a9 United States

CAULFIELD

US 20150261542A1

a2y Patent Application Publication o) Pub. No.: US 2015/0261542 A1l

43) Pub. Date: Sep. 17, 2015

(54)

(71)
(72)

(73)
@

(22)

(1)

DATA PROCESSING APPARATUS AND
METHOD FOR PERFORMING DATA
PROCESSING OPERATION WITH A
CONDITIONAL PROCESSING STEP

Applicant: ARM LIMITED, Cambridge (GB)

Inventor: Ian Michael CAULFIELD, Cambridge

(GB)

Assignee: ARM LIMITED, Cambridge (GB)

Appl. No.: 14/210,621

Filed: Mar. 14,2014

Publication Classification

(52) US.CL
[SR GOGF 9/3867 (2013.01)

(57) ABSTRACT

A data processing apparatus has a pipeline for performing a
processing operation involving a conditional step which is
required only if at least one input operand satisfies a prede-
termined condition. Control circuitry detects whether the
condition is satisfied. If not, then the pipeline is controlled to
perform the operation bypassing the conditional step to gen-
erate the output operand a first number of cycles later than a
start cycle in which the operation starts, and the output oper-
and is forwarded over a forwarding path. If the condition is
satisfied, then the pipeline performs the operation including
the conditional step to generate the output operand a second
number of cycles later than the start cycle, where the second
number is greater than the first number. The output operand is
written to a destination register the same number of cycles

Int. Cl. later than the start cycle regardless of whether the condition is
GO6F 9/38 (2006.01) satisfied.
1st pipeline 2nd pipeline 3rd pipeline
stage stage stage
signs —J8 M]
) e
A |:>——E|—<— 6 — -
exponents = — 60
Add AxB
B - 42 "2 — "
significands Aign and 72
. . i
Multiplier —=1 Shifter 1, round
\j e R ——
N 4 Align and []
Denormal detection gnand 1|
/ 38 40 rou:d P | |__ forwarding
30 50 control path
To control logic fU Early forwarding path
70
32 36 34
hm S b
issue control registers \

T/so

F1Z

Patent Application Publication Sep. 17,2015 Sheet 1 0of 6 US 2015/0261542 A1

single precision

1 bit 8 bits 23 bits
KJR(A Y~ A N
= 32 bits
S E F total
bias
E = 11111111 special number (e.g. NaN, eo) /
E = 00000000 zero ordenormal (-1)s x 0.F x 2(1-127)
E =[other] normal (-1)s x 1.F x 2(E-127)
double precision
1 bit 11 bits 92 bits
KJR(A Y~ A ~N
= 64 bits
S E F total
bias
E=11111111111 special number V/
E = 00000000000 zero ordenormal (-1)s x 0.F x 2(1-1023)
E = [other] normal (-1)s x 1.F x 2(E-1023)

FIG. 1

US 2015/0261542 A1l

Sep. 17,2015 Sheet 2 of 6

Patent Application Publication

Xy CJ+—

¢l

€ Old
0l Zl v
S O C
A oy
c:o% mm_,q B ISHIS - Jadmny |
spueayubis 4
«—C1g
< - X
) - - oy -
p= SjuBuOdXd p
—C Y
4
¢ Old
0] ¥
Y w 4
En% ”m_< - saydminiy - [spueayubis
] +—C1 49
< I
v 1 ~ ppoy | sueuodke [
\I\
9 , DD s 1%
s |
subis [

— (L

US 2015/0261542 A1l

Sep. 17,2015 Sheet 3 of 6

Patent Application Publication

v 'Ol 214

¢ ow\h
/ sJg)sifbal [0U0D anssl

i) S N
14 o€ ce
0L
yred Burpiemio; Ajie3 21Boj [oAu0d 0]
Buipsemo p nﬂ o ec
,_ ¢S . ~— ole uByy O uopospop pwousq \
\ 14
L
9 9 >
Z. Ucumcum__z 7 - BYYS e / ~—| Jeydoinp | -
Y I - 2 spieoyubs| | | 9 q
p 0] p ¢l p
gy - > - - poy [T \
09 — Sjuauodxa p
9 > —C 1Yy
< . < - S
wu sufiis
abe)s abe)s abe)s
auiadid pig auiadid puz auadid 18|,

US 2015/0261542 A1l

Sep. 17,2015 Sheet 4 of 6

Patent Application Publication

G 'Old J14
ow\h
sJa)sibal |013U0D anss|
ve o ze

21boj o1u02 0]

Ued
0L
mﬁﬁmée Wed Bupieio 3 :H uone1ep [RULOUS(8¢
‘ _
oLy %] ¢
= T < uno < b b
~— plesbyy [* ~—{ ‘oudmon | [
- Yys fep-p J <
/ — — -—C 1 g
) (0]
X< e Al N.v NF > Al Al UU< kﬂ —. u
g rﬂ.. nm
. 5 { =
94 < e X ﬂ
8 S
abe)s abejs abe)s
auladid pig auladid pug aulpdid 15},

Patent Application Publication Sep. 17,2015 Sheet 5 of 6 US 2015/0261542 A1

/

N | FPMUL/FPMADD |[,100
instruction ?

Y
y
FaxFg
EA + EB f1 02
start Sp XOR Sg
processing
cycle 1 104
v ~
"""""""""""""""" isA,Bor
N A x B denormal ? Y
cycle !
2 align /round 106 shift to 116
normalize Ax B
/
forward AxBvia |108 ‘ 118
early forwarding path align/round |
cycle
3
4
butieraxs 110
I y
cyA(:e write Ax B to 112

destination register

FIG. 6

Patent Application Publication Sep. 17,2015 Sheet 6 of 6 US 2015/0261542 A1

\

N [FPmuL/FPMADD |r200
instruction ?

Y
y
N Y
FTZ=17 Aor B denormal ? 205
3 N
202 VY
cycles setdenormal | 206
1-3 3 value(s) to 0
prOaCSSS 7204 -
Y
normal -
start AXTB
processing EatEg | 208
cycle 1 Sa XOR S
"""""" N————1,210
- Ax B denormal ? P
cycle 2
1Y
setAxBto0 212
Y
align / round f214
______________ oo memmoo -
cycle forwardAxBvia |216
3 early forwarding path
/
buffer Ax B 218
_____________________________________ P

\

write Ax B to 112 cycle
destination register 4

FIG. 7

US 2015/0261542 Al

DATA PROCESSING APPARATUS AND
METHOD FOR PERFORMING DATA
PROCESSING OPERATION WITH A
CONDITIONAL PROCESSING STEP

BACKGROUND
[0001] 1. Technical Field
[0002] The present technique relates to the field of data

processing. More particularly, the technique relates to a data
processing apparatus and method for performing a data pro-
cessing operation which has a conditional processing step.
[0003] 2. Description of the Prior Art

[0004] A data processing apparatus may have a processing
pipeline which has a number of pipeline stages arranged to
perform a data processing operation. Some data processing
operations have at least one conditional processing step
which is only required some of the time, depending on the
data being processed. The present technique seeks to provide
a more efficient pipeline arrangement for handling such pro-
cessing operations.

SUMMARY OF THE PRESENT TECHNIQUE

[0005] Viewed from one aspect, the present technique pro-
vides a data processing apparatus comprising:

[0006] a plurality of registers configured to store operands
for processing;
[0007] a processing pipeline configured to perform a data

processing operation for generating an output operand in
response to at least one input operand and for writing the
output operand to a destination register of said plurality of
registers, the data processing operation including at least one
conditional processing step which is required only if the at
least one input operand satisfies a predetermined condition;
[0008] a forwarding path configured to forward the output
operand for use by a subsequent data processing operation;
and

[0009] control circuitry configured to detect whether the at
least one input operand for the data processing operation
satisfies the predetermined condition, and:

(a) if the at least one input operand does not satisfy the
predetermined condition, to control the processing pipeline to
perform the data processing operation bypassing the at least
one conditional processing step to generate the output oper-
and a first number of processing cycles later than a start
processing cycle in which the processing pipeline starts per-
forming the data processing operation, and to forward the
output operand via the forwarding path before the output
operand has been written to the destination register; and

(b) if the at least one input operand satisfies the predetermined
condition, to control the processing pipeline to perform the
data processing operation including the at least one condi-
tional processing step to generate the output operand a second
number of processing cycles later than the start processing
cycle, where the second number is greater than the first num-
ber;

[0010] wherein the processing pipeline is configured to
write the output operand to the destination register a prede-
termined number of processing cycles later than the start
processing cycle, said predetermined number being the same
regardless of whether the at least one input operand satisfies
the predetermined condition.

[0011] A data processing operation for generating an out-
put operand in response to an input operand and for writing

Sep. 17, 2015

the output operand to a destination register may have at least
one conditional processing step which is required only if the
atleast one input operand satisfies a predetermined condition.
The present technique recognises that the way in which this
conditional processing step is handled can greatly affect per-
formance of the processing pipeline, especially if the at least
one conditional processing step is only required relatively
rarely. One approach may be to provide one or more pipeline
stages for performing the at least one conditional processing
step and to route an instruction for performing the data pro-
cessing operation through that pipeline stage irrespective of
whether or not the conditional processing step(s) is actually
required. However, in this case a small minority of operations
requiring the conditional processing step may delay the pro-
cessing of all instructions, which is undesirable. Another
approach may be to statically determine whether or not the
conditional processing step will be required for a given pro-
gram to be executed, and if none of the operations to be
performed require the conditional processing step(s) then the
circuitry within the pipeline for performing these steps can be
bypassed. However, with this approach even if there is only
one operation that requires the conditional processing step,
the conditional processing would have to be enabled and
again all operations may be delayed by being passed through
additional stages.

[0012] The present technique recognises that a more effi-
cient approach is to determine, based on the at least one input
operand for the data processing operation, whether a prede-
termined condition is satisfied, indicating that the at least one
conditional step is required. If the at least one input operand
does not satisty the predetermined condition then the process-
ing pipeline can perform data processing operation bypassing
the at least one conditional processing step, so that the output
operand is generated a first number of processing cycles later
than the start processing cycle for the data processing opera-
tion. On the other hand, if the condition is satisfied then the
operation is performed including the conditional step, to gen-
erate the output operands a second number of processing
cycles later than the start cycle, with the second number being
larger than the first number. Hence, operations which do not
require the conditional processing step can bypass this step to
generate the output value earlier.

[0013] However, the output operand may need to be written
to a destination register, and even if the output operand is
generated in an earlier cycle by bypassing the conditional
step, it may not be possible to perform the register writes
earlier. For example, there may be relatively few register
write ports, and so there may be some competition for register
write ports. It may not be known until relatively late in the
pipeline whether or not the at least one input operand satisfies
the predetermined condition and so at this point it may be
difficult bring forward the register write since other instruc-
tions may already have taken all the available write ports in
the earlier cycle. Nevertheless, it is desirable to make the
output operand generated in the case where the conditional
step is bypassed available to other data processing operations
earlier than would be the case if the conditional step is
required.

[0014] To address this problem, the present technique pro-
vides a forwarding path for forwarding the output operand for
use by subsequent data processing operation. If the condi-
tional step is bypassed, then the output operand generated the
first number of processing cycles after the start processing
cycle is forwarded via the forwarding path before the output

US 2015/0261542 Al

operand is written to the destination register. The processing
pipeline can then wait until the cycle in which the output
operand would normally be written to the destination register
if the conditional processing step was required before writing
the output operand to the destination register. That is, the
write to the destination register occurs the same number of
cycles after the start processing cycle regardless of whether
the conditional processing step is performed or not. This
simplifies the control of the register write since the timing of
the register write is now predictable and does not need to
change part-way down the pipeline. Meanwhile the forward-
ing path allows a performance improvement by allowing
subsequent operations to use the generated output operand
before it has been written into the register.

[0015] The processing pipeline may have a bypass process-
ing path and a second processing path. The second processing
path may have circuitry for performing the at least one con-
ditional processing step, while the bypass processing path
may not have such circuitry. This allows the control circuitry
to select an appropriate one of these paths depending on
whether the input operand satisfies the predetermined condi-
tion. The forwarding path may be coupled to the bypass
processing path and the number of pipeline stages between
the start of the bypass processing path and the point at which
the early forwarding path receives the output operand may be
smaller than the number of stages between the start of the
second processing path and the point at which the register
write occurs.

[0016] The control circuitry can control which of the
bypass path and the second processing path is used in differ-
ent ways. In some cases, the control circuitry may control one
of'the bypass processing path and the second processing path
to be inactive so that it does not generate a output value and
the output operand is generated only using the other path.
However, it may be simpler to simply allow both paths to
generate an output value and then select the appropriate out-
put depending on whether the at least one input operand
satisfied the predetermined condition.

[0017] It is possible for the processing pipeline to have
entirely separate processing paths for performing the data
processing operation, with one path being used for the bypass
case and the other path being used for the case where the
conditional processing step is required. However, typically
there will be some steps which are common to both cases and
s0 it can be more efficient to provide a shared processing path
which performs at least one initial processing step required by
the data processing operation regardless of whether the at
least one input operand satisfies the predetermined condition.
Once the processing with the shared processing path is com-
plete then one of the bypass path and second path may be
selected as discussed above.

[0018] To allow the write to the destination register to occur
at the same timing relative to the start processing cycle
regardless of whether the input operand satisfies the prede-
termined condition, the bypass processing path may have at
least one no-operation (no-op) pipeline stage which receives
an output value from a preceding pipeline stage and outputs
the received output value unchanged. The no-op pipeline
stage may buffer the output value for at least one cycle to
delay the output value until it is written to the destination
register.

[0019] Insome cases, the at least one conditional step may
be the last step(s) to be performed in the data processing
operation, with no other steps occurring afterwards. In this

Sep. 17, 2015

case, the bypass path may include one or more no-op pipeline
stages as described above and need not include any other
circuitry for performing processing steps.

[0020] In other cases, there may be at least one further
processing step to be performed after the at least one condi-
tional step and which is required regardless of whether the at
least one input operand satisfies the predetermined condition.
In this case, then it can be useful to duplicate the circuitry for
performing the at least one further processing step so that one
version is provided on the bypass path and another version is
provided on the second processing path which concludes the
conditional step. The bypass processing path may be arranged
so that its circuitry will start performing the at least one
further processing step a smaller number of processing cycles
after the start processing cycle than the corresponding cir-
cuitry in the second processing path. In this way, the bypass
processing path can generate the output operand in an earlier
cycle than would be the case if the second processing path was
used, to improve performance in the case when the predeter-
mined condition is not satisfied.

[0021] The present technique can be used with any data
processing operation which involves at least one conditional
step which is only required if the at least one input operand
satisfied a predetermined condition. The predetermined con-
dition may be a condition met by the one or more input
operands themselves, or could be a condition that is satisfied
if the input operands are such that an intermediate value
produced by the processing pipeline will have a certain prop-
erty. To determine whether the predetermined condition is
satisfied, the control circuitry may use an intermediate value
produced by the processing pipeline, or in other cases the
control circuitry may decide whether the condition is satisfied
independently of the processing carried out by the processing
pipeline.

[0022] The present technique is particularly useful where a
data processing operation is a floating point data processing
operation where the at least one input operand and output
operand are floating point operands which each have a sig-
nificand representing the significant bits of the operand and
an exponent representing the position of a radix point in the
significand. When numbers are represented in floating point
form (such as using the IEEE floating point standard, e.g.
IEEE-754), there are sometimes some special cases which
require processing which is not required for the majority of
floating point operations using normal floating point values.
For example, the special cases may include processing of not
anumber (NaN) floating point values (such as infinity, square
roots of negative numbers, or the result of 0 divided by 0, for
example). For most operations, steps for handling these num-
bers will not be required but occasionally there is a need to
perform a conditional step to handle these special cases. The
present technique can make handling of these cases more
efficiently to speed up the cases when the conditional step is
not required.

[0023] More particularly, the present technique is useful
when the at least one conditional step comprises one or more
steps for handling a denormal floating point value. A denor-
mal floating point value represents a number whose magni-
tude is greater than zero, but smaller than the smallest pos-
sible magnitude representable using a normal floating point
value. While a normal floating point value has a bit value of 1
as its most significant bit (1.7???? . . . times a power of two
indicated by the exponent), a denormal floating point value
has a bit 0 as its most significant bit (0.7???? .. . times a power

US 2015/0261542 Al

of'two indicated by the exponent), allowing smaller numbers
to be represented using an exponent comprising a limited
number of bits. The processing for handling a denormal float-
ing point value can be relatively complex, and so may require
at least one additional stage in the processing pipeline. How-
ever, in practice denormal values do not occur very often and
so incurring the penalty of the delay through this additional
stage for all operations may be detrimental to performance.
By implementing the present technique to allow the steps for
handling denormal values to be omitted when possible, per-
formance can be improved, while still managing the write to
the destination register in an efficient way.

[0024] More particularly, the conditional step may include
one or more steps for normalising the denormal floating point
value to generate a normal floating point value, or for denor-
malising a normal floating point value to generate a denormal
floating point value. Normalising and denormalising can be
performed by shifting the significand of the floating point
value and adjusting the exponent. The normalising may be
required if a floating point operation produces a denormal
floating point value. The IEEE-754 standard for floating point
arithmetic requires that some operations generate a normal
floating point value as their output operand, and so if the
intermediate result of these operations is denormal than it has
to be normalised. On the other hand, there may be some
operations that produce a value which cannot be represented
as a normal value, and so the value may need to be denorma-
lised to allow a smaller number to be represented. In both
cases, the normalising or denormalising steps may be
required only for some operations, and can often be bypassed
to generate the output operand earlier.

[0025] In general the denormal handling steps may be per-
formed if the at least one input operand is such that an operand
processed somewhere by the processing pipeline has a denor-
mal floating point value. This may be the case if one of the
input operands is itself denormal, and may occur even if all
the input operands are normal but an intermediate operand
somewhere in the pipeline becomes denormal. The control
circuitry can detect both these cases and control the process-
ing pipeline to perform the optional denormal handling steps
if either of these events occurs.

[0026] More particularly, the data processing operation
may be a floating point multiply operation for multiplying
two input operands to generate the output operand. With a
multiply operation, the product of the two input operands may
be denormal if either of the input operands is itself denormal,
or if a product of the two input operands becomes denormal
because both the input operands were relatively small. Hence,
the control circuitry may determine that the predetermined
condition is satisfied if any of the following conditions
applies:

(a) at least one of the two input operands has a denormal
floating point value;

(b) a product of the two input operands would have a denor-
mal floating point value; and

(c) the sum of the exponents of the two input operands is less
than a predetermined threshold.

[0027] Condition (c) above is an example of determining
whether condition (b) is satisfied. It may be difficult to deter-
mine quickly whether the product of the two input operands
would definitely have a denormal floating point value, since
this may depend on the multiplication result of the signifi-
cands of the two input operands, which would take some time
to be available. A simpler way of estimating whether there the

Sep. 17, 2015

product may be denormal can be to use condition (c) and to
simply add the exponents of the input operands. If the sum of
the exponents is less than a threshold than this can indicate
that there is a possibility that the product could be denormal,
whereas if the sum is greater than the denormal threshold then
it can be known that the product will definitely not be denor-
mal. A given apparatus may use any one or more of these
conditions (a)-(c) to determine whether the predetermined
condition is satisfied.

[0028] The data processing apparatus may have the ability
to disable handling of denormal floating point values. A con-
trol signal may be received and this may indicate whether
denormal handling is enabled or disabled. Ifthe control signal
indicates that handling a denormal floating point values is
disabled, then any denormal values may be replaced with zero
and the processing pipeline may be controlled to use the
bypass path for all data processing operations. On the other
hand, when the control signal indicates that handling a denor-
mal values is enabled, then the processing may be as dis-
cussed above where the control circuitry controls whether the
conditional step is performed based on whether the predeter-
mined condition is satisfied. Irrespective of whether the con-
trol signal indicates that denormal handling is enabled or
disabled, the writing of the output operand to the destination
register may still occur the same predetermined number of
cycles later than the start processing cycle, so as to provide a
predictable timing for the register write, but the forwarding
path may output the output operand for use by subsequent
instructions earlier than the operand would be available in the
destination register.

[0029] The processing pipeline may perform the data pro-
cessing operation in response to an instruction which is issued
to the pipeline by the issue circuitry. In the case of a floating
point multiply operation, the pipeline may perform the opera-
tion in response to a floating point multiply instruction issued
into the pipeline. The pipeline may also perform the same
multiply operation in response to a floating point multiply-
add instruction issued by the issue circuitry, for which the
output operand produced by the multiply pipeline is then
added to another input operand to produce a result value.
[0030] Viewed from another aspect, the present technique
provides a data processing apparatus comprising:

[0031] aplurality of register means for storing operands for
processing;
[0032] processing pipeline means for performing a data

processing operation for generating an output operand in
response to at least one input operand and for writing the
output operand to a destination register means of said plural-
ity of register means, the data processing operation including
atleast one conditional processing step which is required only
if the at least one input operand satisfies a predetermined
condition;

[0033] forwarding means for forwarding the output oper-
and for use by a subsequent data processing operation; and
[0034] control means for detecting whether the at least one
input operand for the data processing operation satisfies the
predetermined condition, and:

(a) if the at least one input operand does not satisfy the
predetermined condition, controlling the processing pipeline
means to perform the data processing operation bypassing the
at least one conditional processing step to generate the output
operand a first number of processing cycles later than a start
processing cycle in which the processing pipeline means
starts performing the data processing operation, and to for-

US 2015/0261542 Al

ward the output operand via the forwarding means before the
output operand has been written to the destination register
means; and

(b) if the at least one input operand satisfies the predetermined
condition, controlling the processing pipeline means to per-
form the data processing operation including the at least one
conditional processing step to generate the output operand a
second number of processing cycles later than the start pro-
cessing cycle, where the second number is greater than the
first number;

[0035] wherein the processing pipeline means is config-
ured to write the output operand to the destination register
means a predetermined number of processing cycles later
than the start processing cycle, said predetermined number
being the same regardless of whether the at least one input
operand satisfies the predetermined condition.

[0036] Viewed from a further aspect, the present technique
provides a method of performing a data processing operation
for generating an output operand in response to at least one
input operand and for writing the output operand to a desti-
nation register of a plurality of registers, the data processing
operation including at least one conditional processing step
which is required only if the at least one input operand satis-
fies a predetermined condition; the method comprising:
[0037] detecting whether the at least one input operand for
the data processing operation satisfies the predetermined con-
dition;

[0038] if'the at least one input operand does not satisty the
predetermined condition, controlling a processing pipeline to
perform the data processing operation bypassing the at least
one conditional processing step to generate the output oper-
and a first number of processing cycles later than a start
processing cycle in which the processing pipeline starts per-
forming the data processing operation, and forwarding the
output operand via a forwarding path before the output oper-
and has been written to the destination register, for use by a
subsequent data processing operation;

[0039] if the at least one input operand satisfies the prede-
termined condition, controlling the processing pipeline to
perform the data processing operation including the at least
one conditional processing step to generate the output oper-
and a second number of processing cycles later than the start
processing cycle, where the second number is greater than the
first number; and

[0040] writing the output operand to the destination register
a predetermined number of processing cycles later than the
start processing cycle, said predetermined number being the
same regardless of whether the at least one input operand
satisfies the predetermined condition.

[0041] Further aspects, features and advantages of the
present technique will be apparent following detailed
description which is to be read in conjunction with the accom-
panying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0042] FIG. 1 schematically illustrates single and double
precision floating point representation of numbers;

[0043] FIG. 2 provides a comparative example for explain-
ing a floating point multiply operation;

[0044] FIG. 3 shows a second comparative example show-
ing an extension of the floating point multiply operation to
handle denormal floating point numbers;

Sep. 17, 2015

[0045] FIG. 4 shows a first example of a data processing
apparatus according to the present technique in which a con-
ditional step of a data processing operation can be bypassed;
[0046] FIG. 5 schematically illustrates a second example
apparatus according to the present technique;

[0047] FIG. 6 illustrates a method of performing a data
processing operation including a conditional step; and
[0048] FIG.7 shows a method in which a conditional part of
the data processing operation can be disabled using a control
flag.

DESCRIPTION OF EXAMPLE EMBODIMENTS

[0049] In floating point representation, numbers are repre-
sented using a significand 1.F or 0.F, an exponent E and a sign
bit S. The sign bit represents whether the floating point num-
ber is positive or negative, the significand represents the sig-
nificant digits of the floating point number, and the exponent
represents the position of the radix point (also known as a
binary point) relative to the significand. By varying the value
of the exponent, the radix point can “float” left and right
within the significand. This means that for a predetermined
number of bits, a floating point representation can represent a
wider range of numbers than a fixed point representation (in
which the radix point has a fixed location within the signifi-
cand). However, the extra range is achieved at the expense of
reduced precision since some of the bits are used to store the
exponent. Sometimes, a floating point arithmetic operation
generates a result with more significant bits than the number
of'bits used for the significand. If this happens then the result
is rounded to a value that can be represented using the avail-
able number of significant bits.

[0050] FIG. 1 of the accompanying drawings shows how
floating point numbers are stored within a register or memory.
In a single precision representation, 32 bits are used to store
the floating point number. One bit is used as the sign bit S,
eight bits are used to store the exponent E, and 23 bits areused
to store the fractional portion F of the significand. For normal
values, the 23 bits of the fractional portion F, together with an
implied bit having a value of one, make up a 24-bit significand
1.F. The radix point is initially assumed to be placed between
the implied bit and the 23 stored bits of the significand. The
stored exponent E is biased by a fixed value 127 such that in
the represented floating point number the significand is
shifted right from its initial position relative to the radix point
by E-127 places if E-127 is negative (e.g. if E-127=-2 then a
significand of 1.01 represents 0.0101), or left from its initial
position by E-127 places if E-127 is positive (e.g. if E-127=2
then a significand of 1.01 represents 101). The bias is used to
make it simpler to compare exponents of two floating point
values as then both negative and positive shifts of the radix
point can be represented by a positive value of the stored
exponent E. As shown in FIG. 1, the stored representation
S[31], E[30:23], F[22:0] represents a number with the value
(-1)°*1.F*2%¥°127). A single-precision floating point number
in this form is considered to be “normal”. If a calculated
floating point value is not normal (for example, it has been
generated with the radix point at a position other than between
the left-most two bits of the significand), then it is normalized
by shifting the significand left or right and adjusting the
exponent accordingly until the number is of the form (-1)**1.
F*zE—l27.

[0051] A double precision format is also provided in which
the significand and exponent are represented using 64 stored
bits. The 64 stored bits include one sign bit, an 11-bit expo-

US 2015/0261542 Al

nent and the 52-bit fractional portion F of a 53-bit significand
1.F. In double precision format the exponent E is biased by a
value of 1023. Thus, in the double precision format a stored
representation S[63], E[62:52], F[51:0] represents a floating
point value (-1)**1.F*251923 Tt will be appreciated that the
present technique could be applied to the single precision
format, the double precision format or any other floating point
format which uses different number of bits or different bias
values for the floating point representation.

[0052] As well as normal floating point values, the floating
point representation can also represent other quantities. If the
exponent E for a value has all its bits set to 1 then this
represents a special number, such as infinity and “not a num-
ber” (NaN) values, which are results which cannot be repre-
sented using a real number such as the square root of a
negative number, the division 0/0, the result of a calculation
using infinity and the result of a function applied to a value
outside its defined range (e.g. the inverse sine or cosine of
number less than -1 or greater than +1). When the exponent
has all its bits equal to 1, infinity is typically represented by
the significand bits F all being equal to 0, while other NaN
values are represented by non-zero values for the significand.
Techniques for handling infinity and NaN values are well
known and any prior art technique can be used. Therefore the
handling of these numbers will not be discussed in detail
herein.

[0053] When the exponent E has its bits all equal to zero
then this represents either zero or a denormal number. The
floating point value is equal to zero ifits significand bits F are
all zero. If any bit of the significand is equal to 1 then the
number is a denormal number. A denormal number has its
implicit bit of the significand equal to zero instead of one as in
the case of normal numbers. This allows values smaller than
the smallest number represented using a normal number. For
example, in the single precision case the smallest value rep-
resentable using a normal number is 1.0*27'2¢, while if a
denormal number is used than the smallest represent value is
271%% (0.00000000000000000000001%272%), since the lead-
ing one can now be in the least significant bit of the 23-bit
significand field F.

[0054] FIG. 2 explains the basic principle of a floating point
multiply pipeline, assuming that all floating point values pro-
cessed are normal. Two input operands A, B are supplied to
the pipeline. The significands F of the two input operands are
multiplied by a multiplier 4. The unbiased exponents E of the
input operands are added together by adder 6. If the input
exponents E are the unbiased exponents (the bias has already
been subtracted), then these exponents E can simply be added
together, while if the input exponents are the biased expo-
nents as represented in a stored floating point value, then the
bias is also subtracted by adder 6 to get the correct result. The
sign bits S of the two input operands are XORed (exclusive
OR) by XOR gate 8. The product produced by the multiplier
4 has more bits than are available in the floating point repre-
sentation (for example, multiplying two 52 bit values results
ina 104 bit value), so some bits are to be truncated. Therefore,
an alignment and rounding circuit 10 is provided in a second
pipeline stage for aligning (shifting) the product produced by
the multiplier 4 so that the radix point is to the right of the
leading ‘1’ bit of the significand, and rounding the product to
the nearest value representable using the floating point rep-
resentation being used. The rounding may comprise selec-
tively adding 1 to the aligned product depending on whether
the product value is closer to the nearest representable value

Sep. 17, 2015

above the product value or the nearest representable value
below the product value. In the case where the product value
is exactly halfway between the two nearest values represent-
able using the floating point format, then different rules may
be used to resolve the tie, such as round away from zero,
round towards zero, round towards positive infinity, round
towards negative infinity, round to the nearest even value,
round to the nearest odd value, or round randomly up or down.
The aligned and rounded product produced by circuit 10 is
combined with the exponent produced by the adder 6 and the
sign bits produced by the XOR gate 8 to generate a normal
floating point value as the output operand, which is then
output from write port 12 to a destination register.

[0055] However, to implement a floating point multiply
pipeline which complies with the IEEE standard there are a
few additional complications. As discussed above, there are
special numbers such as infinity and NaN values which
require special processing. These can generally be handled
alongside the main calculation, and any prior art technique
may used for handling these values.

[0056] However, denormal numbers as discussed above
may require more complex processing. If either of the input
operands A, B is a denormal floating point number, or if both
inputs are normal but are small enough that the product would
be denormal, then the IEEE standard requires that the result is
normalised. Therefore, to support denormal numbers, a
shifter 12 may be provided as shown in FIG. 3 which provides
a renormalisation or denormalisation shift after the multipli-
cation but before the rounding at the pipeline stage 10. With
double precision floating point values, the product produced
by the multiplier 4 may have 104 bits and so shifting this
number of bits can take some time and so generally an extra
pipeline stage may be required to handle the normalisation.
This would greatly slow down the processing of all floating
point multiplications if every instruction has to go through the
shift stage.

[0057] FIG. 4 shows a data processing apparatus 2 accord-
ing to the present technique for addressing this problem. The
apparatus 2 has a processing pipeline 30 for handling floating
point multiplications, which may be performed in response to
stand-alone floating point multiply instructions or combined
multiply-add instructions. In the case of a multiply-add
instruction, the multiply result produced by the pipeline 30
would be forwarded to an add pipeline to add the multiply
result produced by multiplying two operands to a third oper-
and. The apparatus 2 also has issue control circuitry 32 for
issuing the instructions to the pipeline 30 to control the pipe-
line 30 to perform a multiply operation, registers 34 for stor-
ing input operands to be processed by the pipeline 30 and
output operands generated by the pipeline 30, and control
circuitry 36 for controlling the operation of the pipeline.
[0058] AsinFIG. 3, the pipeline 30 has a first pipeline stage
with a multiplier 4, adder 6, and XOR gate 8 which function
in the same way as in FIGS. 2 and 3, a second pipeline stage
with a shifter 12 for normalising any denormal value pro-
duced by the first pipeline stage, and a third pipeline stage
including the alignment and rounding circuitry 10. However,
in FIG. 4 a bypass path 40 is provided through the second and
third pipeline stages in addition to a second processing path
42 passing through the shifter 12 and alignment and rounding
circuitry 10. The bypass path 40 has alignment and rounding
circuitry 50 in the second pipeline stage which is the same as
the alignment and rounding circuitry 10 included by the sec-
ond processing path 42 in the third pipeline stage. The third

US 2015/0261542 Al

pipeline stage of the bypass path 40 functions as a no-opera-
tion pipeline stage which simply buffers the output of the
preceding stage for a cycle without changing its value. A
multiplexer 52 is provided to select between the outputs of the
bypass path 40 and the second path 42.

[0059] The control circuitry 36 has associated denormal
detection circuitry 38 for detecting whether the input oper-
ands A, B are such that a denormal value will be expected to
be generated by the first pipeline stage. While FIG. 4 shows
the denormal detection circuitry 38 as separate from the con-
trol circuitry 36, in other examples the denormal detection
circuitry 38 may be part of the control circuitry 36. The
denormal detection circuitry 38 detects that a denormal value
will occur if the input operands A, B satisty a predetermined
condition. The predetermined condition may be that one or
both of the input operands A, B is itself denormal (i.e. all the
bits of the exponent E are 0 and the significand F is non-zero
for one or both of the operands A, B), or that the input
operands A, B are such that product produced by the multi-
plier 4 will be denormal. The denormal detection logic 38 can
determine whether the product will be denormal in different
ways. It is possible for the denormal detection logic 38 to use
the actual product of the multiplier 4 and exponent produced
by adder 6 and inspect these to see whether the result is
denormal. However, this could be slow, and a quicker way of
estimating whether the product will be denormal in the case
where both input operands are normal is to add the exponents
E of the input operands A, B together, and if the sum of the
exponents is less than a predetermined denormal threshold
then this can indicate that there is at least the possibility of
some denormal values occurring. This estimation may use the
output of adder 6 or could perform a separate addition of the
exponents within the denormal detection logic 38. For
example, for single precision floating point, the denormal
threshold may be —125 so that if the sum of the exponents is
—126 or less then there is a risk that the result could be
denormal. The denormal detection does not need to be a
precise determination of whether the result is denormal. To
simplify the processing it can be sufficient to make a conser-
vative estimate which will detect all denormal cases but may
flag some cases as denormal even if they do not in the end
produce a denormal value.

[0060] The control circuitry 36 can select which of the
paths 40, 42 should provide the output operand depending on
whether the denormal detection logic 38 detects that the input
operands A, B satisfy the predetermined condition for denor-
mal handling. If the inputs are such that there is at least a
chance of a denormal value occurring, then the control cir-
cuitry 36 controls the pipeline to perform the multiply opera-
tion in the same way as shown in FIG. 3 using the shifter 12
and alignment and rounding circuit 10 of the second path 42.
The control circuitry controls the multiplexer 52 to select the
output of the second path 42 and then the output operand is
written to the destination register by write port 60. On the
other hand, if the inputs do not satisfy the predetermined
condition, then the control circuitry controls the pipeline so
that the output is generated using the bypass path 40 in which
only alignment and rounding is performed at circuit 50 and
the normalisation shift is omitted. This means that the output
operand becomes available a cycle earlier than would be the
case using the second path 42 (the result is generated at the
end of the second pipeline stage rather than the third).

[0061] An early forwarding path 70 is provided for output-
ting the output operand generated using the bypass path 40.

Sep. 17, 2015

The early forwarding path 70 provides the output operand so
that it can be used by another operation (e.g. the add part of'a
multiply-add operation) earlier than would be the case if the
subsequent operation had to wait until the result is available in
the destination register. Nevertheless, even when the bypass
path 40 is used to skip the normalisation shift 12, the write to
the destination register from write port 60 occurs in the same
cycle as would be the case if the second path 42 had beenused
and the denormal processing was required. This makes man-
agement of the register write easier, since if it is determined
that denormal processing is not required, it is not necessary to
obtain a free slot on a write port of the register file 34 a cycle
earlier than would have been reserved at the issue stage.

[0062] FIG. 4 shows an example in which both paths 40, 42
remain active for each operation regardless of whether denor-
mal processing is required. The product produced by multi-
plier 4 is provided to both paths 40, 42 which each determine
a result, and the multiplexer 52 is then controlled by control
circuitry 36 to select the appropriate result depending on the
result of the denormal detection logic 38, and the control
circuitry 36 also controls whether the forwarding path 70
forwards the result of the bypass path 42 depending on
whether the input operands satisfy the predetermined denor-
mal condition. However, in other embodiments, the one of'the
paths 40, 42 which is not required could be made inactive with
only the selected path 40, 42 generating the output operand.
Hence, while in response the determination of the denormal
detection logic, the control circuitry 36 should at least control
the pipeline 30 to perform the multiply operation including or
bypassing the conditional denormal handling step, it is
optional whether or not the other path is also active at this
point.

[0063] The control circuitry 36 may also receive a control
input 80 which represents a “flush to zero” (FTZ) mode in
which denormal handling is disabled. For example, when the
FTZ control signal 80 is 1 then this may indicate that the flush
to zero mode is active so that denormal handling is disabled,
while when the FTZ control signal 80 is O then denormal
handling may be enabled. When denormal handling is
enabled, then the pipeline 30 operates as discussed above to
detect whether the input operands satisfy the condition and
control the output operand to be produced by one of the paths
40, 42 depending on the condition determination. On the
other hand, when denormal handling is disabled, then any
denormal values are treated as zero, the denormal detection is
deactivated and the output of the bypass path 40 can be
selected for all multiply operations. By selecting the FTZ
mode ifit is known that there will not be any denormal values,
then this can reduce the power consumed by the denormal
detection circuitry and the denormal handling path 42. Unlike
previous circuits which implement an FTZ mode, however,
which when denormal handling is enabled would pass all
instructions through the normalization shift stage 12, in the
present technique when denormal handling is enabled then it
is determined dynamically based on the input operands
whether the denormal handling is required so that the denor-
mal processing step can be bypassed if possible.

[0064] As well as the early forwarding path 70, the pipeline
may also have a second forwarding path 72 which forwards
the output value, which is about to be written to the destina-
tion register, to other processing circuits for use by other
instructions before it has actually been written to the destina-
tion register. This can allow the other instruction to start a
processing cycle earlier.

US 2015/0261542 Al

[0065] FIG. 4 shows an example in which the alignment
and rounding step 10 is performed after the normalisation
shift 12 in the second processing path 42. However, it is also
possible to perform the alignment and rounding step 10
before the shift 12, as shown in the example of FIG. 5. In this
case, the rounding circuitry 10 may be modified to support
injection rounding in which a rounding value can be injected
at a position other than the least significant bit of the product,
so that when the value is subsequently shifted by the shifter 12
then this will cause the rounded bit to be moved to the least
significant bit of the output operand. In the example of FIG. 5,
since the conditional step performed by the shifter 12 is the
last step performed by the pipeline, then it is not necessary to
provide two versions of the align/round circuit 10, one in the
bypass path 40 and one in the second path 42 as in FIG. 4,
since now it can be shared between both paths 40, 42. There-
fore, in the example of FIG. 5 the bypass path 40 may simply
comprise a no-operation pipeline stage, and need not com-
prise any other kind of processing circuitry. The denormal
detection circuitry 38 determines whether the inputs A, B
satisfy the predetermined condition which indicates that there
is a risk of denormal values occurring. If the input operands
do not satisfy the condition then the shifter 12 is bypassed and
the early forwarding path 70 forwards the output operand to
subsequent instructions at least one cycle earlier than would
be the case if the shifter 12 is required. Nevertheless, the
register write from write port 60 occurs the same number of
cycles after the first pipeline stage regardless of whether
denormal handling is performed.

[0066] FIG. 61isaflow diagram illustrating a method of data
processing using the embodiment of FIG. 4 for example. At
step 100 it is determined whether a floating point multiply or
multiply-add instruction has been received by the processing
pipeline 30. If so then at step 102 the significands, exponents
and sign bits of the input operands A, B are provided to the
multiplier 4, adder 6 and XOR gate 8 of the first pipeline stage
respectively. The multiplier multiplies the significands F ,
F, the adder 6 adds the exponents E ,, E and the XOR gate
8 XORs the sign bits S, S to produce the corresponding
significand, exponent and sign bit of the product of the two
input operands. Step 102 takes place during a start processing
cycle (cycle 1). Either in the start processing cycle or in the
next processing cycle 2, at step 104 the denormal detection
logic 38 determines whether either of the input operands A, B
or the product AxB is denormal.

[0067] If neither the inputs A, B nor the product AxB is
determined to be denormal, then at step 106 in processing
cycle 2 the alignment and rounding circuitry 50 aligns and
rounds the product produced by the multiplier 4 to generate
the significand of the result value which is combined with the
exponent produced by the adder 6 and the sign bit produced
by XOR gate 8 to form the output operand, which is for-
warded along the early forwarding path 70 at step 108 during
processing cycle 3. The bypass path 40 buffers the output
operand for aprocessing cycle at step 110. At step 112, during
processing cycle 4, the output operand is written to the des-
tination register.

[0068] On the other hand, if either of the inputs or the
product is denormal at step 104, then at step 116, which
occurs during processing cycle 2, the shifter 12 of the second
processing path 42 shifts the result of the multiplier 4 to
normalise or denormalise the floating point value. In process-
ing cycle 3, the shifted value is aligned and rounded using
circuitry 10 to produce the output operand (step 118). At step

Sep. 17, 2015

112, in processing cycle 4, the output operand is written to the
destination register. Hence, regardless of whether the denor-
mal handling is required or not, the register write occurs in the
same processing cycle 4. However, the forwarding step 108 in
cycle 3 means that other instructions can access the operand
produced in the case where denormal handling is not required
earlier than would be the case if all instructions had to go
down the denormal handling path. This results in a more
efficient processor which has improved performance.

[0069] Ifatstep 100 the instruction was determined to be a
floating point multiply-add instruction, then the output oper-
and produced by the multiply pipeline 30 would be sent to an
add pipeline to perform a subsequent add operation. If the
bypass path 40 is used then the early forwarding path 70
would be used to forward the output operand to the add
pipeline, while if the second path 42 is used then the second
forwarding path 72 can be used so that the add pipeline does
not need to wait for the register write to complete.

[0070] FIG. 7 shows another flow diagram which illustrates
handling of the FTZ mode. Again, at step 100 it is determined
whether there is a floating point multiply or multiply-add
instruction. At step 202 it is determined whether the FTZ
control signal 80 is 1 indicating that denormal handling is
disabled. If not, then at step 204 the multiply operation is
performed in the same way as in FIG. 6 (step 204 comprises
steps 102, 104, 106, 108, 110, 116 and 118 of FIG. 6). The
output operand is then written to the destination register in
processing cycle 4 in the same way as in FIG. 6 (step 112).
[0071] If the control signal 80 is 1, then the flush to zero
mode is active and denormal handling is disabled. At step
205, it is determined whether either of the input operands A,
B is denormal. If so then at step 206 any denormal value is set
to zero, while if there are no denormal inputs then step 206 is
omitted. At step 208, the multiplier 4, adder 6 and XOR gate
8 generate the significand, exponent and sign bit of the prod-
uct AxB in the same way as step 102 of FIG. 6. This occurs in
the first processing cycle.

[0072] In the second processing cycle, it is determined
whether the product AxB produced by multiplier 4 is denor-
mal (step 210). If so then at step 212 the product is also forced
to zero, while if the product is normal then step 212 is omitted.
In the FTZ mode, denormal handling is never required and so
the bypass path 40 is always selected. Therefore, at step 214
the alignment and rounding circuit 50 produces the output
operand during the second processing cycle. In the third pro-
cessing cycle (step 216), the output operand is forwarded over
path 70 (same as step 108 of FIG. 6) and the output operand
is buffered for a cycle in the no-operation stage of bypass path
40 (step 218, which is the same as step 110 of FIG. 6). The
output operand is then written to the destination register at
step 112 during the fourth processing cycle. As shown in FIG.
7,the register write occurs the same number of cycles after the
start cycle regardless of whether the flush to zero mode is
selected.

[0073] While FIGS. 1 to 7 have been discussed in the con-
text of floating point arithmetic, and more particularly denor-
mal handling, the present technique can also apply to other
operations. In general, any processing operation which has a
conditional step which is sometimes required and sometimes
not required, depending on the input operands, can use the
present technique. In the examples of FIGS. 4 and 5, the
shifter 12 could be replaced with the circuitry for performing
the conditional step (which could in some examples require
more than one pipeline stage), and the other parts of the

US 2015/0261542 Al

pipeline 30 can be replaced with circuitry for performing
shared steps of the operation which are required regardless of
whether the input operands meet the required condition.
[0074] Handling of zero, NaN and infinite operands or
overflow conditions have been omitted from FIGS. 6 and 7 for
conciseness. These can be handled using any known prior art
technique.

[0075] Although illustrative embodiments of the invention
have been described in detail herein with reference to the
accompanying drawings, it is to be understood that the inven-
tion is not limited to those precise embodiments, and that
various changes and modifications can be effected therein by
one skilled in the art without departing from the scope and
spirit of the invention as defined by the appended claims.

I claim:

1. A data processing apparatus comprising:

a plurality of registers configured to store operands for
processing;

aprocessing pipeline configured to perform a data process-
ing operation for generating an output operand in
response to at least one input operand and for writing the
output operand to a destination register of said plurality
of registers, the data processing operation including at
least one conditional processing step which is required
only if the at least one input operand satisfies a prede-
termined condition;

a forwarding path configured to forward the output oper-
and for use by a subsequent data processing operation;
and

control circuitry configured to detect whether the at least
one input operand for the data processing operation sat-
isfies the predetermined condition, and:

(a) if the at least one input operand does not satisfy the
predetermined condition, to control the processing pipeline to
perform the data processing operation bypassing the at least
one conditional processing step to generate the output oper-
and a first number of processing cycles later than a start
processing cycle in which the processing pipeline starts per-
forming the data processing operation, and to forward the
output operand via the forwarding path before the output
operand has been written to the destination register; and

(b) if the at least one input operand satisfies the predetermined
condition, to control the processing pipeline to perform the
data processing operation including the at least one condi-
tional processing step to generate the output operand a second
number of processing cycles later than the start processing
cycle, where the second number is greater than the first num-
ber;

wherein the processing pipeline is configured to write the
output operand to the destination register a predeter-
mined number of processing cycles later than the start
processing cycle, said predetermined number being the
same regardless of whether the at least one input operand
satisfies the predetermined condition.

2. The data processing apparatus according to claim 1,
wherein the processing pipeline comprises a bypass process-
ing path and a second processing path, wherein the second
processing path comprises circuitry for performing the at
least one conditional processing step, and the bypass process-
ing path does not comprise circuitry for performing the at
least one conditional processing step.

3. The data processing apparatus according to claim 2,
wherein the processing pipeline comprises a shared process-
ing path configured to perform at least one initial processing

Sep. 17, 2015

step required by the data processing operation regardless of
whether the at least one input operand satisfies the predeter-
mined condition.

4. The data processing apparatus according to claim 2,
wherein the bypass processing path comprises at least one
no-operation pipeline stage configured to receive the output
value from a preceding pipeline stage and configured to out-
put the received output value unchanged.

5. The data processing apparatus according to claim 2,
wherein the data processing operation comprises at least one
further processing step required regardless of whether the at
least one input operand satisfies the predetermined condition,
wherein if the at least one input operand satisfies the prede-
termined condition then the at least one further processing
step occurs after the at least one conditional processing step.

6. The data processing apparatus according to claim 5,
wherein the second processing path comprises circuitry con-
figured to start performing the at least one further processing
step a third number of processing cycles later than the start
processing cycle; and

the bypass processing path comprises circuitry configured

to start performing the at least one further processing
step a fourth number of processing cycles later than the
start processing cycle, where the third number is greater
than the fourth number.

7. The data processing apparatus according to claim 1,
wherein the data processing operation comprises a floating
point data processing operation and the at least one input
operand and the output operand comprise floating point oper-
ands each having a significand and an exponent.

8. The data processing apparatus according to claim 7,
wherein the at least one conditional step comprises one or
more steps for handling a denormal floating point value.

9. The data processing apparatus according to claim 8,
wherein the at least one conditional step comprises one or
more steps for normalising the denormal floating point value
to generate a normal floating point value.

10. The data processing apparatus according to claim 8,
wherein the at least one conditional step comprises one or
more steps for denormalising a normal floating point value to
generate the denormal floating point value.

11. The data processing apparatus according to claim 8,
wherein the control circuitry is configured to determine that
the predetermined condition is satisfied if the at least one
input operand is such that an operand processed by the pro-
cessing pipeline has a denormal floating point value.

12. The data processing apparatus according to claim 7,
wherein the data processing operation comprises a floating
point multiply operation for multiplying two input operands
to generate the output operand.

13. The data processing apparatus according to claim 12,
wherein the control circuitry is configured to determine that
the predetermined condition is satisfied if at least one of the
two input operands has a denormal floating point value.

14. The data processing apparatus according to claim 12,
wherein the control circuitry is configured to determine that
the predetermined condition is satisfied if a product of the two
input operands would have a denormal floating point value.

15. The data processing apparatus according to claim 12,
wherein the control circuitry is configured to determine that
the predetermined condition is satisfied if the sum of the
exponents of the two input operands is less than a predeter-
mined denormal threshold.

US 2015/0261542 Al

16. The data processing apparatus according to claim 8,
wherein the control circuitry is configured to receive a control
signal indicating whether handling of denormal floating point
values is enabled or disabled.

17. The data processing apparatus according to claim 16,
wherein:

if the control signal indicates that handing of denormal

floating point values is disabled, then the control cir-
cuitry is configured to control the processing pipeline to
replace denormal floating point values with zero, and to
control the processing pipeline to perform the data pro-
cessing operation bypassing the at least one conditional
processing step; and

if the control signal indicates that handling of denormal

floating point values is enabled, then the control cir-
cuitry is configured to control whether the data process-
ing operation is performed bypassing or including the at
least one conditional processing step in dependence on
whether the at least one input operand satisfies the pre-
determined condition.

18. The data processing apparatus according to claim 16,
wherein the processing pipeline is configured to write the
output operand to the destination register the predetermined
number of processing cycles later than the start processing
cycle, the predetermined number being the same regardless of
whether the control signal indicates that handling of denor-
mal floating point values is enabled or disabled.

19. The data processing apparatus according to claim 12,
comprising issue circuitry configured to issue a floating point
multiply instruction to the processing pipeline to trigger the
processing pipeline to perform the floating point multiply
operation.

20. A data processing apparatus comprising:

a plurality of register means for storing operands for pro-

cessing;

processing pipeline means for performing a data process-

ing operation for generating an output operand in
response to at least one input operand and for writing the
output operand to a destination register means of said
plurality of register means, the data processing operation
including at least one conditional processing step which
is required only if the at least one input operand satisfies
a predetermined condition;
forwarding means for forwarding the output operand for
use by a subsequent data processing operation; and
control means for detecting whether the at least one input
operand for the data processing operation satisfies the
predetermined condition, and:
(a) if the at least one input operand does not satisfy the
predetermined condition, controlling the processing pipeline
means to perform the data processing operation bypassing the
at least one conditional processing step to generate the output
operand a first number of processing cycles later than a start

Sep. 17, 2015

processing cycle in which the processing pipeline means
starts performing the data processing operation, and to for-
ward the output operand via the forwarding means before the
output operand has been written to the destination register
means; and
(b) ifthe at least one input operand satisfies the predetermined
condition, controlling the processing pipeline means to per-
form the data processing operation including the at least one
conditional processing step to generate the output operand a
second number of processing cycles later than the start pro-
cessing cycle, where the second number is greater than the
first number;
wherein the processing pipeline means is configured to
write the output operand to the destination register
means a predetermined number of processing cycles
later than the start processing cycle, said predetermined
number being the same regardless of whether the at least
one input operand satisfies the predetermined condition.
21. A method of performing a data processing operation for
generating an output operand in response to at least one input
operand and for writing the output operand to a destination
register of a plurality of registers, the data processing opera-
tion including at least one conditional processing step which
is required only if the at least one input operand satisfies a
predetermined condition; the method comprising:
detecting whether the at least one input operand for the data
processing operation satisfies the predetermined condi-
tion;
if the at least one input operand does not satisfy the prede-
termined condition, controlling a processing pipeline to
perform the data processing operation bypassing the at
least one conditional processing step to generate the
output operand a first number of processing cycles later
than a start processing cycle in which the processing
pipeline starts performing the data processing operation,
and forwarding the output operand via a forwarding path
before the output operand has been written to the desti-
nation register, for use by a subsequent data processing
operation;
ifthe at least one input operand satisfies the predetermined
condition, controlling the processing pipeline to per-
form the data processing operation including the at least
one conditional processing step to generate the output
operand a second number of processing cycles later than
the start processing cycle, where the second number is
greater than the first number; and
writing the output operand to the destination register a
predetermined number of processing cycles later than
the start processing cycle, said predetermined number
being the same regardless of whether the at least one
input operand satisfies the predetermined condition.

#* #* #* #* #*

