions of such TOKEN by a
Requestor or group of Requestors, where none of such
Requestors individually possesses authorization to detoken-
ize the original TOKEN, should render the responsive
results as unsuitable to substantively recover the Data. A
further property to be attained by the invention is that
tokenization and detokenization operations are compatible
with multiparty computation such that compromise of all but
one of the Tokenization Processors that respond to a request
for tokenization or detokenization or token translation is
insufficient to substantively access the underlying Data. A
yet further property is that the multiparty computation
outputs remain invariant under resplitting of the collective
secrets that are used for tokenization and/or detokenization
and/or token translation computations, where such secrets
are available compositely to the Tokenization Processors
with one or more shares of such secrets held in each
Tokenization Processor’s associated memory and updated as
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a result of resplitting. Such resplitting results in a redistri-
bution of tokenization processor secrets as updated tokeni-
zation processor secrets. A tokenization processor secret that
is held in a specific Tokenization Processor’s associated
memory is said to be a tokenization processor secret of that
Tokenization Processor. A yet further property is that given
knowledge of Data, and a TOKEN , that is generated over
Data, using known scope t,, a TOKEN that is generated
over Datay using known scope tz should be cryptographi-
cally indistinguishable [https://en.wikipedia.org/wiki/Ci-
phertext_indistinguishability] from a TOKEN,. that is gen-
erated over Data, using known scope tz, by any group of
adversaries such that none of them possesses tokenization or
detokenization permission using scope tg, where scope
t =scope t; and Data =Data,. In addition, the method must
retain its effectiveness in situations where the choices of
Data that arise in practice are feasible to exhaust over,
wherein no generally applicable solution can usefully
supplement the Data with padding that is likely to remain
inaccessible to adversaries. (If the values of such padding
are shared across all entities that might request tokenization
derived from the same Data, then the likelihood of these
values remaining secret decreases significantly. If, alterna-
tively, each Requestor supplements the Data with individu-
ally generated random padding, then TOKENSs based on the
same value of Data will fail to match or to be otherwise
usefully comparable.)

[0029] Each processor is denoted herein as a Backend. The
invention is presented primarily as involving two Backends,
namely Backend 1 and Backend 2. However, the method is
extensible to three or more Backends. The method is oper-
able using only a single Backend, although at the expense of
degraded security.

[0030] Role-Based Access Control for non-reversible
tokens: This special case can be addressed using an exten-
sion of prior-art tokenization techniques that make use of a
Translator/Coordinator (such as described in U.S. Pat. No.
11,374,910) in addition to Backends. Suppose there is a final
tokenization operation comprised of HMAC using HMAC
(Coordinator Key, scope label) as the scope-dependent
HMAC key. Then one can use (b;+b,)P as the HMAC
preimage with the same values of b, and b, for all scopes
without sacrificing scope isolation of the resultant tokens,
where b, is a secret accessible by Backend 1, b, is a secret
accessible by Backend 2, and P represents the Data to be
tokenized. This is readily extensible to three or more Back-
ends. P can be ephemerally blinded by a Requestor such that
Backend 1 and Backend 2 access eP, and e is removed from
(b, eP+b, eP), by either the Requestor or by the Coordinator,
using knowledge of the ephemeral value e. Rather than a
single Coordinator applying HMAC, a threshold signature
scheme can be applied. A threshold signature scheme can
preferably invoke proactive redistribution/refresh of shares
for increased resilience against compromise (e.g., https://dl.
acm.org/doi/10.1145/3579375.3579389).

[0031] One high-level goal achieved by the current inven-
tion is to generate a token, via tokenization processing, that
is representative of “Data” (which may comprise potentially
sensitive information such as personally identifiable infor-
mation), wherein such token is at least partially reversible,
via detokenization processing, to (directly or indirectly)
recover Data. Preferably, neither the token nor the tokeni-
zation/detokenization processing leaks Data in the absence
of collusion between the (preferably two or more) Tokeni-
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zation Processors involved in the token generation. The
resultant tokens may be “deterministic” in that they are
invariant for a given value of Data across participants as
Requestors that request tokenization, or may be “non-deter-
ministic” in that the resultant tokens differ across partici-
pants. The Data values may be “directly tokenized” in that
the token is decrypted to directly recover the Data. Alter-
natively, Data may be “indirectly tokenized” in that the
token is decrypted/inverted to recover a symmetric encryp-
tion key that is used, in turn, to decrypt ciphertext, as
resulting in plaintext. The decryption of the ciphertext is not
necessarily limited to recovery only of Data that was used in
generation of the token. The plaintext that is thus recovered
may include other information in addition to (or instead of)
all or part of Data used to generate the token. The value of
Data used to generate the token is not necessarily limited to
or inclusive of sensitive data such as personally identifiable
information. The recovery process may include potentially
optional verification of the integrity of at least part of the
recovered Data and/or other information.

[0032] A third-party server (also denoted as a 3’ Party or
third party within the sample embodiments) may be used to
secure the setup procedure that enables provisioning of the
Tokenization Processors, which may also be denoted as
Backends. By one approach, such third-party server is
implemented as a stand-alone or cloud-hosted enclave such
as SGX-based or Amazon Nitro-based, respectively, to
imbue trust into the system. Such an enclave may be hosted
by a Tokenization Processor or may be hosted indepen-
dently. Remote attestation (also known as cryptographic
attestation) may be utilized to provide evidence of compliant
protocol execution on the part of an enclave. Other methods
such as witnessed use of a stand-alone device running vetted
software wherein the device is locked away or destroyed or
otherwise configured to delete memory of critical param-
eters may be invoked. As an alternative to making use of a
third-party server that is considered trusted (to at least some
preferably well-defined extent), an untrusted server may be
used. More specifically, if the use of a third-party server does
not include provision to assure non-availability of unauthor-
ized access to critical parameters associated with its protocol
execution, then preferably secure measures may be taken by
one or more Tokenization Processors to assure the non-
usefulness of such critical parameters relevant to generation
of tokens and/or symmetric keys, and/or to recovery pro-
cessing.

[0033] As previously noted, preferably, composite secrets
held collectively across Tokenization Processors, can be
resplit to effect updating without adversely affecting the
usability of tokens that were generated using previous
versions of each Tokenization Processor’s individually-held
tokenization processor secrets.

[0034] Third-party server operation can be limited to
setup, such that no third-party server is necessarily involved
in other operations, such as pertaining to tokenization,
detokenization/recovery, resplit of composite secrets, or
deletions or additions of Tokenization Processors.

[0035] Refresh of tokenization processor secrets, resulting
via resplitting of composite secrets, can be accomplished
through direct Tokenization Processor-to-Tokenization Pro-
cessor communications or end-to-end secured via commu-
nications with an arbitrary/untrusted service.

[0036] Authentication and/or bidirectional freshness of
communications between two parties can be assured via
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standard means, such as (a) one-time-use nonces incorpo-
rated into signed responses, or (b) dependency on ephemeral
values such as incorporated into one-pass (static-ephemeral)
Diffie-Hellman key establishment or ephemeral-ephemeral
Diffie-Hellman key establishment, or (c) a combination of
(a) and (b) such as one party signing a Diffie-Hellman
ephemeral public key together with a nonce provided by the
counterparty and interpreting the response from the coun-
terparty as based on one or more values derived using a
secret dependent on the Diffie-Hellman shared secret com-
puted using the ephemeral private key and the counterparty
Diffie-Hellman static public key, or each party signing an
ephemeral public key for which they possess the corre-
sponding ephemeral private key and basing ensuing com-
munications on the Diffie-Hellman shared secret computed
based at least in part on using knowledge of an ephemeral
private key and a counterparty ephemeral public key.
[0037] Tokenization Processors can act in parallel relative
to one another during tokenization and recovery operations.
This aspect can be instantiated as based on U.S. Pat. No.
11,374,910, issued Jun. 28, 2022 and on a continuation
thereof as U.S. Pat. No. 11,637,817, issued Apr. 25, 2023.
Further, Tokenization Processors/Backends can be parti-
tioned as described therein.

[0038] Both direct Data tokenization (i.e., the directly
tokenized Data case) and tokenization of symmetric keys
used to encrypt (and optionally authenticate) Data values
(i.e., the indirectly tokenized Data case) are supported,
where the choice of which to use may potentially be depen-
dent on factors pertaining to characteristics such as bit
length of Data values and/or constraints on size of tokens
and/or accompanying ciphertext, if any.

[0039] Insome embodiments, tokenization processing and
detokenization processing are achievable using a single
round for tokenization and a single round for detokenization,
where detokenization results in direct Data recovery, or
symmetric key recovery for indirect Data recovery such as
via conversion of a token, say “TOKEN,” to another token
such as a “KEY_TOKEN.”

[0040] Individual Tokenization Processors as well as com-
binations of Tokenization Processors that do not include all
Tokenization Processors involved in the tokenization pro-
cess are preferably blinded from access to Data even if
aware of resultant tokens.

[0041] Both deterministic and non-deterministic tokeniza-
tion sub-cases of the direct Data tokenization and indirect
(symmetric key) tokenization cases are enabled, where
deterministic refers to token values that are invariant across
participants, also known as Requestors, requesting tokeni-
zation while non-deterministic allows for token values to
differ from one participant/Requestor to another.

[0042] Non-deterministic tokenization can be imple-
mented to assure uniqueness of token values if a given
participant implements in that way, i.e., for a given tokeni-
zation Requestor/participant and Data value the resultant
token is uniquely-valued. This still allows complete freedom
in how random/pseudorandom inputs are selected the first
time for each Data value.

[0043] Independently of application and strength of
ephemeral blinding factors applied to representations of
Data, Data bias within representations of Data is preferably
distributed across input bits utilizing Data in the determin-
istic sub-case or concealed utilizing pseudo-randomness/
randomness in the non-deterministic sub-case. The same
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seeded deterministic random bit generator, if any, may
potentially be used as contributing towards generation of
ephemeral blinding factors as well as towards generation of
pseudo-randomness used to conceal Data inputs (potentially
together with an additional entropy source). Although the
ephemeral blinding factor is removed prior to finalization of
the token to enable reversibility without retention/transfer-
ence of such ephemeral blinding factor (as well as to ensure
independence of tokens from ephemeral blinding factors to
enable the deterministic sub-case), the effect of flattening/
concealment of the Data persists within the finalized token.
[0044] Access to ciphertext, and authentication tag (if
any), is insufficient to enable feasible recovery of plaintext
via exhaustive search of plaintext space, because the inven-
tion is implementable for some embodiments via
[0045] a) double-round tokenization and single-round
recovery: symmetric key is generated from an interme-
diate token value (as a “KEY_TOKEN”) a function of
which intermediate token value is subjected to further
tokenization, the result of which (as a “TOKEN”) is
reversible to enable the Tokenization Processors to
provide for recovery of the symmetric key, or

[0046] b) single-round tokenization and single-round
recovery: symmetric key is generated from an interme-
diate token value (as a “KEY_TOKEN”) that is accom-
panied by a complementary token value (as a
“TOKEN”) wherein the complementary token value
can be used to enable the Tokenization Processors to
provide for recovery of the symmetric key.

[0047] Note that the remarks above regarding bias apply to
both “TOKEN” and “KEY_TOKEN” values.

[0048] In the deterministic sub-case of Data-based tokeni-
zation of a symmetric key, the Data value(s) utilized in
formulation of the symmetric key need not be identical to
Data value(s) that are encrypted (and optionally authenti-
cated) utilizing the resultant symmetric key.

[0049] Detokenization for Data recovery can be requested
by authorized parties that may be independent of partici-
pants that requested tokenization.

[0050] Preferably, requests to Tokenization Processors are
verifiable as originating with authorized Requestors, where
Requestors of tokenization may be distinguishable from
Requestors of detokenization.

[0051] The method is extensible to a plurality of Tokeni-
zation Processors greater than two, where additional Tokeni-
zation Processors may optionally be added after initial setup
and deployment. Communication between Tokenization
Processors can be secured using such techniques as key
agreement utilizing standard pairwise Diffie-Hellman/ellip-
tic curve Diffie-Hellman, or groupwise/group Diffie-Hell-
man.

[0052] Values that are agreed upon by Tokenization Pro-
cessors can, for example, be based on individual contributed
values and/or can be derived (e.g., via key derivation) based
on Diffie-Hellman shared secrets.

[0053] Preferably, each Backend is programmed to delete
values that are only needed transiently, such as additive
resplitting factors and/or multiplicative blinding factors such
as those applied following communication with a non-fully-
trusted 37 d Party. Any ephemeral private keys, such as
elliptic curve Diffie-Hellman keys, applied during key
agreement operations, such as to generate shared secrets,
should be deleted as well.
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[0054] Preferably, each Backend is equipped with a non-
replicable entropy source, rather than just relying on a purely
deterministic random number generator.

[0055] These and other benefits may become clearer upon
making a thorough review and study of the following
detailed description. Referring now to the drawings, and in
particular to FIG. 1, an illustrative apparatus 100 that is
compatible with many of these teachings will now be
presented.

[0056] In this particular example, the enabling apparatus
100 includes one or more Tokenization Processors 101. Such
Tokenization Processors are configured to effect tokeniza-
tion via one or more corresponding networks 105. As will be
described in more detail herein, such Tokenization Proces-
sors may operate on source data inputs that are ephemerally
blinded.

[0057] In this illustrative example each of the Tokeniza-
tion Processors 101 include a control circuit 102. Being a
“circuit,” the control circuit 102 therefore comprises struc-
ture that includes at least one (and typically many) electri-
cally-conductive paths (such as paths comprised of a con-
ductive metal such as copper or silver) that convey
electricity in an ordered manner, which path(s) will also
typically include corresponding electrical components (both
passive (such as resistors and capacitors) and active (such as
any of a variety of semiconductor-based devices) as appro-
priate) to permit the circuit to effect the control aspect of
these teachings.

[0058] Such a control circuit 102 can comprise a fixed-
purpose hard-wired hardware platform (including but not
limited to an application-specific integrated circuit (ASIC)
(which is an integrated circuit that is customized by design
for a particular use, rather than intended for general-purpose
use), a field-programmable gate array (FPGA), and the like)
or can comprise a partially or wholly-programmable hard-
ware platform (including but not limited to microcontrollers,
microprocessors, and the like). These architectural options
for such structures are well known and understood in the art
and require no further description here. This control circuit
102 is configured (for example, by using corresponding
programming as will be well understood by those skilled in
the art) to carry out one or more of the steps, actions, and/or
functions described herein.

[0059] By one optional approach the control circuit 102
operably couples to a memory 103. This memory 103 may
be integral to the control circuit 102 or can be physically
discrete (in whole or in part) from the control circuit 102 as
desired. This memory 103 can also be local with respect to
the control circuit 102 (where, for example, both share a
common circuit board, chassis, power supply, and/or hous-
ing) or can be partially or wholly remote with respect to the
control circuit 102 (where, for example, the memory 103 is
physically located in another facility, metropolitan area, or
even country as compared to the control circuit 102).
[0060] In addition to storing other information as
described herein, this memory 103 can serve, for example,
to non-transitorily store the computer instructions that, when
executed by the control circuit 102, cause the control circuit
102 to behave as described herein. (As used herein, this
reference to “non-transitorily” will be understood to refer to
a non-ephemeral state for the stored contents (and hence
excludes when the stored contents merely constitute signals
or waves) rather than volatility of the storage media itself
and hence includes both non-volatile memory (such as
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read-only memory (ROM) as well as volatile memory (such
as a dynamic random access memory (DRAM).)

[0061] In this example the control circuit 102 also oper-
ably couples to a network interface 104. So configured the
control circuit 102 can communicate with other elements
(both within the apparatus and external thereto) via the
network interface 104. More particularly, the network inter-
face 104 facilitates compatible communications via one or
more networks 105. Numerous examples are known in the
art. A non-exhaustive listing would include Universal Serial
55 Bus (USB)-based interfaces, RS232-based interfaces,
LEEE. 1394 (aka Firewire)-based interfaces, Ethernet-
based interfaces, any of a variety of so-called Wi-Fi™-based
wireless interfaces, Bluetooth™-based wireless interfaces,
cellular telephony-based wireless interfaces, Near Field
Communications (NFC)-based wireless interfaces, standard
telephone landline-based interfaces, cable modem-based
interfaces, and digital subscriber line (DSL)-based inter-
faces. Such interfaces can be selectively employed to com-
municatively couple the control circuit 102 to another net-
work element, to a local area network, or to any of a variety
of wide area networks or extranets (such as, but not limited
to, the Internet).

[0062] Relevant to the following description, so config-
ured, each of the Tokenization Processors can compatibly
communicate via the aforementioned protocol with any of a
plurality of requesting network elements 106 (illustrated in
FIG. 1 as a first network element through an Nth network
element). As will be described in more detail below, such
requesting network elements 106 act as Requestors.

[0063] Other apparatuses that may play a part in effecting
the data-based activity in a given application setting include
such elements as an initial data source 107 that does not act
as a Requestor and/or a third party 108 that is involved in
setup of one or more of the Tokenization Processors 101.

[0064] Generalized Formulation (entailing 1 or 2 or 3 or
more rounds of communication between Requestor and
Backends to effect tokenization, and/or detokenization for
recovery, and/or token translation): Note that differently
identified parameters are not necessarily distinct from one
another. Unless otherwise specifically noted, certain param-
eters may take on constant values across resplit intervals,
although doing so may adversely affect security. Unless
otherwise specifically noted, certain functions may take on
constant values. Certain embodiments may incorporate addi-
tional functions and/or parameters not specifically depicted.

[0065] P represents the Data to be tokenized, and TOKEN
represents the result of a successful tokenization request. t
represents a scope (also known as a context) as a label that
is associated with the request for tokenization or detokeni-
zation. Standard means, such as SAML assertions, can be
used by each Backend to determine the validity of the
Requestor’s submitted scope.

[0066] In the specific embodiments presented, the opera-
tion between adjacent terms f,( ) and f( ) is multiplication
unless otherwise noted. If implemented using an elliptic
curve, then P, G, and G, represent elliptic curve points and,
unless otherwise noted, arithmetic (e.g., addition and/or
multiplication and/or inversion of scalars) may be consid-
ered modulo n, the order of the elliptic curve point.

[0067] TOKEN=f3(B, 5(t) P2s(1) Pra Pra G1) LB 50
B2,5(0) Pris Bz G2) Ti(Bra(®s P2 (®) BBy 2, Baa) P
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[0068] AUX TOKEN=h(g;(3, 5(t) 3,5() 9,4 8,4 G))
8481 5(1) d2,5(1) By 5 82,6 G2), 81(81,1 (1), 35,1, (1)) 8208, 2, 85,2)
TOKEN).

[0069] G, and/or G,, if any, can be fixed, or may be
dependent on an AUX TOKEN if any is made available to
Backends during detokenization (at the expense of 3 or more
rounds during tokenization processing).

[0070] AUX_TOKEN may, e.g., comprise a cryptographic
integrity token, denoted as checkBits, that is used as a
condition of information release by Backends during deto-
kenization, or may comprise a key token, denoted as KEY_
TOKEN, that is used to derive keying material intended to
encrypt and/or recover Data. In the latter case, such keying
material may additionally or alternatively enable authenti-
cation of encrypted data and/or of additional data that is not
encrypted. If there is no dependency on an AUX_TOKEN to
enable derivation of keying material, then P is reversible to
recover Data.

[0071] During tokenization, a Requestor may be supplied
with both a TOKEN and KEY_TOKEN. In that case, the
TOKEN may be retrieved from storage and submitted (in
preferably blinded form) for detokenization that results in
recovery of the corresponding KEY_TOKEN. Example
embodiments of such TOKEN-KEY_TOKEN pairings are
presented later within this specification.

[0072] There are at least three reasons to use KEY
TOKENSs, namely: (a) accommodate Data of length larger
than that which fits within the bounds of standard elliptic
curve points; (b) restrict the use of tokenization to keying
material generation and recovery for compatibility with
standard data encryption schemes, e.g., NIST format-pre-
serving encryption, wherein ciphertext format that is con-
sistent with plaintext format is said to be format-preserving
[https://mvlpubs.nist.govinistpubs/SpecialPublications/
NIST.SP.800-38Grl-draft.pdf]; and (c) hide release of infor-
mation during detokenization from potential adversarial
exploitation, wherein such information would otherwise be
available to the Requestor if detokenization intended to
recover P from TOKEN or blinded TOKEN were used
instead. As an alternative to separating a tokenization-based
key management scheme from standardized encryption of
Data using one or more keys derivable via such key man-
agement scheme, the tokenization that is implementable
from the current invention can be used directly to encrypt
Data so as to meet certain format-preserving encryption
requirements of the resultant ciphertext.

[0073] Example procedures to generate P from Data are
presented later within this specification. There are two
classes of such procedures, namely, designed to either:
generate P from Data such that Data is recoverable via
detokenization; or generate P from Data such that the
corresponding TOKEN is usable during detokenization to
recover KEY_TOKEN. As an example of the former that
also meets certain format-preserving encryption require-
ments, consider tokenization of an elliptic curve point P that
results in a TOKEN as an elliptic curve point with x-coor-
dinate denoted as x,. Suppose that the Data underlying P is
chosen, for example, as representable as a 16-digit integer.
Then write X, as X, mod 10'%+k 10'®, where k is a uniquely
determined nonnegative integer. Then x, mod 10'°, as
extracted from X, can be considered as ciphertext that
satisfies the format-preserving encryption requirement of
mapping a 16-digit integer comprising Data as plaintext to
a 16-digit integer as ciphertext, where Data is recoverable
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via authorized detokenization from knowledge of the cipher-
text and k. Suppose that an intermediary stores an encryption
of the ciphertext under a key, KK, where the resultant
encryption value is paired in storage with the corresponding
value of'k. Then a Requestor, armed with knowledge of KK,
can supply the intermediary with the pair [EncryptKK
(ciphertext), k]| that corresponds to the TOKEN that resulted
from tokenization of P as derived from Data. If there is a
collision of the value of EncryptKK(ciphertext) against a
previously stored pair [EncryptKK(ciphertext), k] with a
different value of k, then the Pad—that along with Data
comprises at least part of the value of P that is tokenized—is
deterministically incremented and the resultant new value of
P is submitted for tokenization. Under such deterministically
incremented Pad procedure, the space of EncryptKK(cipher-
text) will not be prematurely exhausted so as to cause failure
to process retries.
[0074] There are three different components of Requestor
processing of Backend outputs, dependent on specifics of
TOKEN formulation (possibly in combination):
[0075] (1) Sum operation by Requestor of distinct sec-
ond-round Backend outputs—Embodiments 1 and 2
[0076] (2) Checking for equality of second-round Back-
end outputs (where equality holds if both Backends act
conformantly)—FEmbodiments 3 and 4
[0077] (3) Multiply operation by Requestor of distinct
second-round Backend outputs—Embodiments 5 and 6
[0078] Embodiment 1: f,=addition modulo n; f,, f; and f,
always return 1; f, (0 is a distinct value of Pi for each value
of t, and B, (1) is a distinct value of b, for each value of t.
The use of addition rather than multiplication for f; enables
single-round tokenization and single-round detokenization
for recovery. Embodiment 1 is particularly practical in the
case of relatively few distinct scopes.
[0079] Embodiment 1 TOKEN: TOKEN=(b,+b,) P.
[0080] Brackets (as [ ]) below indicate inputs being acted
upon. Note that such inputs are presented as their intended
expressions, although these may differ under a cheating
scenario. e indicates an ephemeral value that is generated by
the Requestor and preferably withheld from both Backends.
[0081] Relevant to FIG. 2, role-based access control can
be enabled via cryptographic isolation of scopes from one
another as based on assignment of distinct scope-specific
tokenization processor secrets used for generation of revers-
ible tokens, wherein each such scope-specific tokenization
processor secret is updateable without affecting values of the
reversible tokens that are generated jointly by at least two
distinct tokenization processors. Specifically, in FIGS. 2, b,
and b, as used for tokenization by Backend 1 and Backend
2, respectively, can be distinct for each scope. Moreover, a
Backend 1 and Backend 2 that possess values of b, and b,,
respectively, that correspond to certain scopes may be dis-
tinct from a Backend 1 and a Backend 2 that possess values
of b, and b,, respectively, that correspond to certain other
scopes.
[0082] Referring now to FIG. 2, stepping through tokeni-
zation processing, first the Requestor 210 transmits an
ephemerally blinded representation of Data, i.e., eP, to
Backend 1 215 at 225 and transmits eP to Backend 2 220 at
230. Backend 1 215 responds at 235 with b, [eP], and
Backend 2 220 responds at 240 with b, [eP]. At 245, the
Requestor 210 performs an addition operation and an
unblinding operation to derive TOKEN=e~*([b, eP]+[b,
eP)).
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[0083] Relevant to FIG. 3, b', and b',, as used for deto-
kenization by Backend 1 and Backend 2, respectively, can be
distinct for each scope. Scope-specific b'; and b', can be
updated without adversely affecting the capability for deto-
kenization of tokens that were generated using previous
versions of b, and b, that correspond to the same scope as
do b', and b',. Moreover, a Backend 1 and Backend 2 that
possess values of b'; and b',, respectively, that correspond to
certain scopes may be distinct from a Backend 1 and a
Backend 2 that possess values of b'; and b',, respectively,
that correspond to certain other scopes.

[0084] Referring now to FIG. 3, stepping through deto-
kenization processing, first the Requestor 310 transmits an
ephemerally blinded representation of a token, i.e., e'TO-
KEN, to Backend 1 315 at 325 and transmits e TOKEN to
Backend 2 320 at 330. Backend 1 315 responds at 335 with
b', [ TOKEN], and Backend 2 320 responds at 340 with b',
[e'TOKEN], where (b',+b',) (b,+b,)=1 mod n. At 345, the
Requestor 210 performs an addition operation and an
unblinding operation to recover P=e'"! ([b', e TOKEN]+[b',
¢ TOKEN]).

[0085] The use of a third party to enable setup of param-
eters such as b'; and b', is described subsequently within this
specification. Such third party can be blinded from accessing
useful information about the resultant parameter values. A
similar setup procedure enables derivation of parameters the
use of which enables re-derivation of KEY_TOKEN from
TOKEN or blinded TOKEN where TOKEN incorporates an
additive component such as (b, +b,) as a scalar multiple of
P. In that case, b', and b', can be defined as satisfying:
(b',+b',) (b;+b,)=(d,+d,) mod n.

[0086] Embodiments 2-6 require a minimum of two-round
tokenization and a minimum of two-round recovery, and are
suitable for arbitrarily many scopes in that Backend-retained
and -managed parameters are not scope-specific.

[0087] Embodiment 2: {f,=multiplication modulo n;
f,=addition modulo n; constant functions f; and f, always
return 1; Bl,l(t):bl,lt and Bz,l(t):b2,1t; Bl,zzbl,z and Bz,zzbz,

2

[0088] h=truncated hash; g,=multiplication modulo n;
g,=addition modulo n; constant functions g; and g, always
return 1 9, ,(=d, ;" and 8, ; ()=d,,"; 9, ,=d, , and 8, ,=d,
2. AUX-TOKEN here is used as checkBits. Consider the
case thatd, ,=cb, , modnand d, ,=c b, , mod n for a value
of ¢ available to both Backend 1 and Backend 2. truncHash
denotes a truncated hash function, where length of truncated
outputs may be set, for example, as uniform or as scope-
specific.

[0089] Embodiment 2 TOKEN and checkBits: TOKEN=
(b, b, 1) (by ,+b, )P checkBits=AUX_
TOKEN=truncHashq((d, ; d, ,)c(b, ,+b, ,)P).

[0090] FIGS. 4-13 make use of subscripted “output” nota-
tion instead of the bracket ([ ]) notation used in their
corresponding detailed description text. FIGS. 16-19 also
make use of such “output” notation.

[0091] Relevant to FIG. 4, FIG. 6, FIG. 8, FIG. 10, FIG.
18, and FIG. 19, by one approach, one or more tokenization
processors embed role-based access control scope param-
eters, for example denoted herein as tort,, , into reversible
tokens that are generated during tokenization or token
translation. Further, the values of the thereby generated
reversible tokens are not affected by changes in the tokeni-

zation processor secrets held individually by tokenization
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processors wherein the changes are effected by resplitting of
collectively held tokenization processor secrets.

[0092] Relevant to FIG. 4 and FIG. 6, by one approach, at
least a first tokenization processor generates a reversible
token, denoted herein as TOKEN, and a cryptographic
integrity token, denoted herein as checkBits. Moreover,
relevant to FIG. 5 and FIG. 6, during detokenization based,
at least in part, on a purported blinded or unblinded TOKEN
received from a requestor, at least a second tokenization
processor attempts to match a purported checkBits value
received from the requestor against a value that is recom-
puted by a third tokenization processor from the purported
blinded or unblinded TOKEN, wherein there may be over-
laps among the tokenization processors comprised by the at
least a first tokenization processor, the at least a second
tokenization processor and the at least a third tokenization
processor.

[0093] Referring now to FIG. 4, stepping through tokeni-
zation processing, first the Requestor 410 transmits eP to
Backend 1 415 at 425, and transmits eP to Backend 2 420 at
430. Backend 1 415 responds at 435 with b, ;" b, , [eP] and
cd, ,"b,, [eP], and Backend 2 420 responds with b, ," b, ,
[eP] and ¢ d, ;" b, , [eP] at 440, thus completing round-one
processing. Using b, ,”b, , ePand ¢ d, ,’b, , eP received via
445, Backend 1 415 transmits b, ,”[b, ,*b, , ePland d, ;" [c
d, ;" b, , eP] to the Requestor 410 at 455, thus completing its
role in round-two processing. Similarly, using b, \* b, , eP
andcd, ,’b, , eP received via 450, Backend 2 420 transmits
b,,"[b,,"b,,ePland d, " [cd, ,* b, , eP] to the Requestor
410 at 460, thus completing its role in round-two processing.
At 465, the Requestor 410 sums and unblinds the first output
of 455 and the first output of 460 to derive TOKEN=¢""
([by 1" byy" by, ePl+[b, " by \" by, eP]). Also at 465, the
Requestor 410 sums and unblinds the second output of 455
and the second output of 460 followed by truncated hashing
to form the AUX_TOKEN usable as a cryptographic integ-
rity token by Backend 1 and Backend 2 in the processing of
FIG. 5, namely, checkBits=truncHash(e™" ([c d, ,*d,, b, ,
ePl+[c dz,lt dl,lt b1,2 eP]).

[0094] Referring now to FIG. 5, stepping through deto-
kenization processing, first the Requestor 510 transmits
e'TOKEN to Backend 1 515 at 525, and transmits e TOKEN
to Backend 2 520 at 530. Taking advantage of this relation-
ship between tokenization processor secrets: (b'; ,+b', )
(b, ,+b, 5)=1 mod n, Backend 1 515 responds at 535 with
b, ;b , [€TOKEN] and ¢ (b, ;™" d, , ¥ [¢'TOKEN], and
Backend 2 520 responds at 540 with b, ;™" b', , [e'TOKEN]
and ¢ (b, Tt d, ;Y [¢ TOKEN], thus completing their role in
round-one processing. ¢ (b, ;™ d; ;)* @ TOKEN is exposed to
the Requestor 510 so that it can unblind this value at 542 in
order to be able to provide the result to Backend 2 520 at
550. Similarly, ¢ (bz,l"1 d, ;) eTOKEN is exposed to the
Requestor 510 so that it can unblind this value at 542 in
order to be able to provide the result to Backend 1 515 at
545. Also at 545, the Requestor 510 provides Backend 1 515
with checkBits, as was computed via the processing of FIG.
4, and b, ;7 b', , @ TOKEN as was received from Backend
2 520 at 540. Similarly, also at 550, the Requestor 510
provides Backend 2 520 with checkBits, and b, ,™ b, ,
e TOKEN as was received from Backend 1 515 at 535. At
555, Backend 1 515 computes truncHash((bl,l"1 dy 1) [e(b,,
1t d, ;) TOKENY]), and verifies whether or not that value is
equal to checkBits as received at 545. If yes, then Backend
1 515 transmits b, ;7 [b, ,’b', , ¢ TOKEN] to the Requestor
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510 at 565. If no, then Backend 1 515 aborts the response or
sends an error message. Similarly, at 560, Backend 2 520
computes truncHash((b, ;™" d, )" [c(b, ;™" d, ;) TOKEN]),
and verifies whether that value is equal to checkBits as
received at 550. If yes, then Backend 2 520 transmits
b,, b, ;" b, , ¢TOKEN] to the Requestor 510 at 570. If
no, then Backend 2 520 aborts the response or sends an error
message. This completes the role of Backend 1 515 and
Backend 2 520 in round-two processing. At 572, the
Requestor 510 adds the outputs if provided by Backend 1
515 at 565 and by Backend 2 520 at 570, respectively,
followed by unblinding to recover P as the representation of
Data. That is, P=e'-1 ([b, ;7" b, ;™ b', , ¢ TOKEN]+[b, ,~*
b, , 7' b, , @ TOKEN]).

[0095] A goal of the use of addition rather than multipli-
cation for f, is to cause bad Requestor inputs that fail
checkBits integrity verification during detokenization to be
rejected by conformant Backend(s), thus preventing effec-
tive recovery via summing if at least one Backend is
conformant (where recovery here does not necessarily imply
recovery of P if a Requestor is acting illegitimately). How-
ever, if ephemerally blinded TOKENSs are expected to be
provided to Backends during detokenization (as depicted
above for Embodiment 2), then a Requestor acting illegiti-
mately can ignore first-round blinded Backend outputs that
are intended for use in reformulating checkBits and instead
provide unblinded inputs for second-round Backend pro-
cessing that correspond to a previous legitimate checkBits
calculation for an unrelated TOKEN. This subterfuge forces
the checkBits integrity verification to pass during second-
round processing even though such inputs are unrelated to
the TOKEN currently being detokenized. If both Backends
are currently operating conformantly, then such attack can
be thwarted via the use of end-to-end authenticated encryp-
tion combined with fresh randomization of the first-round
blinded Backend outputs that are intended for use in refor-
mulating checkBits. To effect a binding process, the authen-
ticated encryption is preferably applied to the randomizing
factors needed to remove the effect of the randomization as
well as to the first-round Backend-generated values used by
the opposite Backends during the second round of detokeni-
zation to generate the values to be released if checkBits
verification passes. A simplified embodiment that is purely
multiplicative, thus lending itself to checking for equality of
second-round Backend outputs by a Requestor that is acting
legitimately, is presented as Embodiment 3. This is followed
by Embodiment 3 detokenization augmented with the intro-
duction of the above-mentioned randomizing factors.

[0096] In both Embodiment 2 and Embodiment 3, alter-
natively to having the Requestor unblind first-round blinded
Backend outputs during detokenization to enable verifica-
tion of checkBits, detokenization can be performed over
TOKEN:S that are not ephemerally blinded by the Requestor.
In that case, end-to-end authentication (with or without
encryption) can be used to prevent the specific attack of
effective undetectable substitution of the parts of first-round
Backend outputs by a Requestor that are used for checkBits
reformulation by the Backends during second-round pro-
cessing. In Embodiment 3 under submission by the
Requestor of TOKENS that are not ephemerally blinded, to
prevent either Backend from unilaterally recovering P from
such TOKEN during detokenization, each Backend can
ephemerally blind the part of its first-round output that is
used by the opposite Backend during second-round process-
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ing to enable recovered P to be provided to a Requestor that
acts legitimately. Each Backend can provide their ephemeral
blinding factor (or its inverse) to the Requestor privately as
part of its second-round Backend output, so that this ephem-
eral blinding factor can be inverted out by the Requestor
towards recovery of P (where the Requestor applies the
inverse ephemeral blinding factor associated with a Backend
to a part of the opposite Backend’s second-round output).
[0097] To thwart successful “mirroring,” the authenticated
encryption (or authentication-only, e.g., HMAC) keys
derived by each Backend (e.g., from hash(previous resplit
parameter(s))) should preferably also be a function of Back-
end identity, so that the key used for encryption by Backend
1 and for decryption by Backend 2 differs from that used for
encryption by Backend 2 and for decryption by Backend 1
(although both Backend 1 and Backend 2 can derive both
keys).
[0098] Embodiment 3: f,=multiplication modulo n;
f,=multiplication modulo n; constant functions f; and f,
always return 1; 8, , ()=b, ,", and B,,()=b, " B, =b, , and
P22=bs -
[0099] h=truncated hash; g,=multiplication modulo n;
g,=multiplication modulo n; constant functions g; and g,
always return 1; 9, ,(t)=d, ,* and 8, ,(t)=d, ,"; 8, ,=d, , and
952705 5.
[0100] Embodiment 3 TOKEN and checkBits: TOKEN=
(b, , by, ) b, 5 by, P; checkBits=AUX_TOKEN=truncHash
(@, da) dy s oy P).
[0101] Referring now to FIG. 6, stepping through tokeni-
zation processing, first the Requestor 610 transmits eP to
Backend 1 615 at 625, and transmits eP to Backend 2 620 at
630. Backend 1 615 responds at 635 with b, b, , [eP] and
d, ;" d, , [eP], and Backend 2 620 responds with b, ," b, ,
[eP] and d, ;" d, , [eP] at 640, thus completing their round-
one processing. Using b, ;" b, , eP and d2 Ly, 2 eP received
via 645, Backend 1 615 transmits b, ;" b, 2[b2 ' b,, ePland
d, " dy5[dy ;" dy, eP] to the Requestor 610 at 655, thus
completing its role in round-two processing Similarly, using
b,,"b, ,eP and d1 Jd, 2 eP received via 650, Backend 2 620
transmits b, b, 2[b1 by ePlandd, \’d, ,[d, ,*d, ,eP]to
the Requestor 610 at 660, thus completing its role in
round-two processing. At 665, the Requestor 610 verifies
equality of the first output of 655 and the first output of 660,
and the second output of 655 and the second output of 660,
respectively. Also at 665, the Requestor 610 unblinds the
first output of 655 to derive TOKEN=¢"" [b, b, ‘b, , b, ,
eP]. The Requestor 610 also unblinds the second output of
655, followed by truncated hashing to form the AUX_
TOKEN usable as a cryptographic integrity token by Back-
end 1 715 and Backend 2 720 in the processing of FIG. 7,
namely, checkBits=truncHash(e™" [d, ,* d, ;" d, , d,, eP]).
[0102] Referring now to FIG. 7, stepping through deto-
kenization processing, first the Requestor 710 transmits
e'TOKEN to Backend 1 715 at 725, and transmits e TOKEN
to Backend 2 720 at 730. Backend 1 715 responds at 735
with (b, ," by, »)~' [€TOKEN] and (by, L d; ;) by, 2 dy, 2
[e TOKEN], and Backend 2 720 responds at 740 with (by,’
b, o) ' [¢TOKEN] and (b,, 1_1 dy ) by - d;, [e'TOKEN],
thus completing their role in round-one processing. (b, ;~
d, )b, ,d, , TOKEN is exposed to the Requestor 710 so
that it can unblind this value at 742 in order to be able to
provide the result to Backend 2 720 at 750. Similarly, (b, Tt
dy 1) by ,7" d,, e TOKEN is exposed to the Requestor 710
so that it can unblind this value at 742 in order to be able to
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provide the result to Backend 1 715 at 745. Also at 745, the
Requestor 710 provides Backend 1 715 with checkBits, as
Was computed via the processing of FIGS. 6, and (b,,’
b,,)™" e TOKEN as was received from Backend 2 720 at
740. Similarly, also at 750, the Requestor 710 provides
Backend 2 720 with checkBits and (b, b, ;)" ¢ TOKEN
as was received from Backend 1 715 at 735. At 755,
Backend 1 715 computes truncHash((b, Tt b, ,)'b, 2"1 d;»
[(by,™" d, )" b,,™" d, , TOKEN]), and verifies whether or
not that value is equal to checkBits as received at 745. If yes,
then Backend 1 715 transmits (b, \* b, ;)™ [(b,," by ;)™
e¢'TOKEN] to the Requestor at 765. If no, then Backend 1
715 aborts the response or sends an error message. Similarly,
at 760, Backend 2 720 computes truncHash((b, - dy Y
b, S ds, [(by, Tt d )b, L7t d, » TOKEN]), and verifies
whether that value is equal to checkBits as received at 750.
It yes then Backend 2 720 transmits (b, ,’ 22)" [(by,’
b, ;)" ¢TOKEN] to the Requestor at 770. 1f no, then
Backend 2 720 aborts the response or sends an error mes-
sage. This completes the role of Backend 1 715 and Backend
2 720 in round-two processing. At 772, the Requestor 710
verifies equality of the output of 765 and the output of 770,
followed by unblinding of the output of 765 to recover P as
the representation of Data. That is, P=e'™* [(by,’ 1,2)"1 (by,’
b,,)™" € TOKEN].
[0103] Augmenting detokenization with rand; generated
by Backend 1 and rand, generated by Backend 2:
[0104] Detokenization round-one Backend processing:

[0105] Backend 1: (bl,ltbl,z)"1 [¢'TOKEN] and rand,—
provided privately via end-to-end authenticated
encryption to Backend 2 (although passing opaquely
through Requestor); rand, bl,l"1 dl,l)’bl,z"1 d, , [e'TO-
KEN]

[0106] Backend 2: (bz,ltbz,z)"1 [¢'TOKEN] and rand,—
provided privately via end-to-end authenticated
encryption to Backend 1 (although passing opaquely
through Requestor); rand, (b,,™" d, ) b,,™ ds,
[¢'TOKEN]

[0107] Detokenization round-two Backend processing:

[0108] Backend 1: (b, b, ;)™ [(b,,” b,,)™" eTO-
KEN] (rand, ™" (b, 7 dl D bl 2 - d, 2) mod n [(bs, 1_1

2 ) by, S ds TOKEN] (using [e'" (rand, (b,,”
d,, 1)’ N eTOKEN)] and end-to-end encrypted
rand (or rand ! mod n) provided by Requestor);
Verify that truncHash((b1 Thd ) by, d [y,

dy ) b, St d22 TOKEN]) =checkBits as condition of
releas1ng (by " [(by1" by, ,)' ¢ TOKEN] to Requestor

[0109] Backend 2: (bzlt by,)™t (b, b, ;)" eTO-
KENJ; (rand, ™! (b~ b, 2™ dy.0) mod (b, i)
b, d,, TOKEN] (using [e"(rand, (b, dy, B
b, 5 - d;, 2 e¢"TOKEN)] and end-to-end encrypted rand
(or rand, ' mod n) provided by Requestor); Verify that
trunCHaSh((b2 T dy,) by, 2 da[(by, - d 1) by 2_1
d1 2 TOKEN]) checkBits as condition of releas1ng (b
1 b2 27 (b, " b, )" ¢ TOKEN] to Requestor

[0110] Detokenization final Requestor processing: Verify
that [(b, ;" b, 2)" (b2 1’ by,)™! eTOKEN] received from
Backend 1= [(b2 by ! (b1 by )T eTOKEN] received

from Backend 2. Recover P=e™ 1[(b1 byt 2,2)"1 e'TO-
KEN].
[0111] As an alternative to Backend 1 suppressing the

release of (b,,” b,,)™ [(b,," b,,)"" ¢TOKEN] to the
Requestor in the event that checkBits verification fails, and
to Backend 2 suppressing the release of (b, " b, )™ (b,
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b 1,2)"1 ¢'TOKEN] to the Requestor in the event that check-
Bits verification fails, Backend 1 can release a modified
version that incorporates or substitutes the value of one or
more b,  values, and Backend 2 can release the correspond-
ing modified version that incorporates or substitutes the
value of one or more b, ; values. Since (b, ; b, ) mod n
remains constant through resplit intervals, then a Requestor
acting adversely will not detect an inequality in the received
values or a difference across resplit intervals, if b, ;and b,
are used in a consistent formulation and only as the product
(b, b,,) mod n. Parallel computations such as these can also
be used in other embodiments that entail one or more checks
conducted by the Backends, as an alternative to aborting
computation and/or transmitting an error message.

[0112] Unlike Embodiment 2, in Embodiment 3, the sec-
ond-round computation by each Backend that enables recov-
ery of P in the legitimate Requestor case is identical to that
in the first-round computation. End-to-end encryption
(whether authenticated or not) of that part of the first-round
computation can thwart the specific attack in which a
Requestor (that is unilaterally attempting attack) requests
first-round detokenization processing twice instead of
requesting first-round detokenization processing followed
by requesting second-round detokenization processing.
[0113] Unlike Embodiments 2 and 3, Embodiments 4-6
(as well as Embodiment 1) do not expose any aspects of
non-blinded TOKEN:S to either of the Backends and do not
entail augmenting the TOKEN by an element such as
checkBits, as an AUX_TOKEN, that is stored in addition to
the TOKEN to enable detokenization processing by the
Backends.

[0114] Embodiment 4: f,=multiplication modulo n;
f,=multiplication modulo n; f;=hash; constant function f,
always returns 1; Bl,l(t):bl,l t, and Bz,l(t):b2,1t; Bl,zzbl,z
and Bz,zzbz,z; Bl,3(t):bl,3t; Bz,s(t):bz,st; [31,4:]31,4: 62,4:]32,4;
G,=G. Setting f;(X)=hash(x) is an example. Another
example is to set f3(x)=(hash(0|jx)|hash(1|x)) mod n. This
holds analogously for Embodiment 5 and Embodiment 6
presented later with respect to functions f; and {,.

[0115] Embodiment 4 TOKEN: TOKEN=(b, ; b, )’ b, ,
b, hash((b, 3 b, ;)" b, 4 by, G) P.

[0116] Referring now to FIG. 8, stepping through tokeni-
zation processing, first the Requestor 810 transmits eP to
Backend 1 815 at 825, and transmits eP to Backend 2 820 at
830. Backend 1 815 responds at 835 with b, ,” b, , [eP] and
b, s’b, , G, and Backend 2 820 responds with b, ,”b, , [eP]
and b,." b,, G at 840, thus completing their round-one
processing. Using b, ,”b,, ePand b, ." b, , G received via
845, Backend 1 815 transmits hash(b, ;" b, , [b, 5" b, , G])
b, 5 [by,” by, €P] to the Requestor 810 at 855, thus com-
pleting its role in round-two processing. Similarly, using
b, ,"b, ;ePandb, ;' b, , G received via 850, Backend 2 820
transmits hash(b, 5" b, 4 [b, b, , G]) b, " b, , [b, b, , eP]
to the Requestor 810 at 860, thus completing its role in
round-two processing. At 865, the Requestor 810 verifies
equality of the output of 855 and the output of 860, and
unblinds the output of 855 to derive TOKEN=¢"! [hash(bl,;
b1,4 bz,st b2,4 G) bl,lt b1,2 bz,lt b2,2 eP].

[0117] Referring now to FIG. 9, stepping through deto-
kenization processing, first the Requestor 910 transmits
e'TOKEN to Backend 1 915 at 925, and transmits e TOKEN
to Backend 2 920 at 930. Backend 1 915 responds at 935
with (b; ;" b, )™ [¢ TOKEN] and b, 5 ‘b, 4 G, and Backend
2920 responds at 940 with (b, ,° bz,z) [e¢TOKEN] and b, 5*
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b,, G, thus completlng their role in round -one processmg
Usmg (by," by )" €TOKEN and b, ;" b, 4 G received via
945, Backend 1 915 transmlts (hash(b1 2 byg [bys’ byy
G]))‘ mod n [(b, ;" b, 5"t €TOKEN] to the Requestor 910
at 955, thus completlng its role in round-two processing.
Using (b1 b, o)™ ¢TOKEN and b ,* b, a G received via
950, Backend 2 920 transmits (hash(b23 24 [b1s" bygy
G])™' mod n (by," b, )™ [(b,," b ,))”" e TOKEN] to the
Requestor 910 at 960, thus completlng its role in round-two
processing. At 965, the Requestor 910 verifies equality of
the output of 955 and the output of 960. The Requestor 910
unblinds the output of 955, resulting in recovery of P=e'™*
[(haSh(bl 3 bia by by, G mod n (b, by L) (B
by )t € "TOKEN].

[0118] Like Embodiment 3, Embodiment 4 has the Back-
ends perform, at least in part, similar computations during
the two rounds. Any adverse consequences of such similar-
ity as potentially exploitable by illegitimately acting
Requestors (such as pertaining to a lack of end-to-end
encryption or release of such encryption key by a non-
conformant Backend, thus enabling bypass of the second
round by a Requestor during certain adversarial operations)
are not relevant to Embodiment 5 and Embodiment 6.
[0119] Alternative Embodiment 4:

[0120] f,=multiplication modulo n; f,=multiplication
modulo n; constant function f; always return 1; f,=identity
function; the operation between f, and f| is elliptic curve
point addition; f, ,(t)=b, ,’, and [32 1 b2 1 » B1-7b, - and

B22G225 BlS(t) blSs B25(t) b255 [316 165 [326 b2,6;

[0121] Alternative Embodiment 4 TOKEN: TOKEN=(b, ,
bz,l)t by bs, PH(by s bz,s)t by by G.

[0122] Alternative Embodiment 4, if implemented under
2-round tokenization that does not allow for enabling P-de-
pendent G or t within the additive modifier (b, 5 b, 5)" b, ¢
b, s G, can be attacked as follows (which is why a 3-round
tokenization example of Alternative Embodiment 4 will be
presented subsequently): The t-dependent additive modifier
(b 5 by5) by 6 by s G, denoted as m,, can be extracted by a
Requestor that requests tokenization of any two elliptic
curve points P, and P,, where P, is chosen as aP, for a
known integer value of a=1: aTOKEN,=a (b, ; b, ;' b, 5 b, ,
Pi+a(b; sby5)'bysby G, andTOKEN =(by1bsy) bl 2b22
aP i+, b2 5) b1 s b2 s G together imply that (a—l) mod
n (aTOKEN —TOKENz) m,.

[0123] 3-round tokenization example of Alternative
Embodiment 4:
[0124] Note that t* is a function oft via the formulation of

AUX_TOKEN, and G=Gcheck (as defined below):

[0125] TOKEN=(f, , bz,l)t* b, 5 by, PH(b, 5 bz,s)t* b, 6
b, Gcheck; checkBits=AUX_TOKEN=truncHash((d, ,
dz,l)t dy2dy5 P).

[0126] As an example of t* where n is prime: t*=(hash
(0]AUX_TOKEN)|hash(1|]AUX_TOKEN)) mod n-I,
where || denotes concatenation.

[0127] As an example formulation of Geheck: Let Geheck
x-coordinate=hash(AUX TOKEN||Pad) where Pad is deter-
ministically generated as the smallest nonnegative integer
such that hash(AUX TOKEN]Pad) is an x-coordinate of a
point on the elliptic curve and hash(AUX TOKEN||Pad)<p,
where the elliptic curve is defined over the prime field
GF(p). The y-coordinate is preferably chosen unambigu-
ously as one of the two possible values that correspond to the
x-coordinate per the equation of the elliptic curve.



US 2024/0039724 Al

[0128]
[0129]
[0130]

Tokenization round-one Backend processing:
Backend 1: d, ,d, , [eP]—provide to Requestor
Backend 2: d, ,"d, , [eP]—provide to Requestor

[0131] Tokenization round-two Backend processing:
[0132] Backend 1:d,,°d, ,[d, " d,, P] (using [e™? (ds,

o dys eP)] pr0V1ded by Requestor)
checkBits=truncHash (d,,"d, ,[d;,"d;, P]) pr0V1de
to Requestor; derive t* and Gcheck b, 5" by
Gcheck—provide to Requestor b, " b, [eP]

[0133] Backend 2:d,,"d,, [d,,’ dl,2 P] (using [e"l(dl,
ody, eP)] provided by Requestor);
checkBits=truncHash (ds,"dy5 [dy 17 dy 5 P]) pr0V1de
to Requestor; derive t* and Gcheck b5 by
Gcheck—provide to Requestor; b2 Vb [eP]

[0134] Tokenization round-three Backend processing (if

[checkBits] provided to Requestor by Backend 1=[check-

Bits] provided to Requestor by Backend 2)

[0135] Backend 1: b, ;" by, [b,," by, eP]; by 57 b1 s
[b,, S b, s eGcheck] (usmg [e(b2 s b2 s Gcheck)] pro;
V1ded by Requestor) b7 by, [by,” by, ePl4b, S

b,sleb,s b2 s Gcheck] pr0V1de to Requestor

[0136] Backend 2:b,," by, [by ] y b, ePl; by 5’ b2 s
[b, 5" b, ¢ eGeheck] (usmg [e(b L5 “b L Gcheck)] pro-
V1ded by Requestor) by " by, [by 7 by, ePl4b, S

bysleb;s" by Gcheck] pr0V1de to Requestor

[0137] Tokemzatlon final Requestor processmg Verify

that [b, ,” “b, 2by,” b22 eP+b1 s b1 6 € b2 s b2 s Gcheck]

recelved from Backend 1= [by," bys b1 f b1 2 eP+b2 s b2 s

eb " b Gcheck] recelved from Backend 2. Derlve

TOKEN=¢"! [by " byoby, by, ePib, b geby s by

Gcheck].

[0138] Detokenization round-one Backend processing:
[0139] Backend 1: derive t* and Gcheck from [check-

Bits] pr0V1ded by Requestor (by, na b, ,)” ! [e'TOKEN],
(bl by 2)_ 15" big [€ GCheCk] d; 1 2 (b, -

1# 2) ! [e TOKEN] pr0V1de to Requestor; d, ,°d, , (b )
v by, by s by [Geheck]

[0140] Backend 2: derive t* and Gcheck from [check-
Bits] pr0V1ded by Requestor (b,, ha by,)™ [e'TOKEN],
(bz b 2, L 25" b [€ GCheCk] dy,” 2 2 (bs, -

2 2) ! [e TOKEN] pr0V1de to Requestor; d, ,*d, , (b 2,
1 b, SE bz 5" by s [Geheck]
[0141] Detokenization round-two Backend processing
[0142] Backend 1: (b, ,™ b, )" [(b,,” 22)‘ e'TO-
KEN]; (by, 1t* L 2) lbl st* 1. 6 [(b,, 1t* 2, 2) b, st* bzg
'GCheCk]s 11’ i (bl b 1 2)_ [dz 1t 22, (b,
b,, 7 TOKEN] (usmg [dz Lo (bz by, 2) e'TO-
KEN] pr0V1ded by Requestor) d1 1 1 2 (b1 b 121
bl s big [dz 1day (by, 1t* 2, )7 2.5 bz 6 GCheCk]s
Verify that truncHash(d1 Ldp 2 (b1 1’ y 2) [d2 Jdas
(bz Sb 2, 27 TOKEN]gdl 1 1 2 (bl 1 P 2) b, st*
byelds, dz 2 (b, . by o) bz 5 bz 6 GCheCk]) [CheCk'
Blts] as condition of releasmg (b1 " by 2) [(bs, 1’*
2 2)_ € TOKEN]*(bl L by 2)_1 bl s bie [(b2)"
by, by by 'Geheck] to Requestor

[0143] Backend 2: (by,” by5)" [(b,,” by 2)‘ e'TO-
KEN] (b2 lt* 2 2) 1b2 St* 4% 6 [(bl lt* 1 2) bl St* bl g

'GCheCk]s 2, Y d,, (bz b 2 2)_ [dl 1t d 2, (by, 1t
1, b ) TOKEN] (usmg [dl Cdi (bl by 2) e'TO-
KEN] pr0V1ded by Requestor) d2 Jdss (b2 1’* bs, B

b25 2 6 [dl 1 1 2 (bl lt* 1 2)t* bl 2)_ 45 bl 6

Gcheck] Venfy that truncHash(d2 Vdys (by T by 2)"
[dl 1 1 2 (bl lt 1 2)_ TOKEN]i 2, lt d2 2 (b2 1
22)_ 25 26 [dll 12(b11 12)_ 15 16

Feb. 1, 2024

Gcheck]) [checkBlts] as condition of releasmg (b2 f
2 21 [(bl 1t b, 2) ¢ TOKEN]— (b,, b 2.2) bz st

bog [0y, byo) by s by 'Geheck] to Requestor
[0144] Detokenization final Requestor processing: Verlfy
that [(bl by 2)_ (b,, 7 2*;2)_ ¢TOKEN—(b, b 1, )7
b, s by (by,” 2 5)” 1b2 s° b, e'Geheck] recelved from
Backend 1= [(b2 ! 22)‘ ¢TOKEN— by, byn) by
b, s (b, b L )b, 5 b1 s e'Gcheck] received from Back-
end 2. Recover P=¢"~ 1[(b1 1’* o) (b2 1’* 2 2)‘ e'TO-

KEN (bl lt* 1, 2)_1 bl 5 bl 6 (b2 1 2 2) 2 St* b2,6
e'Gcheck].
[0145] Unlike Embodiment 4 and Alternative Embodi-

ment 4, the TOKENs of Embodiment 5 and 6 each incor-
porate two rather than one multiplicative modifier, where G,
and G, are generated independently of each other for use
within Embodiment 5, and where G,=G, in Embodiment 6.
The use of two distinct multiplicative modifiers within the
computation of each TOKEN, where the intent is that each
Backend does not have access to the multiplicative modifiers
of the opposite Backend, implies that each of the two
Backends would have to eventually be compromised to
totally remove the combined effect of the modifiers. Analo-
gously to the case of detokenization of non-blinded
TOKENSs under Embodiment 3, Embodiments 5 and 6 make
use of ephemeral blinding factors generated independently
by each of the Backends, even though here detokenization
involves blinded Tokens. However, under Embodiments 5
and 6, Backends preferably use such ephemeral blinding
factors during both tokenization and detokenization and do
not ultimately reveal the ephemeral blinding factors to
Requestors. Even though here the ephemeral blinding fac-
tors are not provided as first- or second-round outputs to
Requestors, these values still traverse across the first and
second rounds. Preferably, each Backend utilizes the ephem-
eral blinding factors during second-round computations to
prevent both the opposite Backend and the Requestor (acting
independently or collusively) from accessing the multipli-
cative modifiers that the Backend is responsible for using
and safeguarding. Each Backend incorporates such a mul-
tiplicative modifier into a TOKEN during tokenization and
attempts to remove such a multiplicative modifier during
detokenization. Whether or not such removal is successful
depends on the legitimacy or not of purported blinded
TOKENSs submitted by Requestors. Preferably, multiplica-
tive modifiers are scope dependent.

[0146] After presenting Embodiment 5 and Embodiment
6, two mechanisms intended towards assuring traversal of
Backend-generated ephemeral blinding factors across first
and second rounds are described, where: (i) the first entails,
in part, “boomeranging” of randomly generated values
between the first and second rounds; and (ii) the second
utilizes deterministic generation during the first round and
deterministic re-generation during the second round.
[0147] Embodiment 5: f,=multiplication modulo n;
f,=multiplication modulo n; f,=hash; f,=hash; §, ,(=b, ,%
and B, (0=b,, t B1o=by o and By 57by 55 By a()=b1 5" Bas
(t):bz,;; 61,4:]31,4; 62,4:]32,4; Bl,s(t):b1,3t; Bz,s(t):b2,3t;
61,6:b1,4; [32,6:b2,4'

[0148] Embodiment 5 TOKEN: TOKEN=(b, ; b, ;)" b, ,
]f)z,z hash((b; 5 b, 5)" (b; 4 b, 4) hash((b, 5 b, 5) (b; 4 b, ) G)

[0149] In Embodiment 5 as well as Embodiment 6 con-
sidered next, the hash function of f; need not be the same as
the hash function of {,.
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[0150] In both Embodiment 5 and Embodiment 6: e, and
e, denote the ephemeral blinding factors of Backend 1 and
Backend 2, respectively, as used during tokenization; e'; and
e', denote the ephemeral blinding factors of Backend 1 and
Backend 2, respectively, as used during detokenization.
[0151] In both Embodiment 5 and Embodiment 6: the
removal by each Backend of the effect of its ephemeral
blinding factor requires the Requestor to initiate running
round 2, as is the case for both tokenization and detokeni-
zation.

[0152] In both Embodiment 5 and Embodiment 6: at least
one second-round output differs in its value between each of
the Backends independently of any difference in values
between the ephemeral blinding factors, as is the case for
both tokenization and detokenization.

[0153] Relevant to FIG. 10 and FIG. 12, by one approach,
a Requestor combines at least three values comprising a first
value, a second value and a third value, as part of its
processing to derive a TOKEN, wherein: the first value
involves at least ephemeral blinding by the requestor of Data
that is further ephemerally blinded by a first tokenization
processor and by a second tokenization processor; the sec-
ond value involves at least the ephemeral blinding by the
first tokenization processor and tokenization processor
secrets of both the first tokenization processor and the
second tokenization processor, and a scope label denoted as
t, but not the Data and not the ephemeral blinding by the
requestor; the third value, which is distinct from the second
value, involves at least the ephemeral blinding by the second
tokenization processor and tokenization processor secrets of
both the first tokenization processor and the second tokeni-
zation processor that may be the same or different than the
tokenization processor secrets involved in the second value,
and the scope label denoted as t, but not the Data and not the
ephemeral blinding by the requestor.

[0154] Referring now to FIG. 10, stepping through tokeni-
zation processing, first the Requestor 1010 transmits eP to
Backend 1 1015 at 1025, and transmits eP to Backend 2
1020 at 1030. Backend 1 1015 responds at 1035 with e, b, ,*
b, ,[eP]andb, 5’ b, , G,, and Backend 2 1020 responds with
e, b,,"b,, [eP] and b, ;" b, , G, at 1040, thus completing
round-one processing. Using e, b, ;" b, , ePand b, 5 bz,4 G,
received via 1045, Backend 1 1015 transmits e, b, |’ b, ; [e,
by, b, , eP] and (el_l hash(b, 5" b, 4 [by5" by Gz])) mod n
to the Requestor 1010 at 1055 thus completing its role in
round-two processing. Similarly, using e, b, ,* b, , eP and
b, 5 b1 4G recelved via 1050, Backend 2 1020 transmits e,
b2,1 2,2 [el 11" by o ePland (ez_l hash(b, ;"b, , [b, 5°b, ,
G,])) mod n to the Requestor 1010 at 1060, thus completing
its role in round-two processing. At 1065, the Requestor
1010 verifies equality of the first output of 1055 and the first
output of 1060. Also at 1055, the Requestor 1010 computes
the product of: the second output of 1055, the second output
of 1060 and the first output of 1055. Finally at 1065, the
Requestor 1010 unblinds the resultant product to derive
TOKEN=e"" [(e, " hash(b, ;'b, 4 b, ;' b, 4, G,)) modn] (e,
hash(b, ;"b, 4 b, 3°b, , G))) modn] [e; b, ,"b
eP].

[0155] Referring now to FIG. 11, stepping through deto-
kenization processing, first the Requestor 1110 transmits
e'TOKEN to Backend 1 1115 at 1125, and transmits e'TO-
KEN to Backend 2 1120 at 1130. Backend 1 1115 responds
at 1135 with (¢'; [b; ,* b; ,)™" ¢TOKEN] and b1 3 bl a Gl,
and Backend 2 1120 responds at 1140 with (¢, b, " b, N

t
1,2 b2,1 bz,z
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[¢'TOKEN] and b2 5 by g Gy, thus completlng their role in
round-one processing. Usmg ('3 by " b, ,)™" ¢ TOKEN and
b2 by, G, recelved V1a 1145, Backend 1 1115 transmits (e L
1 ) bl 2)_ [(e' by, 1 b, ,)"" ¢ TOKEN] and (&' (hash(b, ,*
by 4 [by3"bs ., Go)” H mod n to the Requestor 1110 at 1155,
thus completlng its role in round-two processing. Usmg (e,
b,, b, 2) [¢'TOKEN] and b, 3 b1 4 G, received via 1150,
Backend 2 1120 transmits (e, b 2 by 2) L[ by 7 by o7
¢TOKEN] and (¢', (hash(b, ;' b, , [b, :*b, , G,1))” 1) modn
to the Requestor 1110 at 1160, thus completlng its role in
round-two processing. At 1165, the Requestor 1110 verifies
equality of the first output of 1155 and the first output of
1160. Also at 1165, the Requestor 1110 computes the prod-
uct of: the second output of 1155, the second output of 1160
and the first output of 1155. Finally at 1165, the Requestor
1110 unblinds the resultant product to derive P=¢'™* [(e
(haSh(bl s bia bz 3024 Gr))” ) mOd n] [(e 2 (haSh(bz s by, 4

b1,3 1,4 1)) ) ‘mod n] [(e', 1 N 1,2) (€5 2 N 22)_
¢ TOKEN].
[0156] Embodiment 5 can be exploited by a non-confor-

mant Backend unless appropriate safeguards are taken to:
(1) prevent a Backend from fooling the other Backend to
compute the multiplicative modifier (as part of its second-
round output) that the adversarial Backend knows, by effec-
tively switching the use of G, vs. G,; and (2) prevent a
Backend from fooling the other Backend to provide it with
the multiplicative modifier that the unwitting victim Back-
end correctly uses in computing part of its second-round
output.

[0157] As an example of countermeasure (1): Suppose
Backend 1 provides Backend 2 with a fresh value of bb, | G,
at the onset of each parameter resplit period; suppose
Backend 2 provides Backend 1 with a fresh value of bb, ; G,
at the onset of each resplit period. During both tokenization
and recovery, Backend 1 forms hash(b, ;' b, , b, " b,, G,)
as: hash((b 5" by 4-bby 1) [(b23) bay Go)]+[(bs3) by, by,
G,]) rather than as hash(b, ;* b, , [b, 5" by, G,]), where
Backend 2 generates (b, 5)’ b, 4 [bb, ; G,] as well as (b, ;Y
b,, G, during first-round computation. Computation by
Backend 2 to form hash(b, " b,, b, ;" b, , G,) is done
analogously. But if Backend 1 provides Backend 2 with
bb, , G, instead of bb, ; G,, then [(b,,)" b, , bb,, G,] as
received from unwitting Backend 2 by Backend 1 would
enable Backend 1 to generate hash(b, ;' b, 4 b, ;" b, , G,) as
b, " by, [(by5) by, bb, ; G;] (where the analogous attack
would entail Backend 2 providing Backend 1 with bb, ; G,
instead of bb, , G,, and Backend 2 generating hash(b, ;’b,
bys by4 Go) as by  byy [(by5) by, bbyy Gyl To mitigate
against that:

[0158] As an example of countermeasure (2): Suppose
Backend 1 also provides Backend 2 with a fresh value of
bb, , G, at the onset of each parameter resplit period;
suppose Backend 2 also provides Backend 1 with a fresh
value of bb, , G at the onset of each resplit period. Then as
a condition of continuing round two computation, Backend
1 verifies that bb, , [bb, ; G,]=[bb, ; bb, , G,]; analogously,
as a condition of continuing round two computation, Back-
end 2 verifies that bb, , [bb, ; G,]=[bb, ; bb, , G,].

[0159] In lieu of providing countermeasures such as these
as safeguards, one can consider Embodiment 6 below as an
alternative.

[0160] Embodiment 6: {f,=multiplication modulo n;
f,=multiplication modulo n; f,=hash; f,=hash; 8, ,()=b, /°,
and B2,1(t):b2,1t; Bl,zzbl,z and Bz,zzbz,z; [31,3(0:]31,3t Bz,s(t)
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:b2,3t; 61,4:]31,4; 62,4:]32,4; Br,s(t):br,st; Bz,s(t):bz,st;
Bl,6zbl,6; 2,6:b2,6; G,=G,=

[0161] Embodiment 6 TOKEN: TOKEN=(b, , b, D b,
bz > hash((b, 3 b,3)" b, 4 b, 4 G) hash((b, 5 b, 5)' by ¢ bz 6 G)

[0162] Embodiment 6 is characterized, in part, by having
each Backend withhold the use of at least some of its
preferably secret parameters until the second round of both
tokenization and detokenization.
[0163] Referring now to FIG. 12, stepping through tokeni-
zation processing, first the Requestor 1210 transmits eP to
Backend 1 1215 at 1225, and transmits eP to Backend 2
1220 at 1230. Backend 1 1215 responds at 1235 with e, [eP]
and bl,; b, , G, and Backend 2 1220 responds with e, [eP]
and b, 5" b, ¢ G at 1240, thus completing round-one process-
ing. Usrng e2eP and b, s’ b, s G recerved via 1245, Backend
11215 transmits e [e, eP] and (e," b, ,"b, , hash(b, S’ b, ¢
[b,5" by G])) mod n to the Requestor 1210 at 1255, thus
completing its role in round-two processing Similarly, using
e;eP and b, ,* b, , G received via 1250, Backend 2 1220
transmrts e,le, eP] and (e, b,,"b,, hash(b, ;" b, , [b, 5’
b, 4, G])) mod n to the Requestor 1210 at 1260, thus
completing its role in round-two processing. At 1265, the
Requestor 1210 verifies equality of the first output of 1255
and the first output of 1260. Also at 1255, the Requestor
1210 computes the product of: the second output of 1255,
the second output of 1260 and the first output of 1255.
Finally at 1265, the Requestor 1210 unblinds the resultant
product to derive TOKEN= e"l[(el"1 b,,"by hash(b1 s, b s
b,s' b, G)) mod n [e;" by " by, haSh(bzs 22015 big
G)) mod n] [e, e, eP].
[0164] Referring now to FIG. 13, stepping through deto-
kenization processing, first the Requestor 1310 transmits
e'TOKEN to Backend 1 1315 at 1325, and transmits e'TO-
KEN to Backend 2 1320 at 1330. Backend 1 1315 responds
at 1335 with ¢'; [¢TOKEN] and b, ;" b, , G, and Backend 2
1320 responds at 1340 with ', [ TOKEN] and b, 5" b, ¢ G,
thus completing their role in round-one processing. Using e',
¢'TOKEN and b2 s b, G received via 1345, Backend l
1315 transmits ' [e ¢'TOKEN] and (e b, 1’b 1 2 hash(b,
by [bys'byg G])) mod n to the Requestor 1310 at 1355,
thus completrng its role in round-two processing. Using e',
¢'TOKEN and b1 5 by 4 G received via 1350, Backend 2
1320 transmits e', [e ¢ TOKEN] and (¢', b, ;" b, , hash(b, .’
by, [by 27D, G])) mod n to the Requestor 1310 at 1360,
thus completrng its role in round-two processing. At 1365,
the Requestor 1310 verifies equality of the first output of
1355 and the first output of 1360. Also at 1365, the
Requestor 1310 computes the product of: the second output
of 1355, the second output of 1360 and the first output of
1355. Finally at 1365, the Requestor 1310 unblinds the
resultant product toderive P=e'"' [¢', b, ’b, , hash(b 1 5 b, ¢
by s bz s ()" mod n] [(¢'; b 21 b2 haSh(bz Sboabis b1,4
G))‘ mod n| [e'; ', & TOKEN]

[0165] Detokenrzatron round-one Backend processing:
[0166] Backend 1: ¢, [ TOKEN]; b, ;'b, , G
[0167] Backend 2: ¢, [¢'TOKEN]; b, b, G

Detokenization round-two Backend processing:

[0168] Backend l e, ey 'TOKEN]—prOVide to
Requestor b1 Sbyg [b2 s'b, Gl (e by ,"b, , hash(b,
s'by 6 [bys b2 s G])) ‘mod n—provrde to Requestor

[0169] Backend 2 e, [e) 'TOKEN]—provrde to
Requestor b2 by [b1 3’b1 4 GI; (¢5b,," b, , hash(b,
3 by [bys"by gy G mod n—provrde to Requestor
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[0170] Detokenization final Requestor processing: Verify
that [e', €', e TOKEN] received from Backend 1=[¢', €',
'TOKEN] received from Backend 2. Recover P=e"' [(e f
b by, haSh(br s, by s by’ bz s G)~' mod n] [(e,b,," b,
hash(b2 Sboabib G)) mod n] [¢'; e, eTOKEN]
[0171] Optional Add-On to Embodiment 6
[0172] Within Embodiment 6 as well as other embodi-
ments involving two or more rounds, the following assur-
ance mechanism can be used if the Requestor supplies both
Backends with the same eP, where the intent is that each
Backend can verify whether the opposite Backend has
operated within the first round, at least in part, by applying
a scalar multiple known to it to eP:
[0173] For example, the Requestor supplies eP, ee, and ee,
ePto Backend 1, and eP, ee, and eel eP to Backend 2, where
information about ee, other than ee, eP is not supplied to
Backend 2 and information about ee, other than ee, eP is not
supplied to Backend 1. Backend 1 aborts performance of
round-two computation upon [Point, ] if ee, [Point, ]
[Point, ,] for received values [Point, ;] and [Point,,].
Analogously, Backend 2 aborts performance of round-two
computation upon [Point, ;] if ee, [Point, ;]| [Point, ,] for
received values [Point, ;] and [Point, ,]. The corresponding
optional add-on for detokenization can be applied, whether
or not the optional tokenization add-on has been applied
during tokenization that resulted in the TOKEN values used
during detokenization. The Requestor supplies e TOKEN,
ee'; and ee', e TOKEN to Backend 1, and e TOKEN, ee', and
ee', e TOKEN to Backend 2. Note that there is a degree of
similarity between this example of the optional add-on
technique and the earlier-presented example of countermea-
sure (2).
[0174] Multiplex Extension/Alternative Embodiment 6:
[0175] Multiple TOKENSs may be generated via a single
run of the tokenization protocol if [eP] received from the
Requestor by Backend 1 and Backend 2 for first-round
processing is replaced by a sequence [eP |, eP,, .. .,eP,, | for
some integer m greater than 1. More generally, in lieu of
enabling the Requestor to verify that e, e, eP, e, e, eP,, .
,e e, eP,|=[e; e eP,e,e Py, ..., e, eP, ], the
Requestor can distribute [eP,, eP,] for some non-negative
integer k (where [ePy, . . ., ePy] is vacuous) to one of the
Backends for it to act upon and return a result, and distribute
[eP., - . ., eP,,] to the other Backend for it to act upon and
return a result, for some positive integer m. Detokenization
can be addressed analogously (using [¢'TOKEN,, . . .,
eTOKEN,] and [¢TOKEN,,,, . .., e TOKEN,,]), indepen-
dently of if/how this technique was applied during tokeni-
zation.
[0176] Two mechanisms intended towards assuring tra-
versal of Backend-generated ephemeral blinding factors
across first and second rounds:
[0177] (i): In this example embodiment, hash-based mes-
sage authentication code (HMAC) and encryption (Enc)
keys are deterministically derived from each Backend’s
current Pohlig-Hellman values using a preferably NIST-
approved key derivation function (KDF). Each Backend’s
HMAC keys for tokenization and detokenization are com-
putationally independent of each other. This is also true of
the symmetric Enc keys. When an HMAC value is gener-
ated, it is placed in that Backend’s non-volatile storage and
is deleted from that storage if/when that value is returned to
it within the second round of the corresponding tokeniza-
tion/detokenization. If a putative HMAC value returned to a
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Backend does not appear in that Backend’s storage, that
Backend preferably aborts that round’s computation. If a
putative HMAC value returned to a Backend fails to verify
over the inserted arguments (including those obtained by
decrypting a received value putatively resulting from
encryption using the Enc key), that Backend preferably
aborts that round’s computation. Each Backend’s storage of
HMAC values is erased upon onset of a new resplit interval.
With regard to Embodiment 5 and Embodiment 6, argu-
ments that are inserted for HMAC value computation can
include, in particular, the purportedly current value of the
ephemeral blinding factor e, or e,, respectively.

[0178] (ii): Rather than the Backends sending HMAC
values and/or Enc values and evaluating received values
purported to be HMAC values and/or Enc values, values that
need to traverse across multiple rounds can be derived via
deterministic computation. As an example, Backend 1 gen-
erates e, as HKDF-Expand(K,, info=[requestorID, t, eP], L)
mod n [HKDF-Expand(K2, info=[requestorID, t, eP], L)
mod n], where K, is a Pohlig-Hellman parameter-derived
key derivation key. K, can be derived using HKDF-Extract.
Alternatively, generation of K, and/or e, can utilize KMAC.
Within the expansion, eP can be represented as the octet
string comprising the x-coordinate of the point. HKDF-
Expand generates L. octets as output, where L is preferably
at least 8 greater than the octet-length of n to reduce bias of
e,. The same key derivation key K, can be used for both
tokenization and detokenization, e.g., if strings signifying
“tokenization” and “detokenization” are added as respective
arguments of HKDF-Expand or KMAC. The analogous
formulation for detokenization is e,=HKDF-Expand(K,,
info=[requestorID, t, e TOKEN], ) mod n. A reference for
Hash-based Key Derivation Function (HKDF) is https://doi.
org/10.17487/RFC5869. A reference for KECCAK Message
Authentication Code (KMAC) is https://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-185 .pdf.

[0179] Relevant to FIG. 14 and FIG. 16, by one approach,
at least one tokenization processor is used to generate a
TOKEN and a KEY_TOKEN upon a request from a
Requestor.

[0180] Referring now to FIG. 14, stepping through a
TOKEN-plus-KEY_TOKEN version of tokenization pro-
cessing as an alternative to Embodiment 1, first the
Requestor 1410 transmits an ephemerally blinded represen-
tation of Data, i.e., eP, to Backend 1 1415 at 1425 and
transmits eP to Backend 2 1420 at 1430. Backend 1 1415
responds at 1435 with b, [eP] and d, [eP], and Backend 2
220 responds at 240 with b, [eP] and d, [eP]. At 1445, the
Requestor 1410 performs two addition operations and two
unblinding operations to derive TOKEN=¢"*([b, eP]+[b,
eP])=(b,+b,)P and KEY_TOKEN=e"'([d, eP]+[d, eP])=
(d,+d,)P, respectively.

[0181] Relevant to FIG. 15 and FIG. 17, by one approach,
at least one tokenization processor is used to attempt recov-
ery of a KEY_TOKEN from a purported TOKEN received
from a Requestor that may or may not be the same as a
Requestor that requested generation of the KEY_TOKEN.
The tokenization processors that attempt recovery of the
KEY_TOKEN may overlap with the tokenization proces-
sors that generated the TOKEN. The purported TOKEN may
be submitted by the Requestor in blinded form as depicted
FIG. 15 and FIG. 17.

[0182] Referring now to FIG. 15, stepping through a
TOKEN-to-KEY_TOKEN version of detokenization pro-
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cessing as an alternative to Embodiment 1, first the
Requestor 1510 transmits ¢'TOKEN, to Backend 1 1515 at
1525 and transmits e TOKEN to Backend 2 1520 at 1530.
Backend 1 1515 responds at 1535 with b', [¢"TOKEN], and
Backend 2 1520 responds at 1540 with b', [¢'TOKEN],
where (b,+b,) (b';+b',)=(d;+d,) mod n. At 1445, the
Requestor 1410 performs an addition operation over the
output of 1535 and the output of 1540 followed by an
unblinding operation over the resultant sum to derive KEY_
TOKEN=(b', +b',) (b, +b,)TOKEN=(d, +d,)P.

[0183] Referring now to FIG. 16, stepping through a
TOKEN-plus-KEY_TOKEN version of tokenization pro-
cessing as an alternative to Embodiment 6, first the
Requestor 1610 transmits eP to Backend 1 1615 at 1625, and
transmits eP to Backend 2 1620 at 1630. Backend 1 1615
responds at 1635 with e, [eP], &, [eP], b, ' b, , Gand d, 5’
d, 4 G, and Backend 2 1620 responds with e, [eP], &*, [eP],
b,s" b, Gand d, 5" d, s G at 1640, where e, and e*, are
ephemeral blinding factors generated by Backend 1 1615
and e, and e*, are ephemeral blinding factors generated by
Backend 2 1620. This completes round-one processing by
Backend 1 1615 and Backend 2 1620. e, and e*; may be
identical or distinct and are preferably generated as dis-
cussed previously for generation of e,. e, and e*, may be
identical or distinct and are preferably generated as dis-
cussed previously for generation of e,. Using e, eP, e*, eP,
b,s" by Gand d, 5" d, ¢ G received via 1645, Backend 1
1615 transmlts e [e2 eP], e e, eP], (el"1 b1 Cbis
hash(b, 5’ s, bys [bzs 2.6 G1)) mod n and (e%, - di " dy
hash(d, 5"d, ¢ [d, 5" d, s G])) mod n to the Requestor 1610 at
1655, thus completlng its role in round-two processing.

Similarly, using e, eP, e*, eP, b, b, , Gand d, ;' d, , G
received via 1650, Backend 2 1620 transmits e, [e, eP], e*,
[e*, eP], (e, bz 1t by haSh(bz 3 24 [by 5" b, 4 G])) mod n
and (e*,”" d,, d2 5 hash(d2 Jdy,ld; L7d G])) modnto the
Requestor 1610 at 1660, thus completlng its role in round-
two processing. At 1665, the Requestor 1610 verifies equal-
ity of the first output of 1655 and the first output 0of 1660, and
equality of the second output of 1655 and the second output
of 1660, respectively. Also at 1665, the Requestor 1610
computes the product of: the third output of 1655, the third
output of 1660 and the first output of 1655. The Requestor
1610 unblinds the resultant product to derive TOKEN:e‘1
[(e,”" b, b, 2 haSh(bl 5 b1 bss"by s G))mod n] [(e;™" by,

b, haSh(bz a'boabis bl 4 G)) mod n] [e, e eP]=(b, , b, 1)

biobys haSh((bl 3 bz s)f bl 45,4 G) hash((b, 5 b, 5)" bl 6 bz 6
G) P. Further at 1665 the Requestor 1610 computes the
product of: the fourth output of 1655, the fourth output of
1660 and the second output of 1655. Finally at 1665, the
Requestor 1610 unblinds the resultant product to derive
KEY_TOKEN=[e™" [(eJ'l"1 d,,d; hash(d1 s 'd)sdys"dys
G)) mod n] (", dy dz 2 haSh(dz Jdyad sy G)) mod
n] [e*; e, eP|=(d, dz 1) di>dss haSh((dl 3, 3) diadoy
G) haSh((dl,s dz,s) d1,6 d2,6 G) P.

[0184] Referring now to FIG. 17, stepping through a
TOKEN-t0o-KEY_TOKEN version of detokenization pro-
cessing as an alternative to Embodiment 6, first the
Requestor 1710 transmits ¢ TOKEN to Backend 1 1715 at
1725, and transmits e TOKEN to Backend 2 1720 at 1730.
Backend 1 1715 responds at 1735 with ¢', [¢' TOKEN], b, .’
b, ,Gandd, ;°d, , G, and Backend 2 1720 responds with &',
[ TOKEN], b, s b, s Gand d, 5’ d, s G at 1740, where e, is
an ephemeral blinding factor generated by Backend 1 1715
and e, is an ephemeral blinding factor generated by Backend
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2 1720. This completes round-one processing by Backend 1
1715 and Backend 2 1720. ¢'; and €', are preferably gener-
ated as discussed previously for such parameters. Using e,

¢TOKEN, b, ;" b, ; G and d2 5" dy 6 G received via 1745,
Backend 1 1715 transmits €' L [e ¢ TOKEN] and (e' -
(b, 7" d ) by ,7t dy, (hash(b, by 4 [by 5" by 6 G1))" hash
(d; 5" dy 6 [do 5" ds s G])) mod n to the Requestor 1710 at
1755, thus completing its role in round-two processing.
Similarly, using ¢', ¢TOKEN, b, ;’b, , G and d1,3’ d,,G
received via 1750, Backend 2 1720 transmits e', [e e TO-
KEN] and (e' _l(bz 1_1 dz Dbyt dz > (hash(b, ;" b, 4 [b; 5

by Gy haSh(dz,s 2,4 [d1,3 14 GD) mod n to the
Requestor 1710 at 1760, thus completing its role in round-
two processing. At 1765, the Requestor 1710 verifies equal-
ity of the first output of 1755 and the first output of 1760.
Also at 1765, the Requestor 1710 computes the product of:
the second output of 1755, the second output of 1760 and the
first output of 1755. The Requestor unblinds the resultant
product to recover KEY_TOKEN=¢'"* [(¢'," [(b,, Tt d1 D
by, dis (haSh(bi s big [bz s b Gy haSh(di s die
[dz s, dz s G mod n] [(ez (bz 1_1 dy,) bz 2 d; (haSh
(b5’ 24 [bys'by4 Gy hash(d, 5" d, 4 [d; 5 dl 4 G])) mod
n] [e ¢ ¢ "TOKEN]= d;,1d5,)d; 5ds, haSh((di ad3)d g
4. G) haSh((di,s dy 5)f d1,6 d2,6 )

[0185] Referring now to FIG. 18, stepping through a token
translation version of tokenization processing as a supple-
ment to Embodiment 3 that results in a TOKEN under scope
label t,,.,, using a TOKEN under scope label t as input, first
the Requestor 1810 transmits e TOKEN to Backend 1 1815
at 1825, and transmits eTOKEN to Backend 2 1820 at 1830.
Backend l 1815 responds at 1835 with b, ,*~~* [eTOKEN]
and (b, ,"b, 2) d, ;" d, , [eTOKEN], and Backend 21820
responds with b, 7~ [eTOKEN] and (b, by )™ d,
d,, [eTOKEN] at 1840 This completes round-one process-
ing by Backend 1 1815 and Backend 2 1820. Using b, ,
¢TOKEN and (b, ,* b, ,)™" d, ;" d, , eTOKEN received via
1845, Backendl 1815 transmits b, , >~ ’[b ’""W"’eTOKEN]
and (bl,l 1) dy " dy s [(by, 1t b, dz 7 dy 5 €TO-
KEN] to the Requestor 1810 at 1855, thus completing its
role in round- two process1ng Similarly, using b, >~ eTO-
KEN and (b, ;" b, 2)" 117 d, , eTOKEN received via
1850, Backend2 1820 transmits b, , [b ’""W"’eTOKEN]
and (bz,i 22)7 dy " dy, (b 1t b )7 dl 7 d; , €TO-
KEN] to the Requestor 1810 at 1860, thus completing its
role in round-two processing. At 1865, the Requestor 1810
verifies equality of the first output of 1855 and the first
output of 1860, and verifies equality of the second output of
1855 and the second output of 1860, respectively. Also at
1865, the Requestor 1810 unblinds the first output of 1855
to derive TOKEN,  =e™! [b, /7' b, e’ eTOKEN] (b,
by )" (b, 21) by, 22P(b11 21) by, byp P.
Finally at 1865, the Requestor 1810 unblinds the second
output of 1855 and then applies a truncated hash function to
the result of unblinding to derive checkBitsneW*truncHash
(e [(b,," byt dy, 1tw dl 2 (b byp)7t do d 2 eTO-
KEN])ﬁruncHash((bl by 2)_1 dy, 1tw di» (b 2 )7
dy ;" d,, 2 (b by bl 2 bz 2ﬁmncHash((b1 1 bz D (bl 1
by 1) (by s by, 2) 1bi 2bas (d dy 5ds 5 P)ﬁmnCHaSh
((dy, d2,1) d; » dz,z
[0186] As an alternative to the processing depicted by
FIG. 18, an enhanced flow can be used to have Backend 1
and Backend 2 regenerate the original checkBits value
associated with scope t as a check against a checkBits value
submitted by the Requestor, where matching of the submit-
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ted and the recomputed checkBits values is used as a
precondition of release by Backend 1 and Backend 2 of their
round-two outputs.

[0187] Referring now to FIG. 19, stepping through a token
translation version of tokenization processing as a supple-
ment to Embodiment 6 that results in a TOKEN under scope
label t,,,,, using a TOKEN under scope label t as input, first
the Requestor 1910 transmits e TOKEN to Backend 1 1915
at 1925, and transmits e TOKEN to Backend 2 1920 at 1930.
Backend 1 1915 responds at 1935 with e, [eTOKEN], b, .’
b, ,Gandb, ;*b, , G, and Backend 2 1920 responds with
e, e[TOKEN], b, 5" b, s G and b, ™ b, ¢ G at 1940. This
completes round-one processing by Backend 1915 and
Backend 2 1920. Using e, eTOKEN, b, s’ b, s G and b, 5
b, s G received via 1945, Backend 1 1915 transmits e1 [e2
¢TOKEN] and e, 'b, tw—t (hash(b, 5" b, ¢ [bs 5 b, s G
hash(b, 5" b, ¢ [bz,5 b, G]) to the Requestor 1910 at
1955, thus completing its role in round-two processing.
Similarly, using e, eTOKEN, b, ;’b, , Gand b, ;> b, , G
received via 1950, Backend 2 1920 transmits e, [e; €TO-
KEN] and ez_l b, Tt (haSh(b23 2,4 [bi,st b1,4 G]))_l
hash(b, . b, , [b1 5™ b, 4 G]) to the Requestor 1910 at
1960, thus completing its role in round-two processing. At
1965, the Requestor 1910 verifies equality of the first output
of 1955 and the first output of 1960. Also at 1965, the
Requestor 1910 computes the product of the second output
of 1955, the second output of 1960 and the first output of
1955. Finally at 1965, the Requestor 1910 unblinds the
resultant product to derive TOKEN et [(el‘1 b, et
(hash(b, 5 b116 by s'by s G))” haSh(bi 5™ by bas™ bz 6@)
mod n] [(e2 b2 et (hash(b, 5’ b24 b, s* b, 4 G))_; hash
(b23"" by g [by 3 by 4 GI)) mod n] [e; & eTOKEN] bz 1)
et (haSh((bi 5 bos) bl 6 bae G haSh((bi s Do)
bz 3E)) (hash((bl 3 bz 3 bl 4b2 4O hash((bl 3 bz 3)

by, G) (b, 21) b12 2,2 haSh((bis b, ) b1,4 2,4 G)
hash((b, s 25) bl 6 bag G) P=(b, , bz )" b, 5 by, hash
(b5 bz,s) "bia bz 4 G) hash((b, 5 bz 5) " b6 b2,6 G)P.

[0188] Relevant to FIG. 20 with the resultant tokenization
processor secrets usable for tokenization as depicted in FIG.
2 and FIG. 4, and detokenization as depicted in FIG. 3 and
FIG. 5, by one approach, a third party sets up a plurality of
tokenization processors, wherein the third party computes an
inverse of a first sum of first tokenization processor secrets
and splits, preferably randomly, the inverse as a second sum,
that is distinct from the first sum, of second tokenization
processor secrets. Moreover, the third party transmits at least
one of the first tokenization processor secrets and at least one
of'the second tokenization processor secrets to a first tokeni-
zation processor, and does not transmit these tokenization
processor secrets to a second tokenization processor. The
third party also transmits to the second tokenization proces-
sor at least one of the first tokenization processor secrets that
differs from tokenization processor secrets that are sent to
the first tokenization processor, and at least one of the
second tokenization processor secrets that differs from
tokenization processor secrets that are sent to the first
tokenization processor. Further, at least one of the tokeni-
zation processor secrets used by the first tokenization pro-
cessor for tokenization processing, as derived from the
tokenization processor secrets received by the first tokeni-
zation processor from the third party is different than at least
one of the tokenization processor secrets used by the second
tokenization processor for tokenization processing, as

Lnew
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derived from the tokenization processor secrets received by
the second tokenization processor from the third party.

[0189] Referring now to FIG. 20, 3" party 2030 (aka third
party), communicates with Backend 1 2010 and Backend 2
2020 in order to execute its role in third-party setup usable,
in particular, for Embodiment 1 tokenization and detokeni-
zation as depicted in FIG. 2 and FIG. 3, respectively (where
(b',+b',) (b;+b,)=1 mod n), and for Embodiment 2 tokeni-
zation and detokenization as depicted in FIG. 4 and FIG. 5,
respectively (where (b'; ,+b',,) (b, ,+b,,)=1 mod n). At
2035, 3" party 2030 generates initial tokenization processor
secrets b; and b,, and computes their modulo n sum at 2040.
At 2045, 3¢ party 2030 inverts the sum and splits it into
initial tokenization processor secrets b', and b',. The distri-
bution of b, and b'; to Backend 1 2010, and of b, and b, to
Backend 2 2020 is depicted at 2050 and 2055, respectively.
At 2060, Backend 1 2010 and Backend 2 2020 agree on
parameters m, j and k that preferably are not exposed to 3¢
party 2030. At 2065, Backend 1 2010 uses j to resplit the
initial collective secret (b, +b,) mod n into b, +j and b,—j, and
uses m as a multiplier so that the new value of (b, +b,) mod
n is preferably independent of the initial value of (b,+b,)
mod n that was and may still be available to 3" party 2030.
The value of m cannot be reconstructed by potential collu-
sion between 3"/ party 2030 and either Backend 1 2010
(using the initial value of b; and the new value of b)) or
Backend 2 2020 (using the initial value of b, and the new
value of b,) once the value of j is no longer accessible
because it has been deleted. Similarly at 2065, Backend 1
2010 uses k to resplit (b',+b',) mod n and m™" to preferably
render the new value of (b';+b',) independent of its initial
value. m™ is used in order to preserve the equality: (b',+b',)
(b, +b,)=1 mod n. At 2070, the operations analogous to those
of 2065 are carried out by Backend 2 2020. At 2075,
Backend 1 2010 stores the new values of b, and b';. At 2080,
Backend 2 2020 stores the new values of b, and b',.

[0190] Relevant to FIG. 21, by one approach, a third party
sets up a plurality of tokenization processors, wherein the
third party computes an inverse of a first sum of first
tokenization processor secrets, and derives a value from the
inverse and from second tokenization processor secrets. The
third party then splits that value, preferably randomly, as a
second sum of second tokenization processor secrets that is
distinct from the first sum. Further, the first tokenization
processor secrets and the second tokenization processor
secrets differ in at least one tokenization processor secret.

[0191] Referring now to FIG. 21, 3" party 2130 (aka third
party), communicates with Backend 1 2110 and Backend 2
2120 in order to execute its role in third-party setup usable,
in particular, for TOKEN-plus-KEY_TOKEN alternative
version of Embodiment 1 tokenization processing as
depicted in FIG. 14, and TOKEN-to-KEY_TOKEN alter-
native version of detokenization processing depicted in FIG.
15, respectively (where (b, +b,) (b'; +b',)=(d, +d,) mod n). At
2135, 3" party 2130 generates initial tokenization processor
secrets b, b,, d; and d, and determines the modulo n product
of the inverse of the sum of b, and b, and the sum of di and
d, at 2140. At 2145, 3" party 2130 splits the resultant
product of 2140 into initial tokenization processor secrets b';
and b',. The distribution of b,, d; and b'; to Backend 1 2110,
and of b,, d, and b', to Backend 2 2120 is depicted at 2150
and 2155, respectively. At 2160, Backend 1 2110 and
Backend 2 2120 agree on parameters m, m', j, j' and k that
preferably are not exposed to 3'¢ party 2130. At 2165,
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Backend 1 2110 uses j to resplit the initial collective secret
(b, +b,) mod n into b, +j and b,—j, and uses m as a multiplier
so that the new value of (b;+b,) mod n is preferably
independent of the initial value of (b,+b,) mod n that was
and may still be available to 3" party 2130. The value of m
cannot be reconstructed by potential collusion between 377
party 2130 and either Backend 1 2110 (using the initial value
of'b, and the new value of b,) or Backend 2 2120 (using the
initial value of b, and the new value of b,) once the value of
j is no longer accessible because it has been deleted.
Similarly at 2165, Backend 1 2110 uses j' to resplit (d,;+d,)
mod n and m' to preferably render the new value of (d,+d,)
independent of its initial value. Further at 2165, Backend 1
2110 uses k to resplit (b',+b',) mod n and m™'m' to prefer-
ably render the new value of (b';+b',) independent of its
initial value. m™'m' is used in order to preserve the equality:
(b, +b,)+b',)=(d, +d,) mod n). At 2170, the operations analo-
gous to those of 2165 are carried out by Backend 2 2120. At
2175, Backend 1 2010 stores the new values of'b,, d, and b';.
At 2180, Backend 2 2120 stores the new values of'b,, d, and
b',.

[0192] The following algorithm expresses an example
embodiment of deriving an elliptic curve point P from Data
as source for use with direct tokenization of Data:

[0193] Below, Data_len_var is the field (of byte-length
denoted by Data_len_var length) that indicates the value of
Data_len (which denotes the byte-length of the input Data).

[0194] 1. Convert the Data_len to a fixed-length byte
string (with a length of 1 byte).

[0195] 2. Determine rand_len in bytes by computing
(for example elliptic curves P-256, P-384 and P-521,
respectively):

[0196] a. For P-256: rand_len=32-Data_len-(Data_
len_var length).

[0197] b. For P-384: rand_len=48-Data_len-(Data_
len_var length).

[0198] c. For P-521: rand_len=66-Data_len-(Data_
len_var length).

[0199] Preferably, rand_len is at least 8 bytes.

[0200] 3. Use HKDF-Extract to generate rand and trun-
cate it to rand_len bytes:

[0201] a. rand=HKDF-Extract(salt=counter, input
keying material (IKM)=Data), where counter=0 on
the first run and is incremented with each successive
run.

[0202] b. rand_trun=truncate(rand, rand_len).

[0203] 4. Use HKDF-Expand to generate vector where
rand_trun is the input keying material and the vector
length is the Data_len:

[0204] a. vector=HKDF-Expand(rand_trun, key
length=Data_len).

[0205] 5. Compute Data xor=Data. XOR. vector.

[0206] 6. Concatenate rand_trun, Data_xor and Data_
len_var, and convert the resultant bytes to an integer to
derive x_0:

[0207] a. x_O=(rand_trun|[Data_xor||Data_len_var).

[0208] 7. Determine if ((x_0)’-3x_0+b) (mod p) is a
quadratic residue, say y* (mod p). If not, increment
counter and do steps 4 through 7 over. Once a valid x_0
is found, define x_found=x_0. Note that there are
(p+1)/2 quadratic residues (including 0). Therefore,
since every time an x_0 is tried there is Y2+Y2p~V2
chance that x_0 yields a quadratic residue, this loop
should not be extensive.



US 2024/0039724 Al

[0209] a. The following check should preferably be
added in order to avoid bias: Reject any candidate
x-coordinate values that involve modulo p wrap-
around, i.e., for which 22°%>x_0>p-1. This bias-
avoidance technique has a negligible impact on
computation time. The proof here shows the prob-
ability of getting a value that does not pass this check
on the first try is extremely low in the case of P-256.
This proof is also described in U.S. Pat. No. 11,374,
910. Although not further described herein, the
method for determining this probability is the same
for curves P-224, P-384, and P-521, with analogous
results.

[0210] 1 2—33:2223/2256<(2256_p)/2256:(2256_(2256_
2224+2192+296_1)/2256<2224/2256:2—32.

[0211] 8. Denote by y_found the smaller of y and -y
reduced mod p, such that
[0212] a. (y*=(x_found)*-3x_found+b) (mod p).

[0213] 9. The point P is defined as (x_found, y_found).

[0214] Referring now to FIG. 22 that encapsulates the
steps above for generating P from Data as flow 2200: at
2205, rand is generated from Data and the current counter
value that can be initialized at, say, 0. At 2210, rand is
truncated to rand_len bytes. At 2215, vector is generated by
expanding the resultant value of 2210 to the length of Data.
At 2220, vector is exclusive-or added to Data. At 2225, an
x-coordinate is formed to generate a candidate value of P. At
2230, the candidate value of P is checked for its validity as
a point on the intended elliptic curve. Then, either the flow
advances to 2235 or the counter value is incremented and fed
back into 2205.

[0215] Referring now to FIG. 23 that depicts flow 2300, an
alternative decision tree for elliptic curve point generation is
depicted, where counter is removed from HKDF-Extract as
an input to the optional “salt” field and placed instead in
HKDF-Expand as an input to the optional “info” field. At
2305, rand is generated from Data. At 2310, rand is trun-
cated to rand_len bytes. At 2315, vector is generated by
expanding the resultant value of 2310 to the length of Data,
using the current counter value that can be initialized at, say,
0. At 2320, vector is exclusive-or added to Data. At 2325, an
x-coordinate is formed to generate a candidate value of P. At
2330, the candidate value of P is checked for its validity as
a point on the intended elliptic curve. Then, either the flow
advances to 2335 or the counter value is incremented at 2340
and fed back into 2315.

[0216] An example recovery procedure to extract Data
from elliptic curve point P is presented below as correspond-
ing to the algorithm depicted in FIG. 22 for the generation
of P:

[0217] The x-coordinate of P, as an integer, is converted to
bytes, where this byte string is denoted as x.

[0218] 1. Determine rand_trun and Data_xor based on
x=(rand trun|[Data_xor||Data_len_var), where Data_l-
en_var is the field (of byte-length denoted by Data_
len_var length) that indicates the value of Data_len.

[0219] 2. Use HKDF-Expand to  generate
vector=HKDF-Expand(rand_trun, Data_len).

[0220] 3. Data=Data_xor.XOR. vector.

[0221] 4. Integrity check (optional): An integrity check
may be executed here by computing rand'=HKDF-
Extract(counter, Data) using the recovered value of
Data and checking for a match of the proper truncation
of the resultant rand' value against the value in the
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rand_trun field. The value of counter is incremented
until there is a successful match and/or a preset limit on
tries has been reached. NOTE: Dependent on the use-
case specifics such as pertaining to the adversarial
model, an internal redundancy check on the recovered
Data may potentially be used instead of or in addition
to the rand'-based integrity check.

[0222] Note that the choice of whether to insert the
counter value into the HKDF-Extract operation vs. the
HKDF-Expand operation has bearing on the integrity veri-
fication process, which comprises recomputing the truncated
rand value from recovered Data and checking for a match
against the truncated rand field. Note also that if the counter
value is incorporated into HKDF-Expand, then successful
recovery of Data relies on choosing the correct value of
counter, since such recovery is dependent on the Data. XOR.
vector field where recovery of vector is as an output of
HKDF-Expand. Verifying such choices of counter may
involve checking for internal redundancy of the instances of
recovered Data. Further, the counter value affects integrity
verification processing even if the counter value is not
incorporated into HKDF-Extract, in that recovered Data is
an input to HKDF-Extract. In alternative embodiments, the
counter value may instead be incorporated as an explicit
field. An integrity verification process may be considered
optional in some configurations. In the non-deterministic
sub-case, rand may be randomly or pseudorandomly gener-
ated if a self-contained integrity check feature is not
required. Alternatively, if an integrity check feature is
required, the truncated rand field entry can, for example, be
populated by a randomly or pseudorandomly generated
prefix of appropriate bit-length concatenated with a preset-
length truncated hash of a value that comprises a concat-
enation of the prefix and Data.

[0223] The following algorithm expresses an example
embodiment of deriving an elliptic curve point P from Data
as source for use with TOKEN-and-KEY_ TOKEN-based
tokenization:

[0224]

[0225] 1. Concatenate the following and turn the bytes
into an integer to get x_0:

[0226] a. x_O=hash(Data||Pad) where Pad is a string
of pre-set length using, say, all zeroes on the first run
and is incremented with each successive run.

[0227] 2. Determine if ((x_0)’-3x_0+b) (mod p) is a
quadratic residue, say y* (mod p). If not, increment Pad
and repeat steps 1 and 2. Once a valid x_0 is found,
define x_found=x_0.

[0228] a. There are (p+1)/2 quadratic residues (in-
cluding 0). Therefore, every time an x_0 is tried there
is Y44Y4p~V4 chance that x 0 yields a quadratic
residue, which implies that this loop should not be
extensive.

[0229] b. Preferably, the following additional check
is added in order to avoid bias: Reject any candidate
x-coordinate values that involve modulo p wrap-
around, i.e., for which 22°°>x_0>p-1. This bias-
avoidance technique has a negligible impact on
computation time as discussed in U.S. Pat. No.
11,374,910.

Generate point P on the elliptic curve from Data:



US 2024/0039724 Al

[0230] 3. Denote by y_found the smaller of y and -y
reduced mod p, such that
[0231] a. y*=((x_found)*-3x_found+b) (mod p).
[0232] The point P is now defined as (x_found, y_found).

[0233] Referring now to FIG. 24 that encapsulates the
steps above for generating P from Data as flow 2400: At
2405, a candidate x-coordinate is generated from Data using
a Pad value, that may be initialized as, say, a string of all
zeroes. At 2410, the x-coordinate generated at 2405 is tested
for its validity as corresponding to a point on the intended
elliptic curve. If yes, then advance to 2415. If no, then
increase the value of Pad and return to 2405.

[0234] Following tokenization: The Requestor uses KEY_
TOKEN as an input to HKDF to derive rand, key (as
encryption key) and nonce (as initialization vector (IV))
used to encrypt the Data. Encrypt plaintext that incorporates,
at least, Data with AES-CTR mode using the key and nonce
to derive ciphertext. (Optional) integrity check: an integrity
check may be enabled here for the recovery by using, for
example, AES-GCM authenticated encryption as opposed to
AES-CTR mode.

[0235] Following detokenization: Decrypt the ciphertext
with the key and nonce to recover (rand|[Data||Data_len_
var), and thus recover Data. If AES-GCM is used to encrypt,
then the generated Authentication Tag is usable to verity the
integrity of Data.

[0236] The encryption in the symmetric-key case can be
handled via various methods, such as, for example, using
AES-GCM mode if authenticated encryption is desired, or
using AES-CTR mode otherwise. The AES (or other encryp-
tion engine-) symmetric key and Initialization Vector (also
denoted as a nonce) can be derived from a KEY_TOKEN
using a key derivation method such as HKDF. Alternatively,
HKDF or (potentially truncated) hash can be applied to a
KEY_TOKEN with the result exclusive-or added to a value
that can comprise, for example, [TruncatedHash(Data)
|[Data||Data bit-length], where || denotes concatenation and
TruncatedHash(Data) as a truncation of hash(Data) can be
eliminated if an integrity check is not required and/or Data
bit-length can be eliminated if the bit-length of Data is not
considered sensitive and thus there is no need to pad out to
constant length. Note that the function of KEY_TOKEN
(whether computed using HKDF, a hash function, or other
method) can be configured so that its bit-length matches that
of the function of Data that it is exclusive-or added to. In the
deterministic sub-case, the generation of KEY_TOKEN
(and of TOKEN from which KEY_TOKEN is derived upon
a recovery operation) can be based, for example, on hash
(Data pad) as (or similarly as) described in U.S. Pat. No.
11,374,910. In the non-deterministic sub-case, the genera-
tion of KEY_TOKEN (and of Token from which KEY_
TOKEN is derived upon a recovery operation) can instead
be based, for example, on hash(random/pseudorandom
[0237] Those skilled in the art will recognize that a wide
variety of modifications, alterations, and combinations can
be made with respect to the above-described embodiments
without departing from the scope of the invention, and that
such modifications, alterations, and combinations are to be
viewed as being within the ambit of the inventive concept.

What is claimed is:

1. A method for tokenization, as a process resulting in at
least one reversible token, using a plurality of control
circuits wherein each of the control circuits is configured as

Feb. 1, 2024

a tokenization processor that communicates with a request-
ing network element acting as a requestor, the method
comprising:
setting up by a third party of a plurality of tokenization
processors, wherein the setting up comprises, at least in
part, computation by the third party of an inverse of a
first sum of first tokenization processor secrets and
randomized splitting of the inverse as a second sum of
second tokenization processor secrets, and wherein the
first sum and second sum are distinct from one another;

transmitting third tokenization processors secrets com-
prising at least one of the first tokenization processor
secrets and at least one of the second tokenization
processor secrets to a first tokenization processor of the
plurality of tokenization processors, and transmitting
fourth tokenization processor secrets comprising at
least one of the first tokenization processor secrets and
at least one of the second tokenization processor secrets
to a second tokenization processor of the plurality of
tokenization processors, wherein the first tokenization
processor and the second tokenization processor differ
from one another, the third tokenization processor
secrets include at least one of the at least one of the first
tokenization processor secrets and at least one of the at
least one of the second tokenization processor secrets
not included within the fourth tokenization processor
secrets, and the fourth tokenization processor secrets
include at least one of the at least one of the first
tokenization processor secrets and at least one of the at
least one of the second tokenization processor secrets
not included within the third tokenization processor
secrets; and

generating by at least the first tokenization processor and

the second tokenization processor at least one revers-
ible token, wherein the generating entails use by the
first tokenization processor of at least one tokenization
processor secret derived from the third tokenization
processor secrets and use by the second tokenization
processor of at least one tokenization processor secret
derived from the fourth tokenization processor secrets,
wherein the at least one tokenization processor secret
derived from the third tokenization processor secrets
and the at least one tokenization processor secret
derived from the fourth tokenization processor secret
secrets differ from one another.

2. The method of claim 1 further comprising:

enabling role-based access control via cryptographic iso-

lation of scopes from one another as based on assign-
ment of distinct scope-specific tokenization processor
secrets, wherein each such scope-specific tokenization
processor secret is updateable without affecting values
of the reversible tokens that are generated jointly by at
least two distinct tokenization processors of the plural-
ity of tokenization processors using one or more of the
scope-specific tokenization processor secrets of each
tokenization processor of the at least two distinct
tokenization processors.

3. A method for tokenization, as a process resulting in at
least one reversible token, using at least one control circuit
configured as a tokenization processor that communicates
with a requesting network element acting as a requestor, the
method comprising: generating, by at least a first tokeniza-
tion processor, at least one pair comprising a reversible
token and a cryptographic integrity token; and



US 2024/0039724 Al

attempted matching of a first cryptographic integrity
token, of a first pair comprising a purported first
reversible token and a purported first cryptographic
integrity token that is submitted by the requesting
network element, by at least a second tokenization
processor against a second cryptographic integrity
token that is derived from the purported first reversible
token by at least a third tokenization processor, wherein
the purported first reversible token may be submitted in
blinded form or unblinded form, wherein the at least a
first tokenization processor, the at least a second tokeni-
zation processor and the at least a third tokenization
processor may differ in their inclusion of tokenization
processors.

4. A method for tokenization, as a process resulting in at
least one pair comprising a token and a key token, using at
least one control circuit configured as a tokenization pro-
cessor that communicates with requesting network elements
each acting as a requestor, the method comprising:

generating, by at least one tokenization processor, at least
the one pair; and

deriving cryptographic keying material from at least the
key token by a first requesting network element of the
requesting network elements each acting as a requestor,
and recovering the cryptographic keying material from
at least the key token by a second requesting network
element of the requesting network elements each acting
as a requestor, wherein the key token is regenerated
during detokenization, with the generating and the
detokenization each using one or more tokenization
processors of the at least one control circuit configured
as a tokenization processor, and wherein the first
requesting network element may differ from the second
requesting network element.

5. The method of claim 4 further comprising:

setting up, by a third party, a plurality of tokenization
processors, wherein the setting up comprises, at least in
part, computation of an inverse of a first sum of first
tokenization processor secrets and randomized splitting
of a value derived from the inverse and from second
tokenization processor secrets as a second sum of
second tokenization processor secrets, and wherein the
first sum and the second sum are distinct from one
another and the first tokenization processor secrets and
the second tokenization processor secrets differ in at
least one tokenization processor secret.

6. A method for tokenization, as a process resulting in at
least one reversible token, using at least a first control circuit
configured as a first tokenization processor and a second
control circuit configured as a second tokenization processor
that is different than the first tokenization processor, wherein
the first tokenization processor and the second tokenization
processor communicate with a first requesting network
element acting as a first requestor, the method comprising:

embedding by the first tokenization processor and the
second tokenization processor of a first set of one or
more role-based access control scope parameters and a
second set of tokenization processor secrets into a first
reversible token of the at least one reversible token,
wherein the first reversible token remains invariant
under updating of the tokenization processor secrets
across the first tokenization processor and the second
tokenization processor.
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7. The method of claim 6 further comprising:

detokenization wherein successful detokenization relies
on matching a third set of one or more role-based
access control scope parameters embedded during the
detokenization against the first set of one or more
role-based access control scope parameters.

8. The method of claim 6 further comprising:

extracting ciphertext from at least one of the at least one
reversible token that is consistent with format of source
data input to the tokenization, wherein when a first
source data input is distinct from a second data input,
resultant first ciphertext and second ciphertext are
distinct from one another.

9. The method of claim 6 further comprising:

generating at least one of the at least one reversible token,
at least in part, via combining by the first requestor of
at least:

source data input that is supplied by the first requestor in
ephemerally blinded form, blinded using a first blind-
ing factor that is independently generated by the first
requestor, and that is further ephemerally blinded by
the first tokenization processor via a second blinding
factor that is independently generated by the first
tokenization processor, and that is further ephemerally
blinded by the second tokenization processor via a third
blinding factor that is independently generated by the
second tokenization processor;

a scope-dependent first output of the first tokenization
processor that is invariant of the source data input and
of the first blinding factor; and

a scope-dependent second output of the second tokeniza-
tion processor that is invariant of the source data input
and of the first blinding factor;

wherein the first output is computed as: a first function of
the second blinding factor; and

a second function of tokenization processor secrets that
include at least one tokenization processor secret of the
first tokenization processor and at least one tokeniza-
tion processor secret of the second tokenization pro-
cessor;

and wherein the second output is computed as: a third
function of the third blinding factor; and a fourth
function of the tokenization processor secrets that
include at least one tokenization processor secret of the
first tokenization processor and at least one tokeniza-
tion processor secret of the second tokenization pro-
cessor; and

wherein the first output and the second output are distinct
from one another.

10. The method of claim 9 further comprising:

detokenization effected via analogous combining based
on input that includes at least one of the at least one
reversible token rather than on input that includes
source data.

11. An apparatus for tokenization, configured to carry out

a process resulting in at least one reversible token, wherein
the apparatus comprises:

a plurality of network interfaces;

a plurality of control circuits each operably coupled to one
of the network interfaces wherein each of the control
circuits is configured as a tokenization processor that
communicates with a requesting network element act-
ing as a requestor, wherein the plurality of control
circuits is further configured:
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to respond to setting up by a third party of a plurality of
tokenization processors, wherein the setting up com-
prises, at least in part, computation by the third party of

network element acting as a requestor, wherein the at
least one control circuit is further configured:
to generate, by at least a first tokenization processor, at

an inverse of a first sum of first tokenization processor
secrets and randomized splitting of the inverse as a
second sum of second tokenization processor secrets,
and wherein the first sum and second sum are distinct
from one another;

to receive third tokenization processor secrets comprising

at least one of the first tokenization processor secrets
and at least one of the second tokenization processor
secrets by a first tokenization processor of the plurality
of tokenization processors, and to receive fourth
tokenization processor secrets comprising at least one
of the first tokenization processor secrets and at least
one of the second tokenization processor secrets by a
second tokenization processor of the plurality of
tokenization processors, wherein the first tokenization
processor and the second tokenization processor differ

least one pair comprising a reversible token and a
cryptographic integrity token; and

to attempt matching of a first cryptographic integrity

token, of a first pair comprising a purported first
reversible token and a purported first cryptographic
integrity token that is submitted by the requesting
network element, by at least a second tokenization
processor against a second cryptographic integrity
token that is derived from the purported first reversible
token by at least a third tokenization processor, wherein
the purported first reversible token may be submitted in
blinded form or unblinded form, wherein the at least a
first tokenization processor, the at least a second tokeni-
zation processor and the at least a third tokenization
processor may differ in their inclusion of tokenization
processors.

from one another, the third tokenization processor
secrets include at least one of the at least one of the first
tokenization processor secrets and at least one of the at
least one of the second tokenization processor secrets
not included within the fourth tokenization processor

14. An apparatus for tokenization, configured to carry out
a process resulting in at least one pair comprising a token
and a key token, wherein the apparatus comprises:

at least one network interface;

at least one control circuit each operably coupled to one

secrets, and the fourth tokenization processor secrets
include at least one of the at least one of the first
tokenization processor secrets and at least one of the at
least one of the second tokenization processor secrets
not included within the third tokenization processor
secrets; and

to generate, as a generating operation, by at least the first

tokenization processor and the second tokenization
processor at least one reversible token, wherein the
generating operation entails use by the first tokeniza-
tion processor of at least one tokenization processor
secret derived from the third tokenization processor
secrets and use by the second tokenization processor of
at least one tokenization processor secret derived from
the fourth tokenization processor secrets, wherein the at
least one tokenization processor secret derived from the
third tokenization processor secrets and the at least one
tokenization processor secret derived from the fourth
tokenization processor secret secrets differ from one
another.

12. The apparatus of claim 11 further comprising:

cryptographic isolation of scopes from one another as

based on assignment of distinct scope-specific tokeni-
zation processor secrets enables role-based access con-
trol, wherein each such scope-specific tokenization
processor secret updates without affecting values of the
reversible tokens that are generated jointly by at least
two distinct tokenization processors of the plurality of
tokenization processors using one or more of the scope-
specific tokenization processor secrets of each tokeni-
zation processor of the at least two distinct tokenization
processors.

of the at least one network interface wherein each of the
at least one control circuit is configured as a tokeniza-
tion processor that communicates with requesting net-
work elements each acting as a requestor, wherein the
apparatus is further configured:

to generate during the tokenization, by at least one tokeni-

zation processor, at least the one pair; and

to derive cryptographic keying material from at least the

key token by a first requesting network element of the
requesting network elements each acting as a requestor,
and to recover the cryptographic keying material from
at least the key token by a second requesting network
element of the requesting network elements each acting
as a requestor, wherein the key token is regenerated
during detokenization, with the tokenization and the
detokenization each using one or more tokenization
processors of the at least one control circuit configured
as a tokenization processor, and wherein the first
requesting network element may differ from the second
requesting network element.

15. The apparatus of claim 14 further comprising:
a third party sets up, as a setting up operation, a plurality

of tokenization processors, wherein the setting up
operation comprises, at least in part, computation of an
inverse of a first sum of first tokenization processor
secrets and randomized splitting of a value derived
from the inverse and from second tokenization proces-
sor secrets as a second sum of second tokenization
processor secrets, and wherein the first sum and the
second sum are distinct from one another and the first
tokenization processor secrets and the second tokeni-
zation processor secrets differ in at least one tokeniza-

13. An apparatus for tokenization, configured to carry out
a process resulting in at least one reversible token, wherein
the apparatus comprises:
at least one network interface;
at least one control circuit each operably coupled to one
of'the at least one network interface wherein each of the
at least one control circuit is configured as a tokeniza-
tion processor that communicates with a requesting

tion processor secret.
16. An apparatus for tokenization, configured to carry out
a process resulting in at least one reversible token, wherein
the apparatus comprises:
at least one network interface;
at least a first control circuit configured as a first tokeni-
zation processor operably coupled to one of the at least
one network interface, and at least a second control
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circuit configured as a second tokenization processor
that is different than the first tokenization processor
wherein the first tokenization processor and the second
tokenization processor communicate with a first
requesting network element acting as a first requestor,
and wherein the at least a first control circuit and the at
least a second control circuit are further configured:

to embed, by the first tokenization processor and the
second tokenization processor, a first set of one or more
role-based access control scope parameters and a sec-
ond set of tokenization processor secrets into a first
reversible token of the at least one reversible token,
wherein the first reversible token remains invariant
under updating of the tokenization processor secrets
across the first tokenization processor and the second
tokenization processor.

17. The apparatus of claim 16 further comprising:

The first tokenization processor and the second tokeniza-
tion processor detokenizes, as a detokenization opera-
tion, wherein success of the detokenization operation
relies on matching a third set of one or more role-based
access control scope parameters embedded during the
detokenization against the first set of one or more
role-based access control scope parameters.

18. The apparatus of claim 16 further comprising:

the first requestor extracts ciphertext from at least one of
the at least one reversible token that is consistent with
format of source data input to the tokenization, wherein
when a first source data input is distinct from a second
data input, resultant first ciphertext and second cipher-
text are distinct from one another.

19. The apparatus of claim 16 further comprising:

the first requestor generates at least one of the at least one
reversible token, at least in part, via combining of at
least:

source data input that is supplied by the first requestor in
ephemerally blinded form, blinded using a first blind-
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ing factor that is independently generated by the first
requestor, and that is further ephemerally blinded by
the first tokenization processor via a second blinding
factor that is independently generated by the first
tokenization processor, and that is further ephemerally
blinded by the second tokenization processor via a third
blinding factor that is independently generated by the
second tokenization processor;

a scope-dependent first output of the first tokenization
processor that is invariant of the source data input and
of the first blinding factor; and

a scope-dependent second output of the second tokeniza-
tion processor that is invariant of the source data input
and of the first blinding factor;

wherein the apparatus computes the first output as: a first
function of the second blinding factor; and a second
function of tokenization processor secrets that include
at least one tokenization processor secret of the first
tokenization processor and at least one tokenization
processor secret of the second tokenization processor;

and wherein the apparatus computes the second output as:
athird function of the third blinding factor; and a fourth
function of the tokenization processor secrets that
include at least one tokenization processor secret of the
first tokenization processor and at least one tokeniza-
tion processor secret of the second tokenization pro-
cessor; and

wherein the first output and the second output are distinct
from one another.

20. The apparatus of claim 19 further comprising:

the first requestor effects detokenization by analogously
combining based on input that includes at least one of
the at least one reversible token rather than on input that
includes source data.
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