US 20190286444A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2019/0286444 A1

KAPOOR et al.

43) Pub. Date: Sep. 19, 2019

(54)

(71)

(72)

@
(22)

(63)

METHOD AND APPARATUS FOR
PERFORMING LOGICAL COMPARE
OPERATIONS

Applicant: INTEL CORPORATION, Santa Clara,
CA (US)

Inventors: Rajiv KAPOOR, University Place, WA

(US); Ronen ZOHAR, Sunnyvale, CA

(US); Mark J. BUXTON, Chandler,

AZ (US); Zeev SPERBER, Zichron

Yaakov (IL); Koby GOTTLIEB, Kiryat

Tivon (IL)
Appl. No.: 16/184,994
Filed: Nov. 8, 2018

Related U.S. Application Data

Continuation of application No. 15/885,269, filed on
Jan. 31, 2018, now Pat. No. 10,146,536, which is a
continuation of application No. 15/345,221, filed on
Nov. 7, 2016, now Pat. No. 9,898,285, which is a
continuation of application No. 15/015,991, filed on
Feb. 4, 2016, now Pat. No. 9,489,198, which is a
continuation of application No. 14/684,412, filed on
Apr. 12, 2015, now Pat. No. 9,268,565, which is a
continuation of application No. 13/763,598, filed on
Feb. 8, 2013, now Pat. No. 9,037,627, which is a
continuation of application No. 13/082,726, filed on
Apr. 8, 2011, now Pat. No. 8,380,780, which is a

continuation of application No. 11/525,706, filed on
Sep. 21, 2006, now Pat. No. 7,958,181.

Publication Classification

(51) Int. CL
GOGF 9/30 (2006.01)
GOGF 9/38 (2006.01)
(52) US.CL
CPC ... GOGF 9/30036 (2013.01); GOGF 9/30021
(2013.01); GOGF 9/3877 (2013.01); GO6F
9/30029 (2013.01); GOGF 9/3887 (2013.01);
GOGF 9/30145 (2013.01)
(57) ABSTRACT

A method and apparatus for including in processor instruc-
tions for performing logical-comparison and branch support
operations on packed or unpacked data. In one embodiment,
instruction decode logic decodes instructions for an execu-
tion unit to operate on packed data elements including
logical comparisons. A register file including 128-bit packed
data registers stores packed single-precision floating point
(SPFP) and packed integer data elements. The logical com-
parisons may include comparison of SPFP data elements and
comparison of integer data elements and setting at least one
bit to indicate the results. Based on these comparisons,
branch support actions are taken. Such branch support
actions may include setting the at least one bit, which in turn
may be utilized by a branching unit in response to a branch
instruction. Alternatively, the branch support actions may
include branching to an indicated target code location.

Y
{ Stat)
I

Decod

‘ Receive Instruction and |
e 101

¥

Access Register File or
Memory, SRC1 & DEST 702

.

! Enable Execution Unit with
Decoded Instruction 703 |

P

.

.

int. Result 1 = Dest
AND Source

114

Int. Resuit 2=
[NOT Desl] AND
Source
715

¥

Modify Zera Flag
120

Modify Carry Flag
=1

........................

1 Opt. et addiional Fiags |

1

Patent Application Publication Sep. 19,2019 Sheet 1 of 17 US 2019/0286444 A1

Data Sterage
Device 107

st .
LCSZC oy
dnstr 195 ¢

T

v

Display _
Device iod
121

e
L

Input Device| |
122

interconnsct
Curser : h it

Cantrol
123

Hard Copy

Deavice Processor
124 3 108
&

Sound Becoder

Record/ 1_5;&! farnat Inter:
Playback i)
Qe’?i%‘fe Connect

125 170

Register
Logical Compare File(s)
Girguitry © 450
145

Vidao
128

Execution Unit
130

Communication
Device S
180

100

FIG. 1a

Patent Application Publication Sep. 19,2019 Sheet 2 of 17 US 2019/0286444 A1

Progessing Core 110
% i) %
2 PN ;

2 130 z

: . i

: VO Bridge 3

] , Oy 280

; _ I UART |
: o il ;
i SDRAM | - ;
Ty CTLZTE {
; . USB :

: 1 292 ;

| _ISRAMCTL | . ;

| a2z | 3

E Bluetooth | !

§ - - > UART o=

¢ -1 Bumnt Flash - 283 i
—~t=i Interface je— » :
i 273 !

E) 4O Expansion :

; ‘ . nterface i

| |POMCIAIGE 294 g
~te{ Card CTL | - ;
1 t
T M g
|_[TepeTT
- 25 I » |
| [DMATTL . E

§ N2 3
..wi...* Alt. Bus Masts¥ > |
interfacel ’ 3

;k iz \x‘inm““mmmmwmw”i%

US 2019/0286444 A1

Sep. 19,2019 Sheet 3 of 17

Patent Application Publication

o1 'OId

iToT
” moMmMET N B =Y 4 | B2
} sseleIM m weishg o v 8yoey

get

e AN JBpO0A(]
Aé\»|v\
vZe

IDS5a004 Wiewy

1514

H

3
oy
3
2
3
@
A=

o
L
™
Lo
Lo}
o~

922

108s0004d07)

B N e e e R e T

Jossasoidon {
t

= A’ AR == mn Amr mm mm mm ima imn mm Ak ma i s ke, e ar s S e o et o e e Ao o e e e el e e R R e ok R S A A A T A A Y T -
T e o i e ek S i s S e e e e e e T e e e

-~

Patent Application Publication Sep. 19,2019 Sheet 4 of 17

US 2019/0286444 A1l
| Controf Signal FIG. 2a
£ 20; 3 .
T TSR

Cache R File
| Py
Registers
2209 _
l& _212a) | integer
| IR, 212n] | Registers
- . 201
Decoder : : o
185 |
prongll P :
70 - | Instruction
) -~ Pointer
Executior Register |
Unit N 2l
130 Status Registe
M- S
Processor '
- 109

Patent Application Publication

Sep. 19, 2019 Sheet S of 17 US 2019/0286444 A1

I Control Signal FIG. 2b
207 : ’
Sveenscanns jopaarea PR {
1 Cache fo -
18 jyister File
Registers Extension Registers|
209 2210
m integes | [XR, 213a
Ry 212bi| Registers| IXR, 213b
Decoder : a1
165 | | |
internal} .- .
Bus | (B 212h XR; 21%h
i?& 163‘"?"""“0 12 nvqs-n-.nqlg
' i
- — [instruction}
Execution . Pointer
Unit | Reglster
130 | 211 |
 |Status Registers
Processor ~208
~109

Patent Application Publication Sep. 19,2019 Sheet 6 of 17 US 2019/0286444 A1

(o~ A o7 s R S ot o o S S 7 S o o T A o o e ke G P A T IS e v YA A S 7 R 4 S L WA e A S e e

Receive and Decode Instruction 301

1
1
1
1
1
1
1
1
1
1
1
!
|
!
!
|
t
b
]
k
¢
§

AL }
2
§
i
1
t
§
$
t
t
i
t
t
I
I
t
f
1
'
i
i
1
i

Access Register File or Memory 302

£
§
3
{
{
3
!
i
{
t
t
{
3
t
t
§
3
]
i
§
t
t
i
3
t
*
t
3
t
f
$
t
¥
s
3
i
$
H
¥
]
T
t
3 E
o F
t
i e
I
]
'
I
’
1
1
3
t
t
i
1
t
3
]
t
]
!
¥
t
I
i
t
t
i
'
t
i
}
t
t
¥
'
i
f
t
t
i
i
i
t
I
I
t

Enable Execution Unit with Dperation 303

|

Store results in Register or Memory 304

FIG. 3

US 2019/0286444 A1

Sep. 19,2019 Sheet 7 of 17

Patent Application Publication

p OIAd

(41 S1q 8T — prompen() d[qnoQ

0 ., . izl
vep aiqung payoed
geignog | Ldneq]
0 €9 %9 2
| £2v Sibuls poded
~gabus i ePus i geopws i palbug
0 1€ £9 49 56 96 2L
22 i15H ponoRd o
[OWen i1aen [zsen : cHeH [pUH | SIPH § 9UPH | ZieH |
O SLOl 1EZC ZvBb ©0P9 6408 9696 Liieti Zal
12y 214 payoed
oal1a |zaien}vaicn] oai/a jea salogiLigziaEIaibisisg]
0 GIOL 1E b8y €9y BL08 G696 Vitel 22l

| S "DIA
€IS uonryuasardos 13)s13aa-ur pros payoed pausig

$ 1 . P i i £
394995 M qqgqas W q4qqas M qqragqs “ 49 qas “ Qgqae “ qqrrqqs " qq-dde
i L ; ¥ i i L

0 Lmvmw e Ly8Yy 999 mhow 56 96 _.S.N:/N—.

US 2019/0286444 A1

O PIOM J Nﬁm na:ﬁ:%ﬂmuu 13)$1321-UF pIOM wuumumm pausisun \ & piom

qqq

99"g4q | 997999 m qg°q99
0 SL8L 1€2€ Iv8y €9v9 6L08 6696 LiLlZLL ZZ1

]
=
£
2
5
&
=
¥
o
e
i
Q

]
497999 | 997d4q

11 uoneluasaidar 1)s1dar-ul 3)4q payded paudig

0 1 i ¢ ¥ . o . 2 g 8 o)) i ZL £L bt Si
aikg aAg Mg aig eig siig aMg ag m;m m&m siAig aldg eiAg eiig efg el
w‘ . a _ _ 13 ~ . “ u
qras lq nm.n %3 %.n nm:n. ﬁ“a %;n %;. nms am;n nm.a na_a nm_n nmi,,_ nm_n ‘as

“ _ _
0 L8 GL9L SIvZ 10ZE BLOP LrBP G500 mf.m 122 6L08 18898 $696 £0L VOl :E:»:cﬁ, Lzl

-

Sep. 19,2019 Sheet 8 of 17

01< uonejuasdadaa xaysx3aa-ul 9)4Aq payoed paudisupn

0 L z € (4 g g F4 a8 6 ol b Zi £l 14" ai
2ig kg @Ag siig ailg oiAg aikg 24g m&m aig m§m mﬁm siig ailg BIAg eip

H _ _ f« d |_. _ ﬂ w

qqq | n qq ann_n nn_n nn:u nnﬂn_ nn q- Qn_n na.g nn.n on_n nnwn £n~an§n anwn aq
“ :

0 hw mvmr €Z¥Z 1626 6L OV h_vm% mmmm nwvw Lzl mhaa 1888 9696 novvor :vﬂrwm—.waﬂw 4

Patent Application Publication

US 2019/0286444 A1

Sep. 19,2019 Sheet 9 of 17

Patent Application Publication

9 “OId
LIS tonwmuasaidax 33)s1331-wy prompenb .wu_u_u..u.m pausis
4999 999 9949 "qaas m aq4q 449 4994 " "qaqs
o €979 . 1z
915 uoyejuasaadsl 1)si3a-ur prompenb poyped pausisun
nﬁ.n 4999 9999 - 4aq m ' qqag 4499 9999 " " qq4q
0 €9v9 34}

§1s uenrjuasador 193s1321-uf piomasjqnop paxded pausiy

qqqq qogs m qa9q9 qqgs m qqaa” Tqadgs m quaq ™ Uqqq6s
0 Le 2¢ €918 S6 96 - LT
pIS voneyuasaidar 13)8133.1-Ul PIOMI[GNOP padpded pousdisur)
- v ” m -
qaaq ™ " qoaq m qqaq" "*qaad m qqqq°” 9449 m qdgq qqaq
0 | Le z¢ | €9 ¥9 56 96 4!

Patent Application Publication Sep. 19,2019 Sheet 10 of 17 US 2019/0286444 A1

Stant

Receive instruction and
Decode 701

Access Register File or
Memory, SRC1 & DEST 702

¥
Enabla Execution Unit with
Decoded Instruction 703

N

int. Result 1= Dest int. Result 2 =
AND Source [NOT Dest] AND
Source
4 s
Modify Zero Flag Modify Carry Ftég

720 21
/
i Opt. " Sef addifional ‘Flé*g's“”;
Z.f«i ____________ !

Eﬂd ?Oﬁ

nnnnnnnn

FIG. 7a

Patent Application Publication Sep. 19,2019 Sheet 11 of 17 US 2019/0286444 A1l

{ Start

Receive Instruction and
Decode 701b

Memory, SRCT & DEST 702k

;

Enable Execution Unit with
Recoded Instruction 703b

N

; int. Rasult 2
int. Result 1
[127:0] = DEST [127:.01 = INOT
AND (bitwise) b{?ﬁ?’ﬂ Asgg ,,
SRC1 {bitwiss) SK
{14b | 715b
if Int. Result 1 ==0, if int. Result 2 ==0,
then ZF « 1; Else then CF « 1; Else
ZF e CF 0
720b 7210

........

FIG. 7b

Patent Application Publication Sep. 19,2019 Sheet 12 of 17 US 2019/0286444 A1

o)

¥
Receive Instruction and

Decode 701g

l

Access Register File or
Memory, SRC1 & DEST 702¢

,

Enable Execution Unif with
Decoded Instruction 703c¢

int. Result 1{127:.0] = int. Result 2{127:0] .=
SRC1[127:0] AND SCRC1[127.0] AND NOT .
DEST[127:0] 7i4c DEST[127:0] 7i5¢
f Int. Result 1[127] ==0, if Int. Result 2[127] ==0,
AND Int. Result 1{85] == 0 AND Int. AND Int, Result 2{95] == 0 AND int.
Resulf 1{63] == 0 AND Int. Result Result 2[63] == 0 AND Int. Result
1{31] xoxwe 2{31} = ’
THEN ZF « 1; THEN CF « 1;
ELSE ZF « 0 ELSE CF« 0
120¢ 721g

AF=OF=PF=8F « 0!
722c g

i
H
1
H
3
i,
L
1
3
)
1
‘!
1
]
t
i
H
[}

o

]

[

(2

Patent Application Publication

Sep. 19,2019 Sheet 13 of 17

US 2019/0286444 A1

PERRRT.

Reoceive Instruction and
Decode 701d

Memory, SRCH

Y
Access Register File or
& DEST 702d

r

Enable Execution Unit with
Decoded instruction 703d

int. Result 1{127:0f .= int. Result 2[127:0] :=
SRC1[127:0] AND SCRC1[127:0] AND NOT
DEST[127.0] 714d DEST[127.0] 7158d
- Int, Result {127} ==0, if inl. Result 2[127] ==0,
 |AND Int. Result 1[63} == 0 AND Int. Result 2{83] ==
ITHEN 2F « 1; THEN CF & 1;
{ELSE ZF « 0 ELSE CF D
720d 7214

[
]
4

700b

US 2019/0286444 A1

Sep. 19, 2019 Sheet 14 of 17

Patent Application Publication

vg DId

R
b o o
o o e
fom s a

hae o wn e

o~ wn e]

|
! ; . :
b9l $ZPZ 1EZE 6SOv Ly 9995 €9¥9 LLZ. 6.08 1883 9696 £OLPOLLLLZHIELLOZL Z1 |

0 FAR: S
M =] _ 68 - ioiiuon uoneisdp g8 M
| 49 , 3z q
| osgegeg 4 TTTET]
| (T T T T AL T ™ !
| W E 3 o
| ! 108 ; !
i i i !
! | ‘ !
ﬂ “ foas'} 4 Kk & m __
ﬂ 3 Yz 8 Lo
\ ! : /
Vo e P
Vo ™ P
Ny b/
5 /

€8 loLzibseq

TEE {g:s2s]iemunog

008 ioauo) uchessdp 098 MW@

US 2019/0286444 A1

088 sjqeuy

Sep. 19,2019 Sheet 15 of 17

£e8 /

{o:2z1h880

it L9 6. Let

LES
fozzilieoinog

Patent Application Publication

US 2019/0286444 A1

Sep. 19,2019 Sheet 16 of 17

Patent Application Publication

008

joaueg uoelado

\.\1
/ 5 771
£E8
{o:1zihiseq
% 7z
LER
{02z lieounos

US 2019/0286444 A1

Sep. 19,2019 Sheet 17 of 17

Patent Application Publication

6 OIAd

AAOD H4VOSH
Haocodo ALAEE XKid¥ad
824 x\\ F 2817
, QOO AIVOEH
HAODJO ¥ etap
ALAEE .
876 g\ h
811 ,....Mm_
% N
. ///v
CHNL IRAWEIV IS HI8 W QGE FACOd0 SAXITEd
. , ,
096 7 056 _ o5 — 056 b oz — 016 -

US 2019/0286444 Al

METHOD AND APPARATUS FOR
PERFORMING LOGICAL COMPARE
OPERATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of application
Ser. No. 15/885,269, filed Jan. 31, 2018, which is a con-
tinuation of application Ser. No. 15/345,221, filed Nov. 7,
2016 (now U.S. Pat. No. 9,898,285 issued Feb. 20, 2018),
which is a continuation of application Ser. No. 15/015,991,
filed Feb. 4, 2016 (now U.S. Pat. No. 9,489,198, issued Nov.
8, 2016), which is a continuation of application Ser. No.
14/684,412, filed Apr. 12, 2015 (now U.S. Pat. No. 9,268,
565, issued Feb. 23, 2016), which is a continuation of
application Ser. No. 13/763,598, filed Feb. 8, 2013 (now
U.S. Pat. No. 9,037,627, issued May 19, 2015), which is a
continuation of application Ser. No. 13/082,726, filed Apr. 8,
2011 (now U.S. Pat. No. 8,380,780, issued Feb. 19, 2013),
which is a continuation of application Ser. No. 11/525,706,
filed Sep. 21, 2006 (now U.S. Pat. No. 7,958,181, issued Jun.
7, 2011), which are hereby incorporated by reference.

TECHNICAL FIELD

[0002] This disclosure relates generally to the field of
processors. In particular, the disclosure relates to using a
single control signal to perform multiple logical compare
operations on multiple bits of data.

BACKGROUND ART

[0003] In typical computer systems, processors are imple-
mented to operate on values represented by a large number
of bits (e.g., 64) using instructions that produce one result.
For example, the execution of an add instruction will add
together a first 64-bit value and a second 64-bit value and
store the result as a third 64-bit value. Multimedia applica-
tions (e.g., applications targeted at computer supported
cooperation (CSC—the integration of teleconferencing with
mixed media data manipulation), 2D/3D graphics, image
processing, video compression/decompression, recognition
algorithms and audio manipulation) require the manipula-
tion of large amounts of data. The data may be represented
by a single large value (e.g., 64 bits or 128 bits), or may
instead be represented in a small number of bits (e.g., 8 or
16 or 32 bits). For example, graphical data may be repre-
sented by 8 or 16 bits, sound data may be represented by 8
or 16 bits, integer data may be represented by 8, 16 or 32
bits, and floating point data may be represented by 32 or 64
bits.

[0004] To improve efficiency of multimedia applications
(as well as other applications that have the same character-
istics), processors may provide packed data formats. A
packed data format is one in which the bits typically used to
represent a single value are broken into a number of fixed
sized data elements, each of which represents a separate
value. For example, a 128-bit register may be broken into
four 32-bit elements, each of which represents a separate
32-bit value. In this manner, these processors can more
efficiently process multimedia applications.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The present invention is illustrated by way of
example and not limitation in the figures of the accompa-
nying drawings.

Sep. 19,2019

[0006] FIGS. 1a-1c¢ illustrate example computer systems
according to alternative embodiments of the invention.

[0007] FIGS. 2a-2b illustrate register files of processors
according to alternative embodiments of the invention.

[0008] FIG. 3 illustrates a flow diagram for at least one
embodiment of a process performed by a processor to
manipulate data.

[0009] FIG. 4 illustrates packed data types according to
alternative embodiments of the invention.

[0010] FIG. 5 illustrates in-register packed byte and in-
register packed word data representations according to at
least one embodiment of the invention.

[0011] FIG. 6 illustrates in-register packed doubleword
and in-register packed quadword data representations
according to at least one embodiment of the invention.

[0012] FIGS. 7a-7d are flow diagrams illustrating various
embodiments of processes for performing logical-compare,
set-zero-and-carry-flag operations.

[0013] FIGS. 8a-8¢ illustrate alternative embodiments of
circuits for performing logical-compare, set-zero-and-carry-
flag operations.

[0014] FIG. 9 is a block diagram illustrating various
embodiments of operation code formats for processor
instructions.

DETAILED DESCRIPTION

[0015] Disclosed herein are embodiments of methods,
systems and circuits for including in processor instructions
for performing logical compare operations on multiple bits
of data in response to a single control signal. The data
involved in the logical compare operations may be packed or
unpacked data. For at least one embodiment, a processor is
coupled to a memory. The memory has stored therein a first
datum and a second datum. The processor performs logical
compare operations on data elements in the first datum and
the second datum in response to receiving an instruction.
The logical compare operations may include a bitwise AND
of data elements in the first and second datum and may also
include a bitwise AND of the complement of data elements
of the first datum with data elements of the second datum.
At least two status flags of the processor are modified based
on the results of the logical compare operations. These two
status flags may include the zero flag and the carry flag.
These flags may be architecturally visible to application
programs, and may be part of a larger flag value, such as an
architecturally visible extended flags (EFLAGS) register.

[0016] These and other embodiments of the present inven-
tion may be realized in accordance with the following
teachings and it should be evident that various modifications
and changes may be made in the following teachings with-
out departing from the broader spirit and scope of the
invention. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than restrictive sense
and the invention measured only in terms of the claims.

US 2019/0286444 A1
Definitions
[0017] To provide a foundation for understanding the

description of the embodiments of the invention, the fol-
lowing definitions are provided.
Bit X through Bit Y:

[0018] defines a subfield of binary number. For
example, bit six through bit zero of the byte 00111010,
(shown in base two) represent the subfield 111010,.
The °,’ following a binary number indicates base 2.
Therefore, 1000, equals 8,,, while F |, equals 15,,.

[0019] R,: is a register. A register is any device capable of

storing and providing data. Further functionality of a

register is described below. A register is not necessarily,

included on the same die or in the same package as the
processor.

SRC and DEST:

[0020] identify storage areas (e.g., memory addresses,
registers, etc.)
Sourcel-i and Resultl-i and Destin: represent data.

OVERVIEW

[0021] This application describes embodiments of meth-
ods, apparatuses and systems for including in processor
instructions for logical compare operations on packed or
unpacked data. More specifically, the instructions may be for
logically comparing data and then setting the zero and carry
flags based on the comparisons. For at least one embodi-
ment, two logical compare operations are performed using a
single instruction as shown below in Table 1a and Table 1b.
The compare operations include a bit-wise logical AND of
the destination and source operands, as well as a bit-wise
logical AND of the complement of the destination operand
with the source operand. Table la shows a simplified rep-
resentation of one embodiment of the disclosed logical
compare operations, while Table 1b shows a bit-level
example of an embodiment of the disclosed logical compare
instructions, given some sample values. For the embodi-
ments illustrated in Tables 1a and 1b, the data in the source
and destination operand may be of any data representation
and is not necessarily packed data, though it could be packed
data. Where the data of the source and/or destination oper-
ands is a single entity of 128-bits, and therefore is not
considered “packed” data, it will be referred to herein as
“unpacked” data, which simply means that the data is not
necessarily subdivided into component representations and
may be considered a single data value. While the data in
Table 1a is represented, for simplicity of illustration, as a
32-bit value, one of skill in the art will recognize that the
concept being illustrated in Tables 1a and 1b may be applied
to data of any length, including smaller data lengths (e.g.,
4-bit, 8-bit, and 16-bit lengths) as well as larger data lengths
(e.g., 64-bit and 128-bit lengths).

TABLE 1la

Logical Compare Dest, Source

Destination Operand Dest
Source Operand Source
Dest AND (bitwise) Source Int.
Resultl
[NOT Dest] AND (bitwise) Source Int.

Result2

Sep. 19,2019

TABLE 1la-continued

Logical Compare Dest, Source

Set if Int. Resultl = all 0’s; otherwise reset Zero
Flag
Set if Int. Result2 = all 0’s; otherwise reset Carry
Flag
TABLE 1b

Logical Compare Dest, Source - Example Values

Destination Operand
10101010010101010000111100000000
Source Operand
01010101101010101111000000001111
Dest AND (bitwise) Source
00000000000000000000000000000000
[NOT Dest] AND Source
01010101101010101111000000001111
ZERO FLAG = TRUE
CARRY FLAG = FALSE

[0022] For at least one embodiment, the data values for the
source and destination operands may represent packed data.
Each of the packed components of the source and destina-
tion operands for such embodiment may represent any type
of data.

[0023] Tables 2a and 2b illustrate that components A,
through A, and B, through B, each represent binary repre-
sentations of 32-bit single-precision floating point numbers.
However, such illustration should not be taken to be limit-
ing. One of skill in the art will recognize that each of the
components may represent any data, including any integral
or floating point data format, as well as string format or any
other type of data format.

TABLE 2a

Logical Compare Dest, Source

A Ay Aj Ay Dest
B, B, B; B, Source
Dest AND (bitwise) Source Int.
Resultl
[NOT Dest] AND (bitwise) Source Int.
Result2
Set if Int. Resultl = all 0’s; otherwise reset Zero
Flag
Set if Int. Result2 = all 0’s; otherwise reset Carry
Flag

US 2019/0286444 Al

Sep. 19,2019

3
TABLE 2b
Logical Compare Dest, Source - Example Values
Al: -118.625 A2:0.15625 A3:-2.125 A4: 2.5

1100001011101101 001111100010000 110000000000100 010000000010000
0100000000000000 000000000000000 0O0000000000000 000000000000000

00 00 00

B1: -0.0 B2: 0.0 B3: -0.0 B4: 0.0

100000000000000 000000000000000 100000000000000 000000000000000
000000000000000 000000000000000 000000000000000 000000000000000

00 00 00 00

Al AND B1 A2 AND B2 A3 AND B3 A4 AND B4

100000000000000 000000000000000 100000000000000 000000000000000
000000000000000 000000000000000 000000000000000 000000000000000

00 00 00 00
[NOT A1JAND [NOT A2] AND [NOT A3] AND [NOT] A4 AND

B1 B2 B3 B4
000000000000000 000000000000000 000000000000000 000000000000000
000000000000000 000000000000000 000000000000000 000000000000000

00 00 00 00

ZERO FLAG = FALSE
CARRY FLAG = TRUE
[0024] For packed embodiments, such as that illustrated be taken to be limiting, in that the setting of the zero and

by Tables 2a and 2b, alternative embodiments may be
employed such that only certain bits of each packed element
are operated upon during the compare operation. For
example, at least some such alternative embodiments are
discussed below in connection with the discussion of FIGS.
Tc, 7d, 8b, and 8c¢.

[0025] One of skill in the art will recognize that interme-
diate values “Int. Resultl” and “Int. Result2” are shown in
Tables 1a and 2a and that the third and fourth rows of binary
values are show in Tables 1b and 2b for ease of illustration
only. Their representation in Tables 1a through 2b should not
be taken to imply that such intermediate values are neces-
sarily stored within the processor, although they may be so
stored for at least one embodiment. Alternatively, for at least
one other embodiment, such intermediate values are deter-
mined via circuitry without storing said values in a storage
area.

[0026] Tables 1a, 1b, 2a and 2b, above, describe embodi-
ments of a “logical compare, set zero and carry flags”
(“LCSZC”) instruction that performs a bitwise AND opera-
tion on each of the 128 bits of the source and destination
operands, and also performs a bitwise AND operation of
each of the 128 bits of the source operand with each of the
128 bits of the complemented value of the destination
operand, and sets the zero and carry flags according to the
results of the AND operations.

[0027] The setting of the zero and carry flags supports
branching behavior based on the logical comparisons. For at
least one embodiment, the LCSZC instruction may be fol-
lowed by a separate branch instruction that indicates the
desired branching operation to be performed by the proces-
sor, based on the value of one or both of the flags (see, e.g.,
pseudocode in Table 4, below). One of skill in art will
recognize that setting of status flags are not the only hard-
ware mechanism by which branching operations may utilize
the comparison results, and other mechanisms may be
implemented in order to support branching based on the
results of the comparisons. Thus, although specific embodi-
ments described below indicate that zero and carry flags may
be set as a result of the logical comparison, such flag-setting
in support of branching is not required for all embodiments.
Accordingly, the term “LCSZC” as used herein should not

carry flags is not necessary for all embodiments.

[0028] For one alternative embodiment, for example, the
branching behavior may be performed as a direct result of a
variant of the LCSZC instruction that fuses the comparison
and branching in one instruction, such as fused “test-and-
branch” instruction. For at least one embodiment of the
fused “test-and-branch” instruction, no status flag is set as a
result of the logical comparisons performed.

[0029] Alternative embodiments may vary the number of
bits in the data elements and the intermediate results. Also,
alternative embodiments may compare only some bits of the
respective source and destination values. In addition, alter-
native embodiment may vary the number of data elements
used and the number of intermediate results generated. For
example, alternative embodiments may include but are not
limited to: a LCSZC instruction for an unsigned source and
a signed destination; a LCSZC instruction for a signed
source and an unsigned destination; a LCSZC instruction for
an unsigned source and an unsigned destination; and a
LCSZC instruction for a signed source and a signed desti-
nation. In each of the examples, said source and destination
may each contain packed data of 8-bit, 16-bit, 32-bit, or
64-bit components. Alternatively, said source and destina-
tion data is not packed, but is instead a 128-bit data element.
The packed nature of the source and destination need not be
symmetric, and the size of data for the source and destina-
tion, if both are packed, need not necessarily be the same.
[0030] Computer System

[0031] FIG. 1a illustrates an example computer system
100 according to one embodiment of the invention. Com-
puter system 100 includes an interconnect 101 for commu-
nicating information. The interconnect 101 may include a
multi-drop bus, one or more point-to-point interconnects, or
any combination of the two, as well as any other commu-
nications hardware and/or software.

[0032] FIG. 1a illustrates a processor 109, for processing
information, coupled with interconnect 101. Processor 109
represents a central processing unit of any type of architec-
ture, including a CISC or RISC type architecture.

[0033] Computer system 100 further includes a random-
access memory (RAM) or other dynamic storage device
(referred to as main memory 104), coupled to interconnect

US 2019/0286444 Al

101 for storing information and instructions to be executed
by processor 109. Main memory 104 also may be used for
storing temporary variables or other intermediate informa-
tion during execution of instructions by processor 109.

[0034] Computer system 100 also includes a read only
memory (ROM) 106, and/or other static storage device,
coupled to interconnect 101 for storing static information
and instructions for processor 109. Data storage device 107
is coupled to interconnect 101 for storing information and
instructions.

[0035] FIG. 1q also illustrates that processor 109 includes
an execution unit 130, a register file 150, a cache 160, a
decoder 165, and an internal interconnect 170. Of course,
processor 109 contains additional circuitry that is not nec-
essary to understanding the invention.

[0036] Decoder 165 is for decoding instructions received
by processor 109 and execution unit 130 is for executing
instructions received by processor 109. In addition to rec-
ognizing instructions typically implemented in general pur-
pose processors, decoder 165 and execution unit 130 rec-
ognize instructions, as described herein, for performing
logical-compare-and-set-zero-and-carry-flags (LCSZC)
operations. The decoder 165 and execution unit 130 recog-
nize instructions for performing LCSZC operations on both
packed and unpacked data.

[0037] Execution unit 130 is coupled to register file 150 by
internal interconnect 170. Again, the internal interconnect
170 need not necessarily be a multi-drop bus and may, in
alternative embodiments, be a point-to-point interconnect or
other type of communication pathway.

[0038] Register file(s) 150 represents a storage area of
processor 109 for storing information, including data. It is
understood that one aspect of the invention is the described
instruction embodiments for performing LCSZC operations
on packed or unpacked data. According to this aspect of the
invention, the storage area used for storing the data is not
critical. However, embodiments of the register file 150 are
later described with reference to FIGS. 24-2b

[0039] Execution unit 130 is coupled to cache 160 and
decoder 165. Cache 160 is used to cache data and/or control
signals from, for example, main memory 104. Decoder 165
is used for decoding instructions received by processor 109
into control signals and/or microcode entry points. These
control signals and/or microcode entry points may be for-
warded from the decoder 165 to the execution unit 130.

[0040] In response to these control signals and/or micro-
code entry points, execution unit 130 performs the appro-
priate operations. For example, if an LCSZC instruction is
received, decoder 165 causes execution unit 130 to perform
the required comparison logic. For at least some embodi-
ments (such as those not implementing fused “test and
branch” operations), the execution unit 130 may set the zero
and carry flags accordingly (see, e.g., logical compare
circuitry 145). For such embodiments, a branch unit (not
shown) of the processor 109 may utilize the flags during
execution of a subsequent branch instruction that indicates a
target code location.

[0041] Alternatively, the execution unit 130 itself may
include branch circuitry (not shown) that effects a branch
based on the logical comparisons. For such embodiment,
“branching support” provided by an LCSZC instruction is a
control jump to a specified target code location, rather than
the setting of control flags. For at least one embodiment, the

Sep. 19,2019

branch circuitry that performs the jump, or “branch”, may be
part of the logical compare circuitry 145).

[0042] Decoder 165 may be implemented using any num-
ber of different mechanisms (e.g., a look-up table, a hard-
ware implementation, a PLA, etc.). Thus, while the execu-
tion of the various instructions by the decoder 165 and
execution unit 130 may be represented herein by a series of
if/then statements, it is understood that the execution of an
instruction does not require a serial processing of these
if/then statements. Rather, any mechanism for logically
performing this if/then processing is considered to be within
the scope of the invention.

[0043] FIG. 1a additionally shows a data storage device
107 (e.g., a magnetic disk, optical disk, and/or other
machine-readable media) can be coupled to computer sys-
tem 100. In addition, the data storage device 107 is shown
to include code 195 for execution by the processor 109. The
code 195 can include one or more embodiments of an
LCSZC instruction 142, and can be written to cause the
processor 109 to perform bit testing with the LCSZC
instruction(s) 142 for any number of purposes (e.g., motion
video compression/decompression, image filtering, audio
signal compression, filtering or synthesis, modulation/de-
modulation, etc.).

[0044] Computer system 100 can also be coupled via
interconnect 101 to a display device 121 for displaying
information to a computer user. Display device 121 can
include a frame buffer, specialized graphics rendering
devices, a liquid crystal display (LCD), and/or a flat panel
display.

[0045] An input device 122, including alphanumeric and
other keys, may be coupled to interconnect 101 for com-
municating information and command selections to proces-
sor 109. Another type of user input device is cursor control
123, such as a mouse, a trackball, a pen, a touch screen, or
cursor direction keys for communicating direction informa-
tion and command selections to processor 109, and for
controlling cursor movement on display device 121. This
input device typically has two degrees of freedom in two
axes, a first axis (e.g., X) and a second axis (e.g., y), which
allows the device to specify positions in a plane. However,
this invention should not be limited to input devices with
only two degrees of freedom.

[0046] Another device that may be coupled to interconnect
101 is a hard copy device 124 which may be used for
printing instructions, data, or other information on a medium
such as paper, film, or similar types of media. Additionally,
computer system 100 can be coupled to a device for sound
recording, and/or playback 125, such as an audio digitizer
coupled to a microphone for recording information. Further,
the device 125 may include a speaker which is coupled to a
digital to analog (D/A) converter for playing back the
digitized sounds.

[0047] Computer system 100 can be a terminal in a
computer network (e.g., a LAN). Computer system 100
would then be a computer subsystem of a computer network.
Computer system 100 optionally includes video digitizing
device 126 and/or a communications device 190 (e.g., a
serial communications chip, a wireless interface, an ethernet
chip or a modem, which provides communications with an
external device or network). Video digitizing device 126 can
be used to capture video images that can be transmitted to
others on the computer network.

US 2019/0286444 Al

[0048] For at least one embodiment, the processor 109
supports an instruction set that is compatible with the
instruction set used by existing processors (such as, e.g., the
Intel® Pentium® Processor, Intel® Pentium® Pro proces-
sor, Intel® Pentium® II processor, Intel® Pentium® 11
processor, Intel® Pentium® 4 Processor, Intel® Itanium®
processor, Intel® Itanium® 2 processor, or the Intel®
Core™ Duo processor) manufactured by Intel Corporation
of Santa Clara, Calif. As a result, processor 109 can support
existing processor operations in addition to the operations of
the invention. Processor 109 may also be suitable for manu-
facture in one or more process technologies and by being
represented on a machine-readable media in sufficient detail,
may be suitable to facilitate said manufacture. While the
invention is described below as being incorporated into an
x86 based instruction set, alternative embodiments could
incorporate the invention into other instruction sets. For
example, the invention could be incorporated into a 64-bit
processor using an instruction set other than the x86 based
instruction set.

[0049] FIG. 15 illustrates an alternative embodiment of a
data processing system 102 that implements the principles of
the present invention. One embodiment of data processing
system 102 is an applications processor with Intel XScale™
technology. It will be readily appreciated by one of skill in
the art that the embodiments described herein can be used
with alternative processing systems without departure from
the scope of the invention.

[0050] Computer system 102 comprises a processing core
110 capable of performing LCSZC operations. For one
embodiment, processing core 110 represents a processing
unit of any type of architecture, including but not limited to
a CISC, a RISC or a VLIW type architecture. Processing
core 110 may also be suitable for manufacture in one or
more process technologies and by being represented on a
machine-readable media in sufficient detail, may be suitable
to facilitate said manufacture.

[0051] Processing core 110 comprises an execution unit
130, a set of register file(s) 150, and a decoder 165.
Processing core 110 also includes additional circuitry (not
shown) which is not necessary to the understanding of the
present invention.

[0052] Execution unit 130 is used for executing instruc-
tions received by processing core 110. In addition to recog-
nizing typical processor instructions, execution unit 130
recognizes instructions for performing [LCSZC operations
on packed and unpacked data formats. The instruction set
recognized by decoder 165 and execution unit 130 may
include one or more instructions for LCSZC operations, and
may also include other packed instructions.

[0053] Execution unit 130 is coupled to register file 150 by
an internal bus (which may, again, be any type of commu-
nication pathway including a multi-drop bus, point-to-point
interconnect, etc.). Register file 150 represents a storage area
of processing core 110 for storing information, including
data. As previously mentioned, it is understood that the
storage area used for storing the data is not critical. Execu-
tion unit 130 is coupled to decoder 165. Decoder 165 is used
for decoding instructions received by processing core 110
into control signals and/or microcode entry points. In
response to these control signals and/or microcode entry
points. These control signals and/or microcode entry points
may be forwarded to the execution unit 130. The execution
unit 130 may perform the appropriate operations, responsive

Sep. 19,2019

to receipt of the control signals and/or microcode entry
points. For at least one embodiment, for example, the
execution unit 130 may perform the logical comparisons
described herein and may also set the status flags as dis-
cussed herein or branch to a specified code location, or both.
[0054] Processing core 110 is coupled with bus 214 for
communicating with various other system devices, which
may include but are not limited to, for example, synchronous
dynamic random access memory (SDRAM) control 271,
static random access memory (SRAM) control 272, burst
flash memory interface 273, personal computer memory
card international association (PCMCIA)/compact flash
(CF) card control 274, liquid crystal display (LCD) control
275, direct memory access (DMA) controller 276, and
alternative bus master interface 277.

[0055] For at least one embodiment, data processing sys-
tem 102 may also comprise an /O bridge 290 for commu-
nicating with various I/O devices via an 1/O bus 295. Such
1/0 devices may include but are not limited to, for example,
universal asynchronous receiver/transmitter (UART) 291,
universal serial bus (USB) 292, Bluetooth wireless UART
293 and 1/O expansion interface 294. As with the other buses
discussed above, /O bus 295 may be any type of commu-
nication pathway, include a multi-drop bus, point-to-point
interconnect, etc.

[0056] At least one embodiment of data processing system
102 provides for mobile, network and/or wireless commu-
nications and a processing core 110 capable of performing
LCSZC operations on both packed and unpacked data.
Processing core 110 may be programmed with various
audio, video, imaging and communications algorithms
including discrete transformations, filters or convolutions;
compression/decompression techniques such as color space
transformation, video encode motion estimation or video
decode motion compensation; and modulation/demodula-
tion (MODEM) functions such as pulse coded modulation
(PCM).

[0057] FIG. 1c illustrates alternative embodiments of a
data processing system 103 capable of performing LCSZC
operations on packed and unpacked data. In accordance with
one alternative embodiment, data processing system 103
may include a chip package 310 that includes main proces-
sor 224, and one or more coprocessors 226. The optional
nature of additional coprocessors 226 is denoted in FIG. 1¢
with broken lines. One or more of the coprocessors 226 may
be, for example, a graphics co-processor capable of execut-
ing SIMD instructions.

[0058] FIG. 1c¢ illustrates that the data processor system
103 may also include a cache memory 278 and an input/
output system 265, both coupled to the chip package 310.
The input/output system 295 may optionally be coupled to
a wireless interface 296.

[0059] Coprocessor 226 is capable of performing general
computational operations and is also capable of performing
SIMD operations. For at least one embodiment, the copro-
cessor 226 is capable of performing LCSZC operations on
packed and unpacked data.

[0060] For at least one embodiment, coprocessor 226
comprises an execution unit 130 and register file(s) 209. At
least one embodiment of main processor 224 comprises a
decoder 165 to recognize and decode instructions of an
instruction set that includes LCSZC instructions for execu-
tion by execution unit 130. For alternative embodiments,
coprocessor 226 also comprises at least part of decoder 166

US 2019/0286444 Al

to decode instructions of an instruction set that includes
LCSZC instructions. Data processing system 103 also
includes additional circuitry (not shown) which is not nec-
essary to the understanding of the present invention.
[0061] In operation, the main processor 224 executes a
stream of data processing instructions that control data
processing operations of a general type including interac-
tions with the cache memory 278, and the input/output
system 295. Embedded within the stream of data processing
instructions are coprocessor instructions. The decoder 165
of' main processor 224 recognizes these coprocessor instruc-
tions as being of a type that should be executed by an
attached coprocessor 226. Accordingly, the main processor
224 issues these coprocessor instructions (or control signals
representing the coprocessor instructions) on the coproces-
sor interconnect 236 where from they are received by any
attached coprocessor(s). For the single-coprocessor embodi-
ment illustrated in FIG. 1¢, the coprocessor 226 accepts and
executes any received coprocessor instructions intended for
it. The coprocessor interconnect may be any type of com-
munication pathway, including a multi-drop bus, point-to-
pointer interconnect, or the like.

[0062] Data may be received via wireless interface 296 for
processing by the coprocessor instructions. For one
example, voice communication may be received in the form
of a digital signal, which may be processed by the copro-
cessor instructions to regenerate digital audio samples rep-
resentative of the voice communications. For another
example, compressed audio and/or video may be received in
the form of a digital bit stream, which may be processed by
the coprocessor instructions to regenerate digital audio
samples and/or motion video frames.

[0063] For at least one alternative embodiment, main
processor 224 and a coprocessor 226 may be integrated into
a single processing core comprising an execution unit 130,
register file(s) 209, and a decoder 165 to recognize instruc-
tions of an instruction set that includes LCSZC instructions
for execution by execution unit 130.

[0064] FIG. 2q illustrates the register file of the processor
according to one embodiment of the invention. The register
file 150 may be used for storing information, including
control/status information, integer data, floating point data,
and packed data. One of skill in the art will recognize that
the foregoing list of information and data is not intended to
be an exhaustive, all-inclusive list.

[0065] For the embodiment shown in FIG. 24, the register
file 150 includes integer registers 201, registers 209, status
registers 208, and instruction pointer register 211. Status
registers 208 indicate the status of processor 109, and may
include various status registers such as a zero flag and a
carry flag. Instruction pointer register 211 stores the address
of the next instruction to be executed. Integer registers 201,
registers 209, status registers 208, and instruction pointer
register 211 are all coupled to internal interconnect 170.
Additional registers may also be coupled to internal inter-
connect 170. The internal interconnect 170 may be, but need
not necessarily be, a multi-drop bus. The internal intercon-
nect 170 may instead may be any other type of communi-
cation pathway, including a point-to-point interconnect.
[0066] Forone embodiment, the registers 209 may be used
for both packed data and floating-point data. In one such
embodiment, the processor 109, at any given time, treats the
registers 209 as being either stack referenced floating point
registers or non-stack referenced packed data registers. In

Sep. 19,2019

this embodiment, a mechanism is included to allow the
processor 109 to switch between operating on registers 209
as stack referenced floating point registers and non-stack
referenced packed data registers. In another such embodi-
ment, the processor 109 may simultaneously operate on
registers 209 as non-stack referenced floating point and
packed data registers. As another example, in another
embodiment, these same registers may be used for storing
integer data.

[0067] Of course, alternative embodiments may be imple-
mented to contain more or less sets of registers. For
example, an alternative embodiment may include a separate
set of floating point registers for storing floating point data.
As another example, an alternative embodiment may include
a first set of registers, each for storing control/status infor-
mation, and a second set of registers, each capable of storing
integer, floating point, and packed data. As a matter of
clarity, the registers of an embodiment should not be limited
in meaning to a particular type of circuit. Rather, a register
of an embodiment need only be capable of storing and
providing data, and performing the functions described
herein.

[0068] The various sets of registers (e.g., the integer
registers 201, the registers 209) may be implemented to
include different numbers of registers and/or to different size
registers. For example, in one embodiment, the integer
registers 201 are implemented to store thirty-two bits, while
the registers 209 are implemented to store eighty bits (all
eighty bits are used for storing floating point data, while only
sixty-four are used for packed data). In addition, registers
209 may contain eight registers, R, 212a through R, 212/.
R, 212b, R, 212¢ and R; 2124 are examples of individual
registers in registers 209. Thirty-two bits of a register in
registers 209 can be moved into an integer register in integer
registers 201. Similarly, a value in an integer register can be
moved into thirty-two bits of a register in registers 209. In
another embodiment, the integer registers 201 each contain
64 bits, and 64 bits of data may be moved between the
integer register 201 and the registers 209. In another alter-
native embodiment, the registers 209 each contain 64 bits
and registers 209 contains sixteen registers. In yet another
alternative embodiment, registers 209 contains thirty-two
registers.

[0069] FIG. 25 illustrates the register file of the processor
according to one alternative embodiment of the invention.
The register file 150 may be used for storing information,
including control/status information, integer data, floating
point data, and packed data. In the embodiment shown in
FIG. 2b, the register file 150 includes integer registers 201,
registers 209, status registers 208, extension registers 210,
and instruction pointer register 211. Status registers 208,
instruction pointer register 211, integer registers 201, regis-
ters 209, are all coupled to internal interconnect 170. Addi-
tionally, extension registers 210 are also coupled to internal
interconnect 170. The internal interconnect 170 may be, but
need not necessarily be, a multi-drop bus. The internal
interconnect 170 may instead may be any other type of
communication pathway, including a point-to-point inter-
connect.

[0070] For at least one embodiment, the extension regis-
ters 210 are used for both packed integer data and packed
floating-point data. For alternative embodiments, the exten-
sion registers 210 may be used for scalar data, packed
Boolean data, packed integer data and/or packed floating-

US 2019/0286444 Al

point data. Of course, alternative embodiments may be
implemented to contain more or less sets of registers, more
or less registers in each set or more or less data storage bits
in each register without departing from the broader scope of
the invention.

[0071] For at least one embodiment, the integer registers
201 are implemented to store thirty-two bits, the registers
209 are implemented to store eighty bits (all eighty bits are
used for storing floating point data, while only sixty-four are
used for packed data) and the extension registers 210 are
implemented to store 128 bits. In addition, extension regis-
ters 210 may contain eight registers, XR, 213a through XR,
2134. XR,, 213a, XR, 2136 and XR, 213¢ are examples of
individual registers in registers 210. For another embodi-
ment, the integer registers 201 each contain 64 bits, the
extension registers 210 each contain 64 bits and extension
registers 210 contains sixteen registers. For one embodiment
two registers of extension registers 210 may be operated
upon as a pair. For yet another alternative embodiment,
extension registers 210 contains thirty-two registers.

[0072] FIG. 3 illustrates a flow diagram for one embodi-
ment of a process 300 to manipulate data according to one
embodiment of the invention. That is, FIG. 3 illustrates the
process followed, for example, by processor 109 (see, e.g.,
FIG. 1a) while performing a LCSZC operation on packed
data, performing a LCSZC operation on unpacked data, or
performing some other operation. Process 300 and other
processes herein disclosed are performed by processing
blocks that may comprise dedicated hardware or software or
firmware operation codes executable by general purpose
machines or by special purpose machines or by a combina-
tion of both.

[0073] FIG. 3 illustrates that processing for the method
begins at “Start” and proceeds to processing block 301. At
processing block 301, the decoder 165 (see, e.g., FIG. 1a)
receives a control signal from either the cache 160 (see, e.g.,
FIG. 1a) or interconnect 101 (see, e.g., FIG. 1a). The control
signal received at block 301 may be, for at least one
embodiment, a type of control signal commonly referred to
as a software “instruction.” Decoder 165 decodes the control
signal to determine the operations to be performed. Process-
ing proceeds from processing block 301 to processing block
302.

[0074] At processing block 302, decoder 165 accesses the
register file 150 (FIG. 1a), or a location in memory (see, e.g.,
main memory 104 or cache memory 160 of FIG. 1a).
Registers in the register file 150, or memory locations in the
memory, are accessed depending on the register address
specified in the control signal. For example, the control
signal for an operation can include SRC1, SRC2 and DEST
register addresses. SRC1 is the address of the first source
register. SRC2 is the address of the second source register.
In some cases, the SRC2 address is optional as not all
operations require two source addresses. If the SRC2
address is not required for an operation, then only the SRC1
address is used. DEST is the address of the destination
register where the result data is stored. For at least one
embodiment, SRC1 or SRC2 may also be used as DEST in
at least one of the control signals recognized by the decoder
165.

[0075] The data stored in the corresponding registers is
referred to as Sourcel, Source2, and Result respectively. In
one embodiment, each of these data may be sixty-four bits

Sep. 19,2019

in length. For alternative embodiments, one or more of these
data may be other lengths, such as one hundred twenty-eight
bits in length.

[0076] For another embodiment of the invention, any one,
or all, of SRC1, SRC2 and DEST, can define a memory
location in the addressable memory space of processor 109
(FIG. 1a) or processing core 110 (FIG. 15). For example,
SRC1 may identify a memory location in main memory 104,
while SRC2 identifies a first register in integer registers 201
and DEST identifies a second register in registers 209. For
simplicity of the description herein, the invention will be
described in relation to accessing the register file 150.
However, one of skill in the art will recognize that these
described accesses may be made to memory instead.
[0077] From block 302, processing proceeds to processing
block 303. At processing block 303, execution unit 130 (see,
e.g., FIG. 1a) is enabled to perform the operation on the
accessed data.

[0078] Processing proceeds from processing block 303 to
processing block 304. At processing block 304, the result is
stored back into register file 150 or memory according to
requirements of the control signal. Processing then ends at
“Stop”.

[0079] Data Storage Formats

[0080] FIG. 4 illustrates packed data-types according to
one embodiment of the invention. Four packed and one
unpacked data formats are illustrated, including packed byte
421, packed half 422, packed single 423 packed double 424,
and unpacked double quadword 412.

[0081] The packed byte format 421, for at least one
embodiment, is one hundred twenty-eight bits long contain-
ing sixteen data elements (B0-B15). Each data element
(B0O-B15) is one byte (e.g., 8 bits) long.

[0082] The packed half format 422, for at least one
embodiment, is one hundred twenty-eight bits long contain-
ing eight data elements (Half O through Half 7). Each of the
data elements (Half 0 through Half 7) may hold sixteen bits
of information. Each of these sixteen-bit data elements may
be referred to, alternately, as a “half word” or “short word”
or simply “word.”

[0083] The packed single format 423, for at least one
embodiment, may be one hundred twenty-eight bits long and
may hold four 423 data elements (Single 0 through Single
3). Each of the data elements (Single 0 through Single 3)
may hold thirty-two bits of information. Each of the 32-bit
data elements may be referred to, alternatively, as a “dword”
or “double word”. Each of the data elements (Single 0
through Single 3) may represent, for example, a 32-bit single
precision floating point value, hence the term “packed
single” format.

[0084] The packed double format 424, for at least one
embodiment, may be one hundred twenty-eight bits long and
may hold two data elements. Each data element (Double 0,
Double 1) of the packed double format 424 may hold
sixty-four bits of information. Each of the 64-bit data
elements may be referred to, alternatively, as a “qword” or
“quadword”. Each of the data elements (Double 0, Double
1) may represent, for example, a 64-bit double precision
floating point value, hence the term “packed double” format.
[0085] The unpacked double quadword format 412 may
hold up to 128 bits of data. The data need not necessarily be
packed data. For at least one embodiment, for example, the
128 bits of information of the unpacked double quadword
format 412 may represent a single scalar datum, such as a

US 2019/0286444 Al

character, integer, floating point value, or binary bit-mask
value. Alternatively, the 128 bits of the unpacked double
quadword format 412 may represent an aggregation of
unrelated bits (such as a status register value where each bit
or set of bits represents a different flag), or the like.
[0086] For at least one embodiment of the invention, the
data elements of the packed single 423 and packed double
424 formats may be packed floating point data elements as
indicated above. In an alternative embodiment of the inven-
tion, the data elements of the packed single 423 and packed
double 424 formats may be packed integer, packed Boolean
or packed floating-point data elements. For another alterna-
tive embodiment of the invention, the data elements of
packed byte 421, packed half 422, packed single 423 and
packed double 424 formats may be packed integer or packed
Boolean data elements. For alternative embodiments of the
invention, not all of the packed byte 421, packed half 422,
packed single 423 and packed double 424 data formats may
be permitted or supported.

[0087] FIGS. 5 and 6 illustrate in-register packed data
storage representations according to at least one embodi-
ment of the invention.

[0088] FIG. 5 illustrates unsigned and signed packed byte
in-register formats 510 and 511, respectively. Unsigned
packed byte in-register representation 510 illustrates the
storage of unsigned packed byte data, for example in one of
the 128-bit extension registers XR,, 213a through XR 213/
(see, e.g., FIG. 2b). Information for each of sixteen byte data
elements is stored in bit seven through bit zero for byte zero,
bit fifteen through bit eight for byte one, bit twenty-three
through bit sixteen for byte two, bit thirty-one through bit
twenty-four for byte three, bit thirty-nine through bit thirty-
two for byte four, bit forty-seven through bit forty for byte
five, bit fifty-five through bit forty-eight for byte six, bit
sixty-three through bit fifty-six for byte seven, bit seventy-
one through bit sixty-four for byte eight, bit seventy-nine
through bit seventy-two for byte nine, bit eighty-seven
through bit eighty for byte ten, bit ninety-five through bit
eighty-eight for byte eleven, bit one hundred three through
bit ninety-six for byte twelve, bit one hundred eleven
through bit one hundred four for byte thirteen, bit one
hundred nineteen through bit one hundred twelve for byte
fourteen and bit one hundred twenty-seven through bit one
hundred twenty for byte fifteen.

[0089] Thus, all available bits are used in the register. This
storage arrangement increases the storage efficiency of the
processor. As well, with sixteen data elements accessed, one
operation can now be performed on sixteen data elements
simultaneously.

[0090] Signed packed byte in-register representation 511
illustrates the storage of signed packed bytes. Note that the
eighth (MSB) bit of every byte data element is the sign
indicator (“s”).

[0091] FIG. 5 also illustrates unsigned and signed packed
word in-register representations 512 and 513, respectively.
[0092] Unsigned packed word in-register representation
512 shows how extension registers 210 store eight word (16
bits each) data elements. Word zero is stored in bit fifteen
through bit zero of the register. Word one is stored in bit
thirty-one through bit sixteen of the register. Word two is
stored in bit forty-seven through bit thirty-two of the regis-
ter. Word three is stored in bit sixty-three through bit
forty-eight of the register. Word four is stored in bit seventy-
nine through bit sixty-four of the register. Word five is stored

Sep. 19,2019

in bit ninety-five through bit eighty of the register. Word six
is stored in bit one hundred eleven through bit ninety-six of
the register. Word seven is stored in bit one hundred twenty-
seven through bit one hundred twelve of the register.
[0093] Signed packed word in-register representation 513
is similar to unsigned packed word in-register representation
512. Note that the sign bit (“s™) is stored in the sixteenth bit
(MSB) of each word data element.

[0094] FIG. 6 illustrates unsigned and signed packed
doubleword in-register formats 514 and 515, respectively.
Unsigned packed doubleword in-register representation 514
shows how extension registers 210 store four doubleword
(32 bits each) data elements. Doubleword zero is stored in
bit thirty-one through bit zero of the register. Doubleword
one is stored in bit sixty-three through bit thirty-two of the
register. Doubleword two is stored in bit ninety-five through
bit sixty-four of the register. Doubleword three is stored in
bit one hundred twenty-seven through bit ninety-six of the
register.

[0095] Signed packed double-word in-register representa-
tion 515 is similar to unsigned packed quadword in-register
representation 516. Note that the sign bit (“s™”) is the
thirty-second bit (MSB) of each doubleword data element.
[0096] FIG. 6 also illustrates unsigned and signed packed
quadword in-register formats 516 and 517, respectively.
Unsigned packed quadword in-register representation 516
shows how extension registers 210 store two quadword (64
bits each) data elements. Quadword zero is stored in bit
sixty-three through bit zero of the register. Quadword one is
stored in bit one hundred twenty-seven through bit sixty-
four of the register.

[0097] Signed packed quadword in-register representation
517 is similar to unsigned packed quadword in-register
representation 516. Note that the sign bit (“s™”) is the
sixty-fourth bit (MSB) of each quadword data element.

[0098] Logical Compare-and-Swap, Set-Zero-and-Carry-
Flags Operation(s)

[0099] For at least one embodiment of the invention, the
SRCI register may hold packed data or an unpacked double
quadword of data (Sourcel) and the DEST register may also
hold packed data or an unpacked double quadword of data
(Dest). The Dest value in the DEST register or the Sourcel
value in the SRC1 register, for at least one embodiment, may
be a double quadword of unpacked data to be used as a
bitwise mask value.

[0100] Generally, in the first step of the LCSZC instruc-
tion, two compare operations are performed. A first inter-
mediate result is generated by performing an independent
logical comparison (bitwise AND operation) of each bit in
Sourcel with the respective bit of Dest. A second interme-
diate result is generated by performing an independent
logical comparison (bitwise AND operation) of each bit in
Sourcel with the complement of the respective bit of Dest.
These intermediate results may be stored in temporary
storage locations (such as, e.g., a register), or may not be
stored by the processor at all.

[0101] FIG. 7a is a flow diagram for a general method 700
for performing LCSZC operations according to at least one
embodiment of the invention. Process 700 and other pro-
cesses herein disclosed are performed by processing blocks
that may comprise dedicated hardware or software or firm-
ware operation codes executable by general purpose
machines or by special purpose machines or by a combina-

US 2019/0286444 Al

tion of both. FIGS. 7a through 7d are discussed in the
following paragraphs with reference to FIG. 1a.

[0102] FIG. 7a illustrates that the method 700 begins at
“Start” and proceeds to processing block 701. At processing
block 701, decoder 165 decodes the control signal received
by processor 109. Thus, decoder 165 decodes the operation
code for a LCSZC instruction. Processing then proceeds
from processing block 701 to processing block 702.
[0103] At processing block 702, via internal bus 170,
decoder 165 accesses registers 209 in register file 150 given
the SRC1 and DEST addresses encoded in the instruction.
For at least one embodiment, the addresses that are encoded
in the instruction each indicate an extension register (see,
e.g., extension registers 210 of FIG. 2b). For such embodi-
ment, the indicated extension registers 210 are accessed at
block 702 in order to provide execution unit 130 with the
data stored in the SRC1 register (Sourcel), and the data
stored in the DEST register (Dest). For at least one embodi-
ment, extension registers 210 communicate the data to
execution unit 130 via internal bus 170.

[0104] From processing block 702, processing proceeds to
processing block 703. At processing block 703, decoder 165
enables execution unit 130 to perform the instruction. For at
least one embodiment, such enabling 703 is performed by
sending one or more control signals to the execution unit to
indicate the desired operation (LCZCS). From block 703,
processing proceeds to processing blocks 714 and 715.
While blocks 714 and 715 are shown in parallel, one of skill
in the art will recognize that such operations need be
performed exactly simultaneously as long as they are per-
formed in the same cycle or set of cycles and that, for at least
one alternative embodiment, the processing of blocks 714
and 715 may be performed serially. Different embodiments
thus may perform the processing of blocks 714 and 715 in
parallel, in series, or in some combination of serial and
parallel operations.

[0105] At processing block 714, the following is per-
formed. All or some of Sourcel bits are logically AND’ed
with the same respective bits of the Dest value. Similarly, at
processing block 715, all or some of Sourcel bits are
logically AND’ed with the complement of the same respec-
tive bits of the Dest value.

[0106] From block 714, processing proceeds to block 720.
From block 715, processing proceeds to block 721.

[0107] At processing block 720, the state of the processor
is modified based on the results of the comparison per-
formed at processing block 714. Similarly, at processing
block 721 the state of the processor is modified based on the
results of the comparison preformed at processing block
715. One of skill in the art will note that the method 700
illustrated in FIG. 7a is non-destructive, in that neither the
Sourcel nor Dest operand values are modified as a result of
the LCSZC operation. Instead, the zero flag is modified at
block 720 and the carry flag is modified at block 721.
[0108] At processing block 720, the value of the zero flag
is set to a true value (e.g., a logic-high value), if all bits of
Intermediate Result 1 are equal to zero (e.g., a logic-low
value). If, however, even one bit of the Intermediate Result
1 is a logic-high value, then the zero flag is set to a false
value (e.g., logic-low value) at block 720.

[0109] At processing block 721, the value of the carry flag
is set to a true value (e.g., a logic-high value), if all bits of
Intermediate Result 2 are equal to zero (e.g., a logic-low
value). If, however, even one bit of the Intermediate Result

Sep. 19,2019

2 is a logic-high value, then the carry flag is set to a false
value (e.g., logic-low value) at block 721.

[0110] It will be appreciated that alternative embodiments
of process 700 may implement only processing blocks 714
and 720, but not processing blocks 715 and 721, or only
processing blocks 715 and 721, but not processing blocks
714 and 720. It will also be appreciated that alternative
embodiments of process 700 may implement additional
processing blocks to support additional variations of the
LCSZC instructions.

[0111] From blocks 720 and 721, processing may option-
ally proceed to block 722. At block 722, other state bits
within the processor may be modified. For at least one
embodiment, these state bits may include, for example, one
or more other architecturally visible status flag values. These
flags may be one- or two-bit values and may include parity
(PF), auxiliary carry (AF), sign (SF), trap (TF), interrupt
enable/disable (IF), direction (DF), overtlow (OF), I/O privi-
lege level (IOPL), nested task (NT), resume (RF), virtual
8086 mode (VM), alignment check (AC), virtual interrupt
(VIF), virtual interrupt pending (FIP), and CPU identifier
(ID) flags and the like. Of course, the preceding listing of
specific flags is intended to be illustrative only; other
embodiments may include fewer, more, or different flags.
[0112] From optional block 722, processing ends at
“End.” For embodiments that do not include optional block
722, processing ends at “End” after the processing at blocks
720 and 721.

[0113] FIG. 754 illustrates a flow diagram for at least one
specific embodiment 7005 of the general method 700 illus-
trated in FIG. 7a. For the specific embodiment 7005 illus-
trated in FIG. 76, the LCSZC operation is performed on
Sourcel and Dest data values that are 128 bits in length, and
which may or may not be packed data. (Of course, one of
skill in the art will recognize that the operations illustrated
in FIG. 7b may also be performed for data values of other
lengths, including those that are smaller or larger than 128
bits).

[0114] Processing blocks 7015 through 70354 operate
essentially the same for method 7006 as do processing
blocks 701 through 703 that are described above in connec-
tion with method 700, illustrated in FIG. 7a. When decoder
165 enables execution unit 130 to perform the instruction at
block 703c¢, the instruction is an LCSZC instruction for
performing logical AND comparisons of respective bits of
the Sourcel and Dest values. (See, e.g., signed packed
doubleword in-register representation 515 illustrated in FIG.
6). Such instruction may be referred to by an instruction
mnemonic that may be used by application programmers,
such as “PTEST”. From block 703¢, processing proceeds to
blocks 714¢ and 715¢. Again, blocks 714¢ and 715¢ may be,
but need not necessarily be, performed in parallel.

[0115] From processing block 7035, processing proceeds
to processing blocks 7146 and 715b. As indicated above in
connection with processing blocks 714 and 715 of FIG. 7a,
it should be noted again that, although blocks 7146 and 7155
are illustrated in FIG. 75 as being performed in parallel, the
invention should be construed to be limited in this regard.
Instead, different embodiments may perform the processing
of blocks 7146 and 71554 in parallel, in series, or in some
combination of serial and parallel operations.

[0116] At processing block 7145, the following is per-
formed. All of Sourcel bits are logically AND’ed with the
same respective bits of the Dest value. That is, bits [127:0]

US 2019/0286444 Al

of Intermediate Result 1 are assigned the result of bitwise
AND operations of the respective bits of Sourcel [127:0]
with Dest [127:0].

[0117] Similarly, at processing block 7155, all of Sourcel
bits are logically AND’ed with the complement of the same
respective bits of the Dest value. That is, bits [127:0] of
Intermediate Result 2 are assigned the result of bitwise AND
operations of the bits of Sourcel [127:0] with the respective
complemented bits of Dest [127:0].

[0118] From block 7145, processing proceeds to block
7205. From block 7155, processing proceeds to block 7215.
[0119] At processing block 7204, the state of the processor
is modified based on the results of the comparison per-
formed at processing block 71456. Similarly, at processing
block 72154 the state of the processor is modified based on
the results of the comparison preformed at processing block
715b. One of skill in the art will note that the method 7005
illustrated in FIG. 754 is non-destructive, in that neither the
Sourcel nor Dest operand values are modified as a result of
the LCSZC operation. Instead, the zero flag is modified at
block 7205 and the carry flag is modified at block 7215.
[0120] At processing block 7205, the value of the zero flag
is set to a true value (e.g., a logic-high value), if all bits of
Intermediate Result 1 (e.g., bits [127:0] of Intermediate
Result 1) are equal to zero (e.g., a logic-low value). If,
however, even one bit of the Intermediate Result 1 is a
logic-high value, then the zero flag is set to a false value
(e.g., logic-low value) at block 7205.

[0121] At processing block 7215, the value of the carry
flag is set to a true value (e.g., a logic-high value), if all bits
of Intermediate Result 2 (e.g., bits [127:0] of Intermediate
Result 2) are equal to zero (e.g., a logic-low value). If,
however, even one bit of the Intermediate Result 2 is a
logic-high value, then the carry flag is set to a false value
(e.g., logic-low value) at block 7215.

[0122] It will be appreciated that alternative embodiments
of process 7006 may implement only processing block 7145
and 7205 and not processing block 7156 and 7215, or only
processing blocks 7155 and 7215 and not processing blocks
7145 and 72054. It will also be appreciated that alternative
embodiments of process 7005 may implement additional
processing blocks to support additional variations of the
LCSZC instructions.

[0123] From blocks 7206 and 721b, processing may
optionally proceed to block 7225. At block 7224, other state
bits within the processor may be modified. For the embodi-
ment illustrated in FIG. 7b, the AF (auxiliary carry), OF
(overflow), PF (parity) and SF (sign) flags are assigned to a
logic-low value at block 7226b.

[0124] From optional block 7224, processing ends at
“End.” For embodiments that do not include optional block
722b, processing ends at “End” after the processing at
blocks 7205 and 7215.

[0125] It will be appreciated that alternative embodiments
of processing blocks 714, 7145, 715, or 7156 may perform
logical comparison operations on signed or unsigned data
elements or on a combination of both.

[0126] FIG. 7¢ illustrates a flow diagram for at least one
alternative specific embodiment 700c¢ of the general method
700 illustrated in FIG. 7a. For the specific embodiment 700¢
illustrated in FIG. 7¢, the LCSZC operation is performed on
Sourcel and Dest data values that are 128 bits in length. The
source or destination operand, or both, may be packed, in
that the 128-bit data value of the source operand represents

Sep. 19,2019

four packed 32-bit (“doubleword”) data elements. The data
elements may each represent, for example, thirty-two bit
signed single-precision floating point values.

[0127] Of course, one of skill in the art will recognize that
the operations illustrated in FIG. 7¢ may also be performed
for data values of other lengths, including those that are
smaller or larger than 128 bits and for other sizes of data
elements, including bytes (8 bits) and/or short words (16
bits).

[0128] Processing blocks 701c through 703c¢ operate
essentially the same for method 700¢ as do processing
blocks 701 through 703 that are described above in connec-
tion with method 700, illustrated in FIG. 7a. An exception
to the foregoing statement is that, for processing block 703c¢,
when decoder 165 enables execution unit 130 to perform the
instruction, the instruction is a LCSZC instruction for per-
forming logical AND comparisons of the MSB of each
32-bit doubleword of the Sourcel and Destination values.
(See, e.g., signed packed doubleword in-register represen-
tation 515 illustrated in FIG. 6). Such instruction may be
referred to by an instruction mnemonic to be used by
programmers, such as “TESTPS”, where “PS” indicates
Packed Single-precision data elements.

[0129] From block 703¢, processing proceeds to blocks
714c¢ and 715¢. Again, blocks 714¢ and 715¢ may be, but
need not necessarily be, performed in parallel.

[0130] At processing block 714c, the following is per-
formed. All of Sourcel bits are logically AND’ed with the
same respective bits of the Dest value. That is, bits [127:0]
of Intermediate Result 1 are assigned the result of bitwise
AND operations of the respective bits of Sourcel [127:0]
with Dest [127:0].

[0131] Similarly, at processing block 715¢, all of Sourcel
bits are logically AND’ed with the complement of the same
respective bits of the Dest value. That is, bits [127:0] of
Intermediate Result 2 are assigned the result of bitwise AND
operations of the bits of Sourcel [127:0] with the respective
complemented bits of Dest [127:0].

[0132] From block 714c¢, processing proceeds to block
720c. From block 715¢, processing proceeds to block 721c.
[0133] At block 720c¢, the MSB of each 32-bit double-
word of the first intermediate value, Intermediate Value 1, is
determined. If bits 127, 95, 63 and 31 of Intermediate Value
1 are equal to zero, then the zero flag is set to a logic-high
value at block 720c. Otherwise, the zero flag is set to a
logic-low value at block 720c.

[0134] Similarly, at block 721¢, the MSB of each 32-bit
double-word of the second intermediate value, Intermediate
Value 2, is determined. If bits 127, 95, 63 and 31 of
Intermediate Value 2 are equal to zero, then the carry flag is
set to a logic-high value at block 721¢. Otherwise, the carry
flag is set to a logic-low value at block 721¢. Neither the
original value (Sourcel) of the source register (SRC1) nor
the original value (Dest) of the destination register (DEST)
is modified as a result of the processing of the method 700c.
[0135] From block 720c¢ and 721¢, processing proceeds
either to “End” or to optional processing block 722¢. At
block 722¢, other state bits within the processor may be
modified. For the embodiment illustrated in FIG. 7¢, the AF
(auxiliary carry), OF (overflow), PF (parity) and SF (sign)
flags are assigned to a logic-low value at block 722c.
[0136] For embodiments that do not include optional
block 722¢, processing ends at “End” after the processing at

US 2019/0286444 Al

blocks 720c¢ and 721c. For embodiments that do include
optional block 722¢, processing ends after completion of the
processing block 722c.

[0137] FIG. 7d illustrates a flow diagram for at least one
alternative specific embodiment 7004 of the general method
700 illustrated in FI1G. 7a. For the specific embodiment 7004
illustrated in FIG. 7d, the LCSZC operation is performed on
Sourcel and Dest data values that are 128 bits in length. The
source or destination operand, or both, may be packed, in
that the 128-bit data value of the source operand represents
two packed 64-bit data elements. The data elements may
each represent, for example, sixty-four bit signed double-
precision floating point values.

[0138] Of course, one of skill in the art will recognize that
the operations illustrated in FIG. 7d may also be performed
for data values of other lengths, including those that are
smaller or larger than 128 bits and for other sizes of data
elements, including bytes (8 bits) and/or short words (16
bits).

[0139] Processing blocks 7014 through 703d operate
essentially the same for method 700c¢ as do processing
blocks 701 through 703 that are described above in connec-
tion with method 700, illustrated in FIG. 7a. An exception
to the foregoing statement is that, for processing block 7034,
when decoder 165 enables execution unit 130 to perform the
instruction, the instruction is a LCSZC instruction for per-
forming logical AND comparisons of the MSB of each
64-bit double-word of the Sourcel and Destination values.
(See, e.g., signed packed quadword in-register representa-
tion 517 illustrated in FIG. 6). Such instruction may be
referred to by an instruction mnemonic to be used by
programmers, such as “TESTPD”, where “PD” indicates
Packed Double-precision data elements.

[0140] From block 703d, processing proceeds to blocks
714d and 715d. Again, blocks 7144 and 7154 may be, but
need not necessarily be, performed in parallel.

[0141] At processing block 714d, the following is per-
formed. All of Sourcel bits are logically AND’ed with the
same respective bits of the Dest value. That is, bits [127:0]
of Intermediate Result 1 are assigned the result of bitwise
AND operations of the respective bits of Sourcel [127:0]
with Dest [127:0].

[0142] Similarly, at processing block 7154, all of Sourcel
bits are logically AND’ed with the complement of the same
respective bits of the Dest value. That is, bits [127:0] of
Intermediate Result 2 are assigned the result of bitwise AND
operations of the bits of Sourcel [127:0] with the respective
complemented bits of Dest [127:0].

[0143] From block 714d, processing proceeds to block
720d. From block 7154, processing proceeds to block 7214.
[0144] At block 720d, the MSB of each 64-bit quadword
of the first intermediate value, Intermediate Value 1, is
determined. If bits 127 and 63 of Intermediate Value 1 are
equal to zero, then the zero flag is set to a logic-high value
at block 720d. Otherwise, the zero flag is set to a logic-low
value at block 720d.

[0145] Similarly, at block 721d, the MSB of each 64-bit
quadword of the second intermediate value, Intermediate
Value 2, is determined. If bits 127 and 63 of Intermediate
Value 2 are equal to zero, then the carry flag is set to a
logic-high value at block 721d. Otherwise, the carry flag is
set to a logic-low value at block 721d. Neither the original
value (Sourcel) of the source register (SRC1) nor the

Sep. 19,2019

original value (Dest) of the destination register (DEST) is
modified as a result of the processing of the method 7004.
[0146] From block 7204 and 721d, processing proceeds
either to “End” or to optional processing block 722d. At
block 722d, other state bits within the processor may be
modified. For the embodiment illustrated in FIG. 7d, the AF
(auxiliary carry), OF (overflow), PF (parity) and SF (sign)
flags are assigned to a logic-low value at block 722d.
[0147] For embodiments that do not include optional
block 7224, processing ends at “End” after the processing at
blocks 7204 and 721d. For embodiments that do include
optional block 722¢, processing ends after completion of the
processing block 722c.

[0148] Logical-Compare, Set-Zero-and-Carry Flag Cir-
cuits
[0149] For at least some embodiments, various of the

LCSZC instructions for packed data (e.g., TESTPS and
TESTPD, discussed above) can execute on multiple data
elements in the same number of clock cycles as a compare
operation on unpacked data. To achieve execution in the
same number of clock cycles, parallelism may be used. That
is, elements of a processor (such as registers and execution
units) may be simultaneously instructed to perform the
LCSZC operations on the data elements. This parallel opera-
tion is discussed in more detail below. FIGS. 84 and 85 are
discussed below with reference to FIG. 1a.

[0150] FIG. 8a illustrates a circuit 801 for performing
LCSZC operations on packed data according to at least one
embodiment of the invention. The circuit 801 may be, for at
least one embodiment, all or part of the logical compare
circuitry 145 illustrated in FIG. 1a.

[0151] FIG. 8a depicts a source operand, Sourcel [127:0]
831, and a destination operand, Dest[127:0] 833. For at least
one embodiment, the source and destination are stored in
N-bit long SIMD registers, such as for example 128-bit
Intel® SSE2 XMM registers (see. e.g., extension registers
210 of FIG. 2b).

[0152] The particular example embodiment illustrated in
FIG. 8a shows a double quadword (128-bit) embodiment of
an LCSZC instruction, where every bit of the 128-bit source
and destination operands are compared with their respective
counterpart. For such embodiment, because each bit is
compared, the operation may operate on, and is functionally
agnostic of, any nature of 128 bits in the source and
destination operands; either or both the source and destina-
tion operands may be packed data, unpacked scalar data,
signed data, or unsigned data. While in some specific
examples packed data sources 831 and destinations 833 may
be represented as having 128-bits, it will be appreciated that
the principals disclosed herein may be extended to other
conveniently selected lengths, such as 80-bits, 128-bits or
256-bits.

[0153] Operation control 800 outputs signals on Enable
880 to control operations performed by the circuit 801. One
embodiment of operation control 800 may comprise, for
example, a decoder 165 and an instruction pointer register
211. Of course, operation control 800 may also comprise
additional circuitry which is not necessary to understanding
the invention. The LCSZC circuit 801 includes two sets
(825, 827) of AND gates, where each set includes one AND
gate for each bit of the source operand. Thus, for an
embodiment where the source and destination have 128 bits,
the first set 825 includes 128 AND gates 819 and the second
set 827 includes 128 AND gates 820. Each of the 128-bit

US 2019/0286444 Al

values of the source and destination operands (see, e.g., bit
values 854 in FIG. 8q) is an input to one of the AND gates
819 in the first set 825 and is also an input to one of the AND
gates 820 of the second set 827. It should be noted that the
second set of AND gates 827 receives the inputs from the
destination operand 833 only after it has been inverted to its
complement value (see inverter logic 844).

[0154] The output of each of the AND gates 819 in the first
set 825 is an input into an NAND gate 854. At least one
purpose of NAND gate 854 is to determine whether the
result of AND’ing the bits of the source and destination has
resulted in a value of all zeros (logic-low values) and, if so,
to pass a logic-high value to the zero flag 858 in order to set
it.

[0155] The output of each of the AND gates 820 in the
second set 827 is an input into an NAND gate 856. At least
one purpose of NAND gate 856 is to determine whether the
result of AND’ing the bits of the source 831 with the
complement of the bits of the destination 833 has resulted in
a value of all zeros (logic-low values) and, if so, to pass a
logic-high value to the carry flag 860 in order to set it.
[0156] Alternative embodiments of double quadword
LCSZC instructions may include but are not limited to
operations for an unsigned double quadword value in both
the source and destination as well as operations for a signed
double quadword value in both the source and destination.
Other alternative embodiments of LCSZC instructions may
include operations that apply to other sizes of signed or
unsigned data elements (see, e.g., FIG. 856 for a signed
doubleword embodiment and FIG. 8¢ for a signed quadword
embodiment).

[0157] FIG. 854 illustrates at least one embodiment of a
circuit 8015 for performing LCSZC operations on packed
data according to one alternative embodiment of the inven-
tion. Operation control 800 processes the control signal for
the packed LCSZC instructions. Such a packed LCSZC
instruction may be, for an example, a “TESTPS” instruction
that indicates that an LCSZC operation is to be performed on
four packed thirty-two bit values. Each of the packed
thirty-two bit values may represent, for example, single-
precision floating point values. It should be understood that,
for such embodiment, it may be that only one of the
operands (e.g., source 831 or destination 833) contains the
packed single precision floating point values. The other
operand may contain, for example, a bit mask.

[0158] FIG. 8a illustrates that operation control 800 out-
puts signals on Enable 880 to control LCSZC circuit 8015.
[One of skill in the art will recognize that the LCSZC circuit
8015 illustrated in FIG. 85 may be implemented by invoking
a subset of the logic elements of LCSZC circuit 801 illus-
trated in FIG. 8a].

[0159] The LCSZC circuit 8015 includes two sets of AND
gates, where each set includes one AND gate for each bit of
the source operand that is to be compared with the corre-
sponding bit of the destination operand. For the embodiment
illustrated in FIG. 84, the most significant bits for each of
four 32-bit (“doubleword”) data elements are to be com-
pared. Thus, the first set of AND gates includes gates 819,
through 819, and the second set of AND gates includes gates
820, through 820,.

[0160] FIG. 85 illustrates that the value of the MSB for
each of the four 32-bit data elements in the source operand
831 and each of the four 32-bit data elements in the
destination operand 833 is an input to one of the first set of

Sep. 19,2019

AND gates 819. More specifically, FIG. 85 illustrates that bit
127 of the source operand 831 and destination operand 833
are both inputs to gate 819, bit 93 of the source operand 831
and destination operand 833 are both inputs to gate 819, bit
63 of the source operand 831 and destination operand 833
are both inputs to gate 819, and bit 31 of the source operand
831 and destination operand 833 are both inputs to gate
819,.

[0161] FIG. 85 further illustrates that the value of the MSB
for each of the four 32-bit data elements in the source
operand 831 and each of the four 32-bit data elements in the
destination operand 833 is an input to one of the second set
of AND gates 820. It should be noted that the second set of
AND gates, 820, through 820,, receives the inputs from the
MSB of each doubleword of the destination operand 833
only after they have been inverted to their complement value
(see inverters 844a-844d).

[0162] More specifically, FI1G. 85 illustrates that bit 127 of
the source operand 831 and the complement of bit 127 of the
destination operand 833 are both inputs to gate 820, bit 93
of the source operand 831 and the complement of bit 93 of
destination operand 833 are both inputs to gate 820, bit 63
of the source operand 831 and the complement of bit 63 of
the destination operand 833 are both inputs to gate 820, and
bit 31 of the source operand 831 and the complement of bit
31 of the destination operand 833 are both inputs to gate
820,.

[0163] The output of each of the AND gates 819, through
819, is an input into a NAND gate 855. At least one purpose
of NAND gate 855 is to determine whether the result of
AND’ing the most significant bits of each of the four
doublewords of the source and destination has resulted in a
value of all zeros (logic-low values) and, if so, to pass a
logic-high value to the zero flag 858 in order to set it.
[0164] The output of each of the AND gates 820, through
820, is an input into NAND gate 859. At least one purpose
of NAND gate 859 is to determine whether the result of
AND’ing the bits of the source with the complement of the
bits of the destination has resulted in a value of all zeros
(logic-low values) and, if so, to pass a logic-high value to the
carry flag 860 in order to set it.

[0165] Alternative embodiments of a packed LCSZC
instruction that compares the MSB for each of four double-
words may include but are not limited to operations for
packed signed doubleword values in one operand and a bit
mask in the other operand, unsigned doubleword values in
both the source and destination, and operations for signed
doubleword values in both the source and destination, or for
a combination. Other alternative embodiments of LCSZC
instructions may include operations that apply to other sizes
of signed or unsigned data elements.

[0166] FIG. 8¢ illustrates at least one embodiment of a
circuit 810¢ for performing LCSZC operations on packed
data according to another alternative embodiment of the
invention. Operation control 800 processes the control sig-
nal for the packed LCSZC instructions. Such a packed
LCSZC instruction may be, for an example, a “TESTPD”
instruction that indicates that an LCSZC operation is to be
performed on two packed double-precision (64-bit) floating
point values. Operation control 800 outputs signals on
Enable 880 to control LCSZC circuit 801¢. [One of skill in
the art will recognize that the LCSZC circuit 801c¢ illustrated
in FIG. 8¢ may be implemented by invoking a subset of the
logic elements of LCSZC circuit 801 illustrated in FIG. 84].

US 2019/0286444 Al

[0167] As with the circuit 8015 discussed above in con-
nection with FIG. 85, the LCSZC circuit 801¢ includes two
sets of AND gates, where each set includes one AND gate
for each bit of the source operand that is to be compared with
the corresponding bit of the destination operand. For the
embodiment illustrated in FIG. 8¢, the most significant bits
for each of two 64-bit (“quadword”) data elements are to be
compared. Thus, the first set of AND gates includes gates
819, and 819, and the second set of AND gates includes
gates 820, and 820;.

[0168] FIG. 8c illustrates that the value of the MSB for
each of the two 64-bit data elements in the source operand
831 and for each of the two 64-bit data elements in the
destination operand 833 is an input to one of the first set of
AND gates (819, and 819;). More specifically, FIG. 8¢
illustrates that bit 127 of the source operand 831 and
destination operand 833 are both inputs to gate 819, and that
bit 63 of the source operand 831 and destination operand 833
are both inputs to gate 819,.

[0169] FIG. 8¢ further illustrates that the value of the MSB
for each of the two 64-bit data elements in the source
operand 831 and for each of the two 64-bit data elements in
the destination operand 833 is an input to one of the second
set of AND gates (820, and 820,). It should be noted that the
second set of AND gates, 820, and 820, receives the inputs
from the MSB of each quadword of the destination operand
833 only after they have been inverted to their complement
value (see inverters 844a and 844c).

[0170] More specifically, FIG. 8¢ illustrates that bit 127 of
the source operand 831 and the complement of bit 127 of the
destination operand 833 are both inputs to gate 820, and that
bit 63 of the source operand 831 and the complement of bit
63 of the destination operand 833 are both inputs to gate
820,.

[0171] The output of each of the AND gates 819, and 819,
is an input into a NAND gate 853. At least one purpose of
NAND gate 853 is to determine whether the result of
AND’ing the most significant bits of each of the two
quadwords of the source and destination are both zeros
(logic-low values) and, if so, to pass a logic-high value to the
zero flag 858 in order to set it.

[0172] The output of each of the AND gates 820, and 820,
is an input into NAND gate 857. At least one purpose of
NAND gate 857 is to determine whether the result of
AND’ing the most significant bits of each of the two
quadwords of the source and destination are both zeros
(logic-low values) and, if so, to pass a logic-high value to the
carry flag 860 in order to set it.

[0173] Alternative embodiments of a packed LCSZC
instructions that compares the MSB for each of two quad-
words may include but are not limited to operations for
unsigned quadword values in both the source and destination
as well as operations for signed quadword values in both the
source and destination, or for a combination. Other alterna-
tive embodiments of LCSZC instructions may include
operations that apply to other sizes of signed or unsigned
data elements.

[0174] As is explained above, a decoder 165 may recog-
nize and decode the control signal received by processor
109, and that control signal may be the operation code for an
LCSZC instruction. Thus, decoder 165 decodes the opera-
tion code for a LCSZC instruction.

[0175] Reference to FIG. 9 illustrates various embodi-
ments of operation codes that may be utilized to encode the

Sep. 19,2019

control signal (operation code) for an LCSZC instruction.
FIG. 9 illustrates a format of an instruction 900 according to
one embodiment of the invention. The instruction format
900 includes various fields; these files may include a prefix
field 910, an opcode field 920, and operand specifier fields
(e.g., mod R/M, scale-index-base, displacement, immediate,
etc.). The operand specifier fields are optional and include a
mod R/M field 930, an SIB field 940, a displacement field
950, and an immediate field 960.

[0176] One skilled in the art will recognize that the format
900 set forth in FIG. 9 is illustrative, and that other orga-
nizations of data within an instruction code may be utilized
with disclosed embodiments. For example, the fields 910,
920, 930, 940, 950, 960 need not be organized in the order
shown, but may be re-organized into other locations with
respect to each other and need not be contiguous. Also, the
field lengths discussed herein should not be taken to be
limiting. A field discussed as being a particular member of
bytes may, in alternative embodiments, be implemented as a
larger or smaller field. Also, the term “byte,” while used
herein to refer to an eight-bit grouping, may in other
embodiments be implemented as a grouping of any other
size, including 4 bits, 16 bits, and 32 bits.

[0177] As used herein, an opcode for a specific instance of
an instruction, such as an LCSZC instruction, may include
certain values in the fields of the instruction format 200, in
order to indicate the desired operation. Such an instruction
is sometimes referred to as “an actual instruction.” The bit
values for an actual instruction are sometimes referred to
collectively herein as an “instruction code.”

[0178] For each instruction code, the corresponding
decoded instruction code uniquely represents an operation to
be performed by an execution unit (such as, e.g., 130 of FIG.
1a) responsive to the instruction code. The decoded instruc-
tion code may include one or more micro-operations.

[0179] The contents of the opcode field 920 specify the
operation. For at least one embodiment, the opcode field 920
for the embodiments of the LCSZC instructions discussed
herein is three bytes in length. The opcode field 920 may
include one, two or three bytes of information. For at least
one embodiment, a three-byte escape opcode value in a
two-byte escape field 118¢ of the opcode field 920 is
combined with the contents of a third byte 925 of the opcode
field 920 to specify an LCSZC operation. This third byte 925
is referenced to herein as an instruction-specific opcode.

[0180] FIG. 9 illustrates that, for a second embodiment
928 of an instruction format for an LCSZC instruction, the
three-byte escape opcode value in the two-byte field 118¢ of
the opcode field 920 is combined with the contents of the
prefix field 910 and the contents of the instruction-specific
opcode field 925 of the opcode field 920 to specify an
LCSZC operation.

[0181] For at least one embodiment, the prefix value 0x66
is placed in the prefix field 910 and is used as part of the
instruction opcode to define the desired operation. That is,
the value in the prefix 910 field is decoded as part of the
opcode, rather than being construed to merely qualify the
opcode that follows. For at least one embodiment, for
example, the prefix value 0x66 is utilized to indicate that the
destination and source operands of an LCSZC instruction
reside in 128-bit Intel® SSE2 XMM registers. Other pre-
fixes can be similarly used. However, for at least some
embodiments of the LCSZC instructions, a prefix may

US 2019/0286444 Al

instead be used in the traditional role of enhancing the
opcode or qualifying the opcode under some operational
condition.

[0182] A first embodiment 926 and a second embodiment
928 of an instruction format both include a 3-byte escape
opcode field 118¢ and an instruction-specific opcode field
925. The 3-byte escape opcode field 118c¢ is, for at least one
embodiment, two bytes in length. The instruction format 926
uses one of four special escape opcodes, called three-byte
escape opcodes. The three-byte escape opcodes are two
bytes in length, and they indicate to decoder hardware that
the instruction utilizes a third byte in the opcode field 920 to
define the instruction. The 3-byte escape opcode field 118¢
may lie anywhere within the instruction opcode and need not
necessarily be the highest-order or lowest-order field within
the instruction.

[0183] For at least one embodiment, at least four three-
byte escape opcode values are defined:0x0F3y, where y is
0x8, 0x9, OxA or 0xB. While certain embodiments of
LCSZC instruction opcodes are disclosed herein as includ-
ing the value “OxOF38” as the three-byte escape opcode
value, such disclosure should not taken to be limiting. Other
embodiments may utilize other escape opcode values.
[0184] Table 3 below, sets forth examples of LCSZC
instruction codes using prefixes and three-byte escape
opcodes.

TABLE 3
Instruction Definition
PTEST xmml, Compare all bits in source 128-bit register or 128-
mxx2/m128 bit memory with 128-bit destination in register;
set ZF if xmm2/m128 AND xmml is all zeros;
otherwise clear ZF. Set CF if xmm2/m128 AND
NOT xmm1 result is all zeros; otherwise clear CF.
TESTPS xmml, Compare MSB for each of four packed
xmm2/m128 doublewords in source (128-bit register or 128-bit

memory) with corresponding MSB for each of
four packed doublewords in destination (128-bit
register); set ZF if MSB (bits 127, 95, 63 and 31)
of xmm2/m128 AND xmml is all zeros;
otherwise clear ZF. Set CF if MSB (bits 127, 95,
63 and 31) xmm?2/m128 AND NOT xmm! result
is all zeros; otherwise clear CF.

Compare MSB for each of two packed quadwords
in source (128-bit register or 128-bit memory)
with corresponding MSB for each of two packed
quadwords in destination (128-bit register); set ZF
if MSB (bits 127 and 63) of xmm2/m128 AND
xmml is all zeros; otherwise clear ZF. Set CF if
MSB (bits 127 and 63) of xmm?2/m128 AND
NOT xmm1 result is all zeros; otherwise clear CF.

TESTPD xmml,
xmm2/m128

[0185] For at least one embodiment, the value in the
source or destination operand may be utilized as a mask. The
programmer’s choice regarding whether to use the source or
destination operand as the mask value may be driven, at least
in part, by the desired behavior. For example, using the
second operand (source) as the mask value, the resultant
behavior may be stated as: “If everything under the makes
is “0”, set ZF; if everything under the mask is “1”, set CE.”
On the other hand, when using the first argument (destina-
tion) as the mask value, the resultant behavior may be stated
as: “If everything under the mask is “0”, set ZF; if every-
thing under the mask is “0”, set CF.”

[0186] To perform the equivalent of at least some embodi-
ments of the packed LCSZC instructions discussed above in
connection with FIGS. 7¢, 7d, 8b and 8¢, additional instruc-

Sep. 19,2019

tions are needed, which adds machine cycle latency to the
operation. For example, the pseudocode set forth in Table 4,
below, illustrates the savings in instructions using a PTEST
instruction versus an instruction set that does not include the
PTEST instruction.

TABLE 4

PTEST instruction - No PTEST Instruction -

movdga xmm0, _x[eax]
pempeqd xmmoO,
const_00000001000000010000
000100000001

pmovmskb eax, xmmO

Test eax, eax

Jz all under mask_zero

movdga xmm0, _x[eax]
pempeqd xmmoO,
const_00000001000000010000
000100000001

PTEST xmmO, xmmO

Jz all_under_mask_zero

[0187] The pseudocode set forth in Table 4 helps to
illustrate that the described embodiments of the LCSZC
instruction can be used to improve the performance of
software code. As a result, the LCSZC instruction can be
used in a general-purpose processor to improve the perfor-
mance of a greater number algorithms than the described
prior art instructions.

ALTERNATIVE EMBODIMENTS

[0188] While the described embodiments use comparisons
of'the MSB for 32-bit data elements and 64-bit data elements
for the packed embodiments of the LCSZC instructions,
alternative embodiments may use different sized inputs,
different-sized data elements, and/or comparison of different
bits (e.g., the LSB of the data elements). In addition, while
in some described embodiments Sourcel and Dest each
contain 128-bits of data, alternative embodiment could
operate on packed data having more or less data. For
example, one alternative embodiment operates on packed
data having 64-bits of data. Also, the bits compared by the
LCSZC instruction need not necessarily represent the same
respective bit position for each of the packed data elements.
[0189] While the invention has been described in terms of
several embodiments, those skilled in the art will recognize
that the invention is not limited to the embodiments
described. The method and apparatus of the invention can be
practiced with modification and alteration within the spirit
and scope of the appended claims. The description is thus to
be regarded as illustrative instead of limiting on the inven-
tion.
[0190] The above description is intended to illustrate
preferred embodiments of the present invention. From the
discussion above it should also be apparent that especially in
such an area of technology, where growth is fast and further
advancements are not easily foreseen, the invention may be
modified in arrangement and detail by those skilled in the art
without departing from the principles of the present inven-
tion within the scope of the accompanying claims.
What is claimed is:
1. A system comprising:
a system memory to store instructions and data; and
a processor coupled to the system memory comprising:
a decoder to decode a first sequence of instructions, the
first sequence of instructions including a fused com-
pare-jump instruction to perform both a compare
operation and a jump operation conditioned on a
result of the compare operation;

US 2019/0286444 Al

a first source register to store a first source value;
a second source register to store a second source value;
and
execution circuitry to perform the compare and jump
operations, the first execution circuitry to compare
the first source value to the second source value and
to jump to a target address of a second sequence of
instructions in response to a first result of the com-
parison.
2. The system of claim 1 further comprising:
a storage device coupled to the processor to store instruc-
tions and data.
3. The system of claim 1, further comprising:
an input/output (I/O) interconnect to couple the processor
to one or more I/O devices.
4. The system of claim 1 wherein the system memory

comprises a dynamic random access (DRAM) memory.

5. The system of claim 1 further comprising:
a graphics processor coupled to the processor to perform
graphics processing operations.

6. The system of claim 1 further comprising:

a network processor coupled to the processor.

7. The system of claim 1 further comprising:

an audio input/output device coupled to the processor.
8. The system of claim 1 wherein the execution circuitry

is to continue to execute the first sequence of instructions in
response to a second result of the comparison.

9. The system of claim 1 wherein the fused compare-jump

instruction includes an indication of the target address.

15

Sep. 19,2019

10. The system of claim 1 wherein the first result com-
prises an indication that the first and second source values
are equal and the second result comprises an indication that
the first and second source values are not equal.

11. The system of claim 1 wherein the first source value
and the second source value are 32-bit values.

12. The system of claim 1 wherein one or more instruc-
tions in the first or second sequence comprise SIMD instruc-
tions, and wherein the execution circuitry comprises:

vector execution circuitry to execute the SIMD instruc-
tions; and

a vector register file comprising a set of 512-bit vector
registers to be used to store operands of the SIMD
instructions.

13. The system of claim 12 further comprising:

a set of vector mask registers to store mask values
generated by an instruction in the first or second
sequence of instructions.

14. The system of claim 12 wherein the execution cir-
cuitry further comprises scalar execution circuitry to execute
one or more scalar instructions in the first or second
sequence of instructions, the scalar execution circuitry
including a set of scalar registers to store scalar operands.

15. The system of claim 1 further comprising:

a plurality of status registers to maintain data related to an
execution state of the processor.

#* #* #* #* #*

