US 20150261686A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2015/0261686 A1

NAMPOOTHIRI et al. (43) Pub. Date: Sep. 17, 2015
(54) SYSTEMS AND METHODS FOR GO6F 11/16 (2006.01)
SUPPORTING DEMAND PAGING FOR GOG6F 13/28 (2006.01)
SUBSYSTEMS IN A PORTABLE COMPUTING GOG6F 13/24 (2006.01)
ENVIRONMENT WITH RESTRICTED (52) US.CL
MEMORY RESOURCES CPC GO6F 12/1009 (2013.01); GOG6F 13/28
] (2013.01); GOGF 13/24 (2013.01); GOGF
(71) Applicant: QUALCOMM INCORPORATED, 11/1666 (2013.01); GOG6F 9/45533 (2013.01);
SAN DIEGO, CA (US) GOGF 2212/403 (2013.01); GO6F 2009/45575
2013.01
(72) Inventors: SANKARAN NAMPOOTHIRI, ()
BANGALORE (IN); ARUN
VALIAPARAMBIL, BANGALORE 7) ABSTRACT
(IN); SUBODH SINGH, BANGALORE A portable computing device is arranged with one or more
(IN); AZZEDINE TOUZNI, SAN subsystems that include a processor and a memory manage-
DIEGO, CA (US) ment unit arranged to execute threads under a subsystem level
. operating system. The processor is in communication with a
(73) Assignee: QUALCOMM INCORPORATED, primary memory. A first area of the primary memory is used
SAN DIEGO, CA (US) for storing time critical code and data. A second area is
. available for demand pages required by a thread executing in
(21) Appl. No.: 14/210,512 the processor. A secondary memory is accessible to a hyper-
29} Filed: Mar. 14. 2014 visor. The processor generates an interrupt when a page fault
22) ’ is detected. The hypervisor, in response to the interrupt, ini-
Publication Classification tiates a direct memory transfer of information in the second-
ry
ary memory to the second area available for demand pages in
(51) Int.ClL the primary memory. Upon completion of the transfer, the
GOG6F 12/10 (2006.01) hypervisor communicates a task complete acknowledgement
GOG6F 9/455 (2006.01) to the processor.
200 . pmm————————
T | MEMORY MAP | —
DEVICE O/S 270 ' (VIRTUAL) 260 | =
270 g s L
: [FIRSTAREA | vy | [FIRSTAREA
247 275 VIRTUAL | | | IINTOLERANT
DRIVER | | | CODE
|]
D olooomil o 2
| IS oo || DEMAND
Yy | SECOND AREA | | PAGE AREA 285
HYPERVISOR 240 | | I LATENCY 4
| | : TOLERANT A 2
(I | CODE
SCHEDULER L 265] !
)| i)
{246 paciNGlol ! ': FAULT :
DRIVER[| 7 :If‘D_DBE_SS_ —_—
EMMC I L‘::::::Ziéi_! Y
22 |lq »| 248 STORAGE SUBSYSTEM
DRIVER PROCESSOR 310
FLASH STORE yy
255
SYSTEM 242 INTERRUPT| |{GIC le|INT. 222
MEMORY 250 HANDLER 230[" [ROUTER INTERRUPTS

)

DMA CONNECTION

FIG. 1

Patent Application Publication Sep. 17,2015 Sheet 1 of 7 US 2015/0261686 A1
100 \
Power N
— Display / Supply ™~
120 Touchscreen | ™ 132 180
142
. 33— 128
Display usB
1
33 Cntlr 216 Cntlr \\ UL%B
“Touchscreen RAM System | | 140 \
13< 13{ 134| cntrr —| 210[|_Memory [I~,00 143
— X — CPU_ 215 / | 190
Video Video [|Video | | 1 GPU
Port Amp. Enc. Core0 /216 147
2 146
Core1 217 — A~ 148
154 152 SIM card] .
\ A e CCD/
: N 230
Stereo Audio 240 188\ CMOS
1 N
Spkr Amp. 5< Nt(-l‘:tz\;\/rzrk Camera
Stereo \
Spkr —| Stereo/ X7
- Audio Codec 172
| Int. C RF
156 —
Mic. || Fm J bSP 222 System S\Siltzch
Amp. || Tuner \ ™~
Mic. |7 ‘ \ 212 170
158 Stereo | 220 Keypad
116 164X7 162 | “port oo 174
\ Headset / ™~ 176
166 Mic.
Vibrator 1
178

US 2015/0261686 Al

Sep. 17,2015 Sheet 2 of 7

Patent Application Publication

NOILOANNOD VYINQ
S1dNYYILNI TR 0tz Y31ANVH 05C AHOWINW
zzz N[l oo 1dNYY3INI 272 WN3LSAS
» []e4
— 3HOLS HSYT
0l H0SS3D0Hd d3AIEA L
N3LSASENS OVOLS BV [T |5
i ey | OWINT
| |2 wmqumﬂ" _ MEENEE
" 1inv4l __A| ONIOVd O%¢ et —— — — — — -
DL Fovd) | _
L 7T 77 |
oz ||
3a0o _ I d371NA3HOS "
y v INvy3ToL | | Il |
— \o AONILVYT | " " " 074 HOSIAYIdAH
592 V3YV 39vd
aNVW3Q | 1_Y3¥YaNOO3S) \ LS/
— TTroc————7 | \ 39vd
8¢ || c9¢ | | o4did
3600 1] || NENRe
I NVHITOLNII _ _ " WNLAIA + §72 192
vagy 1suid| | AN L vayy ! __
||||| L Yguy iy | 072 S/0 30IA3A
37 vy | 05 (WVNLYIN) _
| dvN Adowaw | %
||||||||| - 002

US 2015/0261686 Al

Sep. 17,2015 Sheet 3 of 7

Patent Application Publication

d31N0Y LdNYH3LNI

m .mv_ n_ VIA 4OSIAYIdAH
NOYH LdNYHILNI
gt
o @
1INN
INIWIDOVYNYIN >
AHOW3INW @
- ﬂwwwwwmwm AHOWIN WILSAS OL
P N Od ® 300D
HOSIAYAdAH T ~~o INVH3ITOL AONILY
OL LdNYYILNI
AN3S % 31Y4ANTID OL @ k @ (LoOg 1Y
d31N0Y LdNYYILNI — —= Y NvY OL AMOW3IW WILSAS
TVNOIS < vm_o,._ozz SSIN 39Vd ’ mm._oz_._ avayHl NO¥4 v1vd d3Sh
@ ATLNINOIY4 ® 30D
@ H e ﬁ INVHITOLNI AONILYT)
Z¢ce GEe
av3adHL d371NA3IHOS
(3 S/O W3LSASENS
LININNOHIANT
*— 00¢

NOILND3X3 WILSASANS

US 2015/0261686 Al

Sep. 17,2015 Sheet 4 of 7

Patent Application Publication

H31N0Y 1dNYYALNI

¥ "Old

NOYH @ > 0Ot7 J19
L HOSSID0Nd
012 JHOO-ILINIA
3137dNOD ~.
HI4SNVAL . ©, Y
VNG N Y
\ S~
\ ///
YI4SNVHL v]
VNG - NERIN
NE e _
JLVILINI JOVNOIS T2 LdNYYIINI T2
H31NoY @
LdNYYILNI @
oL @ —
- vhe >
yanda gz |6 o~ | ¥3INa3HoS
- e ONIOVd Q
AHOWIIN WALSAS oz HOSIAYIAAH
NI SS3daay
IVOISAHd —
0L avol oz [d93Aaa
WNLHIA §72
LININNOHIANT S/0331A3a
NOILND3X3 NOILYDITddY
" 00t

Patent Application Publication Sep. 17,2015 Sheet S of 7 US 2015/0261686 A1

500
X (START)

A 4

ARRANGE A FIRST PHYSICAL MEMORY ELEMENT WITH
FIRST AND SECOND STORAGE REGIONS 502

y

STORE NON-DELAY TOLERANT CODE / DATA IN FIRST
STORAGE REGION 504

v

STORE DELAY TOLERANT CODE IN A SYSTEM MEMORY
COUPLED TO THE FIRST MEMORY AND MANAGED BY A
HYPERVISOR 506

A 4

DETECT A PAGE FAULT IN A THREAD EXECUTING IN A
SUBSYSTEM EXECUTION ENVIRONMENT 508

Y

PLACE THE THREAD IN A WAIT QUEUE

n
—
o

A

SEND INTERRUPT TO THE HYPERVISOR 1

N

v

USE THE HYPERVISOR TO TRANSFER THE MISSING
INFO IDENTIFIED BY THE PAGE FAULT FROM THE
SYSTEM MEMORY TO THE FIRST PHYSICAL MEMORY

ELEMENT 214

A4

SEND INTERRUPT TO THE SUBSYSTEM

1

16

Y

REMOVE THREAD FROM THE WAIT QUEUE 518

y

RESUME THREAD EXECUTION IN SUBSYSTEM g5

A 4

END

FIG. 5

Patent Application Publication Sep. 17, 2015 Sheet 6 of 7 US 2015/0261686 A1

600 ~

STORE LATENCY TOLERANT CODE & INFREQUENTLY
USED DATA IN A SYSTEM MEMORY 601

y
STORE LATENCY INTOLERANT CODE & READ ONLY
DATA IN A RANDOM ACCESS MEMORY 602

4

CONT.
THREAD?

603

PAGE MISS HANDLER SUSPENDS AN EXECUTING
THREAD WHILE SCHEDULER ENABLES OTHER THREADS
TO CONTINUE TO EXECUTE 605

Y

GENERATE AN INTERRUPT & SEND TO APPLICATION
EXECUTION ENVIRONMENT 606

USE AN INTERRUPT CONTROLLER / ROUTER TO DIRECT
THE INTERRUPT TO A GIC 607

Y
SEND INTERRUPT TO THE HYPERVISOR 608

USE AN INTERRUPT HANDLER IN THE HYPERVISOR TO
SUBMIT A TASK REQUEST TO A SCHEDULER 609

!

O

FIG. 6A

Patent Application Publication Sep. 17, 2015 Sheet 7 of 7 US 2015/0261686 A1

600
g) X

(continue

USE THE SCHEDULER TO GENERATE A PAGE LOAD
COMMAND FOR A PAGING DRIVER 610

y

SEND A BLOCK READ COMMAND FROM THE PAGING
DRIVER TO A STORAGE DRIVER 611

A\ 4

LOAD INFREQUENTLY USED PAGE
TO VIRTUAL MAP 612

\ 4
USE THE STORAGE DRIVER TO INITIATE A DMA
TRANSFER FROM SYSTEM MEMORY TO A DEMAND
PAGE AREA IN RAM 613

!

RECEIVE AN INDICATOR WITH THE STORAGE DRIVER
THAT THE DMA TRANSFER IS COMPLETE 544

v

GENERATE A TASK COMPLETE SIGNAL AND FORWARD
TO INTERRUPT CONTROLLER 615

v

USE THE INTERRUPT CONTROLLER TO FORWARD AN
INTERRUPT TO THE SUBSYSTEM EXECUTION
ENVIRONMENT 16

y

SEND A SIGNAL TO A THREAD HANDLER THAT THE
PAGE TRANSFER IS COMPLETE 617

USE THREAD HANDLER TO MARK THE SUSPENDED
THREAD AS READY FOR EXECUTION 618

A
USE A SCHEDULER TO DECIDE WHICH THREAD
SHOULD BE EXECUTED

(*) FIG.6B

(o))
—
©

US 2015/0261686 Al

SYSTEMS AND METHODS FOR
SUPPORTING DEMAND PAGING FOR
SUBSYSTEMS IN A PORTABLE COMPUTING
ENVIRONMENT WITH RESTRICTED
MEMORY RESOURCES

DESCRIPTION OF THE RELATED ART

[0001] Computing devices are ubiquitous. Some comput-
ing devices are portable such as smartphones, tablets and
laptop computers. In addition to the primary function of these
devices, many include elements that support peripheral func-
tions. For example, a cellular telephone may include the
primary function of enabling and supporting cellular tele-
phone calls and the peripheral functions of a still camera, a
video camera, global positioning system (GPS) navigation,
web browsing, sending and receiving emails, sending and
receiving text messages, push-to-talk capabilities, etc. As the
functionality of such portable computing devices increases,
the computing or processing power required and generally the
data storage capacity to support such functionality also
increases. However, manufacturers of cellular telephones and
other portable computing devices are motivated by power
consumption, size, weight and device production costs to
identify and implement performance improvements without
necessarily increasing the data storage capacity available to
the various subsystems implemented in these devices.
[0002] Some conventional designs for handheld portable
computing devices include multiple processors and/or pro-
cessors with multiple cores to support the various primary and
peripheral functions desired for a particular computing
device. Such designs often integrate analog, digital and radio-
frequency circuits or functions on a single substrate and are
commonly referred to as a system on a chip (SoC). Some of
these highly integrated systems or subsystems of the portable
computing device include a limited number of internal
memory circuits to support the various processors. Some
other integrated systems or subsystems of the portable com-
puting device share memory resources available on the por-
table computing device. Thus, optimizing memory require-
ments for each supported subsystem is an important factor in
ensuring a desired user experience is achieved in an environ-
ment with limited random access memory (RAM) capacity.
[0003] Demand paging is a known method for reducing
memory capacity requirements under such circumstances.
Demand paging is a mechanism where delay intolerant code
is placed in RAM when the system is initialized and delay
tolerant code gets transferred into RAM when it is needed by
a process. Thus, pages that include delay tolerant code are
only transferred into RAM if the executing process demands
them. Contrast this to pure swapping, where all memory for a
process is swapped from secondary storage to main memory
during the process startup.

[0004] Commonly, to achieve this process a page table
implementation is used. The page table maps logical memory
to physical memory. The page table uses a bitwise operator to
mark if a page is valid or invalid. A valid page is one that
currently resides in main memory. An invalid page is one that
currently resides in the secondary memory and that must be
transferred to the main memory.

[0005] In some conventional implementations of portable
computing devices, such as those supported by multiple pro-
cessors functioning in separate execution environments,
demand paging is supported with controllers enabled with
NAND logic circuits. These conventional implementations

Sep. 17, 2015

use multiple channels to manage the data transfers. The intro-
duction of embedded multimedia card (eMMC) based
memory, which includes a single port, preempts the use of the
conventional controllers using conventional paging methods
as many of the controllers cannot support access from mul-
tiple processors running in separate execution environments.

SUMMARY OF THE DISCLOSURE

[0006] Example embodiments of systems and methods are
disclosed that manage page transfers from a virtual memory
space or map to a physical memory. The systems and methods
reduce paging overhead demands on subsystems and are
applicable on computing devices that include storage systems
that support both single and multiple channel memory sys-
tems. The systems and methods are scalable and can be
exposed to, or used by, multiple subsystems on a portable
computing device. A hypervisor operating in a software layer
executing at a higher privilege level than a subsystem oper-
ating system receives interrupt requests for demand pages
from a subsystem processor. The hypervisor includes an
interrupt handler that submits jobs to a task scheduler. The
task scheduler interacts with appropriate drivers to initiate a
transfer of a requested page to the physical memory. Comple-
tion of the transfer is communicated to the hypervisor from a
device driver. The hypervisor, acting in response to an indi-
cation that the transfer is complete, communicates a paging
complete acknowledgement to the sub-system processor.
Upon receipt of the acknowledgement, the subsystem proces-
sor marks the faulting task or thread as ready for execution.
The subsystem either resumes execution of the suspended
thread or leaves the thread in a queue in accordance with a
scheduling policy implemented on the subsystem.

[0007] The systems and methods are scalable across mul-
tiple subsystems within a portable computing device and
introduce negligible subsystem overhead for on demand pag-
ing. The systems and methods provide a solution that enables
manufacturers to reduce subsystem memory requirements
[0008] An example embodiment includes a processor sup-
ported by a memory management unit, a first or volatile
memory (e.g., arandom access memory or RAM), a second or
non-volatile memory (e.g., a system memory supported by a
flash-based element or elements), and a hypervisor. The pro-
cessor and the memory management unit are arranged to
execute threads in accordance witha subsystem level operat-
ing system that identifies a page fault and generates an inter-
rupt when the volatile memory supporting the subsystem
does not contain a desired page. The second or non-volatile
memory is coupled to an application processor operating
under a device level operating system. The first or volatile
memory includes a first area for time critical code and read
only data and a second area for pages required by a thread
executing under the subsystem level operating system on the
processor. The second or non-volatile memory is accessible
to the hypervisor, which is operating in accordance with
execution privileges that supersede respective execution
privileges of the main operating system. The hypervisor
responds to the interrupt issued by the processor in the sub-
system. The hypervisor reads information stored in the sec-
ond or non-volatile memory, loads the information into the
first or volatile memory, and forwards a task complete
acknowledgement to the processor.

[0009] Anexample embodimentincludes a method for sup-
porting on-demand paging across subsystems in a portable
computing environment with limited memory resources. The

US 2015/0261686 Al

method includes the steps of: arranging a first physical
memory element with a first storage region and a second
storage region, storing delay intolerant code in the first stor-
age region and delay tolerant code in the second storage
region, arranging a second physical memory element with a
respective first area that mirrors the content of the first storage
region and a second area, the second physical memory ele-
ment coupled to the first physical memory element through a
hypervisor, detecting a page fault related to a task executing in
a subsystem, placing the task in a wait queue, communicating
an interrupt to the hypervisor, using the hypervisor to manage
a transfer of information identified as missing from the sec-
ond physical memory element by the page fault from the first
physical memory element to the second physical memory
element, communicating an interrupt to the subsystem, and
changing an indicator associated with the task.

[0010] Another example embodiment is a non-transitory
processor-readable medium having stored therein processor
instructions and data that direct the processor to perform
various functions including generating a hypervisor having
an interrupt handler, scheduler, paging driver and a storage
driver, the interrupt handler coupled to the scheduler and
responsive to an interrupt received from a subsystem proces-
sor, the scheduler arranged to communicate page load
instructions to a paging driver that manages a virtual memory
map and further communicates with the storage driver, the
storage driver communicating with an embedded multi-me-
dia card controller with flash memory; using the interrupt
handler to identify an interrupt from a subsystem of'a portable
computing device, the interrupt including information iden-
tifying a page fault identified within the subsystem, and to
generate a job request to the scheduler; receiving the job
request with the scheduler; generating a corresponding page
load instruction with the scheduler; communicating the page
load instruction to the paging driver; using the paging driver
to generate a read request; communicating the read request to
the storage driver; using the storage driver to initiate a direct
memory access transfer from the flash memory to a random
access memory element accessible to the subsystem proces-
sor; receiving an indication from the storage driver that the
direct memory access transfer is complete; and generating
and communicating a return interrupt to the subsystem in
response to the indication from the storage driver that the
direct memory access transfer is complete.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Inthe drawings, like reference numerals refer to like
parts throughout the various views unless otherwise indi-
cated. For reference numerals with letter character designa-
tions such as “102A” or “102B”, the letter character designa-
tions may differentiate two like parts or elements present in
the same figure. Letter character designations for reference
numerals may be omitted when it is intended that a reference
numeral to encompass all parts having the same reference
numeral in all figures.

[0012] FIG. 1 is a schematic diagram illustrating an
example embodiment of a portable computing device.
[0013] FIG.2 is schematic diagram illustrating an example

embodiment of a system for supporting demand paging in the
PCD of FIG. 1.

[0014] FIG. 3 is a schematic diagram illustrating an
example embodiment of a subsystem execution environment
in the system for supporting demand paging of FIG. 2.

Sep. 17, 2015

[0015] FIG. 4 is a schematic diagram illustrating an
example embodiment of an application execution environ-
ment in the system for supporting demand paging of FIG. 2.
[0016] FIG. 5 is a flow diagram illustrating an example
embodiment of a method for managing on demand paging in
the system of FIG. 2.

[0017] FIGS. 6A and 6B is a flow diagram of an alternative
embodiment of a method for managing demand paging in the
execution environments of FIG. 3 and FIG. 4.

DETAILED DESCRIPTION

[0018] Theword “exemplary” is used herein to mean “serv-
ing as an example, instance, or illustration.” Any aspect
described herein as “exemplary” is not necessarily to be con-
strued as preferred or advantageous over other aspects.
[0019] In this description, the term “application” may also
include files having executable content, such as: object code,
scripts, byte code, markup language files, and patches. In
addition, an “application” referred to herein, may also include
files that are not executable in nature, such as documents that
may need to be opened or other data files that need to be
accessed.

[0020] The term “content” may also include files having
executable content, such as: object code, scripts, byte code,
markup language files, and patches. In addition, “content”
referred to herein, may also include files that are not execut-
able in nature, such as documents that may need to be opened
or other data files or data values that need to be accessed.
[0021] As used in this description, the terms “component,”
“module,” “system,” and the like are intended to refer to a
computer-related entity, either hardware, firmware, a combi-
nation of hardware and software, software, or software in
execution. For example, a component may be, but is not
limited to being, a process running on a processor, a proces-
sor, an object, an executable, a thread of execution, a program,
and/or a computer. By way of illustration, both an application
running on a computing device and the computing device
may be a component. One or more components may reside
within a process and/or thread of execution, and a component
may be localized on one computer and/or distributed between
two or more computers or execution cores. In addition, these
components may execute from various computer-readable
media having various data structures stored thereon. The
components may communicate by way of local and/or remote
processes such as in accordance with a signal having one or
more data packets (e.g., data from one component interacting
with another component in alocal system, distributed system,
and/or across a network such as the Internet with other sys-
tems by way of the signal).

[0022] In this description, the term “portable computing
device” (“PCD”) is used to describe any device operating on
a limited capacity rechargeable power source, such as a bat-
tery and/or capacitor. Although PCDs with rechargeable
power sources have been in use for decades, technological
advances in rechargeable batteries coupled with the advent of
third generation (“3G”) and fourth generation (“4G”) wire-
less technology have enabled numerous PCDs with multiple
capabilities. Therefore, a PCD may be a cellular telephone, a
satellite telephone, a pager, a PDA, a smartphone, a naviga-
tion device, a smartbook or reader, a media player, a combi-
nation of the aforementioned devices, a laptop or tablet com-
puter with a wireless connection, among others.

[0023] A scalable framework for enabling on demand pag-
ing to support the memory requirements of one or more

US 2015/0261686 Al

subsystem execution environments within the PCD is illus-
trated and described. In the example embodiments, determin-
istic paging support for such subsystem execution environ-
ments is enabled by a hypervisor executing in the application
core. Alternatively, a hardware-enabled paging engine oper-
ating in conjunction with a memory controller and a flash
memory unit can provide a uniform solution for on demand
paging for one or more subsystem execution environments in
a PCD.

[0024] For example, a radio-frequency subsystem includes
a modem that contains delay tolerant code and read only data
that is not required to support a present operational mode. A
digital signal processor and other processing subsystems will
use respective delay tolerant code and read only data. Such
delay tolerant code and read only data need not be loaded into
a random access memory supporting the subsystem at the
initial boot or power up of the PCD or initialization of the
subsystem. Accordingly, the memory capacity demands of
such subsystems can be optimized in those PCDs where a
hypervisor or hardware-enabled paging engine is added to the
PCD.

[0025] Although described with particular reference to
operation within a PCD, the described systems and methods
are applicable to any computing system having a subsystem
with a limited internal memory or access to a limited capacity
memory element. Stated another way, the computing systems
and methods disclosed herein are applicable to desktop com-
puters, server computers or any electronic device with a lim-
ited internal memory capacity. The computing systems and
methods disclosed herein are particularly useful in systems or
devices that deploy an embedded flash memory as a general
purpose storage element.

[0026] Reference is now directed to the illustrated
examples. Referring initially to FIG. 1, an exemplary, non-
limiting aspect of a portable computing device (PCD) is
shown and is generally designated 100. As shown, the PCD
100 includes an on-chip system 120 that includes a multiple-
core CPU 210. The multiple-core CPU 210 includes a zero™
core 215, a 1% or first core 216, and an N core 217, where N
is an integer. Each of the N cores are independent from each
other and arranged to process instructions such as add, move
data, branch, etc. The multiple-core CPU 210 includes at least
one general interrupt controller (GIC) 230 and supports the
execution of processor instructions that enable a hypervisor
240. Each of the N cores operates in conjunction with signals
communicated on the various connections that couple the
multiple-core CPU 210 to the other controllers, encoders,
decoders supporting the various on-chip and off-chip devices.
As briefly described, one or more of these controllers, encod-
ers, decoders, may be operated with limited code and data
storage resources.

[0027] Asillustrated in FIG. 1, a display controller 128 and
atouch screen controller 130 are coupled to the multiple-core
CPU 210. In turn, display/touchscreen 132, external to the
on-chip system 120, is coupled to the display controller 128
and the touch screen controller 130. In addition, a video
encoder 134, e.g., a phase alternating line (PAL) encoder, a
sequential couleur a memoire (SECAM) encoder, or a
national television system(s) committee (NTSC) encoder, are
coupled to the multiple-core CPU 210. Further, a video
amplifier 136 is coupled to the video encoder 134 and the
display/touchscreen 132. A video port 138 is coupled to the
video amplifier 136. As depicted in FIG. 1, a universal serial
bus (USB) controller 140 is coupled to the multiple-core CPU

Sep. 17, 2015

210. AUSB storage device 142 is coupled to the USB con-
troller 140. A system memory 230 and a subscriber identity
module (SIM) card interface 146 may also be coupled to the
multiple-core CPU 210. The connection between the mul-
tiple-core CPU 210 and the system memory 230 may consist
of'two or more physical channels or paths for transferring data
between the multiple-core CPU 210 and any of the coupled
devices or elements of the on-chip system 120. Further, as
shown in FIG. 1, a digital camera 148 may be coupled to the
multiple-core CPU 210. In an exemplary aspect, the digital
camera 148 is a charge-coupled device (CCD) camera or a
complementary metal-oxide semiconductor (CMOS) cam-
era.

[0028] As illustrated in FIG. 1, a stereo audio CODEC 150
may be coupled to the multiple-core CPU 210. Moreover, an
audio amplifier 152 may be coupled to the stereo audio
CODEC 150. In an exemplary aspect, a first stereo speaker
154 and a second stereo speaker 156 are coupled to the audio
amplifier 152. FIG. 1 shows that a microphone amplifier 158
may be also coupled to the stereo audio CODEC 150. Addi-
tionally, a microphone 116 may be coupled to the microphone
amplifier 158. In a particular aspect, a frequency modulation
(FM) radio tuner 162 may be coupled to the stereo audio
CODEC 150. Also, a FM antenna 164 is coupled to the FM
radio tuner 162. Further, a stereo port 166 may be coupled to
the stereo audio CODEC 150.

[0029] FIG. 1 also indicates that a radio frequency (RF)
system or transceiver 212 is coupled to the multiple-core CPU
210 by way of an interrupt controller 220. In the illustrated
embodiment, the interrupt controller 220 receives and distrib-
utes interrupt signals between the multiple-core CPU 210 and
the RF system 212. An RF switch 170 may be coupled to the
RF system 212 and an antenna 172. As shown in FIG. 1, a
keypad 174 is coupled to the multiple-core CPU 210. Also, a
mono headset with a microphone 176 may be coupled to the
multiple-core CPU 210. Further, a vibrator device 178 may be
coupled to the multiple-core CPU 210. FIG. 1 further shows
that a power supply 180 may be coupled to the on-chip system
120 via the USB controller 140. In a particular aspect, the
power supply 180 is a direct current (DC) power supply that
provides power to the various components of the PCD 100
that require a power source. Further, in a particular aspect, the
power supply 180 is a rechargeable DC battery ora DC power
supply that is derived from an alternating current (AC) to DC
transformer that is connected to an AC power source.

[0030] FIG. 1 further indicates that the PCD 100 may also
include a network card 188 that may be used to access a data
network, e.g., a local area network, a personal area network,
or any other network. The network card 188 may be a Blue-
tooth network card, a WiFi network card, a personal area
network (PAN) card, or any other network card well known in
the art. Further, the network card 188 may be incorporated in
an integrated circuit. That is, the network card 188 may be a
full solution in a chip, and may not be a separate network card
188.

[0031] As depicted in FIG. 1, the display/touchscreen 132,
the video port 138, the USB port 142, the camera 148, the first
stereo speaker 154, the second stereo speaker 156, the micro-
phone 116, the FM antenna 164, the stereo port 166, the RF
switch 170, the antenna 172, the keypad 174, the mono head-
set 176, the vibrator 178, and the power supply 180 are
external to the on-chip system 120.

[0032] The RF system 212, which may include one or more
modems, supports one or more of global system for mobile

US 2015/0261686 Al

communications (“GSM”), code division multiple access
(“CDMA”), wideband code division multiple access (“W-
CDMA”), time division synchronous code division multiple
access (“TDSCDMA”), long term evolution (“LTE”), and
variations of LTE such as, but not limited to, FDB/LTE and
PDD/LTE wireless protocols.

[0033] Inthe illustrated embodiment, a single instance of a
multi-core CPU 210 is depicted. However, it should be under-
stood that any number of similarly configured multi-core
CPUs can be included to support the various peripheral
devices and functions associated with the PCD 100. Alterna-
tively, a single processor or multiple processors each having
a single arithmetic logic unit or core could be deployed in a
PCD 100 or other computing devices to support the various
peripheral devices and functions associated with the PCD 100
as may be desired.

[0034] The illustrated embodiment shows a system
memory 230 that is arranged within a fully integrated on-chip
system 120. However, it should be understood that two or
more vendor provided memory modules having a corre-
sponding data storage capacity of M bytes may be arranged
external to the on-chip system 120. Wherever arranged, the
various memory modules supporting the system memory 230
are coupled to the CPU 210 by way of a multiple channel
memory bus (not shown) including suitable electrical con-
nections for transferring data and power to the memory mod-
ules. In an example embodiment, the system memory 230 is
an embedded flash storage element supported by an embed-
ded multimedia card controller.

[0035] FIG. 2 is schematic diagram illustrating an example
embodiment of a system 200 for supporting demand paging
in the PCD 100 introduced in FIG. 1. The system 200 includes
a primary memory element or RAM 216, a subsystem pro-
cessor 310, an interrupt router 222, a general interrupt con-
troller (GIC) 230, and a secondary or system memory 250.
The subsystem processor 310 is coupled to the RAM 216. The
subsystem processor 310 is also coupled via an interrupt
signal path with the interrupt router 222. The interrupt router
222 is coupled to the GIC 230 via another interrupt signal
path. The interrupt router 222 is disposed or located between
the GIC 230 and the subsystem processor 310. The interrupt
router 222 generates and distributes interrupt signals between
the subsystem processing environment and the application
processing environment.

[0036] In an embodiment, the GIC 230 is integrated with
the multi-core processor 210. Thus, interrupts received by the
GIC 230 are available to the interrupt handler 242 of the
hypervisor 240. In addition to these elements, the system 200
includes a hypervisor 240 that operates in accordance with
execution privileges that exceed those of a device operating
system (O/S) 270. The device O/S 270 includes a virtual
driver 275 for communicating with the hypervisor 240. Each
of the hypervisor 240, the device O/S 270 and the virtual
driver 275 are enabled by an application processing environ-
ment supported by the multi-core processor 210 and software
and data stored in the system memory 250.

[0037] As illustrated, the secondary or system memory 250
includes an embedded multi-media card controller (EMMC)
252, which manages a flash based store 255 and supports the
non-volatile storage of software and data to support the vari-
ous subsystems, interfaces and elements on the on-chip sys-
tem 120.

[0038] The hypervisor 240 includes an interrupt handler
242, ascheduler 244, a paging driver 246, and a storage driver

Sep. 17, 2015

248. The interrupt handler 242 receives interrupt signals from
the subsystem processor 310 and other subsystem processors
(not shown) via the interrupt router 222 and the GIC 230. The
interrupt handler 242, in response to information in a specific
interrupt signal, forwards a job request to the scheduler 244.
The scheduler 244, acting in conjunction with information
provided in the job request, generates a page load command
that is forwarded to the paging driver 246. The paging driver
246 interfaces with the storage driver 248 to direct read
requests of pages or blocks of stored code and data from the
system memory 250. The paging driver 246 also manages the
contents of the memory map 260. As part of the management
function, the paging driver 246 loads an address of the miss-
ing page or block of information in the virtual memory map
260. In addition, the paging driver 246 maintains a first-in
first-out list 247 or a database for identifying stale or old page
fault addresses that should be removed from the virtual
memory map 260. As indicated, the first-in-first-out list 247
may be stored in the system memory 250 or in a set of
registers (not shown). In addition to those functions, the pag-
ing driver 246 also generates a return interrupt which is com-
municated to the interrupt router 222 before being forwarded
to the subsystem processor 310. The storage driver 248 inter-
faces with the EMMC 252 to read and write code and data in
the flash store 255.

[0039] Asillustrated, the virtual memory map 260 includes
a first area or region 262 and a second area or region 264. The
first area 262 includes delay intolerant code, frequently used
code and data that supports the operation of one or more
subsystems of the PCD 100. The contents of this first area 262
of'the memory map 260 is transferred to a corresponding first
area 282 of the RAM 216 during a PCD 100 boot operation or
when the subsystem is powered on. The memory map 260
also includes a second area or region 264 for maintaining a
record of the storage location of latency tolerant code and data
that is infrequently used by the one or more subsystems of the
PCD 100. Subsystem specific code is stored in the system
memory 250 during a configuration or installation procedure.
One or more page fault addresses such as the page fault
address 265 is recorded in the second area or region 264 ofthe
virtual memory map 260. This information is used to support
direct memory access transfers from the system memory 250
to an on-demand page area 285 or region available in the
RAM 216. The on-demand page area 285 or region is a range
of addressable locations in the RAM 216.

[0040] In an alternative embodiment (not shown), the stor-
age driver 248 is replaced by a decompression engine and the
system memory 230 includes a random access memory
(RAM) module or modules. The latency tolerant code and
data stored in the RAM module or modules is compressed
either prior to or as a step in the storage process. The decom-
pression engine is responsive to one or more commands or
requests issued by the paging driver 246 to access and decom-
press the compressed latency tolerant code and data stored in
the RAM. The decompressed information (code and data) is
inserted into the virtual memory map and available for a direct
memory access transfer to the primary memory element
being used to support the subsystem.

[0041] FIG. 3 is a schematic diagram illustrating an
example embodiment of a subsystem execution environment
300 in the system for supporting demand paging introduced
in FIG. 2. In a preliminary or configuration step or steps, code
and data used by the subsystem execution environment 300 is
analyzed for frequency of use and its tolerance for delays. As

US 2015/0261686 Al

described, delay or latency intolerant code and frequently
used read only data may be stored separately from the delay
tolerant and infrequently used data. Alternatively, delay intol-
erant code and frequently used data may be stored together
but separately identified from delay tolerant code and infre-
quently used data. When the PCD 100 is booted, or alterna-
tively when the subsystem is initiated, the delay intolerant
code and frequently used data is transferred into a first region
or area of the RAM coupled to the subsystem. The delay
tolerant and infrequently used data may be stored in the
system memory for retrieval as needed by the described sys-
tem for on demand paging. However defined, code and data
used by the subsystem is initially stored in the system
memory 230 as indicated by the arrow labeled with an
encircled “1

[0042] As illustrated, the subsystem execution environ-
ment 300 is supported by a subsystem processor 310 and a
memory management unit 315. Together, the subsystem pro-
cessor 310 and the memory management unit 315 execute a
set of stored instructions arranged to support a thread 332, a
page miss handler 331, a thread handler 334, and a scheduler
335. Each of the page miss handler 331, the thread 332, the
thread handler 334, and the scheduler 335 are managed under
a subsystem operating system 330, which may be a real-time
operating system that is not exposed or otherwise accessible
to user applications and programs. A thread 332 is a sequence
of processor or programmed instructions that can be handled
independently. When code or data required by the thread 332
is not present in the RAM 216 (not shown), the subsystem
processor 310 acting in conjunction with the memory man-
agement unit 315 will forward an indication of a thread local
buffer miss to the page miss handler 331, as indicated by the
arrow labeled with the encircled “2.” The thread local buffer
miss signal is an indication that data required by the executing
thread 332 is not presently available in the RAM 216 support-
ing the subsystem. As further illustrated in FIG. 3, the page
miss handler 331 generates a wait or suspend signal to the
thread 332 and places a thread identifier in a queue. The
communication of the wait or suspend signal from the page
miss handler 331 to the thread 332 is illustrated by the arrow
labeled with the encircled “3.” As indicated by the arrow
labeled with the encircled “4”, the page miss handler 331 also
generates and communicates a signal, which is directed to the
interrupt router 222 (not shown) and designated for the appli-
cation execution environment on the PCD. The interrupt
router 222 generates an interrupt signal in responsive to infor-
mation from the page miss handler 331. Accordingly, the
interrupt signal communicated from the interrupt router 222
to the hypervisor 240 includes an identifier associated with
the thread 332 and an indication of the page or block of
information that is required by the subsystem execution envi-
ronment 300 but presently not available in the RAM 216.
While thread 332 is in a wait or suspend state or in the queue,
other threads, different from the thread 332 that triggered the
local buffer miss signal or fault, may continue to execute in
the subsystem execution environment 300 in accordance with
rules or algorithms applied by the scheduler 335.

[0043] The operation of the hypervisor 240 and the appli-
cation execution environment is described in detail in asso-
ciation with the embodiment illustrated in FIG. 4. For pur-
poses of understanding the subsystem execution environment
300, as illustrated in FIG. 3, the hypervisor 240 forwards a
task complete signal to the interrupt router 222 which in turn
generates and forwards an interrupt signal, as indicated by the

Sep. 17, 2015

arrow labeled with the encircled “12” to the subsystem pro-
cessor 310. The interrupt signal includes information indicat-
ing that the missing code and or data identified by the page
miss handler 331 of the subsystem is now present and avail-
able in the on-demand paging area of the RAM 216. In
response to the interrupt from the hypervisor 240, the sub-
system processor 310, as illustrated by the arrow labeled with
an encircled “13,” sends a page complete signal or command
to the thread handler 334 indicating that the paging task is
complete. In turn, the thread handler 334 updates a status
identifier associated with the thread 332 from “wait” or “sus-
pended” to “ready” and communicates the status change to
the scheduler 335, as shown by the arrow labeled “14.”. The
scheduler 335, acting in accordance with a scheduling policy,
either resumes execution of the suspended thread or leaves the
thread 332 in the queue. When appropriate in accordance with
the scheduling policy, the scheduler 335 removes the sus-
pended thread from the wait queue and/or reactivates the
execution status of the thread 332.

[0044] FIG. 4 is a schematic diagram illustrating an
example embodiment of an application execution environ-
ment 400 in the system for supporting demand paging intro-
duced in FIG. 2. As illustrated, the application execution
environment is supported by the multi-core processor 210
executing instructions stored in firmware or software in the
PCD. The multi-core processor 210 is arranged to receive
interrupt requests in the form of hardware signals from the
general interrupt controller 230. Each processing core is
coupled via at least one signal path to receive such standard
interrupt requests. When the multi-core processor 210 is
arranged using an architecture based on a reduced instruction
set computing (RISC) architecture, each processing core (not
shown) may be further coupled with a second or alternative
signal path for receiving a second interrupt signal. These
second interrupt signals are associated with a mode of opera-
tion that uses a dedicated bank of registers that are not used as
part of the standard interrupt processing routine and remain
unaltered from one call to the next. When a core receives an
interrupt from the second interrupt signal path, it masks the
standard interrupt until the second interrupt is processed.

[0045] As further illustrated in FIG. 4, the multi-core pro-
cessor 210 supports a device operating system 270, which
includes a virtual driver 275 and generates a hypervisor 240.
The hypervisor 240 is a virtual machine monitor for manag-
ing a virtual memory map 260 in support of one or more
physical memory elements coupled to respective subsystems
onthe PCD 100 and for managing direct memory access and
transfers from a system memory (i.e., a physical memory
element with a non-volatile data store) to a random access
memory (i.e., a second physical memory element with a
volatile data store). A separate and distinct instance of a
hypervisor 240 may be initiated and operated to support on
demand paging requirements of a separately specified sub-
system of the PCD 100. Although the multi-core processor
210 supports the hypervisor 240 (described in the illustrated
embodiments as a software entity), the device O/S 270 and
user applications on the PCD 100, it should be understood
that the hypervisor 240 is granted execution privileges that
exceed those of the device O/S 270.

[0046] As shown in FIG. 4, the hypervisor 240 is arranged
with an interrupt handler 242, a scheduler 244, a paging driver
246, and a storage driver 248. The labeled arrows illustrate a
sequence of signals that are communicated to, within and
from the application execution environment. The arrow

US 2015/0261686 Al

labeled with an encircled “5” represents an interrupt signal
received from an interrupt router 222. The received interrupt
signal includes information that defines a page or block of
information previously stored in the system memory 250 that
is not presently available to the subsystem that issued the
interrupt. In response to the interrupt signal, the multi-core
processor 210 forwards the interrupt signal, as indicated by
the arrow labeled with the encircled “6,” to the interrupt
handler 242. The interrupt handler 242 receives the interrupt
signal and as indicated by the arrow labeled with an encircled
“7,” communicates a job request to the scheduler 244. The
scheduler 244 operates in accordance with the information
received in the job request and in accordance with one or more
other signals from the device O/S 270 such as from the virtual
driver 275 or hardware sensors distributed across the various
systems of the PCD (not shown) to generate and communi-
cate a page load command, which as indicated by the arrow
labeled with an encircled “8,” is communicated to the paging
driver 246.

[0047] The paging driver 246, acting in response to the
received page load command, generates a block read com-
mand and forwards the command to the storage driver, as
illustrated by the arrow labeled with an encircled “9.” The
paging driver 246 also manages the contents of the virtual
map 260 via one or more signals indicated by the arrow
labeled with an encircled “10.” The virtual memory map
management process may include limiting the size of the
virtual memory by applying or enforcing one or more select
criteria to identify candidates for removal from the virtual
memory map 260. The select criteria may be supported by a
first-in first-out page list 247, a database, or other logic and
data including a least recently used algorithm, a random
selector, or a capacity comparator included in the paging
driver 246. One or more of these select criteria can be imple-
mented once the data represented in the virtual memory map
260 exceeds a threshold value.

[0048] Once the paging driver 246 has communicated the
block read command and completed any changes to the infor-
mation in the virtual memory map 260, the hypervisor 240
can be suspended or used to address other tasks until a signal
is received from the storage driver 248. The device operating
system 270 manages the direct memory access and transfer to
the RAM coupled to the operating system that initiated the
interrupt signal represented by the arrow encircled with “5.”
The virtual driver 275, which may be a para-virtualized driver
arranged to communicate with the hypervisor 240, will
receive a signal when the direct memory access and transfer
operation between the system memory 230 and the RAM 216
is complete. The hypervisor 240 may be suspended or used to
address alternative tasks (e.g., manage a schedule, update an
address in the memory map, etc.) while the device level
operating system 270 manages the data transfer between the
system memory 230 and the RAM 216 coupled to the sub-
system. Upon receipt of a signal from the storage driver 248
indicating that the direct memory access and transfer is com-
plete, the hypervisor 240 generates and communicates a task
complete signal from the paging driver 246 to the interrupt
router 222, as indicated by the arrow labeled with an encircled
“11.” That is, receipt of the restart signal or indicator from the
storage driver 248 signaling that the transfer is complete
prompts the hypervisor 240 to generate a task complete sig-
nal. The task complete signal is forwarded to the interrupt
router 222 and includes information identifying the sub-
system and the page or block of information that was trans-

Sep. 17, 2015

ferred to the on demand paging area 285 of the RAM 216. In
turn, the interrupt router 222 receives the task complete signal
and in response generates and forwards a return interrupt to
the subsystem processor 310.

[0049] FIG. 5 is a flow diagram illustrating an example
embodiment of a method for managing on demand paging in
the system of FIG. 2. As described, the method for managing
on demand paging is well suited for, but not exclusively
applicable to, PCD architectures that include subsystems
with dedicated processors and memory management units
supported by limited memory resources. Such subsystems
may be arranged with a memory element or elements that
include insufficient storage capacity to support all operational
modes and or demands that are expected to be placed on the
respective subsystem.

[0050] As illustrated, the method 500 begins with block
502 where a first physical memory element is arranged with
first and second storage regions. The first physical memory
element may be a dedicated RAM element or a portion of a
RAM element coupled to a subsystem. As indicated in block
504, the first storage region or area is used to store delay
intolerant or time critical code (also known as latency intol-
erant code) and read only data that is used by the subsystem.
In some arrangements, this first region may also include code
or instructions that are frequently used by the subsystem. The
first storage region or static area is populated with the time
critical code, read-only data, and when applicable, frequently
used data. The first storage region or static area is populated
when the subsystem is initialized, booted, or started. The
second storage region or on-demand area remains unpopu-
lated upon completion of the initialization or startup and is
available to receive one or more pages as page faults are
detected by the subsystem.

[0051] Inblock 506, a system memory or second physical
memory element that is managed by a hypervisor and coupled
to the first physical memory element by a data bus is used to
store delay tolerant code and data. In an example embodi-
ment, the system memory is an embedded multi-media card
controller with a flash memory store. Such a data storage
system provides extremely low-latency read data operations
and is accessible via conventional direct memory access
mechanisms as directed under a device level operating sys-
tem. As indicated, a device level operating system is an oper-
ating system that supports a user application processing envi-
ronment in the PCD. Such device level operating systems
have execution privileges that exceed or supersede execution
privileges of a subsystem operating system. Example device
level operating systems include iOS, Android, Symbian,
webOS and Windows. These example mobile device operat-
ing systems allow these devices to execute user applications
and programs. In contrast, subsystem operating systems are
typically specific to a particular interface of the PCD. These
subsystem operating systems will generally support a core
function of the PCD. Core functions may include graphics
processing, digital signal processing, video encoding/decod-
ing, radio frequency signal processing, etc. For example, a
modem (not shown) in a RF system 212 will manage the
various functions required to maintain connectivity with a
mobile service provider using one or more wireless commu-
nication protocols. One or more example subsystems may
support real-time functions in the PCD.

[0052] In alternative embodiments, (not shown) the con-
tents stored in at least a portion of the system memory or
second physical memory are compressed or otherwise

US 2015/0261686 Al

encoded to consume less data storage capacity when com-
pared to a format that is readily accessible and usable to the
corresponding subsystem. In these alternative embodiments,
the system memory may be coupled to a paging driver
through a decompression engine that is arranged to decode or
decompress the compressed code and data stored therein.
[0053] Through known methods and as indicated in block
508, the subsystem will detect or otherwise identify that an
executing thread is in need of code, data or both code and data
that is not presently available in the first physical memory
element. This condition is commonly known as a page faultor
amiss. As indicated in block 510, the subsystem suspends the
presently executing thread and places the executing thread in
a wait queue. In block 512, the subsystem initiates and sends
an interrupt to the hypervisor. The interrupt identifies a page
or block of information in the system memory that is needed
by the subsystem to complete the suspended thread.

[0054] Thereafter, as indicated in block 514, the hypervisor
is used to transfer the missing information identified in the
received interrupt from the system memory to the first physi-
cal memory element. The hypervisor is arranged with an
interrupt handler that forwards a job or task request to a
scheduler. The scheduler may be arranged as a single execu-
tion thread that generates a page load request to the paging
driver in accordance with various signals received from the
device level operating system. As briefly described, the pag-
ing driver of the hypervisor preferably sends a block read
command to the storage driver and relinquishes control to the
device level operating system. The block read command
includes all the information that the storage controller
requires to access, read and forward the identified page or
block of data to the first physical memory element. Accord-
ingly, once the block read command is communicated to the
storage controller, the hypervisor can be suspended or is
available to perform other tasks until the storage driver
receives an indication or signal from the device level operat-
ing system that the direct memory access operation has suc-
cessfully transferred the block or page to the first physical
memory element. As indicated in block 516, upon receipt of
an indicator or signal that the DMA transfer is complete, the
hypervisor sends an interrupt to the subsystem that requested
the block or page of information. As described, the device
level operating system will include a para-virtualized driver
that communicates with the hypervisor rather than directly
with the subsystem.

[0055] The subsystem, acting in response to the interrupt
from the hypervisor, removes the suspended thread from the
wait queue, as indicated in block 518. Thereafter, as illus-
trated in block 520, the subsystem updates status information
associated with the suspended thread. As described, the sub-
system may resume execution of the thread in accordance
with a thread handler acting in accordance with a subsystem
scheduling policy.

[0056] As briefly described, a paging driver associated with
the hypervisor may be arranged to implement a page replace-
ment policy when maintaining a virtual memory map. Such a
page replacement policy may implement one or more selec-
tion criteria including one or more of a first-in first-out, least
recently used, capacity and even a random replacement
policy, among others. These selection criteria for moving
information into and out from the virtual map may be prepro-
grammed, set by a configuration file, or managed by one or
more applications on the PCD. A first-in first-out policy
removes the oldest page or block of information from first-in

Sep. 17, 2015

first-out page list 247 that corresponds to the information
stored in the second area 264 of the virtual map 260. Such a
page replacement policy may also be used to identify infor-
mation to be replaced, overwritten or simply removed from an
on-demand paging area 285 of the RAM 216.

[0057] Aleastrecently used policy will maintain a record of
the last use of those pages or blocks of code and data in the
second area 264 of the virtual map 260. A most recently used
page or block of code is indicated by the block or page last
requested to be transferred from a physical or system storage
element to the virtual map 260. In contrast, a least recently
used page or block is marked for replacement or to be over-
written by the next requested block or page. A selection
criteria based on the capacity of the next requested block or
page of data will look for a correspondingly sized block or
page and replace the same with the information associated
with the next requested block or page of data. A random
selection criteria may select a page or block of data for
replacement and/or removal from the second area 264 of the
virtual memory map 260 using a random or indiscriminate
number generator and associating the random number with
one of the blocks or pages in the virtual memory such that the
associated blocks or pages are marked for replacement by the
next selected page or block.

[0058] FIGS. 6A and 6B is a flow diagram of an alternative
embodiment of a method 600 for managing demand paging in
the execution environments of FIG. 3 and FIG. 4. The method
600 begins with block 601 where latency tolerant code and
infrequently used data is stored in a system or shared memory
element in the PCD. In block 602, latency intolerant code and
read only data required by a defined subsystem are transferred
from a non-volatile memory, such as the system memory to a
first region or area of a random access memory coupled to the
subsystem. The code and data transfer of block 602 may occur
during a device boot process or during a subsystem initializa-
tion step.

[0059] Indecision block 603 it is determined whether addi-
tional instructions remain in the executing thread. When addi-
tional instructions remain processing continues with the deci-
sion block 604. Otherwise, the thread is terminated and the
method 600 ends.

[0060] In decision block 604, a page fault is identified by
the processor supporting the subsystem execution environ-
ment. When no page fault is present, the subsystem has access
to all the code and read only data that it requires to process one
or more threads. As indicated by the flow control arrow
labeled “No” exiting the decision block 604, processing of the
one or more threads in the subsystem continues until a page
fault is indicated or all the instructions in the thread have been
executed.

[0061] Otherwise, when a page fault is indicated, as shown
by the flow control arrow labeled “Yes” exiting decision
block 604, the method 600 continues with block 605 where
the subsystem suspends a thread requiring code or data not
presently available in the RAM coupled to the subsystem. As
described, the subsystem places the thread in a queue while
the subsystem waits for an indication that the required code or
data has been transferred into the RAM. As further illustrated
in block 605, while the thread associated with the page fault
or page miss is suspended or in the queue, subsystem
resources are available to continue the execution of other
threads with sufficient memory resources located in the
RAM. As briefly described above, a scheduler implementing
a policy may be provided to manage the execution status of

US 2015/0261686 Al

these other threads. In block 606, the subsystem generates an
interrupt directed to the application execution environment of
the PCD. The interrupt identifies the code and or data stored
in the system memory and not available in the RAM.

[0062] Inblock 607, an interrupt controller or router is used
to direct the interrupt from the issuing subsystem to the gen-
eral interrupt controller in the application execution environ-
ment. In block 608, the general interrupt controller forwards
the interrupt to the hypervisor. Next, in block 609, an interrupt
handler in or associated with the hypervisor receives the
interrupt and in accordance with the information sent by the
subsystem generates a corresponding task request to a sched-
uler. As indicated by connector A, the method 600 continues
with block 610, where the scheduler, acting in response to the
task request and one or more inputs from the operating sys-
tem, generates and communicates a page load command to a
paging driver.

[0063] The paging driver, acting in response to the page
load command, generates a block read command and for-
wards the command to the storage driver, as illustrated in
block 611. In block 612, the paging driver also updates the
information in the virtual map. The update process includes
loading a page or block address into the virtual map. The
update process may include managing the size of the virtual
memory by applying a first-in first-out criteria when the usage
of the virtual memory exceeds a threshold. In block 613, the
storage driver initiates a direct memory access and transfer of
the requested information or page from the system memory to
a demand paging area of the RAM coupled to the subsystem.
As described, the hypervisor is available to perform other
tasks while the device level operating system manages the
data transfer between the system memory and the RAM
coupled to the subsystem.

[0064] As indicated in block 614, the storage driver of the
hypervisor receives an indication or signal from the operating
system that the direct memory access and transfer operation is
complete. As shown in block 615, the paging driver of the
hypervisor generates a task complete signal and forwards the
same to the interrupt controller. In turn, as illustrated in block
616, the interrupt controller forwards a corresponding inter-
rupt signal to the subsystem execution environment.

[0065] Thereafter, as shown in block 617, the subsystem
processor communicates the received interrupt to a thread
handler. In turn, the thread handler marks the identified thread
as ready for execution, as indicated in block 618. As
described, the thread handler may send a resume thread signal
(e.g., the thread handler may communicate a change to a
status identifier). As indicated in block 619, a scheduler,
supported by the subsystem processor 310, determines an
appropriate time to resume execution of the thread respon-
sible for the page fault. As indicated by connector B, the
method 600 continues by repeating the functions associated
with decision block 603, decision block 604 and block 605
through block 619 as desired.

[0066] Certain steps in the processes or process tlows
described in this specification naturally precede others for the
invention to function as described. For example, subsystem
instructions and read only data should be analyzed in order to
determine whether such information is latency tolerant or
intolerant. Once such a determination has been made, latency
intolerant code and data, and in some cases frequently used
code, is optimized stored for transfer upon subsystem initial-
ization to a random access memory or other physical memory
element provided to support a respective subsystem. Con-

Sep. 17, 2015

versely, latency tolerant code and infrequently used data may
be optimized and in some cases compressed or encoded
before being stored in a system memory. However, the
present system and methods are not limited to the order of the
steps described if such order or sequence does not alter the
functionality of the above-described systems and methods.
That is, it is recognized that some steps may be performed
before, after, or in parallel (substantially simultaneously)
with other steps. In some instances, certain steps may be
omitted or not performed without departing from the above-
described systems and methods. Further, words such as
“thereafter”, “then”, “next”, “subsequently”, etc. are not
intended to necessarily limit the order of the steps. These
words are simply used to guide the reader through the descrip-
tion of the exemplary method.

[0067] Additionally, one of ordinary skill in programming
is able to write computer code or identify appropriate hard-
ware and/or circuits to implement the disclosed systems and
methods without difficulty based on the flow charts and asso-
ciated examples in this specification. Therefore, disclosure of
a particular set of program code instructions or detailed hard-
ware devices is not considered necessary for an adequate
understanding of how to make and use the systems and meth-
ods. The inventive functionality of the claimed processor-
enabled processes is explained in more detail in the above
description and in conjunction with the drawings, which may
illustrate various process flows.

[0068] In one or more exemplary aspects as indicated
above, the functions described may be implemented in hard-
ware, software, firmware, or any combination thereof. If
implemented in software, the functions may be stored as one
ormore instructions or code on a computer-readable medium,
such as a non-transitory processor-readable medium. Com-
puter-readable media include data storage media.

[0069] A storage media may be any available media that
may be accessed by a computer or a processor. By way of
example, and not limitation, such computer-readable media
may comprise RAM, ROM, EEPROM, Flash, CD-ROM or
other optical disk storage, magnetic disk storage or other
magnetic storage devices, or any other medium that may be
used to carry or store desired program code in the form of
instructions or data structures and that may be accessed by a
computer. Disk and disc, as used herein, includes compact
disc (“CD”), laser disc, optical disc, digital versatile disc
(“DVD”), floppy disk and blu-ray disc where disks usually
reproduce data magnetically, while discs reproduce data opti-
cally with lasers. Combinations of the above should also be
included within the scope of non-transitory computer-read-
able media.

[0070] Although selected aspects have been illustrated and
described in detail, it will be understood that various substi-
tutions and alterations may be made herein without departing
from the present systems and methods, as defined by the
following claims.

What is claimed is:

1. A portable computing device, comprising:

aprocessor supported by an memory management unit, the
processor and the memory management unit arranged to
execute threads under a subsystem level operating sys-
tem, the subsystem level operating system arranged to
identify a page fault and generate an interrupt;

a primary memory coupled to the processor, the primary
memory having a first area for time critical code and read

US 2015/0261686 Al

only data and a second area for pages required by a
thread executing on the processor;

a secondary memory accessible to a hypervisor, the hyper-
visor in response to the interrupt, generates instructions
that initiate a direct memory transfer of information in
the secondary memory to the second area of the primary
memory, and upon completion of the direct memory
transfer forwards a task complete acknowledgement to
the processor.

2. The portable computing device of claim 1, wherein the
hypervisor uses a paging driver and a storage driver specific to
the secondary memory to locate information responsive to the
interrupt.

3. The portable computing device of claim 2, wherein the
hypervisor uses the paging driver to load the information into
the primary memory and to forward the task complete
acknowledgement.

4. The portable computing device of claim 1, wherein the
hypervisor generates a first-in first-out list for managing one
or more pages of information in the second area of the pri-
mary memory.

5. The portable computing device of claim 1, further com-
prising:

ageneral interrupt controller operating under a device level
operating system and coupled to the hypervisor; and

an interrupt router disposed between the general interrupt
controller and the processor.

6. The portable computing device of claim 1, wherein the
processor, upon detecting the page fault, suspends execution
of a thread responsible for the page fault and upon receipt of
the task complete acknowledgement, forwards a page com-
plete signal to a queue.

7. The portable computing device of claim 6, wherein the
processor resumes execution of the thread responsible for the
page fault.

8. A method for on-demand paging across subsystems in a
portable computing environment with limited memory
resources, the method for on-demand paging comprising:

arranging a first physical memory element with a first
storage region and a second storage region;

storing delay intolerant code in the first storage region of
the first physical memory element;

transferring information from the first storage region to a
corresponding area of a second physical memory ele-
ment;

storing delay tolerant code in the second storage region of
the first physical memory element;

detecting a page fault related to a task executing in a sub-
system,

placing the task in a wait queue;

communicating an interrupt to a hypervisor;

using the hypervisor to manage a transfer of information
identified by the page fault as missing from the second
physical memory element from the second storage
region of the first physical memory element to a demand
paging area in the second physical memory element;

communicating an interrupt to the subsystem; and

changing an indicator associated with the task.

9. The method of claim 8, wherein the hypervisor initiates

a direct memory access transfer.

10. The method of claim 9, wherein upon completion of the
direct memory access transfer, the hypervisor receives an
indication that the transfer is complete.

Sep. 17, 2015

11. The method of claim 10, wherein receipt of the indica-
tion that the transfer is complete prompts the hypervisor to
generate the interrupt to the subsystem.

12. The method of claim 8, wherein the hypervisor uses a
paging driver to manage a virtual memory map.

13. The method of claim 12, wherein the paging driver
enforces a page replacement policy.

14. The method of claim 13, wherein the page replacement
policy includes a selection criteria from a group consisting of
first-in first-out, least recently used, capacity and random.

15. The method of claim 12, wherein the hypervisor uses a
storage driver to access the first physical memory element
through a storage controller.

16. The method of claim 15, wherein the storage controller
is an embedded multi-media card controller with a flash
memory.

17. The method of claim 12, wherein the hypervisor uses a
scheduler to communicate a page load request to the paging
driver.

18. A non-transitory processor-readable medium having
stored thereon processor instructions that when executed
direct the processor to perform functions, comprising:

generating a hypervisor having an interrupt handler, a

scheduler, a paging driver and a storage driver, the inter-
rupt handler coupled to the scheduler, the scheduler
arranged to communicate page load instructions to the
paging driver, the paging driver manages a virtual
memory map and further communicates with the storage
driver, the storage driver communicating with an
embedded multi-media card controller with flash
memory;

using the interrupt handler to identify an interrupt from a

subsystem of a portable computing device, the interrupt
including information identifying a page fault identified
within the subsystem, and to generate a job request to the
scheduler;

receiving the job request with the scheduler;

generating a corresponding page load instruction with the

scheduler;

communicating the corresponding page load instruction to

the paging driver;

using the paging driver to generate a read request;

communicating the read request to the storage driver;

using the storage driver to initiate a direct memory access
transfer from the flash memory to a random access
memory element accessible to the subsystem;

receiving, with the storage driver, an indication that the
direct memory access transfer is complete; and

generating and communicating a return interrupt to the
subsystem in response to the indication that the direct
memory access transfer is complete.

19. The non-transitory processor-readable medium of
claim 18, wherein the paging driver enforces a page replace-
ment policy to update pages stored in a physical memory
coupled to the subsystem.

20. The non-transitory processor-readable medium of
claim 19, wherein the page replacement policy includes a
selection criteria to identify information to be removed from
anon-demand paging region of the physical memory.

#* #* #* #* #*

