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PARALLEL DECISION TREE PROCESSOR
ARCHITECTURE

RELATED APPLICATIONS

[0001] The present application is related to concurrently
filed U.S. application Ser. No. , entitled “Decision
Tree Processors,” the entire contents of which are hereby
incorporated herein in their entirety. The present application
is also related to concurrently filed U.S. application Ser. No.

, entitled “Decision Tree Threshold Coding,” the
entire contents of which are hereby incorporated herein in
their entirety.

BACKGROUND

[0002] A decision tree is a binary search tree comprised of
decision nodes and left and right sub-trees and/or leaves. A
decision node includes a decision to be made. Branches lead
from a decision node to other decision nodes or to leaf nodes,
and a selection of one of the branches is based on the decision
made at the decision node. An example decision includes the
comparison of two values, such as a feature value and a
threshold value. If the feature value is less than or equal to the
threshold value, then a left subtree is selected; if the feature
value is not less than or equal to the threshold value, then the
right subtree is selected. The branch is followed to the next
node and, if the next node is a decision node, another decision
is made, and so on until a branch leading to a leaf node is
selected. A leaf node represents an output or an end-point of
the decision tree. An example output is an output value, or a
score, for the decision tree. This process is referred to as
walking the decision tree.

[0003] Among other applications, decision trees are used to
rank documents in document search. In one example, a deci-
sion tree is used to calculate the relevance of a particular item
(e.g., aweb page) to a particular search query. An initial set of
candidate search result documents are obtained, and a feature
vector for the candidate search result documents are pro-
duced. The feature vector represents various aspects (e.g.,
document statistics) of the candidate search result docu-
ments. One example of a feature is the number of times a
search query word appears in the candidate document. Each
decision tree node includes a threshold and a feature identi-
fier, which can be used to look up the feature value for the
candidate search result document. The decision tree is
walked, and the tree-walking process eventually arrives at a
leaf node and outputs the associated score. The score (or
multiple scores if more than one decision tree is used) is used
to determine the relevance of a candidate search result. The
relative scores of multiple documents are used to rank the
documents.

[0004] Besides search, decision trees have a variety of uses.
Decision trees are used to implement gesture recognition,
voice recognition, data mining, and other types of computa-
tions.

BRIEF SUMMARY

[0005] This Summary is provided in order to introduce
simplified concepts of the present disclosure, which are fur-
ther described below in the Detailed Description. This sum-
mary is not intended to identify essential features of the
claimed subject matter, nor is it intended for use in determin-
ing the scope of the claimed subject matter.
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[0006] Embodiments of the present description include
hardware implementations of decision tree scoring, which
enables faster decision tree scoring than conventional soft-
ware-based decision tree scoring. On-chip architecture of the
decision tree scoring system includes a plurality of decision
tree processors implemented in parallel on one or more spe-
cialized or programmable logic circuits. At the top level of the
on-chip architecture is a decision tree scorer (DTS) that
receive feature vectors (e.g., sets of feature values) from an
upstream computing system host or processing system, sends
the feature vectors to a first decision tree cluster (DTC),
receives scores from the decision tree clusters, and outputs the
result to the host or other downstream system. At the next
level of the hierarchy, a plurality of decision tree clusters
(DTC) distributes feature vectors amongst themselves, and
processes and propagates scores from decision tree proces-
sors to neighboring DTCs and to the DTS. The DTCs include
one or more decision tree processors, and one or more feature
storage tiles (FST). Feature value and threshold value com-
pression reduce the bandwidth and storage requirements for
the decision tree scoring system.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The Detailed Description is set forth with reference
to the accompanying figures. In the figures, the left-most
digit(s) of a reference number identifies the figure in which
the reference number first appears. The use of the same ref-
erence numbers in different figures indicates similar or iden-
tical items.

[0008] FIG. 1 is a block diagram of an example decision
tree scoring system that includes one or more hardware-
implemented decision tree scorers in accordance with various
embodiments.

[0009] FIG. 2 illustrates decision tree coding in accordance
with various embodiments of the present disclosure.

[0010] FIG. 3illustrates an example list of unique threshold
values on a real number line.

[0011] FIG. 4 illustrates an example architecture of the
decision tree scorer in accordance with various embodiments.
[0012] FIG. 5 illustrates an example architecture of a deci-
sion tree cluster in accordance with various embodiments.
[0013] FIG. 6 illustrates a multi-stage, multi-threaded,
pipelined tree walking implementation of a decision tree pro-
cessor, in accordance with various embodiments.

[0014] FIG. 7 depicts a flow graph that shows an example
process of executing a decision tree node, in accordance with
various embodiments.

[0015] FIG. 8 illustrates a process of scoring feature vectors
a plurality of decision trees by a decision tree scorer, in
accordance with various embodiments.

[0016] FIG. 9 illustrates a process of scoring a plurality of
decision trees by decision tree clusters, in accordance with
various embodiments.

[0017] FIG. 10 illustrates a process of coding threshold
values of a plurality of decision trees in accordance with
various embodiments.

[0018] FIG. 11 illustrates a process of coding a set of fea-
ture values, in accordance with various embodiments.
[0019] FIG. 12 is a block diagram of an example computing
system usable to perform various methods described herein.
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DETAILED DESCRIPTION

Overview

[0020] Embodiments of the present description include
hardware implementations of decision tree scoring, which
enables faster decision tree scoring than conventional soft-
ware-based decision tree scoring. The hardware implemen-
tation includes one or more decision tree processors, imple-
mented as circuitry, that execute decision tree programs. A
decision tree program is a decision tree that has been con-
verted to a program or other data executable by a decision tree
processor. A decision tree program includes a decision tree
table, which includes the various decision nodes, feature
identifiers, threshold values, and output values for a decision
tree. Some embodiments of decision tree processors walk
decision trees in a multi-stage and/or multi-threaded fashion.
In multi-threaded embodiments, each stage of the decision
tree processor executes a different decision tree thread; thus
an n-stage multi-threaded decision tree processor concur-
rently executes portions of up to n decision trees per cycle.
[0021] Embodiments include processes, systems, and
apparatuses for coding, compressing, and/or compiling deci-
sion trees to be executed within a decision tree processor. In
various embodiments, pointers are eliminated from decision
trees by arranging the nodes such that some of the nodes with
branches between them in the decision tree are adjacent to the
particular node in the decision tree table. Other nodes are
identified with next node data, such as offset or delta values.
Leaf values are part of the decision tree node representations,
rather than part of separate leaf node entries.

[0022] In some embodiments, feature value and threshold
value compression reduces the bandwidth and storage
requirements for a decision tree scoring system, while also
increasing the size of workloads that embodiments are able to
handle. In some embodiments of the present description, a
sorted list is created for each threshold value that a particular
feature is compared to in one or more decision trees, and
threshold value indices are assigned to the threshold values.
Although the total number of possible thresholds is high (e.g.,
represented in some embodiments by a 32-bit floating point
number), the total number of actual thresholds for a particular
feature in a plurality of decision trees is in practice much
smaller, usually no more than 255 thresholds (although larger
numbers of thresholds are possible). A dense or non-dense
fixed-point small integer threshold value index is created. The
threshold value index may be numbers from O to the total
number of thresholds, and thus may be represented by a 4 bit,
8 bit, or other n-bit fixed point value. In other embodiments,
the threshold value index may be negative numbers, and may
include non-contiguous integer values, such as 0, 2, 4, 6, or
other non-contiguous integer values. Feature values are also
coded as n-bit fixed point feature value indices, such that
comparisons of the threshold value indices to the feature
value indices are equivalent to comparisons of the original,
non-compressed threshold values to the original, non-com-
pressed feature values.

[0023] In some embodiments, a plurality of decision tree
processors is implemented in parallel on one or more special-
ized or programmable logic circuits. In some embodiments,
the plurality of decision tree processors executes, or concur-
rently executes, decision trees with respect to a common
feature vector. At the top level of the on-chip architecture is a
decision tree scorer (DTS) that receives feature vectors (e.g.,
sets of feature values) from an upstream computing system
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host or processing system, sends the feature vectors to a first
decision tree cluster (DTC), receives scores from the decision
tree clusters, and outputs the result to the host or other down-
stream system. At the next level of the hierarchy, a plurality of
decision tree clusters (DTC) distributes feature vectors
amongst themselves and propagates scores from decision tree
processors to neighboring DTCs and to the DTS. At the next
level of the hierarchy, the DTCs include one or more decision
tree processors, and one or more feature storage tiles (FST).
The decision tree processors may be multi-threaded to con-
currently execute multiple decision trees with respect to com-
mon feature vectors. The FST stores feature vectors to be
scored against the plurality of decision trees, and in some
embodiments are double-buffered to enable one set of fea-
tures to be written to the FST while another set of features are
accessed by the decision tree processors for scoring.

[0024] Embodiments described herein are amenable to
implementation in specialized hardware such as in an ASIC,
or in programmable logic device such as an FPGA. Various
aspects of embodiments are also amenable to implementation
in a multi-core processor, a system-on-chip (SoC) (e.g., one
or more decision tree scoring cores on an SoC), and/or as a
general purpose processor with an extended instruction set,
and thus able to partially or wholly execute decision trees
responsive to one or more atomic processor instructions. The
devices, processes, and systems described herein may be
implemented in a number of ways. Example implementations
are provided below with reference to the following figures.

Example Decision Tree Scoring System

[0025] FIG. 1 is a block diagram of an example decision
tree scoring system 100 that includes one or more hardware-
implemented decision tree scorers 102 in accordance with
various embodiments. A host 104 includes a decision tree
coder 106 to code decision trees into model contexts 108 for
execution on the decision tree scorers 102. As described in
more detail below, the decision tree coder 106 represents
decision trees using variable-length nodes, wherein subtree
pointers are eliminated with adjacencies and offsets, leaf
values are included in the node representations, and threshold
values are coded as threshold index values. The decision tree
coder 106 reduces the sizes of the decision trees, to enable
more of them to be loaded onto the decision tree scorer 102.
The decision tree coder 106 may also or alternatively com-
press the decision tree data (or coded decision tree data) of the
model contexts 108 using other compression techniques. In
these embodiments the decision tree scorer 102 or other on-
chip logic is configured to decompress the compressed deci-
sion tree or coded decision tree data for scoring on the deci-
sion tree scorer 102.

[0026] The host 104 also includes a feature vector coder
110 that codes feature values within feature vectors 112 to
reduce the bandwidth and storage requirements of the deci-
sion tree scorers 102, to make the feature vectors 112 com-
patible with the coded model contexts 108, and to place the
model contexts 108 and the feature vectors 112 into a form
more easily processed by specialized hardware as described
in various embodiments herein. As described in more detail
elsewhere within this Detailed Description, the feature vector
coder 110 selects feature index values for the features such
that comparisons of the feature index values to threshold
index values within the model contexts 108 are equivalent to
comparisons of the corresponding feature values and thresh-
old values.
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[0027] Thehost 104 includes a decision tree scoring sched-
uler 114 that schedules decision tree scoring jobs. The host
104 receives or determines that various ones of the feature
vectors 112 are to be scored against various ones of the model
contexts 108. An example set of decision tree scoring jobs
includes:

[0028] Feature vector 1/Model Context A
[0029] Feature vector 2/Model Context B
[0030] Feature vector 3/Model Context A
[0031] Feature vector 4/Model Context B
[0032] Because it generally takes more time to load a new

model context into the decision tree scorer 102 than it takes to
load a new feature vector into the decision tree scorer 102, the
decision tree scoring scheduler 114 rearranges the decision
scoring jobs to reduce the number of times that a new model
context 108 is loaded into the decision tree scorer 102. Con-
tinuing with the example above, the decision tree scoring jobs
are rearranged as follows:

[0033] Feature vector 1/Model Context A
[0034] Feature vector 3/Model Context A
[0035] Feature vector 2/Model Context B
[0036] Feature vector 4/Model Context B
[0037] In the field of search, a model context is a set of

decision trees associated with a type of search being per-
formed. Examples of search contexts that utilize different sets
of decision trees are language (search on English-language
queries may be performed using a different model context
that searches performed in German-language queries), image
search, news search, video search, and so forth. Other search
contexts may call for separate model contexts.

[0038] The host 104 is configured to be communicatively
coupled to one or more specialized or programmable logic
devices 116 via datapath interfaces, such as interfaces 118
and 120. The interfaces 118 and 120 are, in various embodi-
ments, Peripheral Component Interfaces Express (PCI-Ex-
press) interfaces, although other interface types and specifi-
cations may be used without departing from the scope of
embodiments. The determination of the interface type may be
based on interface bandwidth targets, which may in turn be
based on the throughput targets for the decision tree scoring
system 100. In a particular example, where a target process-
ing speed is one microsecond per search document scoring,
using decision tree and feature compression techniques
described herein results in a bandwidth target of approxi-
mately 2-8 KB per feature vector (e.g., per candidate search
result document), or approximately 2-8 GB per second. PCI-
Express is suitable for this target, although other interface
types and specifications may also be suitable for this or other
targets. Multiple interfaces may also be used in place of a
single high-speed interface without departing from the scope
of embodiments.

[0039] As described in more detail below, the host 104 may
be implemented as a plurality of programming instructions
executable by one or more general-purpose processors of a
computing system. However, one or more aspects of the host
104 may be implemented on specialized or programmable
logic circuits (such as ASIC chips or FPGA chips).

[0040] The decision tree scorer 102 includes one or more
decision tree clusters 122. The decision tree clusters 122 are
configured to distribute the model contexts 108 and the fea-
ture vectors 112 amongst themselves. Alternatively, or in
addition, the decision tree scorer 102 may include an inter-
connect network to pass the model contexts 108 and/or the
feature vectors 112 throughout the decision tree scorer 102.
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The decision tree clusters 122 are also configured to process
and propagate decision tree scores from neighboring decision
tree clusters 122, as well as from the decision tree processors
124 within the decision tree clusters 122. The decision tree
clusters 122 are configured to process the scores received
from the decision tree processors 124 and neighboring deci-
sion tree clusters—which may include summing the decision
tree scores—and to propagate the processed scores (e.g., the
summed scores) to other neighboring decision tree clusters
122, as will be described in more detail elsewhere within this
Detailed Description. The decision tree scorer 102 is config-
ured to receive from one of the decision tree clusters 122 a
final score (e.g., a scalar or a vector quantity) for the decision
tree scoring job and to output the score to the host 104, or
another downstream device.

[0041] Thedecisiontree processors 124 include circuitry to
execute decision trees of one or more model contexts 108,
such as in parallel and concurrently against a common one of
the feature vectors 112, or against the different ones of the
feature vectors 112, depending on the implementation. Dif-
ferent ones of the feature storage 126 may store either a
common one of the feature vectors 112 or different ones of the
feature vectors 112. The feature storage 126 within each
decision tree cluster 122 may store the same or different ones
of the feature vectors 112.

[0042] As used herein, a decision tree processor 124
includes circuitry to score a decision tree. A decision tree
processor 124 may include both circuitry to score a decision
tree, and the decision tree code itself, embodied as a decision
tree table and stored in some memory accessible to the deci-
sion tree processor 124. One or more decision tree tables may
be hard-coded into the decision tree processors 124, stored on
memory within the decision tree processors 124, or stored on
memory that is otherwise associated with and communica-
tively coupled to the decision tree processors 124. The
memory that the decision tree tables are stored in may be
shared or dedicated storage, and may be random-access
memory (RAM), flash memory, read-only-memory (ROM),
or other memory type. The memory that the decision tree
tables are stored on may be on-die, such as on-die memory, or
may be off-chip on attached memory, such as may be com-
municatively coupled via a high-speed memory interface.
The model contexts may be co-resident within the shared or
dedicated memory. In some embodiments the host 104 may
provide the model contexts 108 to the decision tree scorers
102, and/or to an on-chip or attached memory. The host 104,
when scheduling a workload, may provide the decision tree
scorers 102 an indication of the model context 108 that should
be loaded or otherwise accessed and executed by the decision
tree processors 124. In some embodiments, there may be two
levels of memory that stores decision tree tables; a first level
of memory (which may be on-chip or attached memory, and
may be shared or dedicated to one or more decision tree
processors 124) is loaded or loadable with a particular deci-
sion tree table or tables to be executed according to a current
workload requirement. A second level of memory (which
may be on-chip or in attached memory, shared or dedicated to
one or more decision tree processors 124) may store one or
more co-resident model contexts, all or portions of which are
loadable onto the first level of decision tree table memory.

[0043] The host 104 may provide a common one of the
feature vectors 112 to a plurality of specialized or program-
mable logic devices 116, and also provide decision tree tables
of a single model context 108 to the plurality of specialized or
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programmable logic devices 116. Thus, the individual deci-
sion tree clusters 122 and decision tree processors 124 across
a plurality of specialized or programmable logic devices 116
may score decision trees of a single model context 108 against
a common one of the feature vectors 112. Score data from
each of the plurality of specialized or programmable logic
devices 116 may be propagated within each of the plurality of
specialized or programmable logic devices 116 as described
elsewhere within this Detailed Description, and also passed
back to the host 104. In some embodiments, score data may be
passed from a first specialized or programmable logic device
116 to another specialized or programmable logic device 116,
which may then further propagate the score data (such as by
summing or appending scores, or appending sums of scores)
to produce combined score data for both specialized or pro-
grammable logic devices 116.

[0044] Other methods of processing score data are possible
without departing from the scope of embodiments. For
example, each decision tree scorer 102 may receive scores, or
a list of sums of scores, from the decision tree processors 124
and/or the decision tree clusters 122 within the decision tree
scorer 102, and provide a final summed value either to the
host 104, another programmable logic device 116, or to some
other downstream device. The decision tree scorer 102 may
provide the lists of scores (or sums of scores) to the host 104,
another programmable logic device 116, or to the other down-
stream device. The host 104, other programmable logic
device 116, or other downstream device may perform a final
scoring of the feature vector 112, such as by summing the
scores or performing some other algorithm to determine a
final score for the feature vector 112, such as based on score
data from one or more of the of the plurality of specialized or
programmable logic devices 116.

[0045] In some embodiments, the specialized or program-
mable logic devices 116 may be, or be included in, one or
more of application-specific integrated circuits (ASIC), a pro-
grammable logic device such as a field programmable gate
array (FPGA), a system on a chip (SoC), as part of a general
purpose processor having a specialized portion that scores
decision trees, some other logic device, or some combination
of the above.

General Purpose Processor with Extended Instruction Set
[0046] In some embodiments, the instruction set architec-
ture of a general purpose processor is extended to include
decision tree traversal, scoring instructions, and state. In
some embodiments, the extended instruction set includes an
instruction to walk one node in a decision tree. In some
embodiments, the extended instruction set includes an
instruction to walk a plurality of nodes, or to walk an entire
decision tree from a root (top node) to a leaf.

[0047] The state usable by a general purpose processor with
an extended instruction set to traverse a decision tree includes
representation of the decision tree nodes and the feature vec-
tor data. The decision tree nodes may be represented in a data
structure, in executable instructions, or in some other form.
As a data structure, the decision tree may be represented as a
tree comprising one or more nodes, the nodes comprising
feature identifiers, threshold values, and left and right subtree
data, which may identify left (respectively right) subtree
nodes or left (respectively right) leaf nodes or leaf score
values. A particular node’s data may be bundled into adjacent
bytes e.g. a record or ‘struct’ or ‘class’, or may be spread
across tables. Where the decision tree nodes are represented
as a data structure, a tree node is identified by a data value,
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e.g., an index or pointer (machine address) of the node. Tra-
versing a tree node responsive to an instruction to walk one or
more nodes comprises starting with a tree node identifier,
retrieving the feature it identifies, comparing it to the thresh-
old value of the node, and using the comparison outcome to
determine the tree node identifier of the left or right subtree,
or right or left leaf/leaf value. In some embodiments an
instruction to walk a node, referred to herein as a NODE-
WALK instruction, may take two parameters, for example a
register containing a pointer to the tree node and a register
containing a pointer to the feature vector in RAM, and may
produce two values, for example, a register containing either
a pointer to the left or right subtree (if not a leaf node) or
containing the output value (if a leaf node), as well as a
condition code register containing a flag that is set it NODE-
WALK hasreached a leaf value (terminating the tree walk). In
assembly language, a tree walk includes:

; load r1 with the address of the root node of the decision tree
; load 12 with the address of the feature vector
repeat:
rl = NODEWALK rl,r2 ; walk from one node to its left or right
subtree
;node
INE repeat ; repeat until a leaf is reached

; reached a leaf; leaf output value is in r1

[0048] Another embodiment of NODEWALK bundles the
loop test and jump into one instruction:

; load r1 with the address of the root node of the decision tree
; load 12 with the address of the feature vector

repeat2:
r1 = NODEWALKREPEAT rl,r2,repeat2 ; walk one node,
repeat ;until
;a leaf is reached
; reached a leaf, leaf output value is in r1
[0049] Another embodiment walks the entire tree in one

instruction:

; load r1 with the address of the root node of the decision tree
; load 12 with the address of the feature vector

13 = TREEWALK rl,12; walk the tree

; leaf output value is in r1

[0050] Insomeembodiments, a decision tree is represented
as a series of tree traversal instructions that are executed by a
processor, which implements decision tree traversal instruc-
tions. The instructions correspond to one node in a decision
tree. The instructions, represented as bit strings, comprise bit
fields including a feature identifier, a threshold, and identifi-
ers of the left and right subtree nodes and/or leaves and leaf
values. In this embodiment, a tree node is identified with an
instruction (machine code) address. Therefore a tree walk
comprises executing a tree node walk instruction that changes
program control flow to jump to the code for the left or right
subtree.



US 2015/0262064 Al

[0051] For example, if a decision tree is comprised of two
nodes:
if (feature 10 <=t1) then
if (feature 20 <= t2) then
score = a,
else
score = b;
endif
else
SCore = ¢,
endif
[0052] This might be represented by this program:
[0053] treewalk:

; load r2 with the address of the feature vector
root:

r1 = NODE #10 #t1,#left #0,#0 #c #end, 12
left:

r1 = NODE #20 #t2,#0 #0 #a #b #end,r2
end:

; leaf output value in rl

in which the NODE instructions encode:

[0054] leaf-output-value=NODE  #feature-identifier,
#threshold-value, #left-subtree-address, #right-subtree-
address, #left-leaf-output-value, #right-leaf-output-
value, #leaf-code-address, feature-vector-address-regis-
ter

The # fields are ‘immediate’ value bit fields of the instruction.
[0055] In this embodiment a decision tree is scored by
executing its first NODE instruction, which jumps to the next
left or right NODE instruction, and so on, until it reaches a
leaf. The root NODE instruction’s bit fields encode the fea-
ture identifier (10), the threshold value (41), the left subtree
(“left”), the right subtree (nil), the left leaf value (nil), and the
right leaf value (¢). In this example if the identified feature is
less than or equal to the threshold t1, then control transfers to
the second NODE instruction at address ‘left’. This instruc-
tion’s bit fields encode its feature identifier (20), threshold
value (12), left and right subtrees (nil), and the left and right
leaf output values (a and b, respectively). If a node instruction
advances to a leaf, then it transfers control to the specified
address (end) and the leaf index or output value is obtained in
the output register.

[0056] In other embodiments, a tree traversal instruction
may use implicit registers, special purpose registers, or
memory locations to identify the feature vector and the leaf-
node address. Other embodiments may employ variable-
length instruction encodings to compress or eliminate
instruction bit fields (such as nil subtree fields) which are not
used to represent a particular decision tree node. Other
embodiments may take advantage of adjacency of instruc-
tions in memory to compress or eliminate bit fields (such as a
left or right subtree address) in a manner similar to that
described earlier.

[0057] In some embodiments, the decision tree data struc-
ture memory, or the decision tree instruction memory, may be
integrated into the general purpose processor, stored exter-
nally to it, or may be coupled to external memory through a
memory cache hierarchy.

[0058] A general purpose processor with decision tree tra-
versal, scoring instructions, and state may also be coupled to
a feature storage RAM. In some embodiments the feature
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storage RAM may be loaded automatically by a feature vector
distribution network as described elsewhere within this
Detailed Disclosure. In particular, new feature data may be
loaded into this RAM by the feature vector distribution net-
work without requiring execution of any instructions by the
general purpose processor with extended instruction set for
walking decision trees. This may save time and energy
required to score a decision tree.

[0059] A general purpose processor with decision tree tra-
versal, scoring instructions, and state may also be coupled to
a score aggregation system. This may comprise additional
registers, thread state, or an adder tree network, to accumulate
leaf output values (scores) resulting from instructions like
NODEWALK, TREEWALK, or NODE to traverse a node to
a leaf node. This too may save time and energy required to
score a decision tree.

Example Decision Tree Coding

[0060] FIG. 2 illustrates decision tree coding in accordance
with various embodiments of the present disclosure. An
example decision tree 200 is illustrated in FIG. 2. It includes
aplurality of decision nodes 202 and a plurality of leaf nodes
204. A decision node 202 includes various features, including
a feature identifier, which may be an address, an index num-
ber, a reference numeral or other identifier that identifies the
feature being compared at the decision node 202. The deci-
sion node 202 also includes a threshold value to which the
feature value (referenced via the feature identifier) is com-
pared. The decision node 202 also includes a left branch
pointer and a right branch pointer, which indicate the loca-
tions where the next nodes are located. Each decision node
202 represents a comparison; for example node number 7
shows that feature value, identified as feature “F1,” is com-
pared to a threshold number 10. Other comparisons are pos-
sible without departing from the scope of embodiments.
[0061] Embodiments described herein refer to left branch,
right branch, left nodes, right nodes, etc. But these terms are
used merely for the sake of describing a decision tree. In
general, a decision tree walking algorithm performs a com-
parison between the feature value and the threshold value and
proceeds to either a first node or a second node depending on
the outcome of the comparison. For ease of description, these
next nodes are referred to herein as left nodes and right nodes,
but this is not to be taken in a literal or limiting sense.
[0062] A leafnode 204 includes a leaf value. When a deci-
sion tree walking algorithm reaches a leaf node 204, the
particular instance of walking the decision tree is complete,
and the leaf value corresponding to the particular leaf node
204 arrived at is output.

[0063] The decision tree coder 106 codes the decision tree
200. The decision tree coder 106 creates a decision tree table
206 for each decision tree within a model context. In the
decision tree table 206, at least some branch pointers are
eliminated with adjacencies. Thus, Node 1 in the decision tree
200 is coded in the decision tree table as being prior to Node
2. Node 3 is listed after Node 2, and Node 4 is after Node 3.
Thus, during the execution of Nodes 1-3 within the decision
tree table 206, a decision tree processor, such as one of the
decision tree processors 124, knows to select, based on the
outcome of a comparison of the feature value to the threshold
value, either the following adjacent node in the decision tree
table 206 or another node, referred to by next node data such
as an offset value, as a next node to be executed by the
decision tree processors. Thus, based on the example adja-
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cencies illustrated in FIG. 2, the outcomes of executing deci-
sion nodes of the decision tree table 206 that indicate to select
the left branch result in selecting the adjacent node as the next
node. Thus, where a particular decision node has a left branch
that leads to another decision node (and not to aleafnode), the
adjacent node in the decision tree table 206 is the next left
node. Right next nodes are identified using next node data,
such as offset values. Where there is no left decision node
(because for example the left branch leads to a leaf node), it is
possible for right next nodes to be adjacent; such right nodes
may also identified by next node data, such as offset values, or
they may be assumed to be adjacent.
[0064] In addition to arranging the decision nodes 202
within the decision tree table 206 based on adjacencies, the
decision tree coder 106 also includes any leaf node values of
leaf nodes 204 in the representation of the decision nodes 202
within the decision tree table 206. For example, Node 7 is
coded by the decision tree coder 106 such that its represen-
tation includes a leaf value. Based on the outcome of the
execution of Node 7 (e.g., based on the comparison of the
feature value to a threshold value 10 as shown in FIG. 2), the
decision tree processor selects either to output the value of the
left leaf node or select node 8 as the next decision node for
processing.
[0065] The decision nodes 202 are represented within the
decision tree table 206 as variable length decision nodes
(some are shown as being smaller than others to illustrate
this). In one example, the following fields are used by the
decision tree coder 106 to code the decision nodes.
[0066] 2 Leaves: {feat_ad; info; [_Leaf val; R_Leaf_
val} (72 bits)
[0067] 1 Leaf: {feat_ad; info; [,_Leaf val or R_Leaf_
val} (48 bits)
[0068] O Leaves: {feat_ad; info; delta(optional)} (24 or
36 bits)
[0069] All representations of decision nodes 202 within the
decision tree table 206 include a feature identifier (“feat_ad”)
and information (“info”) field. The feature identifier identifies
a location within the feature storage where the feature value
(which may be a feature index value as described elsewhere
within this Detailed Description) to be compared to a thresh-
old in the execution of the decision node is found. The feature
identifier may be an address or other identifier that a decision
tree processor uses to look up the feature value within feature
storage, such as within the feature storage 126. The informa-
tion field includes various sub-fields discussed in more detail
below.
[0070] The two-leaf decision nodes also include a left leaf
value (“L_Leaf_val”) and a right leaf value (“R_ILeaf_val”).
These values represent possible outcomes or outputs of the
decision tree 200. The one-leaf decision nodes include one of
a left leaf value (“L._Leaf val”) or a right leaf value (“R_
Leaf_val”). A leaf value may include various data types,
including integer, fixed point, floating point, or an index that
identifies a unique value stored outside of the decision tree
table.
[0071] A decision node with no leaves, such as Node 2,
includes an optional delta value that identifies where the right
decision node is located. In this case, the left decision node is
located within the decision tree table 206 at the adjacent
location (e.g., for Node 2, the “left” decision node is Node 3).
The right decision node is located at a location within the
decision tree table 206 that is identifiable by the delta value.
The decision tree processor processes the delta value to deter-
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mine the right decision node value. For example, the decision
tree processor may add the delta value to a location value
(e.g., an index value or address) of the currently executing
decision node to obtain the location value (e.g., address or
index value) of the next right decision node. In some
instances, the delta value is included within the info field as
described in more detail below. In these instances, a separate
delta value is not included within the node representation.
[0072] In an example implementation, the feat_ad field is
12 bits, the info field is 12 bits, the rdelta field is 12 bits, the
left leaf value is 24 bits, and the right leaf value is 24 bits.
[0073] The info field includes various sub-fields that iden-
tify the threshold value, whether there is a left leaf, whether
there is a right leaf, and encodes common offset or delta
values for locating the next right node. One example of the
info field is as follows:

[0074] Info: {nyb; x; 1_leaf; r_leaf; threshold}
[0075] In some embodiments, the nyb field is 1-bit that
identifies whether the feature value is a 4-bit or an 8-bit word
(e.g., whether the feature value is a “nibble™), the x field is
1-bit, the I_leafis 1-bit, the r_leafis 1-bit, and the threshold is
8 bits, although other field sizes may be used without depart-
ing from the scope of embodiments. The 1_leaf field indicates
whether the node includes a left leaf value; likewise, the
r_leaf field indicates whether the node includes a right leaf
value. As noted above, the info field can be used to code the
right node offset or delta value, thereby eliminating the need
foraseparate delta field in the node. Where x=1, the1_leafand
r_leaf fields are used to code four common offset values. In a
particular example, the 1_leaf and r_leaf fields are used to
code offsets of 8 words, 12 words, 16 words, and 20 words
(where a word=12 bits in this particular example), although
other offset values may be coded without departing from the
scope of embodiments. Where the offset value cannot be
coded with one of the common offset values within the info
field—because for example the next right node is not at a
location that is one of the common offset values away from
the current node—the optional separate offset delta field is
used. In some embodiments, multiple decision trees are
stored in one decision tree table, with appropriate coding
identifying the number of decision trees and/or locations of
the one or more decision trees within the decision tree table.
[0076] In some embodiments, the decision tree table 206
also includes a DTT header 208, which codes various aspects
of the decision tree table 206, such as the number of decision
trees contained within the decision tree table 206 and starting
locations for one or more decision trees within the decision
tree table 206.

Example Threshold and Feature Compression

[0077] Within a given decision tree, or within a plurality of
decision trees such as within a model context 108, decision
nodes include feature identifiers and threshold values. In an
example decision tree node execution, a feature value (read
from the feature vector at a location indexed by the feature
identifier feat_ad) is compared to a threshold value. The com-
parison may be a determination of whether the feature value
is less than or equal to a threshold value. If yes, then the left
branch is selected; if no, then the right branch is selected.
Other types of comparisons are possible without departing
from the scope of embodiments, such as less than, greater
than, or greater than or equal to. Although various examples
of feature value and threshold value encoding described
below assume that the decision tree comparisons include
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determining whether a feature value is less than or equal to the
threshold value, similar coding can be performed for feature
values and threshold values based on other types of decision
tree comparisons without departing from the scope of
embodiments.

[0078] Throughout a plurality of decision trees, a given
feature £, will be referenced in one or more nodes. The nodes
that reference a given feature f, will include one of one or
more threshold values tv,. Thus, within a given model context
(e.g., one or more decision trees), and for a particular feature
f,, the decision tree coder 106 determines a list ts, of threshold
values tv, that feature values fv, corresponding to a particular
feature f, are compared to. Threshold values not compared to
a particular feature f; are not included in the list for the par-
ticular feature £, (although they will be included in other lists
for other features). To code the threshold values tv, for a
particular f, within a model context, the following procedure
is used.

[0079] Foreach featuref,, the decision tree coder 106 forms
a sorted list ts; of all unique threshold values tv, that are
included in any node of any of the decision trees of a model
context that also reference f;. FIG. 3 illustrates an example list
ts; of unique threshold values tv, on a real number line 300.
The sorted list ts, only includes unique ones of the threshold
values tv,; thus a particular threshold tv, appears in ts; only
once, even if it is included in multiple nodes that reference f,
within a given model context.

[0080] An example coding 302 for the thresholds values tv,
in ts, are shown in FIG. 3. Index numbers tvi, are assigned to
each unique tv, on the real number line 300 within ts; in
ascending order, such that the smallest tv, is assigned index O
and the largest tv, is assigned an index number equal to one
less than the total number of unique tv, within ts,. In the
example shown in FIG. 3, threshold value t1 is the smallest
tv,, and is assigned index 0, while threshold value t6 is the
largest tv, and is assigned threshold index value 5. Where the
threshold values are large numbers, the assignment of fixed-
point integer index values tvi, reduces the number of bits
required to represent the thresholds within the decision tree
node representations. For example, the threshold values tv,
may be 32-bit floating point numbers (although other num-
bers of bits, and other types of variables, may be used without
departing from the scope of embodiments), and in the
example illustrated in FIG. 3, as small as a three-bit number
may be used to represent the threshold index values tvi, (al-
though other numbers of bits may be used to represent tvi,,
and the feature index values fvi,, as is described in more detail
below).

[0081] In addition to coding tv, into tvi,, the feature vector
coder 110 codes the feature values fv, that correspond to f; in
the feature vectors 112 into feature index values fvi, such that
they are compatible with the coded threshold index values
tvi,. Bach feature vector 112 includes a list of feature values
fv, foreach f.. In some embodiments, the feature values fv, are
coded into feature index values fvi, based on the threshold
index values tvi,, and in particular they are coded such that
outcomes of the comparisons of the threshold index values
tvi, to the feature index values fvi, are equivalent to the out-
comes of comparing the threshold values tv, to the feature
values tv,. By coding feature values this way, outcomes of the
execution of the coded decision trees within the model con-
texts 108 against the coded feature vectors 112 produce the
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same outputs as conventional, software-based execution of
the decision trees based on the original feature values and
threshold values.
[0082] Continuing with the example illustrated in FIG. 3,
execution of the decision nodes of the decision trees within
the model contexts 108 are based on determining whether a
feature value fv, is less than or equal to the threshold value tv,.
Therefore, in this example, the feature values fv, are coded
into feature index values fvi, such that

[0083] fvi,<tvi, if-and-only-iff fv,<tv,
[0084] More generally, feature values fv, are coded into
feature index values fvi, such that

[0085] fvi, compare tvi, if-and-only-if fv, compare tv,
where compare represents the comparison function per-
formed during execution of the decision tree (e.g., one of <, =,
<, or >). In the example shown in FIG. 3, feature index values
fvi, are selected such that

[0086] fvi, is the greatest integer such that fv,<=ts [fvi,],

[0087] or else fvi=fts, if £>ts,[#ts,~1].
where #ts, is the total number of threshold values t, associated
with a particular feature f; within a particular model context
(e.g., all threshold values tv, in nodes that reference feature f)).
Stated another way, feature index values fvi, are selected to be
either (1) the threshold index value tvi, that corresponds to the
smallest one of the threshold values tv, that is greater than or
equal to the feature value fv,, or if all threshold values tv, are
smaller than the feature value fv,, (2) a number that is greater
than the largest threshold index value tvi,. In the example
shown above, the corresponding fvi, is selected to be a num-
ber equal to the total number of threshold values tv,, which is
one larger than the largest tvi,; however, any number larger
than the largest tvi, may be selected.
[0088] In the example illustrated in FIG. 3, the feature
vector coder 110 codes example features f1-16 as coding 304.
With respect to feature f1, t2 is the smallest tv, that is greater
than or equal to f1, and thus the feature index value fvi, for f1
is set to be the same as the tvi, for t2 (i.e., 1). With respect to
feature 6, no tv, is greater than or equal to 6; thus the fvi, for
f6 is set to a number greater than the largest tvi,. In the
example shown in FIG. 3, the fvi, for t6 is set to 6, which is one
greater than the largest tvi,, 5. Also, in the example shown in
FIG. 3, f4 is coded as 3.
[0089] Thenumber of bits selected to code the tv, and the v,
associated with a particular fi is, in embodiments, large
enough to accommodate #ts; (the total number of unique tv,
associated with decision nodes that reference f,). In some
embodiments, one of a set of possible index lengths is used to
represent tv, and fv,, which reduces the complexity of coding
tv, and fv,. In one particular example, tv, and fv, are coded as
either 4-bit words, 8-bit words, or as multiple 8-bit words,
although other word lengths may be used without departing
from the scope of embodiments. In a particular example, the
index word lengths are selected such that

[0090] Iflg(#ts,)<4, recode tv, and fv, into 4 bits, where

lg(x) is the logarithm of x to the base-2.
[0091] Else if 1g(#ts,)<8, recode tv, and fv, into 8 bits
[0092] Else recode any tv, and fv, with #ts,>255 thresh-
old comparisons as (#ts,)/255 separate f,

Where f; is recoded into (#ts,)/255 separate f,, the decision
nodes are recoded by the decision tree coder 106 to indicate
one ofthe (#ts,)/255 separate f;, and the corresponding thresh-
old values tv, of the nodes are recoded accordingly. In a
specific example, an f, with 1259 total tv, within ts, results in
nodes associated with the particular f; being recoded into one
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offive different nodes, each with a separate f, and 8-bit thresh-
olds. Thus, fvi,=0 is coded as (0, 0, 0, 0, 0) (e.g., is coded as
0 for all of the separate f; that the original f; is broken into);
fvi,=255 is coded as (255, 0, 0, 0, 0) (e.g., 255 for the first of
the separate f, and O for all others of the separate f,); {fvi,=256
is coded as (255, 1, 0, 0, 0) (e.g., 255 for the first of the
separate 1}, 1 for the second separate f,, and O for all others);
fvi,=1258 is coded as (255, 255, 255, 255, 238). Threshold
values tv, for the separate f, are also coded in a similar way.

Parallel Architecture

[0093] FIG. 4 illustrates architecture 400 of the decision
tree scorer 102 implemented on a specialized integrated cir-
cuit or a programmable integrated circuit in accordance with
various embodiments. The architecture 400 includes a plural-
ity of decision tree clusters (DTC) 122 arranged in a grid. The
DTCs 122 are configured to receive model contexts 108 and
feature vectors 112 from the decision tree scorer 102. The
DTCs 122 include subsets of a plurality of decision tree
processors 124 and subsets of feature storage 126. The sub-
sets of decision tree processors 124 may be loaded and/or
loadable with the same or different decision tree tables as
other subsets of the decision tree processors, and the subsets
of' the feature storage 126 may be loaded or loadable with the
same or different feature vectors (e.g., they may be loaded
with common feature vectors).

[0094] The DTCs 122 may receive the feature vectors 112
from first neighboring DTCs 122 and distribute them to sec-
ond neighboring ones of the DTCs 122. In one example, DTC
122-A is configured to receive feature vectors 112 from DTC
122-C, and to distribute those feature vectors 112 to DTCs
122-C and 122-D as illustrated by the arrows in FIG. 4.
[0095] Likewise, the DTCs 122 may receive score data
from first neighboring DTCs 122 and propagate them to sec-
ondneighboring ones of the DTCs 122. The score datamay be
based on individual decision tree scores, as output by differ-
ent ones of the decision tree processors 124 (such as against a
common feature set). The score data may a list of scores, a
sum of the scores, or some other score data that is based on the
individual scores (such as a multiplication of the individual
scores, or some other algorithm for processing scores). The
lists of scores may be lists of scores from individual decision
tree outcomes, or lists of processed scores. For example, all
scores from a particular decision tree cluster 122 may be
summed, and appended to a list of all DTC 122 scores such
that a final score data includes a list of summed scores from
each DTC 122. In another example, all scores from decision
trees executed by a single decision tree processor 124 may be
summed, and the summed scores from all decision tree pro-
cessors may be listed in a final score data, and so forth. Other
ways of propagating the score data may be used without
departing from the scope of embodiments. In some embodi-
ments, processed or raw score data from each DTC 122,
groups of DTCs 122, decision tree processors 124, groups of
decision tree processors 124, individual decision trees, group
of decision trees are provided to the DTS 400 in some other
fashion (such as on a separate output network), and not propa-
gated to neighboring DTCs 122 as described herein.

[0096] In the example shown in FIG. 4, DTC 122-E is
configured to receive score data from neighboring DTCs
122-F and 122-G. The DTC 122-E is configured to receive
score data from neighboring DTCs 122-F and 122-G along
with score data provided by the decision tree processors (such
as the decision tree processors 124) within DTC 122-E, pro-
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cess the score data to determine combined score data (such as
by summing the scores, appending the scores to a list of
individual scores, or processing the score data in some other
way), and to pass the combined score data to neighboring
DTC 122-H, which performs similar functions, and so on
until all scores are propagated to a final one of the DTCs 122,
which passes the final score data to the DTS 102. More
generally, the DTCs 122 are configured to propagate score
data such that scores are not double counted. For example, a
particular pattern of score propagation through the DTS 102
avoids any one of the DTCs 122 from receiving two scores
from two neighboring DTCs 122 into which the same scores
have been processed.

[0097] Insomeembodiments, loading a model context into
the decision tree scorer architecture 400 includes loading
different decision tree tables into different ones of the deci-
sion tree tiles within the DTCs 122, including a plurality of
decision trees distributed throughout the decision tree proces-
sors of the DTCs 122 of the decision tree scorer architecture
400. In these embodiments, each of the decision trees loaded
into the DTCs 122 produces a separate score based on a
common feature vector.

[0098] Insome embodiments, different decision tree tables
loaded at the same time into the decision tree architecture 400
may be part of a single model context 108, or part of different
model contexts 108. In some embodiments, multiple decision
tree models are coded into a single model context. In one
example, two models may be similar but have some differ-
ences. The decision trees for the two models are modified
slightly to introduce new decision nodes that select either
model 1 or model 2. In addition, appropriate features into the
feature vectors to select for either model 1 or model 2.
[0099] Insomeembodiments, loading a feature vector into
the decision tree scorer architecture 400 includes loading the
same feature vector values into each of the feature storage
tiles of the DTCs 122. Thus, the plurality of decision trees of
the DTCs, which in embodiments are different from one
another, are scored against the same set of features, with all
scores processed (e.g., summed) and propagated back to the
DTS 102.

[0100] In other embodiments, various ones of the DTCs
122 are loaded with the same decision trees, such that they
execute the same decision trees as other ones of the DTCs
122. Different feature vectors may be loaded into different
ones of the DTCs such that the decision trees are executed
against different feature vectors. In some embodiments, the
DTCs 122 are loaded with different feature vectors and the
same decision tree, or group of decision trees, are loaded into
the decision tree scorer architecture 400. In these embodi-
ments, each DTC 122 is loaded with a different group of one
or more feature vectors. The decision trees are scored against
the feature vectors and scores are accumulated over time for
the feature vectors as all decision trees of a model context are
flowed past the feature vectors and executed. In these embodi-
ments, the DTCs 122 may be configured to hold scores for the
feature vectors until all decision trees of the model context are
loaded and executed against the feature vectors; alternatively,
individual decision tree scores are transmitted to the host 104,
which accumulates and processes scores for a particular fea-
ture vector.

[0101] In still other embodiments, different groups of the
DTCs 122 are loaded with different decision tree jobs (e.g.,
combinations of model contexts and feature vectors). Thus, a
first portion of the decision tree scorer architecture 400 deter-
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mines scores for a first feature vector against a first model
context, a second portion of the decision tree scorer architec-
ture 400 determines a score for a second feature vector against
a second model context, and so on with an Nth portion of the
decision tree scorer architecture 400 determining a score for
an Nth feature vector against an Nth model context. In these
embodiments, the DTCs 122 of each portion are loaded with
decision trees of a model context, and feature vectors distrib-
uted one-by-one within the portions for scoring, or the DTCs
122 of each portion are loaded with different feature vectors,
and the decision trees of the model context are distributed
one-by-one within the portions for scoring.

[0102] The number of DTCs 122 within the decision tree
scorer architecture 400 can scale up to an arbitrarily large
number, depending on the size and capabilities of the inte-
grated circuit onto which the decision tree scorer architecture
400 is implemented.

[0103] In some embodiments, more than one decision tree
scorer architecture 400 is utilized, each with its own set of
DTCs 122 executing in parallel. In these embodiments, a
single model context may be loaded onto DTCs 122 of one or
more chips, and feature vectors distributed to the DTCs 122 of
the different chips one-by-one for scoring. In other embodi-
ments, different feature vectors are loaded into the DTCs 122
of the different chips, with different decision trees of the
model contexts distributed one-by-one into each of the DTCs
122 for scoring. In various other embodiments, combinations
of these approaches may be utilized for different portions of
the combined multi-chip decision tree scorer architecture
400.

[0104] In some embodiments, determining an overall or
combined score for the model context loaded into the decision
tree scorer architecture 400 is based on an associative func-
tion, such as addition or multiplication, where the order in
which the scores are grouped is not determinative of the
outcome. Thus, the distribution of the decision trees within
ones of the DTCs 122 is not necessarily important to produc-
ing the correct final or combined score for a particular feature
vector against the decision trees of the model context loaded
into the architecture 400. In other embodiments, processing
of the scores for a feature vector and model context decision
tree scoring job is not associative, and an order in which the
decision trees and/or feature vectors are distributed through-
out the architecture is important for determining the final or
combined score for a particular feature vector.

[0105] Feature vectors 112, decision tree tables of a model
context 108, and/or score data may be distributed to DTCs
122 and/or decision tree processors 124 via one or more
networks, internal to the specialized or programmable logic
devices 116. One or more of the DTCs 122, the decision tree
processors 124, and the various feature storages 126 may be
addressable via packet headers. Regardless of the distribution
method for decision tree tables that are loadable into shared or
dedicated storage for the decision tree processors 124, the
decision tree tables may be individually transmitted (such as
via packets) and addressed to ones of the DTCs 122 or deci-
sion tree processors 124, or the decision tree tables may be
distributed together. Logic within the host 104 and/or the
decision tree scorer 102 may determine a distribution of the
individual decision tree tables amongst the DTCs 122 and the
decision tree processors 124. Furthermore, the DTCs 122
may include logic to distribute decision tree tables to indi-
vidual ones of the decision tree processors 124.
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[0106] FIG. 4 illustrates an example of a network to dis-
tribute scores and feature vectors to the decision tree proces-
sors of the on-chip multi-processor system. In particular, the
DTCs 122 act as network elements to aggregate/process the
score data and feature vectors. In other embodiments, other
network types are employed to distribute the scores and/or the
feature vectors to the decision tree processors and/or the
feature storage. In these other embodiments, the decision tree
clusters 122 may or may not be included as part of the archi-
tecture. In one embodiment, the decision processors may be
arranged in a mesh of decision tree processors, and scores
and/or feature vectors may be distributed via the decision tree
processors directly, and eventually to the decision tree scorer
or other score aggregation element. In other embodiments, a
broadcast network—which may be bus, mesh, point-to-point,
hub-and-spoke, or other topology—may connect the decision
tree processors (and/or decision tree clusters 122) to the deci-
sion tree scorer or other element that provides the feature
vectors and/or receives/accumulates/processes scores from
the decision tree processors. In other embodiments, a network
on a chip (NOC), which may have other purposes such as to
distribute configuration data to FPGA elements or other func-
tion, may be re-used to distribute feature vectors and/or pro-
vide score data from the decision tree processors to the deci-
sion tree scorer or other score aggregation element.

[0107] A score aggregation element may receive and accu-
mulate score data from the decision tree processors and/or the
decision tree clusters 122. The score aggregation element
may process the score data, which may include summing the
score data, appending the score data to a list or vector of
scores, perform some other algorithm to compute a score
based on the received data, and so forth. The score aggrega-
tion element may pass the score data, either processed or in
raw form, to a host or other downstream element.

[0108] Embodiments may include separate networks, one
for score data and the other for feature vectors. Thus, in
different embodiments, a network may be a feature network,
a score aggregation network, or both. In some embodiments,
decision tree clusters 122 may act as network elements for
one or both the feature network or the score network. Other
examples are possible without departing from the scope of
embodiments.

[0109] FIG. 5 illustrates architecture 500 of a decision tree
cluster 122 implemented on a specialized integrated circuit or
aprogrammable integrated circuit in accordance with various
embodiments. The architecture 500 includes one or more
decision tree processors 124 and one or more feature storages
126. The example architecture 500 illustrated in FIG. 5
includes five decision tree processors 124 and one feature
storage 126, although other numbers of decision tree proces-
sors 124 and feature storages 126 are used in various other
embodiments.

[0110] The DTC 122 includes a feature input bus register to
receive feature vectors for storage in the feature storage 126,
for example a 64-bit feature input bus register. The DTC 122
includes a score output register to accumulate and output hold
scores for output to neighboring ones of the DTC 122, for
example a 33-bit fixed point score output register. An adder
tree of the DTC 122 totals the scores from the decision tree
processors 124 and from one or two or more neighboring
DTCs 122. The Decision tree processors 124 output done
flags when all decision tree threads being executed therein
have completed and output scores. The DTC 122 accumulates
the done flags, and upon the adder tree adding the scores from
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neighboring DTCs 122 to the scores from the decision tree
processors 124, the DTC 122 outputs the scores to one or
more neighboring DTCs 122. At this point, the DTCs 122 also
output completion signals to their upstream DTCs 122, such
as through a completion signal network, which may be the
same as or different from interconnect networks within the
DTS 102 to distribute feature vectors, score data, and/or deci-
sion tree table data. In the case of a final DTC 122, the scores
and completion signals are output to the DTS 102. Upon
receiving completion signals, the DTCs 122 and the decision
tree scorer 102 determines that the upstream DTCs 122 have
completed their decision tree execution and that all available
scores are received on an input bus, that no more scores are
waiting to be received, and that the scores are ready to be
added to scores of the decision tree processors 124 and propa-
gated to downstream DTCs 122 and/or the decision tree
scorer 102.

[0111] The feature storage 126 is, in some embodiments,
double-buffered to enable one set of features to be loaded into
the feature storage 126 while another set of features is read by
the decision tree processors 124. In one example, the feature
storage 126 includes two 32-bit write ports, enabling the
feature storage 126 to retire 64 bits of features data at 250
MHz. In one example, the feature storage 126 includes two
32-bit read ports to enable the feature storage 126 to receive
two 8-bit features per cycle. The feature storage 126 receives
a feature identifier from the decision tree processors 124 and
responds with a feature value, for example an 8-bit feature
value, and a flag.

[0112] Insome embodiments, storage space on the feature
storage 126 is reduced by selective capture of subsets of the
feature vectors that are used by the decision tree processors
124 of the particular decision tree cluster 122. Not all features
within the feature vectors 112 will be referenced by the deci-
sion trees of a particular decision tree cluster 122; thus, the
storage space on the feature storage 126 is reduced, in some
embodiments, by only capturing those feature values that are
actually referenced by the decision trees executed by decision
tree processors 124 of the particular DTC 122. Thus, the
portions of the feature vectors to be stored by a particular
feature storage 126 may be referenced in a packet addressed
to the feature storage 126, or to the DTC 122 that the particu-
lar feature storage 126 is included in. The feature storage 126
may be provided with a mask, such as in a packet addressed to
the feature storage 126 or the DTC 122, that identifies the
portions of the feature vector to selectively store.

[0113] As will be described in more detail below, the deci-
sion tree processors 124 are multi-threaded tree-walking
engines, capable of executing a plurality of decision trees.
The decision trees are stored as decision tree tables within the
decision tree processors 124. In various embodiments, the
decision tree tables are stored on various memory storage
types, such as random access memory, including Dynamic
Random Access Memory (DRAM), Block Random Access
Memory (BRAM), Static Random Access Memory (SRAM),
and so forth. In some embodiments, the decision tree proces-
sors 124 include a five-stage pipeline as is described in more
detail below; thus, as long as there are at least five runnable
threads (corresponding to five decision trees whose execution
have not yet completed), the decision tree processor 124 is
able to initiate walking one node of a decision tree on each
clock cycle.
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Multi-Stage Tree-Walking Pipeline

[0114] In some embodiments, the decision tree processors
include a pipelined architecture. FIG. 6 illustrates a multi-
stage, multi-threaded, pipelined tree walking circuit 600 of a
decision tree processor, in accordance with various embodi-
ments. The circuit 600 is implemented on logic circuitry
within the decision tree processor. A thread circuit (or thread
stage) (denoted “TH” in FIG. 6) receives a next thread
TH_THD from a NEXT_THDS table 602. In the example
illustrated in FIG. 6, the NEXT_THDS table 602 is 32x5 bits,
and thus stores up to 32 5-bit next thread numbers; therefore
up to 32 threads can be handled by the circuit 600. The
NEXT_THDS table 602 is alinked list of threads; initially all
threads are listed in the NEXT_THDS table 602; as threads
complete (by outputting a leaf value), the threads are de-
linked from the NEXT_THDS table 602. Once all threads are
de-linked from the NEXT_THDS table 602, the decision tree
processor outputs a completion signal to the decision tree
cluster, indicating that it is finished with all threads. The
thread circuit uses the next thread identifier from the NEXT _
THDS table 602 to issue a read for the next node address of
the next thread from a node address table, NODE_ADS table
604 and a leaf table, LEAFS table 606. The NODE_ADS
table 604 is 32x13 bits, and thus stores up to 32 13-bit next
node addresses, one for each thread.

[0115] The LEAFS table 606 stores leaf output flags; where
an entry for a particular thread within the LEAFS table 606
stores an output flag (e.g., a 1 or a 0), the leaf value is output
to the decision tree cluster and the thread is de-linked from the
NEXT_THDS table 602.

[0116] Where the leaf output flag indicates that no leaf
value is previously selected, the next node addresses are
passed to the read node circuit (or read stage) (denoted “RN”
in FIG. 6), and a read to the node table NTAB 608 that
corresponds to current thread is issued by the circuit 600 for
the next node descriptor. In embodiments, the NTAB 608 is
stored on dedicated memory within or otherwise associated
with the circuitry of decision tree processor. In other embodi-
ments, the NTAB 608 is stored in a memory that is separate
from and communicatively coupled to the decision tree pro-
cessor. In some embodiments, the NTAB 608 is stored in a
memory shared by a plurality of decision tree processors.
[0117] The 12-bit feature address F1_FEAT AD and
12-bit info field F1_INFO of the node descriptor, along with
next node data, such as an offset value if present in the NTAB
608, are read out in the F1 feature circuit (or F1 feature stage)
of the circuit 600. For example, the next left and right node
addresses and next left and right leaf flag values are pre-
computed by logic 610 at this stage and are a function of the
node address, the info field, and the optional rdelta offset
field. The info field determines whether the node one, two, or
zero next subtree nodes, and whether there are one, two, or
zero leaf values. The next left and right next node addresses
are pre-computed based on adjacencies within the NTAB 608
the F1_RDELTA value, if present, or from the coding of the
offset value in the info field, as described elsewhere within
this Detailed Description. In some embodiments, when the
current node has a left subtree node, the next left node address
is the address of the node adjacent to (immediately following)
the current node, and the next left leaf flag is false. Otherwise
the current node has a left leaf output value, and the next left
node address the address of the word(s) within the current
node that contain the left leaf value, and the next left leaf flag
is true. The pre-computation is similar for the next right node
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address and next right leaf flag. When the current node has a
right subtree node but no left subtree node, the next right node
address is the address of the node adjacent to (immediately
following) the current node, and the next right leaf flag is
false. When the current node has both a left subtree node and
aright subtree node, the next right node address is determined
by adding the current node address and an offset (whose value
is encoded within the info field, or explicitly represented in
the optional rdelta offset field), and the next right leaf flag is
false. Otherwise the current node has a right leaf output value,
and the next right node address the address of the word(s)
within the current node that contain the right leaf value, and
the next right leaf flag is true.

[0118] At the F2 feature circuit (or F2 feature stage) of the
circuit 600, the feature value associated with the F1_FEAT _
AD is read from the feature storage 612 (e.g., the feature
storage 126). The FST 126, in embodiments, is configured to
be read by two different decision tree processors; thus the
feature storage 612 is shown having two inputs and two
outputs.

[0119] At the execution circuit (or execution stage) of the
circuit 600 (denoted “EX” in FIG. 6), the feature value (“EX_
FEAT”) read from the feature storage 612 is compared by
logic 614 to the threshold value (EX_TH) of the currently
executing node. The threshold value EX_TH and the feature
value EX_FEAT may be threshold index values and feature
index values as is described elsewhere within this Detailed
Description, or they may be uncompressed threshold values
and feature values. Embodiments of the present disclosure are
not limited to use of one or the other. Based on the outcome of
the compare output by the logic 614, either a next left node
address or a next right node address is written to the thread’s
entry in the NODE_ADS table 604 Also based on the out-
come of the compare output by the logic 614, either a next left
leaf flag or a next right leaf flag is written to the thread’s entry
in the LEAFS table 606.

[0120] Once the execution circuit selects a leaf value for a
particular thread and sets a leaf flag, then the next time the
thread is issued into the pipeline, the leaf flag is read and the
node address in the NODE__ADS table 604 is not the address
of a node but rather the address of leaf value words within
previous node within the NTAB 608. At the RN circuit, these
leafvalue words are read from the NTAB 608, thereby obtain-
ing the leaf value’s score 620 for the particular thread instead
of a feature address and info field. The score 620 may be
output to the decision tree cluster as described elsewhere
within this detailed description. In addition, when the leaf flag
is true, the thread is unlinked from the NEXT_THDS table
602 so that it is not fetched by the pipeline again.

[0121] Each ofthe portions of the circuit 600 (TH, RN, F1,
F2, and EX) concurrently processes different ones of the
threads. Thus, at any one time, the circuit 600 processes some
portion of up to five different threads, which corresponds to
processing some portion of up to five different decision trees
concurrently, every clock cycle.

Example Processes

[0122] FIG. 7 depicts a flow graph that shows an example
process 700 of executing a decision tree, in accordance with
various embodiments. At 702, a decision tree processor, e.g.,
a thread circuit or stage of a decision tree processor pipeline,
determines a next thread to be executed by the processor and
issues a read to the node table to determine the next node
address of the next thread.
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[0123] At 704, a decision tree processor, e.g., a read node
circuit or stage of a decision tree processor pipeline, retrieves
decision tree node data, such as decision tree node words,
including at least feature indicators and threshold values,
from a decision tree node table, which may be stored within
the decision tree processor. A subset ofthe decision tree nodes
also includes next node data, such as next node offset values.

[0124] Final outcomes of the decision tree node executions
result in output of leaf values as an output of the decision
tree-walking thread, such as where a decision tree node
execution results in selecting a left leaf or a right leaf value. At
706, the decision tree processor, e.g., a read circuit or stage of
a decision tree processor, determines whether a leaf flag is set
for a particular thread, such as during a previous pass of the
thread through a pipeline. Where the leaf flag is set, at 708 the
particular thread is unlinked from the threads table. At 710,
leaf value data, such as one or more leaf value words, of the
decision tree node are read by the read node circuit or stage of
the decision tree processor pipeline and output to the decision
tree cluster, or to some other output network.

[0125] At 712, where the leaf flag value is not set, the
decision tree processor, e.g., a feature circuit or stage of a
decision tree processor pipeline, reads the feature value iden-
tified by the feature indicator from feature storage.

[0126] At 714, the decision tree processor, e.g., the feature
circuit or stage of a decision tree processor pipeline, pre-
computes possible next decision tree node addresses based on
the next node data, such as offset values and the next decision
tree nodes that are adjacent to currently executing nodes. The
decision tree processor, e.g., the feature circuit or stage of a
decision tree processor pipeline, also or alternatively pre-
computes addresses for right or left leaf data, such as right or
left leaf words or values of the current decision tree node. As
noted elsewhere within this Detailed Description, a subset of
the nodes of the decision tree node table includes one or more
leaf values. The presence of leaf nodes indicates that a pos-
sible outcome of the execution of the decision node is to select
to output a leaf value the next time the thread passes through
the pipeline. Thus, the decision tree processor pre-computes
one of a left leaf data address or a left next node address, and
one of a right leaf data address or a right next node address,
depending on whether there is a left leaf or left next node, and
based on whether there is a right leaf value or a right next node
in the particular decision node being executed. Pre-computa-
tion at 714 occurs prior to the execution of the decision node
by the decision tree processor.

[0127] Pre-computation of some of the next node addresses
is performed, in some embodiments, by processing next node
data, such as an offset value of the decision tree node, such as
by adding the offset value to location of the current node to
arrive at a location of the next node. The next node data, such
as an offset value, is either separate next node data, such as an
offset value, provided within the decision node, or coded by
the info field of the decision node, as described elsewhere
within this Detailed Description. Pre-computing the next
node addresses is also based on adjacencies for some of the
next node addresses.

[0128] At 716, the decision tree processor, e.g., an execu-
tion circuit or stage of the decision tree processor pipeline,
executes the decision tree node. Executing the decision tree
node includes comparing a threshold value of the decision
tree node to the feature value retrieved from the feature stor-
age. The threshold value may be a threshold index value, and



US 2015/0262064 Al

the feature value may be a feature index value, as described
elsewhere within this Detailed Description.

[0129] At 718, the decision tree processor, e.g., the execu-
tion circuit or stage of the decision tree processor pipeline,
determines the next decision tree node for the thread to be
retrieved and executed and/or an address of leaf data contain-
ing a leaf value to be output the next time the thread is fetched
into the pipeline. Selection of the next decision tree node or
address of leaf data are determined based on an outcome of
executing the decision tree node. Some outcomes of the com-
parisons (such as where the feature value is less than or equal
to the threshold value) result in determining the next decision
tree node based on the next node data, such as a next node
offset value. Other outcomes of the comparisons (such as
where the feature value is not less than or equal to the thresh-
old value) result in determining the next decision tree node
that is adjacent to currently executing node within a decision
tree table associated with the decision tree within the decision
tree processor.

[0130] At 720, a determination is made by the decision tree
processor, e.g., by the thread circuit or stage of the decision
tree processor, whether all threads have been retired. As
threads output leaf values at 710 and are completed, they are
de-linked at 708 from a linked list of decision tree threads.
When all threads are de-linked, the decision tree executions in
this decision tree processor 124 are complete. Each thread
corresponds to a single decision tree; thus once all threads are
completed, the decision tree processor outputs a completion
signal and outputs one or more scores from the decision tree
execution.

[0131] FIG. 8 illustrates a process 800 of scoring a plurality
of decision trees by a decision tree scorer, in accordance with
various embodiments. At 802, the decision tree scorer 102
receives a model context 108 from a host 104 or other
upstream processing system. At 804, the decision tree scorer
102 loads the model context 108 onto the plurality of decision
tree clusters 122.

[0132] At 806, the decision tree scorer 102 receives a fea-
ture vector 112 from the host 104 or from an upstream pro-
cessing system. At 808, the decision tree scorer 102 provides
the feature vector 112 to a first one of the decision tree clusters
122. Thus, in some embodiments, a common feature vector is
provided to the decision tree clusters 122 and the decision tree
processors 124.

[0133] At 810, the decision tree scorer 102 receives a final
score and a completion signal from one of the decision tree
clusters 122, indicating that the decision tree clusters have
completed the scoring of feature vector with the plurality of
decision trees. At 812, the decision tree scorer 102 provides
the final score to the host 104 or a downstream processing
system, which may include in some embodiments another
decision tree scorer or other system.

[0134] FIG.9illustrates a process 900 of scoring a plurality
of decision trees by decision tree clusters, in accordance with
various embodiments. At 902, the decision tree clusters
(DTCs) 122 receive a feature vector (such as a common
feature vector) from the decision tree scorer 102 or from
neighboring DTCs 122. At 904, the DTCs 122 provide the
feature vector to other neighboring DTCs 122. In this manner,
the feature vector is distributed to all DTCs within a decision
tree scorer.

[0135] At 906, the decision tree clusters 122 cause the
plurality of decision tree processors 124 within a plurality of
DTCs 122 to begin execution of the plurality of decision trees
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within the model contexts loaded onto the DTCs 122. The
execution of the plurality of decision trees may be concurrent,
and may be performed by multi-threaded, multi-stage pipe-
lined decision tree processors. Execution of the decision trees
includes, among other things, comparisons of threshold val-
ues (or threshold index values) to feature values (or feature
index values) of a common feature vector, and selection of
next nodes and/or output values based on the comparisons.
The execution of the decision trees results in corresponding
scores for ones of the plurality of decision trees.

[0136] At 908, the DTCs 122 receive from the decision tree
processors 124 the corresponding scores and completion sig-
nals resulting from the execution of the decision trees on the
decision tree processors 124. At 910, the DTCs 122 receive
scores and completion signals from neighboring DTCs 122.
[0137] At 912, based on receipt of the completion signals
and the scores, the DTCs 122 process the scores from the
decision tree processors 124 within the DTCs 122 with scores
from the neighboring DTCs 122. For example, the DTCs 122
may sum the scores to produce an accumulated score. In
another example, the DTCs 122 may append the scores, or a
sum ofthe scores from the decision tree processors 124 within
the DTCs 122, to the score data received from the neighboring
DTCs 122.

[0138] At 914, the DTCs 122 propagate the accumulated
scores and completion signals to neighboring DTCs 122,
eventually reaching the final one of the DTCs 122, which
provides a final score to the decision tree scorer 102. In this
way, the individual scores from each of the decision trees
executing on the decision tree processors 124 within each of
the DTCs 122 are accumulated into final score data, such as a
final sum of scores or list or set of scores from individual ones
of'the decision tree processors and propagated to the decision
tree scorer 102.

[0139] FIG. 10 illustrates a process 1000 of coding thresh-
old values of a plurality of decision trees in accordance with
various embodiments. At 1002, a decision tree coder 106
identifies all threshold values referenced in all decision nodes
of'a plurality of decision trees—such as those within a model
context 1008—that correspond to a particular feature.
[0140] At 1004, the decision tree coder 106 determines a
list of unique threshold values associated with the particular
feature in the one or more decision trees. In some embodi-
ments, the list is sorted, such as in ascending or descending
order. At 1006, the decision tree coder 106 determines a
number of bits to be used to represent threshold index values
for the threshold values based at least in part on a number of
values in the sorted list of unique threshold values associated
with the particular feature in the one or more decision trees.
[0141] In one particular example, where the base-2-loga-
rithm of the total number of threshold values associated with
the particular feature is less than 4, the threshold index is
coded as a 4-bit word, and where the base-2-logarithm of the
total number of threshold values associated with the particu-
lar feature is less than 8, the threshold index is coded as a 8-bit
word. Where the base-2-logarithm of the total number of
threshold values associated with the particular feature is
greater than 8, multiple features are used to represent the
particular feature in the coded decision tree, such that the
number of features to represent the particular feature is deter-
mined by n/255, where n is equal to the total number of
threshold values associated with the particular feature, as
described elsewhere within this Detailed Description. 8-bit
words are used to represent the threshold values for these
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multiple features. In other embodiments, the decision tree is
modified to include multiple decision nodes in place of one
node with a number of unique thresholds exceeding a prede-
termined value. Other examples are possible without depart-
ing from the scope of embodiments.

[0142] At 1008, the decision tree coder 106 determines a
plurality of threshold index values for the list of unique
threshold values. In some embodiments, index values are
assigned to the sorted list, such that threshold index values
associated with smaller threshold values are smaller than
threshold index values associated with larger threshold val-
ues, although larger index values are assigned to smaller
threshold values in other embodiments. In one particular
example, the smallest one of the unique threshold values is
assigned a threshold index value of 0, and the largest one is
assigned a threshold index value that is equal to the total
number of unique threshold values minus one. Other
examples are possible without departing from the scope of
embodiments.

[0143] At 1010, the decision tree coder 106 represents the
one or more decision trees such that decision nodes of the one
or more decision trees associated with the particular feature
include the threshold index values. The process 1000 is
repeated for each feature referenced in at least one decision
node of a plurality of decision trees until all threshold values
in the plurality of decision trees are coded with threshold
index values.

[0144] FIG. 11 illustrates a process 1100 of coding a vector
of feature values, in accordance with various embodiments.
As described above with respect to FIG. 10, threshold values
for each feature are coded. Feature values for feature vectors
that are to be scored against the set of coded decision trees are
coded such that the feature values are compatible with the
coded threshold values. At 1102, a feature vector coder 110
receives a feature vector 112 to be scored by a plurality of
decision trees.

[0145] At 1104, a feature vector coder 110 compares a
feature value associated with the particular feature to the
threshold values that correspond to the particular feature
(e.g., to the list ts, described above). At 1106, a determination
is made by the feature vector coder 110 as to whether the
feature value corresponding to the particular feature in the
feature vector is greater than the largest threshold value in the
set of threshold values associated in the plurality of decision
trees with the particular feature.

[0146] At 1108, upon determining that the feature value is
not larger than the largest threshold value (the “NO” path), the
feature vector coder 110 identifies a smallest one of the list of
unique threshold values that is greater than or equal to the
feature value.

[0147] At 1110, the feature vector coder 110 codes the
feature value to produce a coded feature value (e.g., a feature
index value) that is equal to a particular one of the sorted
threshold index values that corresponds to the smallest one of
the sorted list of unique threshold values.

[0148] At 1112, upon determining that the feature value is
larger than the largest threshold value (the “YES” path), fea-
ture vector coder 110 sets the feature index value to be larger
than the largest threshold index value. In one particular
example, the feature index value is set to be equal to the total
number of unique threshold values associated with the fea-
ture, but any number larger than the largest threshold index
value could be used. In this way, the feature index values are
set such that outcomes of comparisons of the threshold index
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values to corresponding feature index values during decision
tree execution (such as by the decision tree processors 124)
are equivalent to outcomes of comparisons of corresponding
threshold values to corresponding feature values.

[0149] The operations of the example processes of FIGS.
7-11 are illustrated in individual blocks and summarized with
reference to those blocks. The order in which the operations
are described is not intended to be construed as a limitation,
and any number of the described operations can be combined
in any order, separated into sub-operations, and/or performed
in parallel to implement the process. Processes according to
various embodiments of the present disclosure may include
only some or all of the operations depicted in the logical flow
graph.

Example Computing System

[0150] FIG. 12 is a block diagram of an example computing
system 1200 usable to perform various methods described
herein. The computing system 1200 may be configured as any
suitable computing device capable of implementing all or part
of a decision tree scoring system, such as the host 104.
According to various non-limiting examples, suitable com-
puting devices may include personal computers (PCs), hand-
held devices, wearable smart devices, smartphones, tablet
computers, laptop computers, desktop computers, gaming
systems, electronic media players (such as mp3 players and
e-book readers), servers, server farms, datacenters, special
purpose computers, combinations of these, or any other com-
puting device(s) capable of storing and executing all or part of
the decision tree scoring system described herein.

[0151] In one example configuration, the computing sys-
tem 1200 comprises one or more processors 1202 and
memory 1204. The computing system 1200 may also contain
communication connection(s) 1206 that allow communica-
tions with various other systems. The computing system 1200
may also include one or more input devices 1208, such as a
keyboard, mouse, pen, voice input device, touch input device,
etc., and one or more output devices 1210, such as a display,
speakers, printer, etc. coupled communicatively to the pro-
cessor(s) 1202 and the memory 1204.

[0152] The memory 1204 may store program instructions
that are loadable and executable on the processor(s) 1202, as
well as data generated during execution of, and/or usable in
conjunction with, these programs. In the illustrated example,
memory 1204 stores an operating system 1212, which pro-
vides basic system functionality of the computing system
1200 and, among other things, provides for operation of the
other programs and program modules of the computing sys-
tem 1200.

Computer-Readable Media

[0153] Depending on the configuration and type of com-
puting device used, memory 1204 of the computing system
1200 in FIG. 12 may include volatile memory (such as ran-
dom access memory (RAM)) and/or non-volatile memory
(such as read-only memory (ROM), flash memory, etc.).
Memory 1204 may also include additional removable storage
and/or non-removable storage including, but not limited to,
flash memory, magnetic storage, optical storage, and/or tape
storage that may provide non-volatile storage of computer-
readable instructions, data structures, program modules, and
other data for computing system 1200.
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[0154] Memory 1204 is an example of computer-readable
media. Computer-readable media includes at least two types
of computer-readable media, namely computer storage media
and communications media. Computer storage media
includes volatile and non-volatile, removable and non-re-
movable media implemented in any process or technology for
storage of information such as computer-readable instruc-
tions, data structures, program modules, or other data. Com-
puter storage media includes, but is not limited to, phase
change memory (PRAM), static random-access memory
(SRAM), dynamic random-access memory (DRAM), other
types of random-access memory (RAM), read-only memory
(ROM), electrically erasable programmable read-only
memory (EEPROM), flash memory or other memory tech-
nology, compact disk read-only memory (CD-ROM), digital
versatile disks (DVD) or other optical storage, magnetic cas-
settes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, or any other non-transmission medium
that can be used to store information for access by a comput-
ing device. In contrast, communication media may embody
computer-readable instructions, data structures, program
modules, or other data in a modulated data signal, such as a
carrier wave, or other transmission mechanism. As defined
herein, computer storage media does not include communi-
cation media.

CONCLUSION

[0155] Although the disclosure uses language that is spe-
cific to structural features and/or methodological acts, the
invention is not limited to the specific features or acts
described. Rather, the specific features and acts are disclosed
as illustrative forms of implementing the invention.

What is claimed is:

1. A decision tree scoring hardware system comprising:

aplurality of decision tree processors to access a common

feature vector and to execute one or more decision trees
with respect to the common feature vector.

2. The decision tree scoring hardware system of claim 1,
wherein a first one of the plurality of decision tree processors
further execute a first one of the decision trees with respect to
the common feature vector concurrently with execution of a
second one of the decision tree with respect to the common
feature vector by a second one of the decision tree processors.

3. The decision tree scoring hardware system of claim 1,
further comprising a decision tree cluster comprising a subset
of'the plurality of decision tree processors and feature storage
to store the common feature vector, the feature storage acces-
sible by the subset of the plurality of decision tree processors
within the decision tree cluster.

4. The decision tree scoring hardware system of claim 1,
further comprising:

a first decision tree cluster comprising:

a first subset of the plurality of decision tree processors;
and

afirst feature storage, accessible by the first subset of the
plurality of decision tree processors, to store the com-
mon feature vector; and

a second decision tree cluster comprising:

a second subset of the plurality of decision tree proces-
sors; and

a second feature storage, accessible by the first subset of
the plurality of decision tree processors, to store the
common feature vector.
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5. The decision tree scoring hardware system of claim 1,
further comprising a plurality of decision tree clusters, ones
of the decision tree clusters comprising subsets of the deci-
sion tree processors, the subsets of the decision tree proces-
sors output scores based on outcomes of execution of the one
or more decision trees, a first one of the decision tree clusters
to accept first scores from a first subset of the decision tree
processors within the first one of the decision tree clusters,
accept at least second score data from a second one of the
plurality of decision tree clusters, process the first scores and
the at least the second score data to produce combined score
data.

6. The decision tree scoring hardware system of claim 5,
wherein the first one of the decision tree clusters further
processes the first scores and the second score data by one of:

appending the first scores, or a sum ofthe first scores, to the
second score data to produce the combined score data; or

summing the first scores with the second score data to
produce the combined score data.

7. The decision tree scoring hardware system of claim 1,
wherein ones of the decision tree processors output scores
based on outcomes of execution of the one or more decision
trees, the decision tree scoring hardware system further com-
prising:

a score aggregation network to collect the scores output by

the decision tree processors.

8. The decision tree scoring hardware system of claim 1,
further comprising one or more of:

a plurality of decision tree clusters comprising subsets of
decision tree processors, wherein a first one of the plu-
rality of decision tree cluster is to receive the common
set of features from a second one of the decision tree
clusters and to propagate the common set of features to
a third one of the decision tree clusters; and

a feature network coupled to the decision tree processors to
provide the common set of features to the decision tree
processors.

9. The decision tree scoring hardware system of claim 1,
further comprising a plurality of multi-threaded decision tree
processors that concurrently executes a plurality of decision
trees in multi-threaded processes.

10. A method comprising:

providing a common feature vector to a plurality of deci-
sion tree processors implemented within an on-chip
decision tree scoring system; and

executing, by the plurality of decision tree processors, a
plurality of decision trees, by reference to the common
feature vector.

11. The method of claim 10, further comprising concur-
rently executing, by the plurality of decision tree processors,
the plurality of decision trees by reference to the common
feature vector.

12. The method of claim 10, further comprising:

outputting, into a score aggregation network, scores for
ones of the plurality of decision trees based on outcomes
of executing the plurality of decision trees.

13. The method of claim 10, wherein the common feature
vector is stored on a feature storage, the method further com-
prising concurrently:

loading another feature vector into the feature storage; and

executing, by at least one of the decision tree processors, at
least one of the plurality of decision trees, the executing
including reading one or more features of the common
feature vector from the feature storage.
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14. The method of claim 10, further comprising propagat-
ing the common feature vector throughout a plurality of deci-
sion tree clusters, the propagating including receiving the
common feature vector from first neighboring decision tree
clusters, and passing, by ones of the plurality of decision tree
clusters, the feature vector to second neighboring decision
tree clusters.

15. A decision tree-walking system comprising:

feature storage that stores a common feature vector; and

a plurality of decision tree processors that accesses the

common feature vector from the feature storage and
executes a plurality of decision trees by comparing
threshold values of the decision trees to feature values
within the common feature vector.

16. The decision tree-walking system of claim 15, wherein
the plurality of decision tree processors concurrently execute
the plurality of decision trees.

17. The decision tree-walking system of claim 15, further
comprising:

another feature storage that stores the common feature

vector; and

another plurality of decision tree processors that accesses

the common feature vector from the other feature stor-
age and executes another plurality of decision trees by
comparing other threshold values of the other plurality
of decision trees to the feature values within the common
feature vectors.

18. The decision tree-walking system of claim 15, wherein
the plurality of decision tree processors is a first plurality of
decision tree processors, the on-chip decision tree-walking
system further comprising a plurality of decision tree clusters,
a first one of the decision tree clusters including the first
plurality of decision tree processors, the first one the plurality
of decision tree clusters:

receives first score data output by the first plurality of

decision tree processors;

receives second score data from one or more first neigh-

boring decision tree clusters;

processes the first score data with the second score data to

produce third score data; and
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passes the third score data to one or more second neigh-
boring decision tree clusters.

19. The decision tree-walking system of claim 15, concur-
rently writing another common feature vector to the feature
storage with the access of the feature vector by the plurality of
decision tree processors.

20. The decision tree-walking system of claim 15, wherein
the feature storage and the plurality of decision tree proces-
sors are first feature storage and a first plurality of decision
tree processors included in a first programmable logic device,
first application-specific integrated circuit, or first on-chip
processor with an enhanced instruction set, the plurality of
decision trees are a first plurality of decision trees, and the
decision tree-walking system further includes:

a second programmable logic device, second application-
specific integrated circuit, or second on-chip processor
with an enhanced instruction set that includes:

second feature storage to store the common feature vec-
tor; and

a second plurality of decision tree processors that
accesses the common feature vector from the second
feature storage and executes a second plurality of
decision trees by comparing second threshold values
of the second decision trees to the feature values
within the common feature vector;

the second programmable logic device, second applica-
tion-specific integrated circuit, or second on-chip pro-
cessor with an enhanced instruction set:

receives first score data from the first programmable
logic device, first application-specific integrated
circuit, or first on-chip processor with an enhanced
instruction set, the first score data resulting from
execution of the first plurality of decision trees; and

processes the first score data with second score data
resulting from execution of the first plurality of
decision trees to produce combined score data for
the common feature vector.
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