
US 20190286444A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0286444 A1

KAPOOR et al . (43) Pub . Date : Sep . 19 , 2019
(54) METHOD AND APPARATUS FOR

PERFORMING LOGICAL COMPARE
OPERATIONS

continuation of application No . 11 / 525 , 706 , filed on
Sep . 21 , 2006 , now Pat . No . 7 , 958 , 181 .

(71) Applicant : INTEL CORPORATION , Santa Clara , ta CA (US)
(72) Inventors : Rajiv KAPOOR , University Place , WA

(US) ; Ronen ZOHAR , Sunnyvale , CA
(US) ; Mark J . BUXTON , Chandler ,
AZ (US) ; Zeev SPERBER , Zichron
Yaakov (IL) ; Koby GOTTLIEB , Kiryat
Tivon (IL)

Publication Classification
(51) Int . CI .

G06F 9 / 30 (2006 . 01)
GO6F 9 / 38 (2006 . 01)

(52) U . S . CI .
CPC GO6F 9 / 30036 (2013 . 01) ; G06F 9 / 30021

(2013 . 01) ; G06F 9 / 3877 (2013 . 01) ; G06F
9 / 30029 (2013 . 01) ; G06F 9 / 3887 (2013 . 01) ;

G06F 9 / 30145 (2013 . 01)

(21) Appl . No . : 16 / 184 , 994

(22) Filed : Nov . 8 , 2018
Related U . S . Application Data

(63) Continuation of application No . 15 / 885 , 269 , filed on
Jan . 31 , 2018 , now Pat . No . 10 , 146 , 536 , which is a
continuation of application No . 15 / 345 , 221 , filed on
Nov . 7 , 2016 , now Pat . No . 9 , 898 , 285 , which is a
continuation of application No . 15 / 015 , 991 , filed on
Feb . 4 , 2016 , now Pat . No . 9 , 489 , 198 , which is a
continuation of application No . 14 / 684 , 412 , filed on
Apr . 12 , 2015 , now Pat . No . 9 , 268 , 565 , which is a
continuation of application No . 13 / 763 , 598 , filed on
Feb . 8 , 2013 , now Pat . No . 9 , 037 , 627 , which is a
continuation of application No . 13 / 082 , 726 , filed on
Apr . 8 , 2011 , now Pat . No . 8 , 380 , 780 , which is a

(57) ABSTRACT
A method and apparatus for including in processor instruc
tions for performing logical - comparison and branch support
operations on packed or unpacked data . In one embodiment ,
instruction decode logic decodes instructions for an execu
tion unit to operate on packed data elements including
logical comparisons . A register file including 128 - bit packed
data registers stores packed single - precision floating point
(SPFP) and packed integer data elements . The logical com
parisons may include comparison of SPFP data elements and
comparison of integer data elements and setting at least one
bit to indicate the results . Based on these comparisons ,
branch support actions are taken . Such branch support
actions may include setting the at least one bit , which in turn
may be utilized by a branching unit in response to a branch
instruction . Alternatively , the branch support actions may
include branching to an indicated target code location .

Start

wwwwwwwwww
Receive Instruction and

Decode 701

Access Register File or
Memory , SRC1 & DEST 702

Enable Execution Unit with
Decoded Instruction 703

Int . Result 1 = Dest
AND Source

Int . Result 2 =
INOT Des ! AND

Source
715

Modify Zero Flag
720

Modify Cary Flag
721

Opt Set additional Flags *

End 700

Patent Application Publication Sep . 19 , 2019 Sheet 1 of 17 US 2019 / 0286444 A1

ERRY

Main
Memory ROM

Display
Device

Data Storage
Device 107

Ins???
LCSZC
Instr
WAL DUAAway

Input Device
122

Interconnect
GRUAJA Cursor

Control
123

YENE . KLASIKININEN

CARNAVA
Hard Copy
Device Processor 109
124

165 Sound
Recordi
Playback
Device
125

wwwwwwwwwwwwwww
.

Intemar Intera
Connect
1701

Register
File (s) Logical Compare

- Circuitry 150
W

wwww w wwww

mutta Video
126

ANY Execution Unit
130 wwwww

wwwww Communication
Device

190
AMMAMMAMVA

FIG . la

Patent Application Publication Sep . 19 , 2019 Sheet 2 of 17 US 2019 / 0286444 A1

EY
Processing Core 110 aman .

130

- - - - - - WeinwuN

I / O Bridge
* * * + * * 444 #

w

wwwwwwwwww

UNE VART
291

NW SDRAM
CTL 271 -

VY

Kr hat
USB
292 ere

W

w SRAM CTL
272 Stokhr A

444 Bluetooth
UART

Wu4o Burnt Flash
Interface

273
.

VO Expansion
Interface

294
* PCMCIA CF

Card CTL
274

*

wwwwwwwww 295
LCD CTC

III .
* 275 wwwwwwwwww *

DMA CTL
276

2
AWAL

Alt . Bus Master
InterfaceL 277

FIG . 1b

WAANWwwwwvvwvwwwwvvwvvvvvv - - - - - -

* * * * * * * * * # #

* * eit

A * * HHYYY

Y YYNY

x

A

v v v

Coprocessor
v v

Patent Application Publication

v

Coprocessor 226

v v v

ANANANANANANAN

v

130

209

WAWA NA

v v v v v

Decoder 165b

v v v v v

- 236

?

v w x

wakuu . AR . AN

+ + + +

Sep . 19 , 2019 Sheet 3 of 17

+ + + + +

Main Processor 224

=

wome

VO System

Wireless Interface

Cache 278

mmmmm Decoder

295

296

165

+ + + + +

o ayaa

VYMYWv44 4ww wveeva
44 .

Y

AR YAR Y YYYT

.

m

MX

- 49

.

.

.

-

FIG . Ic

US 2019 / 0286444 A1

Patent Application Publication Sep . 19 , 2019 Sheet 4 of 17 US 2019 / 0286444 A1

Control Signal
207 FIG . 2a

Cache
160 Register File
Registers

- 209
R , 212
R , 2120

Integer
Aegisters

201 w wwwwwwwwwwwwwwwwww
Decoder

165
Internal

wwwwwwwww
R , 212h LIVIT

170 . Instruction
Pointer Register
211

.

Execution
Unit
1830

. . wwwwwwwwwwwwww

Status Registers isters XV interested ang

Processor 226 21 :

1 .

-

. . . .

Patent Application Publication Sep . 19 , 2019 Sheet 5 of 17 US 2019 / 0286444 A1

Control Signal
207 FIG . 26

2 2 .

.

Cache
Register File

150
Registers Extension Registers

210
R . 212af Integer XR , 213a
R 212b Aegisters XR , 213b

201

2209

Decoder
LXV

. .

W
Internal
Bus Ry 212h
170 1630

XR , 213h
128 * * * * * * * * * * *

W

verk W . 1111LVLL Execution
Unit
130

Instruction
Pointer
Register

211
Status Registers

. . . NULLOW _ VZORU Processor
- 109 ???????????????????????? ????? SANS

Patent Application Publication Sep . 19 , 2019 Sheet 6 of 17 US 2019 / 0286444 A1

:

"

Start Id
-

- - -

-

-

Receive and Decode Instruction 301
N HAHA LLLLLLL YYYYYYYYY

N

Access Register File or Memory 302 NNANH

womwwwwwwwwwwwwwwwwmodoh A
WA * * FUUUU44 - 44c4 - HH4 , - 4444444444

A

+ W

+ + + + + +

Enable Execution Unit with Operation 303
+

+

+ +

+ 44 + +

Store results in Register or Memory 304

-

- -

dois
- - - - -

44 300
? ? ? ?? ? ? ??? ? ? ? ? ?? ? ?? ? ?? ? ??? ?? ?? ?? ? ???? ? ?? ? ?? ? ??? ? ? ?? ?? ??? ???? ?? ? - - - - ?? . ?? ? ?? ? ? ? ???? ?

FIG . 3

127 112 111 96 95 80 79 84 63 48 47 32 31 16 15

315814813812B11 B10 89 88 B7 B8 85 64 63 B2 B1 BO
Packed Byte 421 127 112 111 9695 80 79 6463 48 47 32 31 16 15 0

Half 7 Hall 6 Hall 5 Halt 4 Halt 3 Halt 2 Half 11 Hallo Packed Halt 422

96 95

64 63

32 31

Single 3 Single 2 Single 1 Single O Packed Single 429

Patent Application Publication

.

Y

.

127 Who

VO

Sep . 19 , 2019 Sheet 7 of 17

WLLWN

64 63

Double 1

Double 0

Packed Double 424
. . WYLWY

N N

1

.

. . .

Double Quadword - 128 bits

412

.

US 2019 / 0286444 A1

FIG . 4

Hi

2 «

P

iiiiiiiiiiiii

Patent Application Publication

444444444444 44 ! ! ! ! ! ! ! ! ! ! ! ! !

- - -

1

127 120 119112 111 104 103 9695 88 87 80 79 72 71 64 63 6655 48 47 40 39 32 31 24 23 16 157 b . . . b 6 b . . . o bro b . . . b . . . b bb . b . . . bb . .

Duta Bute Byte
Byte Byte Byte Byte Byte Byte Byte Byte Byte

Byte Byte

Byte Byte Byte Byte

Byte Byte Byte Byte

Byte Byte Byte

15 14 13 12 11 10 9 8 7 6 5 4

Byte By

Unsigned packed byte in - register representation 510 127 120 119112 111 104 103 96 95 88 87 80 79 72 71 84 63 56 55 48 47 40 39 32 31 24 23 16 15 87
s stb . . . Sb . sb . stb . . . stb . . 5 stb . . . st . . . Sb . . . sb . . stb . . . 5 . . st . . bsi . .

Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte

er SV 4 3

Byte

15 14 13 12 11 10 og

Signed packed byte in - register representation 511 127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0 bbb . . bbbbb . . . bbbbb . . . bbbbb . . . bbbbbbbbbb . . . bbbbb . . . bbbbb . . . bb Unsigned packed word in - register representation 512 127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 (sbb . . bb s bb . . . bb sbb . . . bb sbb . . . bb sbb . . . bb sbb . . . bbsbb . . . bb sbb . . . bobo Signed packed word in - register representation 513
FIG . 5

Sep . 19 , 2019 Sheet 8 of 17

Www

wwwwww

WENY

Word 7 -

- Word 0

US 2019 / 0286444 A1

A

yyyy

. . . bbbb

M : : : : : : : : : : : : : : : : :

: :

: : :

*

* *

*

*

* *

*

H

AU H

H

HHHH

127

96 95 64 63 32 31

bbbb . . . bbbbbbbb . . . bbbbbbbb . . . bbbbbbbb . . .
Unsigned packed doubleword in - register representation 514

127 . 96 95

64 63

32 31

sbbb . . . bbbb sbbb bbbb sbbb bbbby sbbb bbbb Signed packed doubleword in - register representation 515

Patent Application Publication

LLLLLLLLLLLLLLL
YT

w

MUNAWWAAL

AAAAAAAAAAAAAAAAAAAAAAAA
+ + +

+ + + +

ARHIV ANNVIRVYYYYYYYHHHH1

127

Yw

Sep . 19 , 2019 Sheet 9 of 17

bbbb . . .

64 63 bobb bbbb bbbb b bbb . . .

. . . bbbb bbbb bbbb

Unsigned packed quadword in - register representation 516 64 63

bbbbbbbb bbbb

. . . bbbb bbbb bbbb

Signed packed quadword in - register representation 517

127
sbbb . . .

?????????????????

US 2019 / 0286444 A1

FIG . 6

Patent Application Publication Sep . 19 , 2019 Sheet 10 of 17 US 2019 / 0286444 A1

. . * * * * . . - - n * Y # * Wr tyr VW * * W I - D - E YEAR . SYPIATTARTTTTTTTTT -

77

w
- Wow YA

Start
" 61b

. . . DLY :

. E W

Receive Instruction and
Decode 701

. .

.

.

.

Nuhtimitet

.

.

Access Register File or
Memory , SRC1 & DEST 702 . . .

. . . .

TYPYYYYYSIAPUTY PRIPOLLYALY + 44444444444YAYLALYYTI . AYKAY KARM
A
A

Enable Execution Unit with
Decoded Instruction 703

ARANYAYAYAAVAARAAAAAAAA Int . Result 1 - Dest
AND Source

Int . Result 2 =
INOT Dest) AND

Source
715 214

Meth

Modify Zero Flag
720

Modify Carry Flag
721 YAYAN AYYAYAYAYAYAYAYIRAS nyava - AYALA

A ATATA FARAW ARWANARAYA Opt Set additional Flags
JAVAYYA + 4 + AT +

(End AHAYA 700
At

TE 6 YE . . & # lu 2 . V , * * * * E OWAV * + vid W www e * * Yihe W W with white w

FIG . 7a

Patent Application Publication Sep . 19 , 2019 Sheet 11 of 17 US 2019 / 0286444 A1

diren T V LLA AWAL LLLLAYEVTRAJAYAYVA etéxHtm # * * * * * * * * * * * *

naynin YAYIN .

YA (Start

YAYAYA

Receive Instruction and
Decode 701b

. :

Access Register File or
Memory , SRC1 & DEST 702b

AV14HAYVAUVANA AVAMOLADORIANA PAWONNEMENDARAT Enable Execution Unit with
Decoded Instruction 703b

mm

Int . Result 1
(127 : 01 - DEST
AND (bitwise)

SRC1

Int . Result 2
(127 : 0J = [NOT
DESTI AND

(bitwise) SRC1 ?????????????????????????????????
+ LLR111 TRYI2YVAAVASVAVAVEAWALAWANCAVAAGAWA

715b

I RTH TRA IF Int . Result 1 0 , 1
then ZF f 1 ; Else

ZF . .)
720b

If int . Result 2 0 ,
then CF + 1 ; Else

. .

7216 ATSPA PA
TANG

V AF - OF - PFSF from 0
7226 wwwwwwwww

AAVATAVA Vita (End
WWW # WWWW WWWWWWWW M WWW . MM WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWheth Wwth with the UWA

FIG . 75

Patent Application Publication Sep . 19 , 2019 Sheet 12 of 17 US 2019 / 0286444 A1

STT

" 4PTANYE (start) Start

Y

- - - - -

AVUJE Receive Instruction and
Decode 7010 EAR

ZVYVAVYYYY Access Register File or
Memory , SRC1 & DEST 702C
www + YG dicari TOYOTYY VAAN

Enable Execution Unit with
Decoded instruction 7030

RYY AYYAN

- T

Int . Result 1 [127 : 0] : =
SRC1 [127 : 0) AND
DEST (127 : 01

Int . Result 2 (127 : 01 :
SCRC1 (127 : 03 AND NOT .
DEST | 127 : 01 7150

: -

F G
-

test

. -

LUZAY PAYPALVIAYAYLAR DYE YEY -

????????????????? R y Y * * * *
. . .

If Int . Result 1 [127) = = 0 ,
AND Int . Result 1195) - O AND Int .
Result 1 [63] = 0 AND Int . Result
1 (31) 0

wwwwwwwwww EY -

If int . Result 2 (127) = 0 ,
AND Int . Result 2 (95) = = 0 AND Int .
Result 2 [63] = - O AND Int . Result
2 [310 ·

w AVANTAA Y

wwww
- VOY V THEN ZF * 1 ;
| ELSE ZF from o

THEN CF w 1 ;
ELSE CF from 0

120c 721c -

WA

- - - - - - - -

- - AF - OF - PF = SFO
- - 7226 numur4y + - - +
- -

-

9002 -

- - - (End)
WR

-

FIG . 70

Patent Application Publication Sep . 19 , 2019 Sheet 13 of 17 US 2019 / 0286444 A1

t A ANTAMTEUA A + AVAX . A AVY VRATAW tyd test

* * Start
+ * * * * *

WAYA WhatH Receive Instruction and
Decode 7010 WWW * *

*

*

* * * * *

Access Register File or
Memory , SRC1 & DEST 702d

FLYVAUI * TAFWY *
Enable Execution Unit with
Decoded Instruction 7030 *

ULLAM wym

*

MA

. A

RAWLALA Int . Result 1 (127 : 01 :
SRC1127 : 03 AND
DEST (127 : 01

Int Result 2 [127 : 01 : =
SCRC1 [127 : 01 AND NOT
DEST (127 : 01 PHIZ Wwwwww AWA * L

TES

*

*

o www r

* * * * If Int . Result 1 [127) = 0 ,
AND Int . Result 1 (63) O

if Int . Result 2 [127) = = 0 ,
AND Int . Result 2 (63) = = 0 .

* *

*

m

* * * * . 62Y THEN ZF + 1 ;
ELSE ZF 80

THEN CF w 1 ;
ELSE CFO

* * * * POZZ PIZZ
yyyyyyyyyy

* * * * * * * * * * * A

so
r 0 S = 3d = 30 = 3V t

? ???? ? ?
* * * * * * PZZZ

w w w w w w Att ha ww

* * * * * * * *

700b End * *

*

* * * *

* * * * * * * * * * * * * * * * Matthew Wowwwww * * * W ww * * * * with wwwwwwwwwwwwwwwwwwww wwwwwwwwwwA * W www . * * * * #

p? ??

t

ry

Source1 [127 : 0) 831

Dest [127 : 03 833

Patent Application Publication

* Vivixvi *

844

825

827

Jawatan

sien

CAP

854

te

money

Enable 880

weer

Sep . 19 , 2019 Sheet 14 of 17

CF

858

Operation Control · 800

mit

120 119112 111 104 103 96 95 88 87 80 79 7271 64 63 66 65

48 47 40 39 32 31

24 23 16 15

8

te

m

XY

FANNARRRRRRY
LINN

LINNA

- 854

*

LYY

Y

- -

VR

Y

V . * V *

4

*

v

. v

_

_

- -

- - - - - - - - - - - - - - -

46 6 6 6

6 as ee A

RE

N

H

A - SG -

E + Es

US 2019 / 0286444 A1

FIG . 8a

Source1 [127 : 01 831
127

W

WW

www

.

GENEESEE

Patent Application Publication

VW

Desti1270) 833

.

. A

* *

Y Y *

844d

* *

*

* * *

*

Sep . 19 , 2019 Sheet 15 of 17

* * * ~ *

8448

~ * R Y V

W

An -

N

*

* * *

W * *

* *

*

W

Het w

W

4mm
*

* .
WWW
- *

.

rym

m

.

Ty v

. r .

Nr .

7 8010
manya Enable 880

the

Operation Control Operation Control
800 900

US 2019 / 0286444 A1

FIG . 86

Source1 [127 : 0)
831

Patent Application Publication

Dest [127 : 01 833

M

YYYYYYYYYYYYYYY 8449

8440

AVVIVVYVWWA

Sep . 19 , 2019 Sheet 16 of 17

*

T -

smi * FYTYYTV

- t .

" V

VYAvvvvvvvvvvvvwvvwvvwvvwvvwv
8010 Enable 880 800

the

Antwort

whether that

the

twentietty thi

s

ZF

CF

1 . 41

860

Operation Control

US 2019 / 0286444 A1

FIG . 8c

mano 910

ima 920

930

p

950

pre ne 960

e 940 SIB

PREFIXES

OPCODE

MOD RM

DISPLACEMENT
IMMED .

Patent Application Publication

WA

ith

900

118c

www 926

????

3 - BYTE ESCAPE CODE

OPCODE

????

1180

928

PREFIX

3 - BYTE ESCAPE CODE

OPCODE

wird
within
t

www itidistrik

Sep . 19 , 2019 Sheet 17 of 17 US 2019 / 0286444 A1

FIG . 9

US 2019 / 0286444 A1 Sep . 19 , 2019

METHOD AND APPARATUS FOR
PERFORMING LOGICAL COMPARE

OPERATIONS

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of application
Ser . No . 15 / 885 , 269 , filed Jan . 31 , 2018 , which is a con
tinuation of application Ser . No . 15 / 345 , 221 , filed Nov . 7 ,
2016 (now U . S . Pat . No . 9 , 898 , 285 issued Feb . 20 , 2018) ,
which is a continuation of application Ser . No . 15 / 015 , 991 ,
filed Feb . 4 , 2016 (now U . S . Pat . No . 9 , 489 , 198 , issued Nov .
8 , 2016) , which is a continuation of application Ser . No .
14 / 684 , 412 , filed Apr . 12 , 2015 (now U . S . Pat . No . 9 , 268 ,
565 , issued Feb . 23 , 2016) , which is a continuation of
application Ser . No . 13 / 763 , 598 , filed Feb . 8 , 2013 (now
U . S . Pat . No . 9 , 037 , 627 , issued May 19 , 2015) , which is a
continuation of application Ser . No . 13 / 082 , 726 , filed Apr . 8 ,
2011 (now U . S . Pat . No . 8 , 380 , 780 , issued Feb . 19 , 2013) ,
which is a continuation of application Ser . No . 11 / 525 , 706 ,
filed Sep . 21 , 2006 (now U . S . Pat . No . 7 , 958 , 181 , issued Jun .
7 , 2011) , which are hereby incorporated by reference .

TECHNICAL FIELD
[0002] This disclosure relates generally to the field of
processors . In particular , the disclosure relates to using a
single control signal to perform multiple logical compare
operations on multiple bits of data .

[0006] FIGS . 1a - 1c illustrate example computer systems
according to alternative embodiments of the invention .
[0007] FIGS . 2a - 2b illustrate register files of processors
according to alternative embodiments of the invention .
[0008] FIG . 3 illustrates a flow diagram for at least one
embodiment of a process performed by a processor to
manipulate data .
[0009] FIG . 4 illustrates packed data types according to
alternative embodiments of the invention .
[0010] FIG . 5 illustrates in - register packed byte and in
register packed word data representations according to at
least one embodiment of the invention .
[0011] FIG . 6 illustrates in - register packed doubleword
and in - register packed quadword data representations
according to at least one embodiment of the invention .
[0012] FIGS . 7a - 7d are flow diagrams illustrating various
embodiments of processes for performing logical - compare ,
set - zero - and - carry - flag operations .
[0013] FIGS . 8a - 8c illustrate alternative embodiments of
circuits for performing logical - compare , set - zero - and - carry
flag operations .
[0014] FIG . 9 is a block diagram illustrating various
embodiments of operation code formats for processor
instructions .

DETAILED DESCRIPTION
BACKGROUND ART

[0003] In typical computer systems , processors are imple
mented to operate on values represented by a large number
of bits (e . g . , 64) using instructions that produce one result .
For example , the execution of an add instruction will add
together a first 64 - bit value and a second 64 - bit value and
store the result as a third 64 - bit value . Multimedia applica
tions (e . g . , applications targeted at computer supported
cooperation (CSC — the integration of teleconferencing with
mixed media data manipulation) , 2D / 3D graphics , image
processing , video compression / decompression , recognition
algorithms and audio manipulation) require the manipula
tion of large amounts of data . The data may be represented
by a single large value (e . g . , 64 bits or 128 bits) , or may
instead be represented in a small number of bits (e . g . , 8 or
16 or 32 bits) . For example , graphical data may be repre
sented by 8 or 16 bits , sound data may be represented by 8
or 16 bits , integer data may be represented by 8 , 16 or 32
bits , and floating point data may be represented by 32 or 64
bits .
[0004] To improve efficiency of multimedia applications
(as well as other applications that have the same character
istics) , processors may provide packed data formats . A
packed data format is one in which the bits typically used to
represent a single value are broken into a number of fixed
sized data elements , each of which represents a separate
value . For example , a 128 - bit register may be broken into
four 32 - bit elements , each of which represents a separate
32 - bit value . In this manner , these processors can more
efficiently process multimedia applications .

BRIEF DESCRIPTION OF THE DRAWINGS
[0005] The present invention is illustrated by way of
example and not limitation in the figures of the accompa
nying drawings .

[0015] Disclosed herein are embodiments of methods ,
systems and circuits for including in processor instructions
for performing logical compare operations on multiple bits
of data in response to a single control signal . The data
involved in the logical compare operations may be packed or
unpacked data . For at least one embodiment , a processor is
coupled to a memory . The memory has stored therein a first
datum and a second datum . The processor performs logical
compare operations on data elements in the first datum and
the second datum in response to receiving an instruction .
The logical compare operations may include a bitwise AND
of data elements in the first and second datum and may also
include a bitwise AND of the complement of data elements
of the first datum with data elements of the second datum .
At least two status flags of the processor are modified based
on the results of the logical compare operations . These two
status flags may include the zero flag and the carry flag .
These flags may be architecturally visible to application
programs , and may be part of a larger flag value , such as an
architecturally visible extended flags (EFLAGS) register .
[0016] These and other embodiments of the present inven
tion may be realized in accordance with the following
teachings and it should be evident that various modifications
and changes may be made in the following teachings with
out departing from the broader spirit and scope of the
invention . The specification and drawings are , accordingly ,
to be regarded in an illustrative rather than restrictive sense
and the invention measured only in terms of the claims .

US 2019 / 0286444 A1 Sep . 19 , 2019

TABLE la - continued

Logical Compare Dest , Source

Set if Int . Result1 = all O ' s ; otherwise reset Zero

Flag

Definitions
[0017] To provide a foundation for understanding the
description of the embodiments of the invention , the fol
lowing definitions are provided .
Bit X through Bit Y :

[0018] defines a subfield of binary number . For
example , bit six through bit zero of the byte 001110102
(shown in base two) represent the subfield 111010g .
The following a binary number indicates base 2 .
Therefore , 10002 equals 810 , while F16 equals 1510

[0019] Rz : is a register . A register is any device capable of
storing and providing data . Further functionality of a
register is described below . A register is not necessarily ,
included on the same die or in the same package as the
processor .

Set if Int . Result2 = all O ' s ; otherwise reset Carry
Flag

TABLE 1b

Logical Compare Dest , Source - Example Values

SRC and DEST :
[0020] identify storage areas (e . g . , memory addresses ,
registers , etc .)
Sourcel - i and Result1 - i and Destin : represent data .

Destination Operand
10101010010101010000111100000000

Source Operand
01010101101010101111000000001111

Dest AND (bitwise) Source
00000000000000000000000000000000

[NOT Dest] AND Source
01010101101010101111000000001111

ZERO FLAG = TRUE
CARRY FLAG = FALSE

OVERVIEW
[0021] This application describes embodiments of meth
ods , apparatuses and systems for including in processor
instructions for logical compare operations on packed or
unpacked data . More specifically , the instructions may be for
logically comparing data and then setting the zero and carry
flags based on the comparisons . For at least one embodi
ment , two logical compare operations are performed using a
single instruction as shown below in Table la and Table 1b .
The compare operations include a bit - wise logical AND of
the destination and source operands , as well as a bit - wise
logical AND of the complement of the destination operand
with the source operand . Table la shows a simplified rep
resentation of one embodiment of the disclosed logical
compare operations , while Table 1b shows a bit - level
example of an embodiment of the disclosed logical compare
instructions , given some sample values . For the embodi
ments illustrated in Tables la and 1b , the data in the source
and destination operand may be of any data representation
and is not necessarily packed data , though it could be packed
data . Where the data of the source and / or destination oper
ands is a single entity of 128 - bits , and therefore is not
considered " packed " data , it will be referred to herein as
“ unpacked " data , which simply means that the data is not
necessarily subdivided into component representations and
may be considered a single data value . While the data in
Table la is represented , for simplicity of illustration , as a
32 - bit value , one of skill in the art will recognize that the
concept being illustrated in Tables la and 1b may be applied
to data of any length , including smaller data lengths (e . g . ,
4 - bit , 8 - bit , and 16 - bit lengths) as well as larger data lengths
(e . g . , 64 - bit and 128 - bit lengths) .

[0022] For at least one embodiment , the data values for the
source and destination operands may represent packed data .
Each of the packed components of the source and destina
tion operands for such embodiment may represent any type
of data .

[0023] Tables 2a and 2b illustrate that components A1
through A4 and B , through B4 each represent binary repre
sentations of 32 - bit single - precision floating point numbers .
However , such illustration should not be taken to be limit
ing . One of skill in the art will recognize that each of the
components may represent any data , including any integral
or floating point data format , as well as string format or any
other type of data format .

TABLE 2a

Logical Compare Dest , Source

- A
Bi

A2 A3
B2 B3

Dest AND (bitwise) Source

A4
B4

Dest
Source
Int .
Result1

TABLE la [NOT Dest] AND (bitwise) Source Int .

Result2 Logical Compare Dest , Source
Set if Int . Result1 = all O ' s ; otherwise reset Zero

Flag Destination Operand
Source Operand
Dest AND (bitwise) Source Set if Int . Result2 = all O ' s ; otherwise reset Carry

Dest
Source
Int .
Result1
Int .
Result2

Flag [NOT Dest] AND (bitwise) Source

US 2019 / 0286444 A1 Sep . 19 , 2019

TABLE 2b
Logical Compare Dest , Source - Example Values

00

A1 : - 118 . 625 A2 : 0 . 15625 A3 : - 2 . 125 A4 : 2 . 5
1100001011101101 001111100010000 110000000000100010000000010000
01000

00 00
B1 : - 0 . 0 B2 : 0 . 0 B3 : - 0 . 0 B4 : 0 . 0

100000000000000000000000000000 100000000000000 000000000000000
000 000000000000000

00 00 00 00
A1 AND B1 A2 AND B2 A3 AND B3 A4 AND B4

100000000000000000000000000000 100000000000000000000000000000
000 000000000000000

00 00 00 00
[NOT A1] AND [NOT A2] AND [NOT A3] AND [NOT] A4 AND

B1 B2 B3 B4
00
00

00 00

ZERO FLAG = FALSE
CARRY FLAG = TRUE

00 00

10024] For packed embodiments , such as that illustrated
by Tables 2a and 2b , alternative embodiments may be
employed such that only certain bits of each packed element
are operated upon during the compare operation . For
example , at least some such alternative embodiments are
discussed below in connection with the discussion of FIGS .
7c , 7d , 86 , and 8c .
[0025] One of skill in the art will recognize that interme
diate values “ Int . Result1 ” and “ Int . Result2 ” are shown in
Tables la and 2a and that the third and fourth rows of binary
values are show in Tables 1b and 2b for ease of illustration
only . Their representation in Tables la through 2b should not
be taken to imply that such intermediate values are neces
sarily stored within the processor , although they may be so
stored for at least one embodiment . Alternatively , for at least
one other embodiment , such intermediate values are deter
mined via circuitry without storing said values in a storage
area .
[0026] Tables la , 1b , 2a and 2b , above , describe embodi
ments of a “ logical compare , set zero and carry flags ”
(“ LCSZC ”) instruction that performs a bitwise AND opera
tion on each of the 128 bits of the source and destination
operands , and also performs a bitwise AND operation of
each of the 128 bits of the source operand with each of the
128 bits of the complemented value of the destination
operand , and sets the zero and carry flags according to the
results of the AND operations .
[0027] The setting of the zero and carry flags supports
branching behavior based on the logical comparisons . For at
least one embodiment , the LCSZC instruction may be fol
lowed by a separate branch instruction that indicates the
desired branching operation to be performed by the proces
sor , based on the value of one or both of the flags (see , e . g . ,
pseudocode in Table 4 , below) . One of skill in art will
recognize that setting of status flags are not the only hard
ware mechanism by which branching operations may utilize
the comparison results , and other mechanisms may be
implemented in order to support branching based on the
results of the comparisons . Thus , although specific embodi
ments described below indicate that zero and carry flags may
be set as a result of the logical comparison , such flag - setting
in support of branching is not required for all embodiments .
Accordingly , the term “ LCSZC ” as used herein should not

be taken to be limiting , in that the setting of the zero and
carry flags is not necessary for all embodiments .
[0028] For one alternative embodiment , for example , the
branching behavior may be performed as a direct result of a
variant of the LCSZC instruction that fuses the comparison
and branching in one instruction , such as fused " test - and
branch " instruction . For at least one embodiment of the
fused " test - and - branch ” instruction , no status flag is set as a
result of the logical comparisons performed .
[0029 . Alternative embodiments may vary the number of
bits in the data elements and the intermediate results . Also ,
alternative embodiments may compare only some bits of the
respective source and destination values . In addition , alter
native embodiment may vary the number of data elements
used and the number of intermediate results generated . For
example , alternative embodiments may include but are not
limited to : a LCSZC instruction for an unsigned source and
a signed destination ; a LCSZC instruction for a signed
source and an unsigned destination ; a LCSZC instruction for
an unsigned source and an unsigned destination ; and a
LCSZC instruction for a signed source and a signed desti
nation . In each of the examples , said source and destination
may each contain packed data of 8 - bit , 16 - bit , 32 - bit , or
64 - bit components . Alternatively , said source and destina
tion data is not packed , but is instead a 128 - bit data element .
The packed nature of the source and destination need not be
symmetric , and the size of data for the source and destina
tion , if both are packed , need not necessarily be the same .
[0030] Computer System
[0031] FIG . 1a illustrates an example computer system
100 according to one embodiment of the invention . Com
puter system 100 includes an interconnect 101 for commu
nicating information . The interconnect 101 may include a
multi - drop bus , one or more point - to - point interconnects , or
any combination of the two , as well as any other commu
nications hardware and / or software .
10032] FIG . 1a illustrates a processor 109 , for processing
information , coupled with interconnect 101 . Processor 109
represents a central processing unit of any type of architec
ture , including a CISC or RISC type architecture .
[0033] Computer system 100 further includes a random
access memory (RAM) or other dynamic storage device
(referred to as main memory 104) , coupled to interconnect

US 2019 / 0286444 A1 Sep . 19 , 2019

101 for storing information and instructions to be executed
by processor 109 . Main memory 104 also may be used for
storing temporary variables or other intermediate informa
tion during execution of instructions by processor 109 .
[0034) Computer system 100 also includes a read only
memory (ROM) 106 , and / or other static storage device ,
coupled to interconnect 101 for storing static information
and instructions for processor 109 . Data storage device 107
is coupled to interconnect 101 for storing information and
instructions .
[0035] FIG . 1a also illustrates that processor 109 includes
an execution unit 130 , a register file 150 , a cache 160 , a
decoder 165 , and an internal interconnect 170 . Of course ,
processor 109 contains additional circuitry that is not nec
essary to understanding the invention .
[0036] Decoder 165 is for decoding instructions received
by processor 109 and execution unit 130 is for executing
instructions received by processor 109 . In addition to rec
ognizing instructions typically implemented in general pur
pose processors , decoder 165 and execution unit 130 rec
ognize instructions , as described herein , for performing
logical - compare - and - set - zero - and - carry - flags (LCSZC)
operations . The decoder 165 and execution unit 130 recog
nize instructions for performing LCSZC operations on both
packed and unpacked data .
[0037] Execution unit 130 is coupled to register file 150 by
internal interconnect 170 . Again , the internal interconnect
170 need not necessarily be a multi - drop bus and may , in
alternative embodiments , be a point - to - point interconnect or
other type of communication pathway .
[0038] Register file (s) 150 represents a storage area of
processor 109 for storing information , including data . It is
understood that one aspect of the invention is the described
instruction embodiments for performing LCSZC operations
on packed or unpacked data . According to this aspect of the
invention , the storage area used for storing the data is not
critical . However , embodiments of the register file 150 are
later described with reference to FIGS . 2a - 2b
[0039] Execution unit 130 is coupled to cache 160 and
decoder 165 . Cache 160 is used to cache data and / or control
signals from , for example , main memory 104 . Decoder 165
is used for decoding instructions received by processor 109
into control signals and / or microcode entry points . These
control signals and / or microcode entry points may be for
warded from the decoder 165 to the execution unit 130 .
[0040] In response to these control signals and / or micro
code entry points , execution unit 130 performs the appro
priate operations . For example , if an LCSZC instruction is
received , decoder 165 causes execution unit 130 to perform
the required comparison logic . For at least some embodi
ments (such as those not implementing fused “ test and
branch ” operations) , the execution unit 130 may set the zero
and carry flags accordingly (see , e . g . , logical compare
circuitry 145) . For such embodiments , a branch unit (not
shown) of the processor 109 may utilize the flags during
execution of a subsequent branch instruction that indicates a
target code location .
[0041] Alternatively , the execution unit 130 itself may
include branch circuitry (not shown) that effects a branch
based on the logical comparisons . For such embodiment ,
“ branching support ” provided by an LCSZC instruction is a
control jump to a specified target code location , rather than
the setting of control flags . For at least one embodiment , the

branch circuitry that performs the jump , or “ branch ” , may be
part of the logical compare circuitry 145) .
[0042] Decoder 165 may be implemented using any num
ber of different mechanisms (e . g . , a look - up table , a hard
ware implementation , a PLA , etc .) . Thus , while the execu
tion of the various instructions by the decoder 165 and
execution unit 130 may be represented herein by a series of
if / then statements , it is understood that the execution of an
instruction does not require a serial processing of these
if / then statements . Rather , any mechanism for logically
performing this if / then processing is considered to be within
the scope of the invention .
[0043] FIG . 1a additionally shows a data storage device
107 (e . g . , a magnetic disk , optical disk , and / or other
machine - readable media) can be coupled to computer sys
tem 100 . In addition , the data storage device 107 is shown
to include code 195 for execution by the processor 109 . The
code 195 can include one or more embodiments of an
LCSZC instruction 142 , and can be written to cause the
processor 109 to perform bit testing with the LCSZC
instruction (s) 142 for any number of purposes (e . g . , motion
video compression / decompression , image filtering , audio
signal compression , filtering or synthesis , modulation / de
modulation , etc .) .
10044 Computer system 100 can also be coupled via
interconnect 101 to a display device 121 for displaying
information to a computer user . Display device 121 can
include a frame buffer , specialized graphics rendering
devices , a liquid crystal display (LCD) , and / or a flat panel
display .
[0045] An input device 122 , including alphanumeric and
other keys , may be coupled to interconnect 101 for com
municating information and command selections to proces
sor 109 . Another type of user input device is cursor control
123 , such as a mouse , a trackball , a pen , a touch screen , or
cursor direction keys for communicating direction informa
tion and command selections to processor 109 , and for
controlling cursor movement on display device 121 . This
input device typically has two degrees of freedom in two
axes , a first axis (e . g . , x) and a second axis (e . g . , y) , which
allows the device to specify positions in a plane . However ,
this invention should not be limited to input devices with
only two degrees of freedom .
[0046] Another device that may be coupled to interconnect
101 is a hard copy device 124 which may be used for
printing instructions , data , or other information on a medium
such as paper , film , or similar types of media . Additionally ,
computer system 100 can be coupled to a device for sound
recording , and / or playback 125 , such as an audio digitizer
coupled to a microphone for recording information . Further ,
the device 125 may include a speaker which is coupled to a
digital to analog (D / A) converter for playing back the
digitized sounds .
[0047] Computer system 100 can be a terminal in a
computer network (e . g . , a LAN) . Computer system 100
would then be a computer subsystem of a computer network .
Computer system 100 optionally includes video digitizing
device 126 and / or a communications device 190 (e . g . , a
serial communications chip , a wireless interface , an ethernet
chip or a modem , which provides communications with an
external device or network) . Video digitizing device 126 can
be used to capture video images that can be transmitted to
others on the computer network .

US 2019 / 0286444 A1 Sep . 19 , 2019

275

[0048] For at least one embodiment , the processor 109
supports an instruction set that is compatible with the
instruction set used by existing processors (such as , e . g . , the
Intel® Pentium® Processor , Intel® Pentium® Pro proces
sor , Intel® Pentium® II processor , Intel® Pentium® III
processor , Intel® Pentium® 4 Processor , Intel® Itanium®
processor , Intel® Itanium® 2 processor , or the Intel®
CoreTM Duo processor) manufactured by Intel Corporation
of Santa Clara , Calif . As a result , processor 109 can support
existing processor operations in addition to the operations of
the invention . Processor 109 may also be suitable for manu
facture in one or more process technologies and by being
represented on a machine - readable media in sufficient detail ,
may be suitable to facilitate said manufacture . While the
invention is described below as being incorporated into an
x86 based instruction set , alternative embodiments could
incorporate the invention into other instruction sets . For
example , the invention could be incorporated into a 64 - bit
processor using an instruction set other than the x86 based
instruction set .
[0049] FIG . 1b illustrates an alternative embodiment of a
data processing system 102 that implements the principles of
the present invention . One embodiment of data processing
system 102 is an applications processor with Intel XScaleTM
technology . It will be readily appreciated by one of skill in
the art that the embodiments described herein can be used
with alternative processing systems without departure from
the scope of the invention .
[0050) Computer system 102 comprises a processing core
110 capable of performing LCSZC operations . For one
embodiment , processing core 110 represents a processing
unit of any type of architecture , including but not limited to
a CISC , a RISC or a VLIW type architecture . Processing
core 110 may also be suitable for manufacture in one or
more process technologies and by being represented on a
machine - readable media in sufficient detail , may be suitable
to facilitate said manufacture .
[0051] Processing core 110 comprises an execution unit
130 , a set of register file (s) 150 , and a decoder 165 .
Processing core 110 also includes additional circuitry (not
shown) which is not necessary to the understanding of the
present invention .
[0052] Execution unit 130 is used for executing instruc
tions received by processing core 110 . In addition to recog
nizing typical processor instructions , execution unit 130
recognizes instructions for performing LCSZC operations
on packed and unpacked data formats . The instruction set
recognized by decoder 165 and execution unit 130 may
include one or more instructions for LCSZC operations , and
may also include other packed instructions .
[0053] Execution unit 130 is coupled to register file 150 by
an internal bus (which may , again , be any type of commu
nication pathway including a multi - drop bus , point - to - point
interconnect , etc .) . Register file 150 represents a storage area
of processing core 110 for storing information , including
data . As previously mentioned , it is understood that the
storage area used for storing the data is not critical . Execu
tion unit 130 is coupled to decoder 165 . Decoder 165 is used
for decoding instructions received by processing core 110
into control signals and / or microcode entry points . In
response to these control signals and / or microcode entry
points . These control signals and / or microcode entry points
may be forwarded to the execution unit 130 . The execution
unit 130 may perform the appropriate operations , responsive

to receipt of the control signals and / or microcode entry
points . For at least one embodiment , for example , the
execution unit 130 may perform the logical comparisons
described herein and may also set the status flags as dis
cussed herein or branch to a specified code location , or both .
[0054] Processing core 110 is coupled with bus 214 for
communicating with various other system devices , which
may include but are not limited to , for example , synchronous
dynamic random access memory (SDRAM) control 271 ,
static random access memory (SRAM) control 272 , burst
flash memory interface 273 , personal computer memory
card international association (PCMCIA) / compact flash
(CF) card control 274 , liquid crystal display (LCD) control
275 , direct memory access (DMA) controller 276 , and
alternative bus master interface 277 .
[0055] For at least one embodiment , data processing sys
tem 102 may also comprise an I / O bridge 290 for commu
nicating with various I / O devices via an I / O bus 295 . Such
1 / 0 devices may include but are not limited to , for example ,
universal asynchronous receiver / transmitter (UART) 291 ,
universal serial bus (USB) 292 , Bluetooth wireless UART
293 and I / O expansion interface 294 . As with the other buses
discussed above , I / O bus 295 may be any type of commu
nication pathway , include a multi - drop bus , point - to - point
interconnect , etc .
[0056] At least one embodiment of data processing system
102 provides for mobile , network and / or wireless commu
nications and a processing core 110 capable of performing
LCSZC operations on both packed and unpacked data .
Processing core 110 may be programmed with various
audio , video , imaging and communications algorithms
including discrete transformations , filters or convolutions ;
compression / decompression techniques such as color space
transformation , video encode motion estimation or video
decode motion compensation , and modulation / demodula
tion (MODEM) functions such as pulse coded modulation
(PCM) .
[0057] FIG . 1c illustrates alternative embodiments of a
data processing system 103 capable of performing LCSZC
operations on packed and unpacked data . In accordance with
one alternative embodiment , data processing system 103
may include a chip package 310 that includes main proces
sor 224 , and one or more coprocessors 226 . The optional
nature of additional coprocessors 226 is denoted in FIG . 1c
with broken lines . One or more of the coprocessors 226 may
be , for example , a graphics co - processor capable of execut
ing SIMD instructions .
[0058] FIG . 1c illustrates that the data processor system
103 may also include a cache memory 278 and an input /
output system 265 , both coupled to the chip package 310 .
The input / output system 295 may optionally be coupled to
a wireless interface 296 .
[0059] Coprocessor 226 is capable of performing general
computational operations and is also capable of performing
SIMD operations . For at least one embodiment , the copro
cessor 226 is capable of performing LCSZC operations on
packed and unpacked data .
[0060] For at least one embodiment , coprocessor 226
comprises an execution unit 130 and register file (s) 209 . At
least one embodiment of main processor 224 comprises a
decoder 165 to recognize and decode instructions of an
instruction set that includes LCSZC instructions for execu
tion by execution unit 130 . For alternative embodiments ,
coprocessor 226 also comprises at least part of decoder 166

US 2019 / 0286444 A1 Sep . 19 , 2019

to decode instructions of an instruction set that includes
LCSZC instructions . Data processing system 103 also
includes additional circuitry (not shown) which is not nec
essary to the understanding of the present invention .
[0061] In operation , the main processor 224 executes a
stream of data processing instructions that control data
processing operations of a general type including interac
tions with the cache memory 278 , and the input / output
system 295 . Embedded within the stream of data processing
instructions are coprocessor instructions . The decoder 165
of main processor 224 recognizes these coprocessor instruc
tions as being of a type that should be executed by an
attached coprocessor 226 . Accordingly , the main processor
224 issues these coprocessor instructions (or control signals
representing the coprocessor instructions) on the coproces
sor interconnect 236 where from they are received by any
attached coprocessor (s) . For the single - coprocessor embodi
ment illustrated in FIG . 1c , the coprocessor 226 accepts and
executes any received coprocessor instructions intended for
it . The coprocessor interconnect may be any type of com -
munication pathway , including a multi - drop bus , point - to
pointer interconnect , or the like .
[0062] Data may be received via wireless interface 296 for
processing by the coprocessor instructions . For one
example , voice communication may be received in the form
of a digital signal , which may be processed by the copro
cessor instructions to regenerate digital audio samples rep
resentative of the voice communications . For another
example , compressed audio and / or video may be received in
the form of a digital bit stream , which may be processed by
the coprocessor instructions to regenerate digital audio
samples and / or motion video frames .
[0063] For at least one alternative embodiment , main
processor 224 and a coprocessor 226 may be integrated into
a single processing core comprising an execution unit 130 ,
register file (s) 209 , and a decoder 165 to recognize instruc
tions of an instruction set that includes LCSZC instructions
for execution by execution unit 130 .
[0064] FIG . 2a illustrates the register file of the processor
according to one embodiment of the invention . The register
file 150 may be used for storing information , including
control / status information , integer data , floating point data ,
and packed data . One of skill in the art will recognize that
the foregoing list of information and data is not intended to
be an exhaustive , all - inclusive list .
[0065] For the embodiment shown in FIG . 2a , the register
file 150 includes integer registers 201 , registers 209 , status
registers 208 , and instruction pointer register 211 . Status
registers 208 indicate the status of processor 109 , and may
include various status registers such as a zero flag and a
carry flag . Instruction pointer register 211 stores the address
of the next instruction to be executed . Integer registers 201 ,
registers 209 , status registers 208 , and instruction pointer
register 211 are all coupled to internal interconnect 170 .
Additional registers may also be coupled to internal inter
connect 170 . The internal interconnect 170 may be , but need
not necessarily be , a multi - drop bus . The internal intercon
nect 170 may instead may be any other type of communi
cation pathway , including a point - to - point interconnect .
[0066] For one embodiment , the registers 209 may be used
for both packed data and floating - point data . In one such
embodiment , the processor 109 , at any given time , treats the
registers 209 as being either stack referenced floating point
registers or non - stack referenced packed data registers . In

this embodiment , a mechanism is included to allow the
processor 109 to switch between operating on registers 209
as stack referenced floating point registers and non - stack
referenced packed data registers . In another such embodi
ment , the processor 109 may simultaneously operate on
registers 209 as non - stack referenced floating point and
packed data registers . As another example , in another
embodiment , these same registers may be used for storing
integer data .
[0067] Of course , alternative embodiments may be imple
mented to contain more or less sets of registers . For
example , an alternative embodiment may include a separate
set of floating point registers for storing floating point data .
As another example , an alternative embodiment may include
a first set of registers , each for storing control / status infor
mation , and a second set of registers , each capable of storing
integer , floating point , and packed data . As a matter of
clarity , the registers of an embodiment should not be limited
in meaning to a particular type of circuit . Rather , a register
of an embodiment need only be capable of storing and
providing data , and performing the functions described
herein .
[0068] The various sets of registers (e . g . , the integer
registers 201 , the registers 209) may be implemented to
include different numbers of registers and / or to different size
registers . For example , in one embodiment , the integer
registers 201 are implemented to store thirty - two bits , while
the registers 209 are implemented to store eighty bits (all
eighty bits are used for storing floating point data , while only
sixty - four are used for packed data) . In addition , registers
209 may contain eight registers , R . 212a through R , 212h .
R ; 2126 , R2 212c and R3 212d are examples of individual
registers in registers 209 . Thirty - two bits of a register in
registers 209 can be moved into an integer register in integer
registers 201 . Similarly , a value in an integer register can be
moved into thirty - two bits of a register in registers 209 . In
another embodiment , the integer registers 201 each contain
64 bits , and 64 bits of data may be moved between the
integer register 201 and the registers 209 . In another alter
native embodiment , the registers 209 each contain 64 bits
and registers 209 contains sixteen registers . In yet another
alternative embodiment , registers 209 contains thirty - two
registers .
[0069] FIG . 2b illustrates the register file of the processor
according to one alternative embodiment of the invention .
The register file 150 may be used for storing information ,
including control / status information , integer data , floating
point data , and packed data . In the embodiment shown in
FIG . 2b , the register file 150 includes integer registers 201 ,
registers 209 , status registers 208 , extension registers 210 ,
and instruction pointer register 211 . Status registers 208 ,
instruction pointer register 211 , integer registers 201 , regis
ters 209 , are all coupled to internal interconnect 170 . Addi
tionally , extension registers 210 are also coupled to internal
interconnect 170 . The internal interconnect 170 may be , but
need not necessarily be , a multi - drop bus . The internal
interconnect 170 may instead may be any other type of
communication pathway , including a point - to - point inter
connect .
[0070] For at least one embodiment , the extension regis
ters 210 are used for both packed integer data and packed
floating - point data . For alternative embodiments , the exten
sion registers 210 may be used for scalar data , packed
Boolean data , packed integer data and / or packed floating

US 2019 / 0286444 A1 Sep . 19 , 2019

point data . Of course , alternative embodiments may be
implemented to contain more or less sets of registers , more
or less registers in each set or more or less data storage bits
in each register without departing from the broader scope of
the invention .
[0071] For at least one embodiment , the integer registers
201 are implemented to store thirty - two bits , the registers
209 are implemented to store eighty bits (all eighty bits are
used for storing floating point data , while only sixty - four are
used for packed data) and the extension registers 210 are
implemented to store 128 bits . In addition , extension regis
ters 210 may contain eight registers , XR , 213a through XR ,
213h . XR , 213a , XR , 213b and XR2 213c are examples of
individual registers in registers 210 . For another embodi
ment , the integer registers 201 each contain 64 bits , the
extension registers 210 each contain 64 bits and extension
registers 210 contains sixteen registers . For one embodiment
two registers of extension registers 210 may be operated
upon as a pair . For yet another alternative embodiment ,
extension registers 210 contains thirty - two registers .
[0072] FIG . 3 illustrates a flow diagram for one embodi
ment of a process 300 to manipulate data according to one
embodiment of the invention . That is , FIG . 3 illustrates the
process followed , for example , by processor 109 (see , e . g . ,
FIG . 1a) while performing a LCSZC operation on packed
data , performing a LCSZC operation on unpacked data , or
performing some other operation . Process 300 and other
processes herein disclosed are performed by processing
blocks that may comprise dedicated hardware or software or
firmware operation codes executable by general purpose
machines or by special purpose machines or by a combina
tion of both .
[0073] FIG . 3 illustrates that processing for the method
begins at " Start ” and proceeds to processing block 301 . At
processing block 301 , the decoder 165 (see , e . g . , FIG . 1a)
receives a control signal from either the cache 160 (see , e . g . ,
FIG . 1a) or interconnect 101 (see , e . g . , FIG . 1a) . The control
signal received at block 301 may be , for at least one
embodiment , a type of control signal commonly referred to
as a software “ instruction . ” Decoder 165 decodes the control
signal to determine the operations to be performed . Process
ing proceeds from processing block 301 to processing block
302 .
[0074] At processing block 302 , decoder 165 accesses the
register file 150 (FIG . 1a) , or a location in memory (see , e . g . ,
main memory 104 or cache memory 160 of FIG . 1a) .
Registers in the register file 150 , or memory locations in the
memory , are accessed depending on the register address
specified in the control signal . For example , the control
signal for an operation can include SRC1 , SRC2 and DEST
register addresses . SRC1 is the address of the first source
register . SRC2 is the address of the second source register .
In some cases , the SRC2 address is optional as not all
operations require two source addresses . If the SRC2
address is not required for an operation , then only the SRC1
address is used . DEST is the address of the destination
register where the result data is stored . For at least one
embodiment , SRC1 or SRC2 may also be used as DEST in
at least one of the control signals recognized by the decoder
165 .
[0075] The data stored in the corresponding registers is
referred to as Sourcel , Source2 , and Result respectively . In
one embodiment , each of these data may be sixty - four bits

in length . For alternative embodiments , one or more of these
data may be other lengths , such as one hundred twenty - eight
bits in length .
[0076] For another embodiment of the invention , any one ,
or all , of SRC1 , SRC2 and DEST , can define a memory
location in the addressable memory space of processor 109
(FIG . 1a) or processing core 110 (FIG . 16) . For example ,
SRC1 may identify a memory location in main memory 104 ,
while SRC2 identifies a first register in integer registers 201
and DEST identifies a second register in registers 209 . For
simplicity of the description herein , the invention will be
described in relation to accessing the register file 150 .
However , one of skill in the art will recognize that these
described accesses may be made to memory instead .
[0077] From block 302 , processing proceeds to processing
block 303 . At processing block 303 , execution unit 130 (see ,
e . g . , FIG . 1a) is enabled to perform the operation on the
accessed data .
[0078] Processing proceeds from processing block 303 to
processing block 304 . At processing block 304 , the result is
stored back into register file 150 or memory according to
requirements of the control signal . Processing then ends at
“ Stop ” .
[0079] Data Storage Formats
[0080] FIG . 4 illustrates packed data - types according to
one embodiment of the invention . Four packed and one
unpacked data formats are illustrated , including packed byte
421 , packed half 422 , packed single 423 packed double 424 ,
and unpacked double quadword 412 .
[0081] The packed byte format 421 , for at least one
embodiment , is one hundred twenty - eight bits long contain
ing sixteen data elements (BO - B15) . Each data element
(BO - B15) is one byte (e . g . , 8 bits) long .
[0082] The packed half format 422 , for at least one
embodiment , is one hundred twenty - eight bits long contain
ing eight data elements (Half O through Half 7) . Each of the
data elements (Half O through Half 7) may hold sixteen bits
of information . Each of these sixteen - bit data elements may
be referred to , alternately , as a " half word ” or “ short word ”
or simply " word . ”
[0083] The packed single format 423 , for at least one
embodiment , may be one hundred twenty - eight bits long and
may hold four 423 data elements (Single 0 through Single
3) . Each of the data elements (Single 0 through Single 3)
may hold thirty - two bits of information . Each of the 32 - bit
data elements may be referred to , alternatively , as a “ dword ”
or “ double word ” . Each of the data elements (Single 0
through Single 3) may represent , for example , a 32 - bit single
precision floating point value , hence the term “ packed
single ” format .
[0084] The packed double format 424 , for at least one
embodiment , may be one hundred twenty - eight bits long and
may hold two data elements . Each data element (Double 0 ,
Double 1) of the packed double format 424 may hold
sixty - four bits of information . Each of the 64 - bit data
elements may be referred to , alternatively , as a “ qword ” or
" quadword ” . Each of the data elements (Double 0 , Double
1) may represent , for example , a 64 - bit double precision
floating point value , hence the term “ packed double ” format .
[0085] The unpacked double quadword format 412 may
hold up to 128 bits of data . The data need not necessarily be
packed data . For at least one embodiment , for example , the
128 bits of information of the unpacked double quadword
format 412 may represent a single scalar datum , such as a

US 2019 / 0286444 A1 Sep . 19 , 2019

character , integer , floating point value , or binary bit - mask
value . Alternatively , the 128 bits of the unpacked double
quadword format 412 may represent an aggregation of
unrelated bits (such as a status register value where each bit
or set of bits represents a different flag) , or the like .
[0086] For at least one embodiment of the invention , the
data elements of the packed single 423 and packed double
424 formats may be packed floating point data elements as
indicated above . In an alternative embodiment of the inven
tion , the data elements of the packed single 423 and packed
double 424 formats may be packed integer , packed Boolean
or packed floating - point data elements . For another alterna
tive embodiment of the invention , the data elements of
packed byte 421 , packed half 422 , packed single 423 and
packed double 424 formats may be packed integer or packed
Boolean data elements . For alternative embodiments of the
invention , not all of the packed byte 421 , packed half 422 ,
packed single 423 and packed double 424 data formats may
be permitted or supported .
[0087] FIGS . 5 and 6 illustrate in - register packed data
storage representations according to at least one embodi
ment of the invention .
[0088] FIG . 5 illustrates unsigned and signed packed byte
in - register formats 510 and 511 , respectively . Unsigned
packed byte in - register representation 510 illustrates the
storage of unsigned packed byte data , for example in one of
the 128 - bit extension registers XR , 213a through XR , 213h
(see , e . g . , FIG . 26) . Information for each of sixteen byte data
elements is stored in bit seven through bit zero for byte zero ,
bit fifteen through bit eight for byte one , bit twenty - three
through bit sixteen for byte two , bit thirty - one through bit
twenty - four for byte three , bit thirty - nine through bit thirty
two for byte four , bit forty - seven through bit forty for byte
five , bit fifty - five through bit forty - eight for byte six , bit
sixty - three through bit fifty - six for byte seven , bit seventy
one through bit sixty - four for byte eight , bit seventy - nine
through bit seventy - two for byte nine , bit eighty - seven
through bit eighty for byte ten , bit ninety - five through bit
eighty - eight for byte eleven , bit one hundred three through
bit ninety - six for byte twelve , bit one hundred eleven
through bit one hundred four for byte thirteen , bit one
hundred nineteen through bit one hundred twelve for byte
fourteen and bit one hundred twenty - seven through bit one
hundred twenty for byte fifteen .
[0089] Thus , all available bits are used in the register . This
storage arrangement increases the storage efficiency of the
processor . As well , with sixteen data elements accessed , one
operation can now be performed on sixteen data elements
simultaneously .
[0090] Signed packed byte in - register representation 511
illustrates the storage of signed packed bytes . Note that the
eighth (MSB) bit of every byte data element is the sign
indicator (“ s ”) .
10091] FIG . 5 also illustrates unsigned and signed packed
word in - register representations 512 and 513 , respectively .
[0092] Unsigned packed word in - register representation
512 shows how extension registers 210 store eight word (16
bits each) data elements . Word zero is stored in bit fifteen
through bit zero of the register . Word one is stored in bit
thirty - one through bit sixteen of the register . Word two is
stored in bit forty - seven through bit thirty - two of the regis
ter . Word three is stored in bit sixty - three through bit
forty - eight of the register . Word four is stored in bit seventy -
nine through bit sixty - four of the register . Word five is stored

in bit ninety - five through bit eighty of the register . Word six
is stored in bit one hundred eleven through bit ninety - six of
the register . Word seven is stored in bit one hundred twenty
seven through bit one hundred twelve of the register .
[0093] Signed packed word in - register representation 513
is similar to unsigned packed word in - register representation
512 . Note that the sign bit (“ s ”) is stored in the sixteenth bit
(MSB) of each word data element .
[0094] FIG . 6 illustrates unsigned and signed packed
doubleword in - register formats 514 and 515 , respectively .
Unsigned packed doubleword in - register representation 514
shows how extension registers 210 store four doubleword
(32 bits each) data elements . Doubleword zero is stored in
bit thirty - one through bit zero of the register . Doubleword
one is stored in bit sixty - three through bit thirty - two of the
register . Doubleword two is stored in bit ninety - five through
bit sixty - four of the register . Doubleword three is stored in
bit one hundred twenty - seven through bit ninety - six of the
register .
[0095] Signed packed double - word in - register representa
tion 515 is similar to unsigned packed quadword in - register
representation 516 . Note that the sign bit (“ s ”) is the
thirty - second bit (MSB) of each doubleword data element .
[0096] FIG . 6 also illustrates unsigned and signed packed
quadword in - register formats 516 and 517 , respectively .
Unsigned packed quadword in - register representation 516
shows how extension registers 210 store two quadword (64
bits each) data elements . Quadword zero is stored in bit
sixty - three through bit zero of the register . Quadword one is
stored in bit one hundred twenty - seven through bit sixty
four of the register .
[0097] Signed packed quadword in - register representation
517 is similar to unsigned packed quadword in - register
representation 516 . Note that the sign bit (“ s ”) is the
sixty - fourth bit (MSB) of each quadword data element .
[0098] Logical Compare - and - Swap , Set - Zero - and - Carry
Flags Operation (s)
10099] . For at least one embodiment of the invention , the
SRC1 register may hold packed data or an unpacked double
quadword of data (Sourcel) and the DEST register may also
hold packed data or an unpacked double quadword of data
(Dest) . The Dest value in the DEST register or the Sourcel
value in the SRC1 register , for at least one embodiment , may
be a double quadword of unpacked data to be used as a
bitwise mask value .
[0100] Generally , in the first step of the LCSZC instruc
tion , two compare operations are performed . A first inter
mediate result is generated by performing an independent
logical comparison (bitwise AND operation) of each bit in
Sourcel with the respective bit of Dest . A second interme
diate result is generated by performing an independent
logical comparison (bitwise AND operation) of each bit in
Sourcel with the complement of the respective bit of Dest .
These intermediate results may be stored in temporary
storage locations (such as , e . g . , a register) , or may not be
stored by the processor at all .
[0101] FIG . 7a is a flow diagram for a general method 700
for performing LCSZC operations according to at least one
embodiment of the invention . Process 700 and other pro
cesses herein disclosed are performed by processing blocks
that may comprise dedicated hardware or software or firm
ware operation codes executable by general purpose
machines or by special purpose machines or by a combina

US 2019 / 0286444 A1 Sep . 19 , 2019

tion of both . FIGS . Ta through 7d are discussed in the
following paragraphs with reference to FIG . 1a .
10102) FIG . 7a illustrates that the method 700 begins at
“ Start ” and proceeds to processing block 701 . At processing
block 701 , decoder 165 decodes the control signal received
by processor 109 . Thus , decoder 165 decodes the operation
code for a LCSZC instruction . Processing then proceeds
from processing block 701 to processing block 702 .
[0103] At processing block 702 , via internal bus 170 ,
decoder 165 accesses registers 209 in register file 150 given
the SRC1 and DEST addresses encoded in the instruction .
For at least one embodiment , the addresses that are encoded
in the instruction each indicate an extension register (see ,
e . g . , extension registers 210 of FIG . 2b) . For such embodi
ment , the indicated extension registers 210 are accessed at
block 702 in order to provide execution unit 130 with the
data stored in the SRC1 register (Sourcel) , and the data
stored in the DEST register (Dest) . For at least one embodi
ment , extension registers 210 communicate the data to
execution unit 130 via internal bus 170 .
[0104] From processing block 702 , processing proceeds to
processing block 703 . At processing block 703 , decoder 165
enables execution unit 130 to perform the instruction . For at
least one embodiment , such enabling 703 is performed by
sending one or more control signals to the execution unit to
indicate the desired operation (LCZCS) . From block 703 ,
processing proceeds to processing blocks 714 and 715 .
While blocks 714 and 715 are shown in parallel , one of skill
in the art will recognize that such operations need be
performed exactly simultaneously as long as they are per
formed in the same cycle or set of cycles and that , for at least
one alternative embodiment , the processing of blocks 714
and 715 may be performed serially . Different embodiments
thus may perform the processing of blocks 714 and 715 in
parallel , in series , or in some combination of serial and
parallel operations .
0105] At processing block 714 , the following is per
formed . All or some of Sourcel bits are logically AND ' ed
with the same respective bits of the Dest value . Similarly , at
processing block 715 , all or some of Sourcel bits are
logically AND ’ ed with the complement of the same respec -
tive bits of the Dest value .
[0106] From block 714 , processing proceeds to block 720 .
From block 715 , processing proceeds to block 721 .
[0107] At processing block 720 , the state of the processor
is modified based on the results of the comparison per
formed at processing block 714 . Similarly , at processing
block 721 the state of the processor is modified based on the
results of the comparison preformed at processing block
715 . One of skill in the art will note that the method 700
illustrated in FIG . 7a is non - destructive , in that neither the
Sourcel nor Dest operand values are modified as a result of
the LCSZC operation . Instead , the zero flag is modified at
block 720 and the carry flag is modified at block 721 .
[0108] At processing block 720 , the value of the zero flag
is set to a true value (e . g . , a logic - high value) , if all bits of
Intermediate Result 1 are equal to zero (e . g . , a logic - low
value) . If , however , even one bit of the Intermediate Result
1 is a logic - high value , then the zero flag is set to a false
value (e . g . , logic - low value) at block 720 .
[0109] At processing block 721 , the value of the carry flag
is set to a true value (e . g . , a logic - high value) , if all bits of
Intermediate Result 2 are equal to zero (e . g . , a logic - low
value) . If , however , even one bit of the Intermediate Result

2 is a logic - high value , then the carry flag is set to a false
value (e . g . , logic - low value) at block 721 .
0110] It will be appreciated that alternative embodiments
of process 700 may implement only processing blocks 714
and 720 , but not processing blocks 715 and 721 , or only
processing blocks 715 and 721 , but not processing blocks
714 and 720 . It will also be appreciated that alternative
embodiments of process 700 may implement additional
processing blocks to support additional variations of the
LCSZC instructions .
[0111] From blocks 720 and 721 , processing may option
ally proceed to block 722 . At block 722 , other state bits
within the processor may be modified . For at least one
embodiment , these state bits may include , for example , one
or more other architecturally visible status flag values . These
flags may be one - or two - bit values and may include parity
(PF) , auxiliary carry (AF) , sign (SF) , trap (TF) , interrupt
enable / disable (IF) , direction (DF) , overflow (OF) , I / O privi
lege level (IOPL) , nested task (NT) , resume (RF) , virtual
8086 mode (VM) , alignment check (AC) , virtual interrupt
(VIF) , virtual interrupt pending (FIP) , and CPU identifier
(ID) flags and the like . Of course , the preceding listing of
specific flags is intended to be illustrative only ; other
embodiments may include fewer , more , or different flags .
[0112] From optional block 722 , processing ends at
“ End . " For embodiments that do not include optional block
722 , processing ends at " End " after the processing at blocks
720 and 721 .
[0113] FIG . 76 illustrates a flow diagram for at least one
specific embodiment 700b of the general method 700 illus
trated in FIG . 7a . For the specific embodiment 700b illus
trated in FIG . 7b , the LCSZC operation is performed on
Sourcel and Dest data values that are 128 bits in length , and
which may or may not be packed data . (Of course , one of
skill in the art will recognize that the operations illustrated
in FIG . 7b may also be performed for data values of other
lengths , including those that are smaller or larger than 128
bits) .
[0114] Processing blocks 7016 through 703b operate
essentially the same for method 700b as do processing
blocks 701 through 703 that are described above in connec
tion with method 700 , illustrated in FIG . 7a . When decoder
165 enables execution unit 130 to perform the instruction at
block 703c , the instruction is an LCSZC instruction for
performing logical AND comparisons of respective bits of
the Sourcel and Dest values . (See , e . g . , signed packed
doubleword in - register representation 515 illustrated in FIG .
6) . Such instruction may be referred to by an instruction
mnemonic that may be used by application programmers ,
such as “ PTEST ” . From block 703c , processing proceeds to
blocks 714c and 715c . Again , blocks 714c and 715c may be ,
but need not necessarily be , performed in parallel .
[0115] From processing block 703b , processing proceeds
to processing blocks 714b and 715b . As indicated above in
connection with processing blocks 714 and 715 of FIG . 7a ,
it should be noted again that , although blocks 714b and 715b
are illustrated in FIG . 7b as being performed in parallel , the
invention should be construed to be limited in this regard .
Instead , different embodiments may perform the processing
of blocks 714b and 715b in parallel , in series , or in some
combination of serial and parallel operations .
[0116] At processing block 714b , the following is per
formed . All of Sourcel bits are logically AND ' ed with the
same respective bits of the Dest value . That is , bits [127 : 0]

US 2019 / 0286444 A1 Sep . 19 , 2019

of Intermediate Result 1 are assigned the result of bitwise
AND operations of the respective bits of Sourcel [127 : 0]
with Dest [127 : 0] .
[0117] Similarly , at processing block 715b , all of Sourcel
bits are logically AND ' ed with the complement of the same
respective bits of the Dest value . That is , bits [127 : 0] of
Intermediate Result 2 are assigned the result of bitwise AND
operations of the bits of Sourcel [127 : 0] with the respective
complemented bits of Dest [127 : 0] .
[0118] From block 714b , processing proceeds to block
720b . From block 715b , processing proceeds to block 721b .
[0119] At processing block 720b , the state of the processor
is modified based on the results of the comparison per
formed at processing block 714b . Similarly , at processing
block 721b the state of the processor is modified based on
the results of the comparison preformed at processing block
7156 . One of skill in the art will note that the method 7005
illustrated in FIG . 7b is non - destructive , in that neither the
Sourcel nor Dest operand values are modified as a result of
the LCSZC operation . Instead , the zero flag is modified at
block 720b and the carry flag is modified at block 721b .
[0120] At processing block 7206 , the value of the zero flag
is set to a true value (e . g . , a logic - high value) , if all bits of
Intermediate Result 1 (e . g . , bits [127 : 0] of Intermediate
Result 1) are equal to zero (e . g . , a logic - low value) . If ,
however , even one bit of the Intermediate Result 1 is a
logic - high value , then the zero flag is set to a false value
(e . g . , logic - low value) at block 720b .
[0121] At processing block 721b , the value of the carry
flag is set to a true value (e . g . , a logic - high value) , if all bits
of Intermediate Result 2 (e . g . , bits [127 : 0] of Intermediate
Result 2) are equal to zero (e . g . , a logic - low value) . If ,
however , even one bit of the Intermediate Result 2 is a
logic - high value , then the carry flag is set to a false value
(e . g . , logic - low value) at block 721b .
[0122] It will be appreciated that alternative embodiments
of process 700b may implement only processing block 714b
and 720b and not processing block 715b and 721b , or only
processing blocks 715b and 721b and not processing blocks
714b and 720b . It will also be appreciated that alternative
embodiments of process 700b may implement additional
processing blocks to support additional variations of the
LCSZC instructions .
[0123] From blocks 7206 and 721b , processing may
optionally proceed to block 722b . At block 722b , other state
bits within the processor may be modified . For the embodi
ment illustrated in FIG . 76 , the AF (auxiliary carry) , OF
(overflow) , PF (parity) and SF (sign) flags are assigned to a
logic - low value at block 722b .
[0124] From optional block 722b , processing ends at
“ End . ” For embodiments that do not include optional block
722b , processing ends at “ End ” after the processing at
blocks 720b and 721b .
10125] . It will be appreciated that alternative embodiments
of processing blocks 714 , 714b , 715 , or 715b may perform
logical comparison operations on signed or unsigned data
elements or on a combination of both .
[0126] FIG . 7c illustrates a flow diagram for at least one
alternative specific embodiment 700c of the general method
700 illustrated in FIG . 7a . For the specific embodiment 700c
illustrated in FIG . 7c , the LCSZC operation is performed on
Sourcel and Dest data values that are 128 bits in length . The
source or destination operand , or both , may be packed , in
that the 128 - bit data value of the source operand represents

four packed 32 - bit (“ doubleword ”) data elements . The data
elements may each represent , for example , thirty - two bit
signed single - precision floating point values .
[0127] Of course , one of skill in the art will recognize that
the operations illustrated in FIG . 7c may also be performed
for data values of other lengths , including those that are
smaller or larger than 128 bits and for other sizes of data
elements , including bytes (8 bits) and / or short words (16
bits) .
[0128] Processing blocks 701c through 703c operate
essentially the same for method 700c as do processing
blocks 701 through 703 that are described above in connec
tion with method 700 , illustrated in FIG . 7a . An exception
to the foregoing statement is that , for processing block 7030 ,
when decoder 165 enables execution unit 130 to perform the
instruction , the instruction is a LCSZC instruction for per
forming logical AND comparisons of the MSB of each
32 - bit doubleword of the Sourcel and Destination values .
(See , e . g . , signed packed doubleword in - register represen
tation 515 illustrated in FIG . 6) . Such instruction may be
referred to by an instruction mnemonic to be used by
programmers , such as “ TESTPS ” , where “ PS ” indicates
Packed Single - precision data elements .
[0129] From block 703c , processing proceeds to blocks
714c and 715c . Again , blocks 714c and 715c may be , but
need not necessarily be , performed in parallel .
[0130] At processing block 714c , the following is per
formed . All of Sourcel bits are logically AND ’ ed with the
same respective bits of the Dest value . That is , bits [127 : 01
of Intermediate Result 1 are assigned the result of bitwise
AND operations of the respective bits of Sourcel [127 : 0]
with Dest [127 : 0] .
[0131] Similarly , at processing block 7150 , all of Sourcel
bits are logically AND ’ ed with the complement of the same
respective bits of the Dest value . That is , bits [127 : 0] of
Intermediate Result 2 are assigned the result of bitwise AND
operations of the bits of Sourcel [127 : 0] with the respective
complemented bits of Dest [127 : 0] .
(0132] From block 714c , processing proceeds to block
720c . From block 715c , processing proceeds to block 721c .
[0133] At block 720c , the MSB of each 32 - bit double
word of the first intermediate value , Intermediate Value 1 , is
determined . If bits 127 , 95 , 63 and 31 of Intermediate Value
1 are equal to zero , then the zero flag is set to a logic - high
value at block 720c . Otherwise , the zero flag is set to a
logic - low value at block 720c .
[0134] Similarly , at block 721c , the MSB of each 32 - bit
double - word of the second intermediate value , Intermediate
Value 2 , is determined . If bits 127 , 95 , 63 and 31 of
Intermediate Value 2 are equal to zero , then the carry flag is
set to a logic - high value at block 721c . Otherwise , the carry
flag is set to a logic - low value at block 721c . Neither the
original value (Sourcel) of the source register (SRC1) nor
the original value (Dest) of the destination register (DEST)
is modified as a result of the processing of the method 700C .
[0135] From block 720c and 721c , processing proceeds
either to “ End ” or to optional processing block 722c . At
block 722c , other state bits within the processor may be
modified . For the embodiment illustrated in FIG . 7c , the AF
(auxiliary carry) , OF (overflow) , PF (parity) and SF (sign)
flags are assigned to a logic - low value at block 722c .
[0136] For embodiments that do not include optional
block 722c , processing ends at “ End ” after the processing at

US 2019 / 0286444 A1 Sep . 19 , 2019

blocks 720c and 721c . For embodiments that do include
optional block 722c , processing ends after completion of the
processing block 722c .
[0137] FIG . 7d illustrates a flow diagram for at least one
alternative specific embodiment 700d of the general method
700 illustrated in FIG . 7a . For the specific embodiment 700d
illustrated in FIG . 7d , the LCSZC operation is performed on
Sourcel and Dest data values that are 128 bits in length . The
source or destination operand , or both , may be packed , in
that the 128 - bit data value of the source operand represents
two packed 64 - bit data elements . The data elements may
each represent , for example , sixty - four bit signed double
precision floating point values .
[0138] Of course , one of skill in the art will recognize that
the operations illustrated in FIG . 7d may also be performed
for data values of other lengths , including those that are
smaller or larger than 128 bits and for other sizes of data
elements , including bytes (8 bits) and / or short words (16
bits) .
[0139] Processing blocks 701d through 703d operate
essentially the same for method 700c as do processing
blocks 701 through 703 that are described above in connec
tion with method 700 , illustrated in FIG . 7a . An exception
to the foregoing statement is that , for processing block 703d ,
when decoder 165 enables execution unit 130 to perform the
instruction , the instruction is a LCSZC instruction for per
forming logical AND comparisons of the MSB of each
64 - bit double - word of the Sourcel and Destination values .
(See , e . g . , signed packed quadword in - register representa
tion 517 illustrated in FIG . 6) . Such instruction may be
referred to by an instruction mnemonic to be used by
programmers , such as “ TESTPD ” , where “ PD ” indicates
Packed Double - precision data elements .
[0140] From block 703d , processing proceeds to blocks
714d and 715d . Again , blocks 714d and 715d may be , but
need not necessarily be , performed in parallel .
[0141] At processing block 714d , the following is per
formed . All of Sourcel bits are logically AND ’ ed with the
same respective bits of the Dest value . That is , bits [127 : 0]
of Intermediate Result 1 are assigned the result of bitwise
AND operations of the respective bits of Sourcel [127 : 0]
with Dest [127 : 0] .
[0142] Similarly , at processing block 715d , all of Sourcel
bits are logically AND ' ed with the complement of the same
respective bits of the Dest value . That is , bits [127 : 0] of
Intermediate Result 2 are assigned the result of bitwise AND
operations of the bits of Sourcel [127 : 0] with the respective
complemented bits of Dest [127 : 0] .
[0143] From block 714d , processing proceeds to block
720d . From block 715d , processing proceeds to block 721d .
[0144] At block 720d , the MSB of each 64 - bit quadword
of the first intermediate value , Intermediate Value 1 , is
determined . If bits 127 and 63 of Intermediate Value 1 are
equal to zero , then the zero flag is set to a logic - high value
at block 720d . Otherwise , the zero flag is set to a logic - low
value at block 720d .
[0145] Similarly , at block 721d , the MSB of each 64 - bit
quadword of the second intermediate value , Intermediate
Value 2 , is determined . If bits 127 and 63 of Intermediate
Value 2 are equal to zero , then the carry flag is set to a
logic - high value at block 721d . Otherwise , the carry flag is
set to a logic - low value at block 721d . Neither the original
value (Sourcel) of the source register (SRC1) nor the

original value (Dest) of the destination register (DEST) is
modified as a result of the processing of the method 700d .
[0146] From block 720d and 721d , processing proceeds
either to “ End ” or to optional processing block 722d . At
block 722d , other state bits within the processor may be
modified . For the embodiment illustrated in FIG . 7d , the AF
(auxiliary carry) , OF (overflow) , PF (parity) and SF (sign)
flags are assigned to a logic - low value at block 722d .
[0147] For embodiments that do not include optional
block 722d , processing ends at “ End ” after the processing at
blocks 720d and 721d . For embodiments that do include
optional block 722c , processing ends after completion of the
processing block 722c .
[0148] Logical - Compare , Set - Zero - and - Carry Flag Cir
cuits
0149) For at least some embodiments , various of the
LCSZC instructions for packed data (e . g . , TESTPS and
TESTPD , discussed above) can execute on multiple data
elements in the same number of clock cycles as a compare
operation on unpacked data . To achieve execution in the
same number of clock cycles , parallelism may be used . That
is , elements of a processor (such as registers and execution
units) may be simultaneously instructed to perform the
LCSZC operations on the data elements . This parallel opera
tion is discussed in more detail below . FIGS . 8a and 8b are
discussed below with reference to FIG . 1a .
[0150] FIG . 8a illustrates a circuit 801 for performing
LCSZC operations on packed data according to at least one
embodiment of the invention . The circuit 801 may be , for at
least one embodiment , all or part of the logical compare
circuitry 145 illustrated in FIG . 1a .
[0151] FIG . 8a depicts a source operand , Sourcel [127 : 0]
831 , and a destination operand , Dest [127 : 01 833 . For at least
one embodiment , the source and destination are stored in
N - bit long SIMD registers , such as for example 128 - bit
Intel® SSE2 XMM registers (see . e . g . , extension registers
210 of FIG . 26) .
[0152] The particular example embodiment illustrated in
FIG . Sa shows a double quadword (128 - bit) embodiment of
an LCSZC instruction , where every bit of the 128 - bit source
and destination operands are compared with their respective
counterpart . For such embodiment , because each bit is
compared , the operation may operate on , and is functionally
agnostic of , any nature of 128 bits in the source and
destination operands ; either or both the source and destina
tion operands may be packed data , unpacked scalar data ,
signed data , or unsigned data . While in some specific
examples packed data sources 831 and destinations 833 may
be represented as having 128 - bits , it will be appreciated that
the principals disclosed herein may be extended to other
conveniently selected lengths , such as 80 - bits , 128 - bits or
256 - bits .
[0153] Operation control 800 outputs signals on Enable
880 to control operations performed by the circuit 801 . One
embodiment of operation control 800 may comprise , for
example , a decoder 165 and an instruction pointer register
211 . Of course , operation control 800 may also comprise
additional circuitry which is not necessary to understanding
the invention . The LCSZC circuit 801 includes two sets
(825 , 827) of AND gates , where each set includes one AND
gate for each bit of the source operand . Thus , for an
embodiment where the source and destination have 128 bits ,
the first set 825 includes 128 AND gates 819 and the second
set 827 includes 128 AND gates 820 . Each of the 128 - bit

ne

US 2019 / 0286444 A1 Sep . 19 , 2019

[0167] As with the circuit 801b discussed above in con
nection with FIG . 8b , the LCSZC circuit 801c includes two
sets of AND gates , where each set includes one AND gate
for each bit of the source operand that is to be compared with
the corresponding bit of the destination operand . For the
embodiment illustrated in FIG . 8c , the most significant bits
for each of two 64 - bit (“ quadword ”) data elements are to be
compared . Thus , the first set of AND gates includes gates
819 , and 819 , and the second set of AND gates includes
gates 820 , and 820z .
10168] FIG . 8c illustrates that the value of the MSB for
each of the two 64 - bit data elements in the source operand
831 and for each of the two 64 - bit data elements in the
destination operand 833 is an input to one of the first set of
AND gates (819 , and 8192) . More specifically , FIG . 8C
illustrates that bit 127 of the source operand 831 and
destination operand 833 are both inputs to gate 819 , and that
bit 63 of the source operand 831 and destination operand 833
are both inputs to gate 8193 .
[0169] FIG . 8c further illustrates that the value of the MSB
for each of the two 64 - bit data elements in the source
operand 831 and for each of the two 64 - bit data elements in
the destination operand 833 is an input to one of the second
set of AND gates (820 , and 8203) . It should be noted that the
second set of AND gates , 820 , and 8202 , receives the inputs
from the MSB of each quadword of the destination operand
833 only after they have been inverted to their complement
value (see inverters 844a and 844c) .
10170] More specifically , FIG . 8c illustrates that bit 127 of
the source operand 831 and the complement of bit 127 of the
destination operand 833 are both inputs to gate 820 , and that
bit 63 of the source operand 831 and the complement of bit
63 of the destination operand 833 are both inputs to gate
820z .
[0171] The output of each of the AND gates 819 , and 8193
is an input into a NAND gate 853 . At least one purpose of
NAND gate 853 is to determine whether the result of
AND ’ ing the most significant bits of each of the two
quadwords of the source and destination are both zeros
(logic - low values) and , if so , to pass a logic - high value to the
zero flag 858 in order to set it .
[0172] The output of each of the AND gates 820 , and 8203
is an input into NAND gate 857 . At least one purpose of
NAND gate 857 is to determine whether the result of
AND ’ ing the most significant bits of each of the two
quadwords of the source and destination are both zeros
(logic - low values) and , if so , to pass a logic - high value to the
carry flag 860 in order to set it .
[0173] Alternative embodiments of a packed LCSZC
instructions that compares the MSB for each of two quad
words may include but are not limited to operations for
unsigned quadword values in both the source and destination
as well as operations for signed quadword values in both the
source and destination , or for a combination . Other alterna
tive embodiments of LCSZC instructions may include
operations that apply to other sizes of signed or unsigned
data elements .
[0174] As is explained above , a decoder 165 may recog
nize and decode the control signal received by processor
109 , and that control signal may be the operation code for an
LCSZC instruction . Thus , decoder 165 decodes the opera
tion code for a LCSZC instruction .
[0175] Reference to FIG . 9 illustrates various embodi -
ments of operation codes that may be utilized to encode the

control signal (operation code) for an LCSZC instruction .
FIG . 9 illustrates a format of an instruction 900 according to
one embodiment of the invention . The instruction format
900 includes various fields ; these files may include a prefix
field 910 , an opcode field 920 , and operand specifier fields
(e . g . , mod R / M , scale - index - base , displacement , immediate ,
etc .) . The operand specifier fields are optional and include a
mod R / M field 930 , an SIB field 940 , a displacement field
950 , and an immediate field 960 .
[0176] One skilled in the art will recognize that the format
900 set forth in FIG . 9 is illustrative , and that other orga
nizations of data within an instruction code may be utilized
with disclosed embodiments . For example , the fields 910 ,
920 , 930 , 940 , 950 , 960 need not be organized in the order
shown , but may be re - organized into other locations with
respect to each other and need not be contiguous . Also , the
field lengths discussed herein should not be taken to be
limiting . A field discussed as being a particular member of
bytes may , in alternative embodiments , be implemented as a
larger or smaller field . Also , the term " byte , ” while used
herein to refer to an eight - bit grouping , may in other
embodiments be implemented as a grouping of any other
size , including 4 bits , 16 bits , and 32 bits .
[0177) As used herein , an opcode for a specific instance of
an instruction , such as an LCSZC instruction , may include
certain values in the fields of the instruction format 200 , in
order to indicate the desired operation . Such an instruction
is sometimes referred to as “ an actual instruction . ” The bit
values for an actual instruction are sometimes referred to
collectively herein as an “ instruction code . ”
[0178] For each instruction code , the corresponding
decoded instruction code uniquely represents an operation to
be performed by an execution unit (such as , e . g . , 130 of FIG .
la) responsive to the instruction code . The decoded instruc
tion code may include one or more micro - operations .
101791 . The contents of the opcode field 920 specify the
operation . For at least one embodiment , the opcode field 920
for the embodiments of the LCSZC instructions discussed
herein is three bytes in length . The opcode field 920 may
include one , two or three bytes of information . For at least
one embodiment , a three - byte escape opcode value in a
two - byte escape field 118c of the opcode field 920 is
combined with the contents of a third byte 925 of the opcode
field 920 to specify an LCSZC operation . This third byte 925
is referenced to herein as an instruction - specific opcode .
[0180] FIG . 9 illustrates that , for a second embodiment
928 of an instruction format for an LCSZC instruction , the
three - byte escape opcode value in the two - byte field 118c of
the opcode field 920 is combined with the contents of the
prefix field 910 and the contents of the instruction - specific
opcode field 925 of the opcode field 920 to specify an
LCSZC operation .
[0181] For at least one embodiment , the prefix value 0x66
is placed in the prefix field 910 and is used as part of the
instruction opcode to define the desired operation . That is ,
the value in the prefix 910 field is decoded as part of the
opcode , rather than being construed to merely qualify the
opcode that follows . For at least one embodiment , for
example , the prefix value 0x66 is utilized to indicate that the
destination and source operands of an LCSZC instruction
reside in 128 - bit Intel® SSE2 XMM registers . Other pre
fixes can be similarly used . However , for at least some
embodiments of the LCSZC instructions , a prefix may

US 2019 / 0286444 A1 Sep . 19 , 2019
14 .

tions are needed , which adds machine cycle latency to the
operation . For example , the pseudocode set forth in Table 4 ,
below , illustrates the savings in instructions using a PTEST
instruction versus an instruction set that does not include the
PTEST instruction .

TABLE 4

PTEST instruction - No PTEST Instruction -

mo

instead be used in the traditional role of enhancing the
opcode or qualifying the opcode under some operational
condition .
10182] A first embodiment 926 and a second embodiment
928 of an instruction format both include a 3 - byte escape
opcode field 118c and an instruction - specific opcode field
925 . The 3 - byte escape opcode field 118c is , for at least one
embodiment , two bytes in length . The instruction format 926
uses one of four special escape opcodes , called three - byte
escape opcodes . The three - byte escape opcodes are two
bytes in length , and they indicate to decoder hardware that
the instruction utilizes a third byte in the opcode field 920 to
define the instruction . The 3 - byte escape opcode field 118c
may lie anywhere within the instruction opcode and need not
necessarily be the highest - order or lowest - order field within
the instruction .
[0183] For at least one embodiment , at least four three
byte escape opcode values are defined : Ox0F3y , where y is
Ox8 , Ox9 , OXA or OxB . While certain embodiments of
LCSZC instruction opcodes are disclosed herein as includ
ing the value “ Ox0F38 ” as the three - byte escape opcode
value , such disclosure should not taken to be limiting . Other
embodiments may utilize other escape opcode values .
[0184] Table 3 below , sets forth examples of LCSZC
instruction codes using prefixes and three - byte escape
opcodes .

movdqa xmmo , _ x [eax]
pcmpeqd xmmo ,
const _ 00000001000000010000
000100000001
PTEST xmm0 , xmmo
Jz all _ under _ mask _ zero

movdqa xmm0 , _ x [eax]
pcmpeqd xmmo ,
const _ 00000001000000010000
000100000001
pmovmskb eax , xmmo
Test eax , eax
Jz all _ under _ mask _ zero

[0187] The pseudocode set forth in Table 4 helps to
illustrate that the described embodiments of the LCSZC
instruction can be used to improve the performance of
software code . As a result , the LCSZC instruction can be
used in a general - purpose processor to improve the perfor
mance of a greater number algorithms than the described
prior art instructions .

TABLE 3
Instruction Definition

PTEST xmml ,
mxx2 / m128

TESTPS xmmi ,
xmm2 / m128

Compare all bits in source 128 - bit register or 128
bit memory with 128 - bit destination in register ;
set ZF if xmm2 / m128 AND xmm1 is all zeros ;
otherwise clear ZF . Set CF if xmm2 / m128 AND
NOT xmml result is all zeros ; otherwise clear CF .
Compare MSB for each of four packed
doublewords in source (128 - bit register or 128 - bit
memory) with corresponding MSB for each of
four packed doublewords in destination (128 - bit
register) ; set ZF if MSB (bits 127 , 95 , 63 and 31)
of xmm2 / m128 AND xmml is all zeros ;
otherwise clear ZF . Set CF if MSB (bits 127 , 95 ,
63 and 31) xmm2 / m128 AND NOT xmml result
is all zeros ; otherwise clear CF .
Compare MSB for each of two packed quadwords
in source (128 - bit register or 128 - bit memory)
with corresponding MSB for each of two packed
quadwords in destination (128 - bit register) ; set ZF
if MSB (bits 127 and 63) of xmm2 / m128 AND
xmm1 is all zeros ; otherwise clear ZF . Set CF if
MSB (bits 127 and 63) of xmm2 / m128 AND
NOT xmm1 result is all zeros ; otherwise clear CF .

TESTPD xmml ,
xmm2 / m128

ALTERNATIVE EMBODIMENTS
10188] . While the described embodiments use comparisons
of the MSB for 32 - bit data elements and 64 - bit data elements
for the packed embodiments of the LCSZC instructions ,
alternative embodiments may use different sized inputs ,
different - sized data elements , and / or comparison of different
bits (e . g . , the LSB of the data elements) . In addition , while
in some described embodiments Sourcel and Dest each
contain 128 - bits of data , alternative embodiment could
operate on packed data having more or less data . For
example , one alternative embodiment operates on packed
data having 64 - bits of data . Also , the bits compared by the
LCSZC instruction need not necessarily represent the same
respective bit position for each of the packed data elements .
(0189] While the invention has been described in terms of
several embodiments , those skilled in the art will recognize
that the invention is not limited to the embodiments
described . The method and apparatus of the invention can be
practiced with modification and alteration within the spirit
and scope of the appended claims . The description is thus to
be regarded as illustrative instead of limiting on the inven
tion .
[0190] The above description is intended to illustrate
preferred embodiments of the present invention . From the
discussion above it should also be apparent that especially in
such an area of technology , where growth is fast and further
advancements are not easily foreseen , the invention may be
modified in arrangement and detail by those skilled in the art
without departing from the principles of the present inven
tion within the scope of the accompanying claims .
What is claimed is :
1 . A system comprising :
a system memory to store instructions and data ; and
a processor coupled to the system memory comprising :

a decoder to decode a first sequence of instructions , the
first sequence of instructions including a fused com
pare - jump instruction to perform both a compare
operation and a jump operation conditioned on a
result of the compare operation ;

[0185] For at least one embodiment , the value in the
source or destination operand may be utilized as a mask . The
programmer ' s choice regarding whether to use the source or
destination operand as the mask value may be driven , at least
in part , by the desired behavior . For example , using the
second operand (source) as the mask value , the resultant
behavior may be stated as : “ If everything under the makes
is “ O ” , set ZF ; if everything under the mask is “ 1 ” , set CF . ”
On the other hand , when using the first argument (destina
tion) as the mask value , the resultant behavior may be stated
as : “ If everything under the mask is “ O ” , set ZF ; if every
thing under the mask is “ O ” , set CF . "
[0186] To perform the equivalent of at least some embodi
ments of the packed LCSZC instructions discussed above in
connection with FIGS . 70 , 70 , 8b and 8c , additional instruc

US 2019 / 0286444 A1 Sep . 19 , 2019
15

a first source register to store a first source value ;
a second source register to store a second source value ;

and
execution circuitry to perform the compare and jump

operations , the first execution circuitry to compare
the first source value to the second source value and
to jump to a target address of a second sequence of
instructions in response to a first result of the com
parison .

2 . The system of claim 1 further comprising :
a storage device coupled to the processor to store instruc

tions and data .
3 . The system of claim 1 , further comprising :
an input / output (I / O) interconnect to couple the processor

to one or more I / O devices .
4 . The system of claim 1 wherein the system memory

comprises a dynamic random access (DRAM) memory .
5 . The system of claim 1 further comprising :
a graphics processor coupled to the processor to perform

graphics processing operations .
6 . The system of claim 1 further comprising :
a network processor coupled to the processor .
7 . The system of claim 1 further comprising :
an audio input / output device coupled to the processor .
8 . The system of claim 1 wherein the execution circuitry

is to continue to execute the first sequence of instructions in
response to a second result of the comparison .

9 . The system of claim 1 wherein the fused compare - jump
instruction includes an indication of the target address .

10 . The system of claim 1 wherein the first result com
prises an indication that the first and second source values
are equal and the second result comprises an indication that
the first and second source values are not equal .

11 . The system of claim 1 wherein the first source value
and the second source value are 32 - bit values .

12 . The system of claim 1 wherein one or more instruc
tions in the first or second sequence comprise SIMD instruc
tions , and wherein the execution circuitry comprises :

vector execution circuitry to execute the SIMD instruc
tions ; and

a vector register file comprising a set of 512 - bit vector
registers to be used to store operands of the SIMD
instructions .

13 . The system of claim 12 further comprising :
a set of vector mask registers to store mask values

generated by an instruction in the first or second
sequence of instructions .

14 . The system of claim 12 wherein the execution cir
cuitry further comprises scalar execution circuitry to execute
one or more scalar instructions in the first or second
sequence of instructions , the scalar execution circuitry
including a set of scalar registers to store scalar operands .

15 . The system of claim 1 further comprising :
a plurality of status registers to maintain data related to an

execution state of the processor .
* * * * *

