
US 20200050472A1
INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0050472 A1

KEDEM (43) Pub . Date : Feb. 13 , 2020

(54) METHODS AND APPARATUS FOR
PROVIDING HYPERVISOR LEVEL DATA
SERVICES FOR SERVER VIRTUALIZATION

(52) U.S. CI .
CPC

(71) Applicant : Zerto Ltd. , Herzilya (IL)

G06F 9/45558 (2013.01) ; G06F 37067
(2013.01) ; G06F 370665 (2013.01) ; G06F
3/0653 (2013.01) ; G06F 9/545 (2013.01) ;
G06F 11/1471 (2013.01) ; G06F 3/0619

(2013.01) ; G06F 370689 (2013.01) ; G06F
2009/45579 (2013.01) ; G06F 2209/542

(2013.01) ; G06F 9/45533 (2013.01)
(72) Inventor : Ziv KEDEM , Herzilya (IL)

(21) Appl . No .: 16 / 654,557

(22) Filed : Oct. 16 , 2019 (57) ABSTRACT

Related U.S. Application Data
(63) Continuation of application No. 15 / 240,847 , filed on

Aug. 18 , 2016 , now Pat . No. 10,459,749 , which is a
continuation of application No. 13 / 039,446 , filed on
Mar. 3 , 2011 .

(60) Provisional application No. 61 / 314,589 , filed on Mar.
17 , 2010 .

A hypervisor virtual server system , including a plurality of
virtual servers , a plurality of virtual disks that are read from
and written to by the plurality of virtual servers , a physical
disk , an I / O backend coupled with the physical disk and in
communication with the plurality of virtual disks , which
reads from and writes to the physical disk , a tapping driver
in communication with the plurality of virtual servers , which
intercepts I / O requests made by any one of said plurality of
virtual servers to any one of said plurality of virtual disks ,
and a virtual data services appliance , in communication with
the tapping driver , which receives the intercepted I / O write
requests from the tapping driver , and that provides data
services based thereon .

Publication Classification
(51) Int . Ci .

GOOF 9/455 (2006.01)
GO6F 3/06 (2006.01)
G06F 9/54 (2006.01)

KR

VIRTUAL SERVER o
TAPPING (FILTER) DRIVER

APPUANCE (VOSA
VIRTUAL

T
DATA SERVICES

Patent Application Publication Feb. 13 , 2020 Sheet 1 of 2 US 2020/0050472 A1

VRTUAL SERVER VIRTUAL SERVER VIRTUAL SERVER

TAPPING (FILTER) DRIVER

APPLIANCE (VDSA

FIG . 1

Patent Application Publication Feb. 13 , 2020 Sheet 2 of 2 US 2020/0050472 A1

core om

cene

???? ???? ? ? ? ? ????

230

FIG . 2 .

US 2020/0050472 Al Feb. 13. 2020
1

SUMMARY OF THE DESCRIPTION METHODS AND APPARATUS FOR
PROVIDING HYPERVISOR LEVEL DATA

SERVICES FOR SERVER VIRTUALIZATION

CROSS REFERENCES TO RELATED
APPLICATIONS

[0001] This application is a continuation of , and claims
priority under 35 U.S.C. § 120 and benefit of U.S. patent
application Ser . No. 15 / 240,847 , titled METHODS AND
APPARATUS FOR PROVIDING HYPERVISOR LEVEL
DATA SERVICES FOR SERVER VIRTUALIZATION ,
filed Aug. 18 , 2016 by inventor Ziv Kedem , which is a
continuation of , and claims priority under 35 U.S.C. § 120
and benefit of U.S. patent application Ser . No. 13 / 039,446 ,
titled METHODS AND APPARATUS FOR PROVIDING
HYPERVISOR LEVEL DATA SERVICES FOR SERVER
VIRTUALIZATION , filed Mar. 3 , 2011 by inventor Ziv
Kedem , which claims priority under 35 U.S.C. § 119 and
benefit of U.S. Provisional Application No. 61 / 314,589 ,
titled METHODS AND APPARATUS FOR PROVIDING
HYPERVISOR LEVEL DATA SERVICES FOR SERVER
VIRTUALIZATION , filed on Mar. 17 , 2010 by inventor Ziv
Kedem , each of which is incorporated by reference in its
entirety .

FIELD OF THE INVENTION

[0002] The present invention relates to virtual server envi
ronments and data services .

BACKGROUND OF THE INVENTION

[0003] Virtual servers are logical entities that run as soft
ware in a server virtualization infrastructure , referred to as
a “ hypervisor ” . Examples of hypervisors are VMWARE?
ESX manufactured by VMware , Inc. of Palo Alto , Calif . ,
HyperV manufactured by Microsoft Corporation of Red
mond , Wash . , XENSERVER manufactured by Citrix Sys
tems , Inc. of Fort Lauderdale , Fla . , Redhat KVM manufac
tured by Redhat , Inc. of Raleigh , N.C. , and Oracle VM
manufactured by Oracle Corporation of Redwood Shores ,
Calif . A hypervisor provides storage device emulation ,
referred to as “ virtual disks ” , to virtual servers . Hypervisor
implements virtual disks using back - end technologies such
as files on a dedicated file system , or raw mapping to
physical devices .
[0004] As distinct from physical servers that run on hard
ware , virtual servers run their operating systems within an
emulation layer that is provided by a hypervisor . Although
virtual servers are software , nevertheless they orm the
same tasks as physical servers , including running server
applications such as database applications , customer relation
management applications and MICROSOFT EXCHANGE
SERVER® . Most applications that run on physical servers
are portable to run on virtual servers . As distinct from virtual
desktops that run client side applications and service indi
vidual users , virtual servers run applications that service a
large number of clients .
[0005] As such , virtual servers depend critically on data
services for their availability , security , mobility and compli
ance requirements , the data services including inter alia
continuous data protection , disaster recovery , remote repli
cation , data security , mobility , and data retention and
archiving policies

[0006] Aspects of the present invention relate to a dedi
cated virtual data service appliance (VDSA) within a hyper
visor that can provide a variety of data services . Data
services provided by a VDSA include inter alia replication ,
monitoring and quality of service .
[0007] In an embodiment of the present invention , a
tapping filter driver is installed within the hypervisor kernel .
The tapping driver has visibility to I / O requests made by
virtual servers running on the hypervisor .
[0008] A VDSA runs on each physical hypervisor . The
VDSA is a dedicated virtual server that provides data
services ; however , the VDSA does not necessarily reside in
the actual I / O data path . When a data service processes I / O
asynchronously , the VDSA receives the data outside the data
path .
[0009] Whenever a virtual server performs I / O to a virtual
disk , the tapping driver identifies the I / O requests to the
virtual disk . The tapping driver copies the I / O requests ,
forwards one copy to the hypervisor's backend , and for
wards another copy to the VDSA .
[0010] Upon receiving an I / O request , the VDSA performs
a set of actions to enable various data services . A first action
is data analysis , to analyze the data content of the I / O request
and to infer information regarding the virtual server's data
state . E.g. , the VDSA may infer the operating system level
and the status of the virtual server . This information is
subsequently used for reporting and policy purposes .
[0011] A second action , optionally performed by the
VDSA , is to store each I / O write request in a dedicated
virtual disk for journaling . Since all I / O write requests are
journaled on this virtual disk , the virtual disk enables
recovery data services for the virtual server , such as restor
ing the virtual server to an historical image .
[0012] A third action , optionally performed by the VDSA ,
is to send I / O write requests to different VDSAs , residing on
hypervisors located at different locations , thus enabling
disaster recovery data services .
[0013] There is thus provided in accordance with an
embodiment of the present invention a hypervisor virtual
server system , including a plurality of virtual servers , a
plurality of virtual disks that are read from and written to by
the plurality of virtual servers , a physical disk , an I / O
backend coupled with the physical disk and in communica
tion with the plurality of virtual disks , which reads from and
writes to the physical disk , a tapping driver in communica
tion with the plurality of virtual servers , which intercepts I / O
requests made by any one of said plurality of virtual servers
to any one of said plurality of virtual disks , and a virtual data
services appliance , in communication with the tapping
driver , which receives the intercepted I / O write requests
from the tapping driver , and which provides data services
based thereon .
[0014] There is additionally provided in accordance with
an embodiment of the present invention a method for
providing data services within a hypervisor virtual server
system , including intercepting I / O requests from any one of
a plurality of virtual servers to one of a plurality of virtual
disks , and sending intercepted I / O write requests to a virtual
data services appliance that provides hypervisor data ser
vices .

US 2020/0050472 A1 Feb. 13 , 2020
2

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The present invention will be more fully under
stood and appreciated from the following detailed descrip
tion , taken in conjunction with the drawings in which :
[0016] FIG . 1 is a simplified block diagram of a hypervisor
architecture that includes a tapping driver and a virtual data
services appliance , in accordance with an embodiment of the
present invention ; and
[0017] FIG . 2 is a simplified data flow chart for a virtual
data services appliance , in accordance with an embodiment
of the present invention .

DETAILED DESCRIPTION

[0018] Aspects of the present invention relate to a dedi
cated virtual data services appliance (VDSA) within a
hypervisor , which is used to provide a variety of hypervisor
data services . Data services provided by a VDSA include
inter alia replication , monitoring and quality of service .
[0019] Reference is made to FIG . 1 , which is a simplified
block diagram of a hypervisor architecture that includes a
tapping driver and a VDSA , in accordance with an embodi
ment of the present invention . Shown in FIG . 1 is a hyper
visor 100 with three virtual servers 110 , three virtual disks
120 , an I / O backend 130 and a physical storage array 140 .
Hypervisor 100 uses a single physical server , but runs
multiple virtual servers 110. Virtual disks 120 are a storage
emulation layer that provide storage for virtual servers 110 .
Virtual disks 120 are implemented by hypervisor 100 via I / O
backend 130 , which connects to physical disk 140 .
[0020] Hypervisor 100 also includes a tapping driver 150
installed within the hypervisor kernel . As shown in FIG . 1 ,
tapping driver 150 resides in a software layer between
virtual servers 110 and virtual disks 120. As such , tapping
driver 150 is able to access I / O requests performed by virtual
servers 110 on virtual disks 120. Tapping driver 150 has
visibility to I / O requests made by virtual servers 110 .
[0021] Hypervisor 100 also includes a VDSA 160. In
accordance with an embodiment of the present invention , a
VDSA 160 runs on a separate virtual server within each
physical hypervisor . VDSA 160 is a dedicated virtual server
that provides data services via one or more data services
engines 170. However , VDSA 160 does not reside in the
actual I / O data path between 1/0 backend 130 and physical
disk 140. Instead , VDSA 160 resides in a virtual I / O data
path .
[0022] Whenever a virtual server 110 performs I / O on a
virtual disk 120 , tapping driver 150 identifies the I / O
requests that the virtual server makes . Tapping driver 150
copies the I / O requests , forwards one copy via the conven
tional path to 1/0 backend 130 , and forwards another copy
to VDSA 160. In turn , VDSA 160 enables the one or more
data services engines 170 to provide data services based on
these I / O requests .
[0023] Reference is made to FIG . 2 , which is a simplified
data flow chart for a VDSA , in accordance with an embodi
ment of the present invention . Shown in FIG . 2 are an I / O
receiver 210 , a hash generator 220 , a TCP transmitter 230 ,
a data analyzer and reporter 240 , a journal manager 250 and
a remote VDSA 260. Remote VDSA 260 resides on different
physical hardware , at a possibly different location .
[0024] As shown in FIG . 2 , 1/0 receiver 210 receives an
intercepted I / O request from tapping driver 150. VDSA 160
makes up to three copies of the received I / O requests , in

order to perform a set of actions which enable the one or
more data services engines 170 to provide various services .
[0025] A first copy is stored in persistent storage , and used
to provide continuous data protection . Specifically , VDSA
160 sends the first copy to journal manager 250 , for storage
in a dedicated virtual disk 270. Since all I / O requests are
journaled on virtual disk 270 , journal manager 250 provides
recovery data services for virtual servers 110 , such as
restoring virtual servers 110 to an historical image . In order
to conserve disk space , hash generator 220 derives a one
way hash from the I / O requests . Use of a hash ensures that
only a single copy of any I / O request data is stored on disk .
[0026] An optional second copy is used for disaster recov
ery . It is sent via TCP transmitter 230 to remote VDSA 260 .
As such , access to all data is ensured even when the
production hardware is not available , thus enabling disaster
recovery data services .
[0027] An optional third copy is sent to data analyzer and
reporter 240 , which generates a report with information
about the content of the data . Data analyzer and reporter 240
analyzes data content of the I / O requests and infers infor
mation regarding the data state of virtual servers 110. E.g. ,
data analyzer and reporter 240 may infer the operating
system level and the status of a virtual server 110 .
[0028] In the foregoing specification , the invention has
been described with reference to specific exemplary embodi
ments thereof . It will , however , be evident that various
modifications and changes may be made to the specific
exemplary embodiments without departing from the broader
spirit and scope of the invention as set forth in the appended
claims . Accordingly , the specification and drawings are to be
regarded in an illustrative rather than a restrictive sense .
What is claimed is :
1. A hypervisor , comprising :
a virtual server to make an I / O request via an 1/0 data path ;
a virtual disk to be read and written to using the I / O request
made by the virtual server via the I / O data path ;

a tapping driver having visibility to the I / O data path , the
tapping driver to intercept the I / O request made by the
virtual server via the I / O data path to the virtual disk ;
and

a virtual data services appliance residing outside the I / O
data path , in communication with the tapping driver to
asynchronously receive the I / O request and provide
data services based on the I / O request , and

the tapping driver to cause the I / O request to be forwarded
along the I / O data path and to separately cause the I / O
request to be forwarded to the virtual data services
appliance .

2. The hypervisor of claim 1 , comprising a data services
engine in communication with the virtual data services
appliance to provide the data services based on the I / O
request .

3. The hypervisor of claim 1 , comprising an I / O backend
coupled with a physical disk in communication with the
virtual disk to read to and write from the virtual disk .

4. The hypervisor of claim 1 , comprising a data analyzer
in communication with the virtual data services appliance to
determine a data state indicating a state of the virtual server
based on content of the I / O request .

5. The hypervisor of claim 1 , comprising a journal man
ager in communication with the virtual data services appli
ance to store the I / O request as a journal entry in the virtual
disk .

US 2020/0050472 A1 Feb. 13 , 2020
3

6. The hypervisor of claim 1 , comprising a hash generator
in communication with the tapping driver to generate a hash
value using the I / O request to store data corresponding to the
I / O request onto the virtual disk .

7. The hypervisor of claim 1 , comprising an I / O receiver
to receive the I / O request intercepted by the tapping driver ,
the I / O receiver to generate a plurality of copies of the I / O
request to separately process each copy of the plurality of
copies of the I / O request .

8. The hypervisor of claim 1 , comprising the data services
engine to provide the data services based on a set of actions
performed using a copy of the I / O request generated by the
virtual data services appliance asynchronously to processing
of the I / O request in the I / O data path .

9. The hypervisor of claim 1 , comprising the I / O data path
separate from a virtual I / O data path , the I / O data path
excluding the virtual data services appliance , the virtual I / O
data path including the virtual data services appliance .

10. A system to provide hypervisor data services , com
prising :

a virtual server implemented on a hypervisor to read from
and write to a virtual disk via an input / output (I / O) data
path ;

a tapping driver implemented on the hypervisor in com
munication with the virtual server , the tapping driver
having visibility to the I / O data path to intercept an I / O
request from the virtual server to the virtual disk ;

a virtual data services appliance implemented on the
hypervisor residing outside the I / O data path , the vir
tual data services appliance in communication with the
tapping driver to generate a copy of the I / O request
intercepted by the tapping driver and to asynchronously
perform a set of actions to provide data services based
on the copy of the I / O request ; and

the tapping driver to cause the I / O request to be forwarded
along the I / O data path and to separately cause the I / O
request to be forwarded to the virtual data services
appliance .

11. The system of claim 10 , comprising a data services
engine implemented on the hypervisor in communication
with the virtual data services appliance to provide data
services for the hypervisor based on the set of actions
performed asynchronously using the copy of the I / O request .

12. The system of claim 10 , comprising a data analyzer
implemented on the hypervisor in communication with the
virtual data services appliance to determine a data state
indicating a state of the virtual server based on content of the
I / O request .

13. The system of claim 10 , comprising an I / O backend
implemented on the hypervisor coupled with a physical disk
in communication with the virtual disk to read to and write
from the virtual disk .

14. The system of claim 10 , comprising an I / O receiver
implemented on the hypervisor to receive the I / O request

intercepted by the tapping driver , the I / O receiver to send a
copy of the I / O request to a remote virtual data services
appliance .

15. The system of claim 10 , comprising :
the tapping driver to forward a copy of the I / O request to

the virtual data services appliance ; and
a data services engine implemented on the hypervisor in

communication with the virtual data services appliance
to provide data services based on the copy of the I / O
request received by the virtual data services appliance .

16. A method of providing hypervisor data services ,
comprising :

identifying , by a tapping driver implemented on a hyper
visor , an input / output (I / O) request from a virtual server
to a virtual disk via an I / O data path , the tapping driver
having access to the I / O data path ;

sending , by the tapping driver , the I / O request to a virtual
data services appliance residing outside the I / O data
path , the virtual data services appliance to provide data
services via a data services engine based on the I / O
request asynchronously to processing of the I / O request
in the I / O data path ; and

causing , by the tapping driver , the I / O request to be
forwarded along the I / O data path separately from
forwarding the I / O request to the virtual data services
appliance .

17. The method of claim 16 , comprising sending , by the
tapping driver , the I / O request to a journal manager , receipt
of the I / O request causing the journal manager to store the
I / O request as a journal entry in the virtual disk .

18. The method of claim 16 , comprising sending , by the
tapping driver , the I / O request to the virtual data services
appliance , receipt of the I / O request causing the virtual data
services appliance to generate a copy of the I / O request and
to perform at least one action of a set of actions based on the
copy of the I / O request to provide the data services via the
data services engine .

19. The method of claim 16 , comprising :
copying , by the tapping driver , the I / O request from the

virtual server to the virtual disk via the I / O data path to
generate a copy of the I / O request ; and

forwarding , by the tapping driver , the I / O request the copy
of the I / O request to the virtual data services appliance ,
receipt of the copy of the I / O request to cause the
virtual data services appliance to provide the data
services via the data services engine .

20. The method of claim 16 , comprising :
intercepting , by the tapping driver , the I / O request made

by the virtual server to the virtual disk from the I / O data
path ; and

sending , by the tapping driver , the I / O request via a virtual
I / O data path to the data services engine , the virtual I / O
data path separate from the I / O data path , the virtual I / O
data path including the virtual data services appliance .

