
THAT THE TOUT UNTUK TA ON MAUNO TUTTI ITALIANA US 20170251076A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2017 / 0251076 A1

Bellur (43) Pub . Date : Aug . 31 , 2017

(54) QUALITY OF SERVICE IN A DISTRIBUTED
SYSTEM

(57) ABSTRACT

(71) Applicant : Red Hat Inc . , Raleigh , NC (US)
(72) Inventor : Vijay Kamalanath Bellur , Bangalore

(IN)

(21) Appl . No . : 15 / 056 , 973

(22) Filed : Feb . 29 , 2016

A method is provided that includes receiving a tenant
identifier . The method also includes identifying a quality of
service (QoS) policy associated with a tenant identified by
the tenant identifier , by looking up the tenant identifier in a
memory data structure . The QoS policy includes a threshold
value of a performance parameter . The threshold value is a
minimum or a maximum threshold value . The method also
includes receiving a service request from the tenant . The
method also includes determining an estimated value of the
performance parameter in view of the request . The method
also includes , responsive to successfully evaluating a valid
ity condition with respect to the estimated value in view of
the threshold value , forwarding the request to a servicing
component for execution . The validity condition is provided
by the estimated value not exceeding the maximum thresh
old value or the estimated value not falling below the
minimum threshold value .

Publication Classification
(51) Int . Ci .

H04L 29 / 08 (2006 . 01)
H04L 12 / 26 (2006 . 01)

(52) U . S . CI .
CPC H04L 67322 (2013 . 01) ; H04L 67 / 1097

(2013 . 01) ; H04L 43 / 0852 (2013 . 01) ; H04L
43 / 16 (2013 . 01)

1007

TENANT

1122

SERVER SERVER SERVER

DATA
STRUCTURE

116

DATA
STRUCTURE

116

DATA
STRUCTURE

116

Patent Application Publication Aug . 31 , 2017 Sheet 1 of 6 US 2017 / 0251076 A1

1007

TENANT

11072 1127 r 114

SERVER SERVER SERVER

DATA
STRUCTURE

DATA
STRUCTURE

116

DATA
STRUCTURE

116 116

109 s 1065 108 S

FIG . 1

Patent Application Publication Aug . 31 , 2017 Sheet 2 of 6 US 2017 / 0251076 A1

2007

5 202

TENANT UU 218

5216

ACCESS POINT

2127

SO SERVER SERVER SERVER

2015 2061 2085

FIG . 2

Patent Application Publication Aug . 31 , 2017 Sheet 3 of 6 US 2017 / 0251076 A1

300

SERVER TRANSLATOR S 302

QoS TRANSLATOR 5 304

5 306 POSIX TRANSLATOR

3102 5 312

JOURNALING FILE SYSTEM
KERNEL INPUT / OUTPUT SUBSYSTEM

FIG . 3

Patent Application Publication Aug . 31 , 2017 Sheet 4 of 6 US 2017 / 0251076 A1

400 400 G

5 402 5 404 5 406 5408
{ { if Read / Write Size Size Serviced Time
Foo R 1024
Foo W 4096

Baz 8192

FIG . 4

Patent Application Publication Aug . 31 , 2017 Sheet 5 of 6 US 2017 / 0251076 A1

500

5502

Receive , by a processing device of a multi - tenant
distributed storage system , a tenant identifier

Identify , by a quality of service (QoS) translator , a Qos
policy associated with a tenant identifier by the tenant

identifier , by looking up the tenant identifier in a memory
data structure , wherein the QoS policy comprises a
threshold value of a performance parameter of the

distributed storage system , wherein the threshold value is
provided by one of : a minimum threshold value or a

maximum threshold value

506

Receive , by the QoS translator , a service request from the
tenant

508

Determine , by the QoS translator , an estimated value of
the performance parameter in view of the request

Responsive to successfully evaluating a validity condition
with respect to the estimated value in view of the threshold
value , forwarding , by the QoS translator , the request to a
servicing component for execution , wherein the validity
condition is provided by one of the estimated value not
exceeding the maximum threshold value or the estimated

value not falling below the minimum threshold value

FIG . 5

Patent Application Publication Aug . 31 , 2017 Sheet 6 of 6 US 2017 / 0251076 A1

6007
608

Processor Display Device

Instructions
626

602

Main Memory Alphanumeric Input
Device Instructions

626
604

Static Memory
Data Storage Device
Computer - Readable

Medium
606 Bus

Instructions
626
624

616
Network Interface

Device

622 Signal Generation
Device

620

Network
618

FIG . 6

US 2017 / 0251076 A1 Aug . 31 , 2017

QUALITY OF SERVICE IN A DISTRIBUTED
SYSTEM

TECHNICAL FIELD
[0001] The present disclosure is generally related to dis
tributed computer systems , and is more specifically related
to systems and methods for managing quality of service in
a distributed system .

BACKGROUND
[0002] A distributed storage system may be provided by a
network attached storage (NAS) system comprising one or
more server computer systems each coupled to one or more
persistent data storage devices , such as magnetic or optical
storage disks , solid - state drives (SSDs) , etc .

BRIEF DESCRIPTION OF THE DRAWINGS
[0003] The disclosure will be understood more fully from
the detailed description given below and from the accom
panying drawings of various examples of the disclosure . The
drawings , however , should not be taken to limit the disclo
sure to the specific examples , but are for explanation and
understanding only .
[0004] The present disclosure is illustrated by way of
examples , and not by way of limitation , and may be more
fully understood with references to the following detailed
description when considered in connection with the figures ,
in which :
[0005] FIG . 1 depicts a block diagram of an example of a
tenant - server system in accordance with one or more aspects
of the present disclosure .
[0006] FIG . 2 depicts a block diagram of an example of a
tenant - server system with an intermediate unified access
point in accordance with one or more aspects of the present
disclosure .
[0007] FIG . 3 depicts a block diagram of an example of a
translator stack in accordance with one or more aspects of
the present disclosure .
[0008] FIG . 4 depicts a diagram of an example of a table
for managing identifiers and other information in accordance
with one or more aspects of the present disclosure .
[0009] FIG . 5 depicts a flow diagram of a method for
managing quality of service for a distributed system in
accordance with one or more aspects of the present disclo
sure .
[0010] FIG . 6 depicts a block diagram of an example
computer system in accordance with one or more aspects of
the present disclosure .

uted file system . The distributed system may include aggre
gated storage or processing locations over a network inter
connect to provide a single unified file namespace . The
distributed system may be implemented in the user space
(i . e . , by unprivileged code) . Alternatively , some or all com
ponents of the distributed system may be implemented in the
kernel space (i . e . , by privileged code) .
[0012] Examples of the distributed system may include a
unified access point in which all tenant / client connections
are routed through a single network access point . In other
examples , the tenant / client may connect directly to one more
components of the distributed system without having to
connect through a central access point .
[0013] In some examples , the distributed system may
include servers to manage metadata or other information
associated with the system . In one example , the distributed
system may include physical machines , virtual machines ,
containers , or other resources . The distributed system may
implement various storage or processing strategies . For
example , the distributed system may distribute a storage
volume across multiple storage locations . Redundancy and
distributed redundancy may also be incorporated .
[0014] The distributed system may include translators , or
shared libraries which perform certain functions within the
distributed system . The translators may be organized into an
array or dynamic list (stacked) . The translators may provide
deployment specific operation (in which the translators may
operate with a specific system such as server formats ,
programming languages , etc .) or deployment agnostic
operation (in which the translators may operate with a wide
range of different systems) from either client or server
stacks . Additional functionality of the translators is
described in more detail below . In some examples , the
distributed system manages unstructured data , provides
archiving functionality , disaster recovery , virtual machine
image storage , cloud storage , content cloud storage , big data
storage , structured storage , and semi - structured storage .
Other functions available from the distributed system may
include data processing , infrastructure , applications , con
tainers , etc .
10015] As the utility and features of distributed systems , as
described above , have increased , the number of tenants and
the usage totals for these systems have also grown . How
ever , a large number of active tenants and heavier system
demands may be a challenge for a distributed system to
manage . For example , one such problem that affects distrib
uted systems is known as “ Noisy Neighbor . ” In this situa
tion , a tenant (or application or instance operated by one or
more tenants) may consume a disproportionately large
amount of resources within the distributed system . This can
affect the performance of the system as a whole and the
individual experiences of other tenants within the distributed
system . In order to address the issue of balancing and
fairness , an administrator or management system may
enforce a quality of service (QoS) policy laid out in a service
level agreement (SLA) . However , enforcement of a QoS
policy may be particularly difficult in certain distributed
system types or structures . For example , some systems may
allow clients to communicate directly with one or more data
servers within the distributed system without having to go
through a gateway or central monitor . In this situation and
others , enforcement of a particular QoS may be difficult if
not unrealistic .

DETAILED DESCRIPTION
[0011] Described herein are systems and methods for
managing and enforcing a quality of service (QoS) policy
for a tenant of a multi - tenant deployment of a distributed
system such as a distributed storage system . The QoS
policies are applied by mapping identifying information
relating to the tenant to the corresponding QoS policy . The
identifying information may be based on a component of an
authentication credential or other authentication means , such
as a security certificate , corresponding to that tenant . The
systems described herein support management of various
distributed system - related parameters on a per - tenant basis
within the distributed system . The distributed system may
include a specialized or general purpose scale - out distrib

US 2017 / 0251076 A1 Aug . 31 , 2017

[0016] When establishing a relationship with a distributed
system in order to take advantage of one or more services
offered by the distributed system , a tenant may agree to a
SLA with an external service provider or directly with the
distributed system . In some examples , the SLA may affect a
tenant experience with regards to access to and use of the
distributed system . The SLA may include any number of
policies . One or more of those policies may include a quality
of service (QoS) policy . In some examples , the QoS policy
may be included in the SLA while other examples may
provide the QoS policy separate from other agreements or
policies . The QoS policy may define one or more parameters
of the performance of the distributed system . For example ,
the QoS may specify a particular threshold of latency ,
throughput , micro - operations (such as input / output opera
tions per second (iops)) , cycles or other performance metrics
relating to the distributed system . In some examples , the
QoS may be specific to that particular tenant or client or may
be applied to a class or group of tenants (for example ,
tenants subscribing , qualifying , or stipulating to a high
priority QoS) .
[0017] After agreeing to the SLA with the service pro
vider , the service provider may store the specific SLA for the
tenant and provide the SLA to the distributed system . The
SLA may include an identifier corresponding to the tenant .
The SLA may also include a QoS for the tenant with regards
to the distributed system . Responsive to receiving the QoS
for the tenant from the service provider , the distributed
system may generate a memory data structure in which to
store the identifier for the tenant and store the QoS so as to
correspond to the identifier corresponding to the tenant . The
memory data structure may include a table , list , array , or
other data structure . The data structure may be maintained at
a central location or distributed to one or more servers or
other assets within the distributed system . The distributed
system may map specific requests received from the tenant
to the identifier and the QoS . For example , the distributed
system may receive a request from the tenant to mount a
volume . In order to submit the request , the tenant may
authenticate its identity by providing an authentication cre
dential . The distributed system may derive the tenant iden
tifier from the authentication credential , perform a lookup on
the data structure , and update the data structure with the
request if the identifier exists within the data structure . If the
identifier is not found within the data structure , the distrib
uted system may create a new entry within the data structure
based on the identifier and store the request so as to
correspond to the identifier . Examples of the request may
include mounting a volume or component , a read or write
request , a processor cycle request , or other request .
[0018] With distributed systems that allow direct access to
their respective components , the data structure containing
the identifier , QoS information , and requests may be main
tained at a central location within the distributed system or
distributed out to each server or other component of the
distributed system . In response to a tenant request for access
to a component of the distributed system , the tenant estab
lishes its identity by providing an authenticating credential .
The identity of the tenant may be proven by presentation of
a digital certificate or other instrument (authenticating , cryp
tographic , etc .) . The authentication credential may include a
transport layer security (TLS) certificate (previously known
as : a secure sockets layer (SSL) certificate) , or other certifi -
cate or cryptographically protected electronic document .

[0019] Once the tenant has presented the authenticating
document , the distributed system may derive the identifier ,
such as a signature , serial number , or other identifying
information , and store the derived identifier with the corre
sponding QoS policy . As described above , this information
may be stored within a table , list , or other data structure in
memory . The data structure may be created by the distrib
uted system prior to receiving the information for the tenant
or may be generated by the distributed system in response to
receipt of the tenant information . The distributed system
may store an association between the identity of the tenant
and the QoS policy to a data structure located at a central
location or to one or more components of the distributed
system .
[0020] Each QoS policy may be associated with one or
more tenants . For example , the distributed system may store
identifiers , QoS policies , and requests for tenants who have
stipulated to a “ high - priority ” QoS to a location within the
data structure designated as high priority . For example :
volume set < VOLUME > QoS . high - priority < tenant _ 1 , ten
ant _ 2 , tenant _ 3 . . . tenant _ n >
[0021] In the above example , requests by tenants 1 , 2 , 3 ,
and n , are afforded the high priority by the QoS . Similarly ,
identifiers , QoS policies , and requests for tenants for low
priority tenants may be stored to the data structure with a
corresponding indicator of priority . Other granularities may
be used for a more varied range of priorities , such as a grade
scale (A , B , C , etc .) . In some examples , the data structure
may correspond to a specific storage volume or other asset
or component of the distributed system or to a type of
component within the distributed system (memory , proces
sor , etc .) .
10022] . The QoS policy stored to the data structure may
include variables defining parameters such as micro - opera
tions , throughput , latency , etc . One or more locations or
buckets within the data structure may be used to store values
defining acceptable thresholds for these parameters . For
example , a threshold for micro - operations within the data
structure may be set by :

[0023] # volume set < VOLUME > QoS . < bucket > . max _
micro - operations 100

In this example , tenant identifiers (1 , 2 , and 3) are designated
to a certain bucket (such as high - priority , low - priority , etc .)
according to their corresponding QoS policy parameter for
micro - operations per second (iops) .
10024] . The value defining a number of iops may be a
maximum or minimum number of input / output operations
per second . Throughput may be expressed in terms of
megabits per second or gigabits per second (MBPS / GBPS)
while latency may be measured in units of time (seconds ,
milliseconds , etc .) . These and other parameters may be
measured by other units .
[0025] In some examples , the distributed system may hold
one or more of the parameters below a maximum threshold
value in order to conserve resources and prevent issues such
as “ Noisy Neighbor ” and the like . If the distributed system
determines that execution of a particular request may cause
the parameters to exceed the corresponding thresholds , the
distributed system may prevent or delay that request . In
other examples , the threshold may define a minimum value
for the corresponding parameter (e . g . iops) . The distributed
system may extrapolate an estimated value of an impact of
the request . If the request is estimated to meet a validity
condition (the estimated value for the parameter is not above

US 2017 / 0251076 A1 Aug . 31 , 2017

e a maximum or below a minimum threshold) relative to the
corresponding threshold value , the distributed system may
service the request . Alternatively , the distributed system may
determine that the estimated value of the request meets an
invalidity condition in which the threshold value is exceeded
by the estimated value . In this case , the distributed system
may delay , disregard , reject , or otherwise fail to forward the
request for servicing .
[0026] In some examples , the distributed system may
address an issue with one or more parameters of the system ,
for example , an iops parameter that has dropped below a
minimum threshold by increasing the resources , such as
memory , processor cycles , bandwidth , etc . , made available
in order to increase the parameter to be above the established
minimum threshold . This may be accomplished by querying
other resources that may be available on the host server or
at other locations within the distributed system . In further
examples , the QoS may establish a threshold which may
define an acceptable window with one or both of a minimum
and a maximum for regulating the corresponding parameter .
In other examples , the distributed system may prevent the
parameters from exceeding the limit by rejecting , dismiss
ing , or delaying requests which would negatively impact the
parameters of the distributed system .
[0027] One example of enforcing a QoS threshold value or
limit on a parameter includes implementing a QoS transla
tor . Generally , as described herein , a translator is a library
which is configured to perform one or more functions within
the distributed system . As used herein , one or more trans
lators of the distributed system may receive a request from
a tenant or overlying translator , analyze the request , reject /
discard / modify / pass the request to the next level translator
or servicing component . In some examples , the QoS trans
lator may reject the request by returning an error message .
The QoS translator may also discard the request in which no
return message or communication is made and the request is
not forwarded for service . The request may also be modified
to move the request to another queue or delayed to be
sampled by a later thread . The QoS translator may also pass
the request along for service .
[0028] In some examples , the QoS translator may reside
on a central memory or be resident on one or more compo
nents of the distributed system . In some examples , the QoS
translator uses the identity of the tenant in combination with
other attributes of the distributed system (such as I / O buffer
size , request completion time , etc .) to maintain the data
structure referenced above . The data structure may include
a table , list , array etc . containing values for the identifier
corresponding to the tenant , the nature of the operation
requested (read , write , etc .) , the amount of resources
required , and a time log for the request .
[0029] In response to receiving a request from a tenant , the
QoS translator may check the QoS policy associated with an
identifier of the tenant to verify whether or not performing
the request , or performing the request in the current queue
order , would push parameters of the distributed system
outside of an acceptable threshold (which may be a single
value or range of values) as defined by the QoS policy in
place for that tenant and other tenants of the distributed
system . If the QoS translator calculates a projected impact
(based on historical or preset metrics) of the request to cause
a parameter of the distributed system to stay within the
corresponding threshold , the request is passed and the action
(read , write , execute , etc .) is performed . In some examples ,

once the request is passed and fulfilled , the QoS translator
may capture details relating to a response to the fulfilled
request to update the table with the details , such as the
identifier of the request , the amount of resources actually
consumed , size of the request , or other information relating
to fulfillment of the request . This historical information may
be used to consider subsequent requests .
[0030] In some examples , the QoS translator may compare
an incoming request with this historical data (tenant identi
fier , request type , size , etc .) to extrapolate an impact of the
incoming request . The extrapolation is described in greater
detail below .
[0031] In another example , if the system determines that
performance of the request would result in a parameter
crossing the thresholds set by the QoS policy , the QoS
translator may push the request down in the queue to be
sampled by a later thread or disallow the request . This
process may be applied to a high - priority , a low - priority
queue , or any other queue .
[0032] The QoS translator may operate in a standalone
mode in which it may not query other servers or components
in the distributed system to determine availability of storage
or other resources on other components . The QoS translator
may also operate in a distributed mode in which the trans
lator may query other components of the distributed system
to determine availability of resources for the tenant at those
components . For example , if execution of the request by the
current server would exceed the threshold set by the QoS for
the tenant , the QoS translator may query another server as to
whether or not the request may be performed by the other
server without violating the QoS policy . In some examples ,
the QoS translator may only consider servers of the same
type or belonging to the same group as the current server or
otherwise qualified to service the request . In the distributed
mode , the query from the QoS translator may be limited to
a group of servers that provide a connection to a volume
associated with the tenant or other component on which the
tenant operates .
[0033] As described above , the systems described herein
provide methods for managing QoS considerations on a
per - tenant basis by using information from the authentica
tion document or other authentication means . This facilitates
tenant - specific QoS enforcement within a multi - tenant dis
tributed system .
[0034] Although aspects of the present disclosure may be
particularly useful with certain types of network devices /
services , the techniques disclosed herein may be used with
other types of devices (both physical and virtual) , network
services , or other resources that a virtual machine may
access .
[0035] FIG . 1 depicts a block diagram of an example of a
tenant - server system 100 in accordance with one or more
aspects of the present disclosure . The tenant 102 may
include a client device or other system , application , process ,
or executable code module . The tenant 102 may connect to
one or more servers 104 , 106 , or 108 . The servers 104 , 106 ,
and 108 may constitute all or part of a collection of servers
within the distributed system . The servers 104 , 106 , and 108
may include physical devices as well as virtual devices .
0036 The tenant 102 may connect to the servers 104 ,
106 , and 108 via a connection 110 , 112 , and 114 . In some
examples , the connection may be a secured connection (such
as a secure socket layer (SSL) connection) or an unsecured
connection . The connections 110 , 112 , and 114 may connect

US 2017 / 0251076 A1 Aug . 31 , 2017

the tenant 102 to the servers 104 , 106 , and 108 over a private
network (e . g . , a local area network (LAN) , a wide area
network (WAN) , intranet , etc .) or a public network (e . g . , the
Internet) . In the illustrated example , each server 104 , 106 ,
and 108 includes a copy of a data structure 116 . The data
structure 116 may include a table , list , array , matrix , or other
structure . In one example , as part of the process for estab
lishing a secure connection 110 between the tenant 102 and
the server 104 , the tenant 102 may exchange an authenti
cating means such as a document or digital certificate to
prove an identity of the tenant 102 . The authenticating
means may include a certificate such as a transport layer
security (TLS) certificate . Other certificates or authentica
tion documents may be used .
[0037] In one example , upon receiving an authentication
credential from the tenant 102 , the server 104 may derive an
identifier from the authentication credential . The identifier
may be a signature , serial number , or other component of the
authentication credential . The server 104 may store the
identifier to a data structure 116 . Additionally , the tenant 102
may provide or agree to a quality of service (QoS) policy
defining a threshold for a performance parameter of the
server 104 . The performance parameter may be a latency
experienced by the tenant 102 during interaction with the
server 104 , a throughput , a number of micro - operations
(input / output operations per second (iops)) , or other param
eter (s) corresponding to a distributed system such as pro
cessor cycles , bandwidth , etc . The server may store the
threshold for the performance parameter of the QoS policy
with the appropriate tenant by associating the performance
parameter with the corresponding identifier within the data
structure 116 .
[0038] In response to receiving a request from the tenant
102 , the server 104 may derive an identifier from the request
and lookup the identifier in the data structure 116 . If the
request would result in the server 104 exceeding the asso
ciated parameter set by the QoS policy , the request may be
delayed or denied . If the request does not exceed the
associated parameter , the server 104 may pass the request to
be processed . In some examples , the server 104 may not
query other servers to analyze the request . In another
example , the server 104 may query other servers 106 and
108 to find additional resources to service the request . In
some examples , the return response provided after servicing
the request may be stored to the data structure 116 for use in
validating a future request . The server may update the data
structure 116 with the details of the response to indicate the
type of action performed , a time associated with servicing
the request (time of receipt , time of fulfillment , time to
fulfill , etc .) , or other information relating to the response .
Updated information stored to the data structure 116 may
facilitate more accurate analysis by the server 104 in deter
mining whether or not to pass a subsequent request .
[0039] In some examples , each copy of the data structure
116 may be maintained and updated by the corresponding
server 104 , 106 , and 108 . In other examples , the data
structure 116 may be maintained at a central location in
memory to which the servers 104 , 106 , and 108 have access .
In another example , a copy of the data structure 116 may be
maintained at the central location and copies of the data
structure 116 distributed out to the servers 104 , 106 , and 108
in response to a change or update to the data structure 116
or based on an update schedule .

[0040] In some examples , the tenant 102 may stipulate to
a service level agreement (SLA) with a service provider . The
service provider may provide the SLA to the server 104 . The
server 104 may identify a QoS policy from the SLA as well
as derive an identifier for the tenant from a certificate
provided by the service provider . The server 104 may also
receive the QoS and identifier information from other
sources . For example , the server 104 may receive the
information from another server 106 or 108 through a share
or update of the data structure 116 . Alternatively , a central
management system may provide the information to the
individual servers 104 , 106 , and 108 .
[0041] FIG . 2 depicts a block diagram of an example of a
tenant - server system 200 with an intermediate access point
216 in accordance with one or more aspects of the present
disclosure . In the illustrated example , the tenant 202 com
municates with the servers 204 , 206 , and 208 by way of the
access point 216 . In one example , the access point 216 is one
of a plurality of access points for a distributed system . In
another example , the access point 216 may be a unified
access point 216 to format , route , screen , etc . all requests for
the distributed system . In some examples , the access point
216 may derive the identifier and QoS information for the
servers 204 , 206 , and 208 and distribute the information
accordingly . In some examples , the access point 216 may
facilitate an initial communication to register or authenticate
the tenant 202 and then allow the tenant 202 to communicate
directly with the servers 204 , 206 , and 208 . The access point
216 may include management functionality to select a server
204 with a volume to mount for the tenant 202 .
10042] . In some examples , the access point 216 may facili
tate establishment of a QoS policy for the tenant 202 . In
other examples , a service provider may establish the QoS
and communicate the QoS and corresponding information
(such as an identifier) to the server 204 via the access point
216 . A service provider may configure the QoS and com
municate the corresponding information to the servers 204 ,
206 , and 208 via the access point 216 or directly to the
servers 204 , 206 , and 208 . Other arrangements and configu
rations may be implemented .
[0043] FIG . 3 depicts a block diagram of an example of a
translator stack 300 in accordance with one or more aspects
of the present disclosure . As used herein , a translator stack
may include a hierarchical structure of libraries in a linear
assembly of routines that may be stored as executable files .
The translator stack 300 includes a server translator 302 , a
QoS translator 304 , and a portable operating system inter
face (POSIX) translator 306 . The stack 300 may also com
municate with a journaling file system coupled with a kernel
I / O subsystem . The translator stack 300 may be located in
memory on a server within the distributed storage system or
in memory on a central management system . The translator
stack 300 manages the QoS for the distributed system as
described below .
[0044] . The server translator 302 may maintain a data
structure containing the identifier , QoS thresholds , and
request data . In some examples , the server translator 302
may record identifiers to the data structure based on a
priority level established by the corresponding QoS policy .
In one example , the server translator 302 may store a series
of tenant identifiers as corresponding to a high priority QoS .
For example , the server translator 302 may configure the
QoS policy as follows :

US 2017 / 0251076 A1 Aug . 31 , 2017

[0045] # volume set < VOLNAME > QoS . high
priority < identifier1 , identifier2 , identifier3 . . . >
In this example , tenant identifiers (1 , 2 , and 3) are designated
as high - priority according to their corresponding QoS poli
cies .
[0046] The server translator 302 may further identify
parameter thresholds based on the QoS policy or a deter
mination made by the QoS translator . This may include the
high - priority QoS mentioned above . In one example , a
designation of high - priority in a QoS policy may trigger an
application of default high - priority parameter thresholds . In
another example , each parameter may be individually deter
mined and set based on available resources , current usage
metrics , etc . For example , the threshold for a throughput
may be set as follows :
[0047] # volume set < VOLNAME > QoS . < bucket > . max
throughput 100 MBPS
Other parameters and QoS policies may be similarly estab
lished and maintained by the server translator based on a
received input or a set of rules .
[0048] The QoS translator 304 determines if a received
request will cause a performance parameter to exceed the set
threshold . This determination may be made by considering
historical request impact data , standard impact values , or by
a dynamic comparison of currently available resources ,
system traffic , etc . to extrapolate the impact of the received
request on the distributed system as a whole , the server with
which the tenant is interacting , or a broader range of
components within the distributed system . This extrapola
tion may be linear or non - linear . For example , the extrapo
lation may estimate the impact on a logarithmic or expo
nential scale . Additionally , the QoS translator may apply
other factors to adjust the extrapolation . If the QoS translator
304 determines that the request will exceed the threshold ,
the QoS translator 304 may delay the request (by moving the
request down within a queue for later sampling or moving to
a low - priority queue) or disallow the request entirely . If the
QoS translator 304 determines that the request will not
exceed the threshold , the request may be allowed .
[0049] Other factors involved in the determination of the
QoS translator 304 to pass or reject a request may include
the size of an I / O buffer , the time of completion of a request ,
resources required to fulfill the request , etc . This information
may be stored in the table or otherwise provided or made
accessible to the QoS translator 304 . The QoS translator 304
may match this information for a request to match a his
torical impact or extrapolate an impact of the request on the
parameter with respect to a corresponding threshold .
[0050] When a stack 300 receives a new request , the QoS
translator 304 may look up the identifier for the request to
verify the QoS policy and a corresponding threshold . The
QoS translator may then project whether or not fulfillment of
the request would cause a parameter to exceed the threshold .
Additionally , the QoS translator may update the table in the
return path of an allowed request with details from the
request to provide additional historical data against which
subsequent requests may be checked .
[0051] In some examples , the QoS translator 304 may
operate in a stand - alone mode in which the QoS translator
304 will not query other servers outside of the server on
which the QoS translator 304 operates . The QoS translator
304 may also operate in a distributed mode in which the QoS
translator 304 may query other servers for the tenant . In
some examples , when in the distributed mode , the QoS

translator may be restricted to a querying a group of servers
such as servers within a trusted storage pool which provide
storage or other resources to the volume on which the tenant
operates .
[0052] The POSIX translator 306 receives allowed
requests from the QoS translator 304 and sends back the
response to the requests to the QoS translator 304 . In some
examples , the POSIX translator 306 serves as an interface
between the translator stack 300 and the journaling and I / O
portion 308 of the process . The POSIX translator 306 may
operate as an application program interface (API) , a thread
interface , a security interface , an I / O interface , etc .
[0053] The journaling file system and kernel I / O subsys
tem may track changes resulting from a request in a journal
data structure and perform file caches , I / O operations , sys
tem calls , etc . respectively . Other systems / subsystems may
interface with the translator stack 300 to provide more or
other functionality .
[0054] FIG . 4 depicts a diagram of an example of a data
structure 400 for managing identifiers and other information
in accordance with one or more aspects of the present
disclosure . The data structure 400 may be identical to the
data structures 116 of FIG . 1 . In one example , the data
structure 400 is a table or other structure generated or
maintained in memory by the QoS translator 304 described
above . In one example , a request received by the server may
be associated with the tenant identifier . The tenant identifier
is stored to a first column 402 of the data structure 400 . The
data structure 400 also includes a description 404 of the
request , such as read or write . The QoS translator may also
store buffer size information 406 which may define a buffer
size needed to process a request . The data structure 400 also
includes a time 408 corresponding to the request (such as a
time for completion , time elapsed since request , etc .) . In
some examples , the data structure 400 may further include
information relating to the QoS policy , current or past
requests , or other information that may be considered for
QoS management . The QoS translator may check the data
structure 400 in response to receipt of a new request . The
QoS translator may use information from the data structure
400 to estimate an impact of the new request on a parameter
of the distributed system . The data structure 400 may also be
updated by the QoS translator to include information pro
vided in a return path of a request . The data structure 400
may be limited to a certain size . In some examples , the data
structure 400 may be updated by the QoS translator to
remove old entries after a certain time or to make space for
newer entries . In some examples , the QoS translator may
truncate the data structure 400 to maintain a specific size in
memory .
[0055) FIG . 5 depicts a flow diagram of a method 500 for
managing quality of service for a distributed system in
accordance with one or more aspects of the present disclo
sure . At block 502 , a processing device of a multi - tenant
distributed storage system receives a tenant identifier . The
identifier may be derived from an authentication document
such as a digital certificate which may include a TLS
certificate or other authenticating credentials . The process
ing device may execute a server translator which may be
stored at a central management system within the distributed
storage system or located on a distributed server . In one
example , the tenant identifier may include a signature , serial
number , or other component of the authentication document .

US 2017 / 0251076 A1 Aug . 31 , 2017

[0056] At block 504 , a quality of service (QoS) translator ,
may identify a QoS policy associated with a tenant identifier
by the tenant identifier , by looking up the tenant identifier in
a memory data structure . The QoS policy comprises a
threshold value of a performance parameter of the distrib
uted storage system . The threshold value may be provided
by one of : a minimum threshold value or a maximum
threshold value . The performance parameter may include a
threshold for throughput , latency , micro - operations , etc . of
the distributed system . The QoS policy may set the threshold
uniquely for a particular tenant or commonly across a
priority , group , class , or type of tenant .
[0057] At block 506 , the QoS translator receives a service
request from the tenant . At block 508 , the QoS translator
may determine an estimated value of the performance
parameter in view of the request . In some examples , the QoS
translator may extrapolate an impact of the request upon the
performance parameter based on factors such as the identi
fier , the operation type , the buffer size , or the service time as
stored in the memory data structure to generate the estimated
value . In one example , the QoS translator may extrapolate
the impact by identifying one or more historical records
from previously serviced requests based on similarities , such
as matching tenant identifier , request type , similar request
size , etc . From this record , the QoS translator may extrapo
late an impact by determining a level of similarity , calcu
lating an average impact based on the record or a plurality
of similar records . In some examples , the QoS may calculate
a multiplier or other factor by which the impact may be
extrapolated based on an identified degree of difference
between values of the current request and those of the
record . For example , the current request may have a value ,
such as a request size , that is twice that of the corresponding
metric of a stored record . In response , the QoS may extrapo
late the impact to be twice that in the record . In some
examples , the QoS translator may also account for other
factors such as current load on the distributed system . Such
factors may be applied by way of a multiplier , factor , or
other adjustment to the extrapolation . Other considerations
may be used to further refine and improve the accuracy of
the extrapolation .
[0058] In some examples , the historical records are gen
erated by forwarding , by a POSIX translator , a response
from the servicing component which includes values includ
ing the tenant identifier of the serviced request , the type of
the serviced request (read , write , etc .) , the time to service the
request , a memory or processor metric of the request
(amount of memory , number of processor cycles , etc .) .
These values are forwarded , by the POSIX translator , to the
QoS translator which updates the memory data structure to
include the values . These values may then be used as
described above to extrapolate impact values for subsequent
requests .
[0059] At block 510 , the QoS translator forwards the
request to a servicing component responsive to successfully
evaluating a validity condition with respect to the estimated
value in view of the threshold value . The validity condition
is provided by one of : the estimated value not ex ceding the
maximum threshold value of the estimated value not falling
below the minimum threshold value . In some examples , the
QoS translator may evaluate the estimated value to deter
mine if a validity or non - validity condition exists . If the
validity condition is successfully evaluated , the QoS trans
lator may forward the request for servicing . If an invalidity

condition is successfully evaluated in which the estimated
value is below a minimum threshold value or above a
maximum value . In some examples , the QoS translator may
also receive return path information from the request to
update the data structure for analyzing subsequent requests .
100600 . FIG . 6 depicts a block diagram of an example
computer system in accordance with one or more aspects of
the present disclosure . In one example , computer system 600
may correspond to computer system 100 of FIG . 1 . The
computer system may be connected (e . g . , networked) to
other computer systems in a LAN , an intranet , an extranet ,
or the Internet . The computer system 600 may operate in the
capacity of a server in a client - server network environment .
The computer system 600 may be a personal computer (PC) ,
a set - top box (STB) , a server , a network router , switch or
bridge , or any device capable of executing a set of instruc
tions (sequential or otherwise) that specify actions to be
taken by that device . Further , while only a single computer
system is illustrated , the term " computer ” shall also be taken
to include any collection of computers that individually or
jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methods discussed herein .
[0061] The exemplary computer system 600 includes a
processing system (processor) 602 , a main memory 604
(e . g . , read - only memory (ROM) , flash memory , dynamic
random access memory (DRAM) such as synchronous
DRAM (SDRAM)) , a static memory 606 (e . g . , flash
memory , static random access memory (SRAM)) , and a
drive unit 616 , which communicate with each other via a bus
608 .
[0062] Processor 602 represents one or more general
purpose processing devices such as a microprocessor , cen
tral processing unit , or the like . More particularly , the
processor 602 may be a complex instruction set computing
(CISC) microprocessor , reduced instruction set computing
(RISC) microprocessor , very long instruction word (VLIW)
microprocessor , or a processor implementing other instruc
tion sets or processors implementing a combination of
instruction sets . The processor 602 may also be one or more
special - purpose processing devices such as an application
specific integrated circuit (ASIC) , a field programmable gate
array (FPGA) , a digital signal processor (DSP) , network
processor , or the like . The processor 602 is configured to
execute instructions that may include instructions to execute
instructions 626 for performing the operations and steps
discussed herein . For example , in one example , the instruc
tions 626 may perform any one of the methods of flow
diagram 500 of FIG . 5 .
[0063] The computer system 600 may further include a
network interface device 622 . The computer system 600 also
may include a video display unit 610 (e . g . , a liquid crystal
display (LCD) or a cathode ray tube (CRT)) , an alphanu
meric input device 612 (e . g . , a keyboard) , a cursor control
device 614 (e . g . , a mouse) , and a signal generation device
620 (e . g . , a speaker) .
[0064] The drive unit 616 or secondary memory may
include a computer - readable medium 624 on which is stored
one or more sets of instructions 626 (e . g . , instructions for the
instructions) embodying any one or more of the methodolo
gies or functions described herein . Instructions for the
instructions 626 may also reside , completely or at least
partially , within the main memory 604 and / or within the
processor 602 during execution thereof by the computer
system 600 , the main memory 604 and the processor 602

US 2017 / 0251076 A1 Aug . 31 , 2017

also constituting computer - readable media . Instructions 626
may further be transmitted or received over a network via
the network interface device 622 . The instructions 626 may
further be transmitted or received over a network 625 via the
network interface device 622 .
[0065] The non - transitory computer - readable storage
medium 624 may also be used to store the instructions 626
persistently . While the computer - readable storage medium
624 is shown in the illustrative examples to be a single
medium , the term " computer - readable storage medium ”
should be taken to include a single medium or multiple
media (e . g . , a centralized or distributed database , and / or
associated caches and servers) that store the one or more sets
of instructions . The term " computer - readable storage
medium ” shall also be taken to include any medium that is
capable of storing , encoding or carrying a set of instructions
for execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
disclosure . The term " computer - readable storage medium "
shall accordingly be taken to include , but not be limited to ,
non - transitory computer - readable storage mediums , solid
state memories , optical media , and magnetic media .
10066] . The instructions 626 , components and other fea
tures described herein can be implemented as discrete hard
ware components or integrated in the functionality of hard
ware components such as ASICS , FPGAs , DSPs or similar
devices . In addition , the instructions 626 can be imple
mented as firmware or functional circuitry within hardware
devices . Further , the instructions 626 can be implemented in
a combination hardware devices and software components .
For example , the functionality of this module can exist in a
fewer or greater number of modules than what is shown ,
with such modules residing at one or more computing
devices that may be geographically dispersed . The modules
may be operable in conjunction with network 625 from
which it may receive and provide relevant information
regarding managing QoS in a distributed system
[0067] “ Processor ” herein refers to a device capable of
executing instructions encoding arithmetic , logical , or I / O
operations . In one illustrative example , a processor may
include an arithmetic logic unit (ALU) , a control unit , and a
plurality of registers . In a further aspect , a processor may be
a single core processor which is typically capable of execut
ing one instruction at a time (or process a single pipeline of
instructions) , or a multi - core processor which may simulta
neously execute multiple instructions . In another aspect , a
processor may be implemented as a single integrated circuit ,
two or more integrated circuits , or may be a component of
a multi - chip module (e . g . , in which individual microproces
sor dies are included in a single integrated circuit package
and hence share a single socket) . A processor may also be
referred to as a central processing unit (CPU) .
10068] “ Memory ” herein refers to a volatile or non - vola
tile memory device , such as RAM , ROM , EEPROM , or any
other device capable of storing data .
[0069] “ 1 / 0 device ” herein refers to a device capable of
providing an interface between a processor and an external
device capable of inputting and / or outputting binary data .
Although , for simplicity , a single processor may be
described herein , in some other examples the system may
comprise a plurality of processors . Similarly , in some other
examples , the system may comprise a plurality of I / O
devices , rather than a single device , and a plurality of
memory devices rather than a single memory device .

[0070] It is to be understood that the above description is
intended to be illustrative , and not restrictive . Many other
implementations will be apparent to those of skill in the art
upon reading and understanding the above description . The
scope of the disclosure should , therefore , be determined with
reference to the appended claims , along with the full scope
of equivalents to which such claims are entitled .
[0071] In the above description , numerous details are set
forth . It will be apparent , however , to one skilled in the art ,
that the present disclosure may be practiced without these
specific details . In some instances , well - known structures
and devices are shown in block diagram form , rather than in
detail , in order to avoid obscuring the present disclosure .
10072) Some portions of the detailed descriptions above
are presented in terms of algorithms and symbolic repre
sentations of operations on data bits within a computer
memory . These algorithmic descriptions and representations
are the means used by those skilled in the data processing
arts to most effectively convey the substance of their work
to others skilled in the art . An algorithm is here , and
generally , conceived to be a self - consistent sequence of steps
leading to a desired result . The steps are those requiring
physical manipulations of physical quantities . Usually ,
though not necessarily , these quantities take the form of
electrical or magnetic signals capable of being stored , trans
ferred , combined , compared , and otherwise manipulated . It
has proven convenient at times , principally for reasons of
common usage , to refer to these signals as bits , values ,
elements , symbols , characters , terms , numbers , or the like .
[0073] It should be borne in mind , however , that all of
these and similar terms are to be associated with the appro
priate physical quantities and are merely convenient labels
applied to these quantities . Unless specifically stated other
wise , as apparent from the following discussion , it is appre
ciated that throughout the description , discussions utilizing
terms such as “ receiving ” , “ determining " , " allocating ” ,
“ notifying ” , or the like , refer to the action and processes of
a computer system , or similar electronic computing device ,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system ' s regis
ters and memories into other data similarly represented as
physical quantities within the computer system memories or
registers or other such information storage , transmission or
display devices .
100741 . The present disclosure also relates to an apparatus
for performing the operations herein . This apparatus may be
specially constructed for the required purposes , or it may
comprise a general purpose computer selectively activated
or reconfigured by a computer program stored in the com
puter . Such a computer program may be stored in a computer
readable storage medium , such as , but not limited to , any
type of disk including floppy disks , optical disks , CD
ROMs , and magnetic - optical disks , read - only memories
(ROMs) , random access memories (RAMs) , EPROMs ,
EEPROMs , magnetic or optical cards , or any type of media
suitable for storing electronic instructions , each coupled to
a computer system bus .
[0075] The algorithms and displays presented herein are
not inherently related to any particular computer or other
apparatus . Various general purpose systems may be used
with programs in accordance with the teachings herein , or it
may prove convenient to construct more specialized appa
ratus to perform the required method steps . The required
structure for a variety of these systems will appear as set

US 2017 / 0251076 A1 Aug . 31 , 2017

forth in the description below . In addition , the present
disclosure is not described with reference to any particular
programming language . It will be appreciated that a variety
of programming languages may be used to implement the
teachings of the disclosure as described herein .
[0076] The present disclosure may be provided as a com
puter program product , or software , that may include a
machine - readable medium having stored thereon instruc
tions , which may be used to program a computer system (or
other electronic devices) to perform a process according to
the present disclosure . A machine - readable medium includes
any mechanism for storing or transmitting information in a
form readable by a machine (e . g . , a computer) . For example ,
a machine - readable (e . g . , computer - readable) medium
includes a machine (e . g . , a computer) readable storage
medium (e . g . , read only memory (" ROM ") , random access
memory (“ RAM ”) , magnetic disk storage media , optical
storage media , flash memory devices , etc .) , a machine (e . g . ,
computer) readable transmission medium (electrical , opti
cal , acoustical or other form of propagated signals (e . g . ,
carrier waves , infrared signals , digital signals , etc .)) , etc .
100771 . It is to be understood that the above description is
intended to be illustrative , and not restrictive . Many other
implementation examples will be apparent to those of skill
in the art upon reading and understanding the above descrip
tion . Although the present disclosure describes specific
examples , it will be recognized that the systems and methods
of the present disclosure are not limited to the examples
described herein , but may be practiced with modifications
within the scope of the appended claims . Accordingly , the
specification and drawings are to be regarded in an illustra
tive sense rather than a restrictive sense . The scope of the
present disclosure should , therefore , be determined with
reference to the appended claims , along with the full scope
of equivalents to which such claims are entitled .

What is claimed is :
1 . A method comprising :
receiving , by a processing device of a multi - tenant dis

tributed storage system , a tenant identifier ;
identifying , by a quality of service (QoS) translator , a Qos

policy associated with a tenant identified by the tenant
identifier , by looking up the tenant identifier in a
memory data structure , wherein the QoS policy com
prises a threshold value of a performance parameter of
the distributed storage system , wherein the threshold
value is provided by one of : a minimum threshold value
or a maximum threshold value ;

receiving , by the QoS translator , a service request from
the tenant ;

determining , by the QoS translator , an estimated value of
the performance parameter in view of the request ; and

responsive to successfully evaluating a validity condition
with respect to the estimated value in view of the
threshold value , forwarding , by the QoS translator , the
request to a servicing component for execution ,
wherein the validity condition is provided by one of :
the estimated value not exceeding the maximum thresh
old value or the estimated value not falling below the
minimum threshold value .

2 . The method of claim 1 , further comprising responsive
to successfully evaluating an invalidity condition with
respect to the estimated value in view of the threshold value ,
one of : rejecting the request or discarding the request ,
wherein the invalidity condition is provided by one of : the

estimated value exceeding the maximum threshold value or
the estimated value falling below the minimum threshold
value .

3 . The method of claim 1 , wherein receiving the tenant
identifier comprises receiving a transport layer security
(TLS) certificate .

4 . The method of claim 1 , wherein the QoS translator
operates in one of : a standalone mode or a distributed mode .

5 . The method of claim 1 , wherein the performance
parameter comprises a latency of tenant request servicing by
the distributed storage system .

6 . The method of claim 1 , wherein the performance
parameter comprises a rate of tenant request servicing by the
distributed storage system .

7 . The method of claim 1 , wherein the performance
parameter comprises a number of input / output operations
per second (iops) performed by the distributed storage
system .

8 . The method of claim 1 , further comprising responsive
to successfully evaluating an invalidity condition with
respect to the estimated value in view of the threshold value ,
delaying the request , wherein the invalidity condition is
provided by one of : the estimated value exceeding the
maximum threshold value or the estimated value falling
below the minimum threshold value .

9 . A system comprising :
a memory device ; and
a processing device of a distributed storage system , the

processing device operatively coupled to the memory
device , the processing device to :
receive a first request , corresponding to a first tenant , to
mount a volume within a distributed storage system ;

derive a tenant identifier from an authentication cre
dential , wherein the authentication credential is to
authenticate the first request ;

identify , in a quality of service policy for the first
tenant , a threshold value associated with a perfor
mance parameter of the distributed storage system ,
wherein the threshold value is provided by one of : a
minimum threshold value or a maximum threshold
value ;

determine an estimated value of the performance
parameter in view of a second request initiated by a
second tenant ; and

responsive to successfully evaluating a validity condi
tion with respect to the estimated value in view of the
threshold value , forwarding the second request to a
servicing component for execution , wherein the
validity condition is provided by one of : the esti
mated value not exceeding the maximum threshold
value or the estimated value not falling below the
minimum threshold value .

10 . The system of claim 9 , wherein the processing device
is further to , responsive to successfully evaluating an inva
lidity condition with respect to the estimated value in view
of the threshold value , one of : delaying , rejecting , or dis
carding the request , wherein the invalidity condition is
provided by one of : the estimated value exceeding the
maximum threshold value or the estimated value falling
below the minimum threshold value .

11 . The system of claim 9 , wherein the authentication
document comprises a transport layer security (TLS) cer
tificate .

US 2017 / 0251076 A1 Aug . 31 , 2017

12 . The system of claim 9 , wherein the processing device
is to execute a quality of service (QoS) translator .

13 . The system of claim 9 , wherein the performance
parameter comprises a latency of the distributed storage
system .

14 . The system of claim 9 , wherein the performance
parameter comprises a throughput of the distributed storage
system .

15 . The system of claim 9 , wherein the performance
parameter comprises a number of input / output operations
per second (iops) within the distributed storage system .

16 . The system of claim 9 , wherein the processing device
is further to update a memory data structure with informa
tion from a return path of a completed request .

17 . The system of claim 9 , wherein the processing device
is to execute a layered server translator stack .

18 . A non - transitory computer readable medium compris
ing executable instructions that when executed by a pro
cessing device , cause the processor device to :

generate a memory data structure comprising an entry for
a tenant of a multi - tenant distributed storage system ,
the entry comprising an identifier derived from an
authentication credential of the tenant , the entry further
comprising a threshold value associated with the ten

ant , wherein the threshold value is provide by one of :
a minimum threshold value or a maximum threshold
value ;

associate a received request with the tenant by matching
an identifier associated with the request with the iden
tifier in the entry ;

determine an estimated value of the performance param
eter in view of the request ; and

responsive to successfully evaluating a validity condition
with respect to the estimated value in view of the
threshold value , forwarding the request to a servicing
component for execution , wherein the validity condi
tion is provided by one of the estimated value not
exceeding the maximum threshold value or the esti
mated value not falling below the minimum threshold
value .

19 . The non - transitory computer readable medium of
claim 18 , wherein the authentication document comprises a
transport layer security (TLS) certificate .

20 . The non - transitory computer readable medium of
claim 18 , wherein the quality of service parameter comprises
one of a latency , a throughput , or a number of input / output
operations per second (iops) within the distributed storage
system .

* * * * *

