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SEGMENT-BASED MACHINE LEARNING MODEL CLASSIFICATION
OF HEALTH EVENTS

[0001] This application claims the benefit of U.S. Provisional Patent Application Serial
No. 63/375,656, filed September 14, 2022, the entire content of which is incorporated herein

by reference.

FIELD
[0002] This disclosure generally relates to systems including medical devices and, more

particularly, to monitoring of patient health using such systems.

BACKGROUND
[0003] A variety of devices are configured to monitor physiological signals of a patient.
Such devices include implantable or wearable medical devices, as well as a variety of
wearable health or fitness tracking devices. The physiological signals sensed by such devices
include as examples, electrocardiogram (ECG) signals, respiration signals, perfusion signals,
activity and/or posture signals, pressure signals, blood oxygen saturation signals, body
composition, and blood glucose or other blood constituent signals. In general, using these
signals, such devices facilitate monitoring and evaluating patient health over a number of
months or years, outside of a clinic setting.
[0004] In some cases, such devices are configured to detect acute health events based on
the physiological signals, such as episodes of cardiac arrhythmia, myocardial infarction,
stroke, or seizure. Example arrthythmia types include cardiac arrest (e.g., asystole),
ventricular tachycardia (VT), and ventricular fibrillation (VF). The devices may store ECG
and other physiological signal data collected during a time period including an episode as
episode data. Such acute health events are associated with significant rates of death,
particularly if not treated quickly.
[0005] For example, VF and other malignant tachyarrhythmias are the most commonly
identified arrhythmia in sudden cardiac arrest (SCA) patients. If this arrhythmia continues
for more than a few seconds, it may result in cardiogenic shock and cessation of effective
blood circulation. The survival rate from SCA decreases between 7 and 10 percent for every
minute that the patient waits for defibrillation. Consequently, sudden cardiac death (SCD)

may result in a matter of minutes.
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SUMMARY
[0006] In general, the disclosure describes techniques for detection of acute health events,
such as SCA, by monitoring patient parameter data, such as ECG data. More particularly, the
disclosure describes techniques for applying rules, which may include one or more machine
learning models, to patient parameter data to detect acute health events. The techniques
include configuring rules and/or the application of the rules to the patient parameter data in
order to improve the efficiency and effectiveness of the detection of acute health events. For
example, the techniques may include applying one or more machine learning (ML) models to
cach of a plurality of segments of patient parameter data (e.g., episode data) received from a
sensor device in response the sensor device detecting an acute health event to determine a
classification of the episode from a plurality of predetermined classifications. One or more of
the possible classifications are acute health event(s) of interest, such as potentially lethal
tachyarrhythmias that may result in SCA.
[0007] Unlike conventional acute health event (e.g., potentially lethal ventricular
tachyarrhythmia or other SCA) detection systems, the techniques and systems of this
disclosure may use one or more classifiers to more accurately classify the acute health event
as one of a plurality of classifications that are clinically relevant to the actions taken or not
taken by a system on behalf of the patient and a caregiving team of the patient. The
classifications may include ventricular tachyarrhythmias of different severities, such as VF
and polymorphic VT, or monomorphic VT, as well as classifications for which no action or
cancelation of action may be appropriate, such as supraventricular tachycardia, oversensing,
or other noise. In this manner, the system may avoid expensive medical system and user
response to likely false alarms regarding the health of the patient. In some examples, the
machine learning model is trained with a set of training instances, where one or more of the
training instances comprise data that indicate relationships between patient parameter data
and classifications related to the acute health event, ¢.g., related to potentially lethal cardiac
arrhythmias. Because the machine learning model is trained with potentially thousands or
millions of training instances, the machine learning model may, for example, reduce the
amount of classification error in classifying ECG data as different arrhythmia classifications
when compared to conventional detection systems.
[0008] Additionally, the techniques and systems of this disclosure may be implemented
with an implantable medical device (IMD) that can continuously (e.g., on a periodic or

triggered basis without human intervention) sense the ECG and/or other patient parameter
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data while subcutancously implanted in a patient over months or years and perform numerous
operations per second on patient parameter data to enable the systems herein to detect acute
health events. Using techniques of this disclosure with an IMD may be advantageous when a
physician cannot be continuously present with the patient over weeks or months to evaluate
the patient parameter data and/or where performing the operations on the ECG and/or other
patient parameter described herein (e.g., application of a machine learning model) on weeks
or months of data could not practically be performed in the mind of a physician.

[0009] In some examples, processing circuitry of a computing device configured to
wirelessly communicate with an IMD or other medical device applies a machine learning
model to patient parameter data as a second set of rules to confirm or reject detection of an
acute health event by the medical device using a first set of rules. Reducing classification
errors for acute health events with a machine learning model implementing techniques of this
disclosure may provide one or more technical and clinical advantages. For example,
improved specificity and sensitivity may increase the ability of another device, user, and/or
clinician to rely on the accuracy of the system’s assessment of the patient’s condition and
improve resulting treatment of the patient and patient outcomes.

[0010] Segment-based classification of episode data according to the techniques
described herein may improve the accuracy of classification/detection of health events,
particularly in situations where shorter segments of continuous episode data are available to
train the one or more ML models. Segment-based classification of episode data according to
the techniques described herein may improve the accuracy of classification/detection of
health events where the patient condition may change during an episode, e.g., where a
tachyarrhythmia may spontancously terminate or change during an episode.

[0011] In some examples, the techniques may include applying a classifier to patient
parameter data, wherein the classifier includes one or more machine learning models and
non-machine learning rules, and one or more of the possible classifications are acute health
event(s) of interest, such as potentially lethal tachyarrhythmias that may result in SCA. Such
techniques may improve the accuracy of classification/detection of health events, particularly
in situations where availability of training data may limit the accuracy of one or more
machine learning models in isolation.

[0012] In one example, a computing device comprises: communication circuitry
configured to wirelessly communicate with a sensor device on a patient or implanted within
the patient; one or more output devices; and processing circuitry configured to: receive

episode data for an acute health event detected by the sensor device via the communication
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circuitry, the episode data transmitted by the sensor device in response to detecting the acute
health event; apply one or more machine learning models to each segment of a plurality of
segments of the episode data to determine a respective classification of a plurality of
predetermined classifications for each segment of the plurality of segments; determine a
classification of the acute health event from the plurality of predetermined classifications
based on the respective classifications of the plurality of segments; and determine whether to
control the one or more output devices to output an alarm based on the classification.

[0013] In another example, a system comprises the sensor device, and the computing
device described above.

[0014] In another example, a method of operating a computing device to classify episode
data for an acute health event detected by a sensor device comprises: receiving, by
processing circuitry of the computing device via communication circuitry of the computing
device, the episode data, the episode data transmitted by the sensor device in response to
detecting the acute health event; applying, by the processing circuitry, one or more machine
learning models to cach segment of a plurality of segments of the episode data to determine a
respective classification of a plurality of predetermined classifications for each segment of
the plurality of segments; determining, by the processing circuitry, a classification of the
acute health event from the plurality of predetermined classifications based on the respective
classifications of the plurality of segments; and determining, by the processing circuitry,
whether to control one or more output devices of the computing device to output an alarm
based on the classification.

[0015] In another example, a non-transitory computer-readable storage medium
comprises instructions that cause processing circuitry to: receive episode data for an acute
health event detected by a sensor device, the episode data transmitted by the sensor device in
response to detecting the acute health event; apply one or more machine learning models to
cach segment of a plurality of segments of the episode data to determine a respective
classification of a plurality of predetermined classifications for each segment of the plurality
of segments; determine a classification of the acute health event from the plurality of
predetermined classifications based on the respective classifications of the plurality of
segments; and determine whether to control one or more output devices of the computing
device to output an alarm based on the classification.

[0016] This summary is intended to provide an overview of the subject matter described
in this disclosure. It is not intended to provide an exclusive or exhaustive explanation of the

apparatus and methods described in detail within the accompanying drawings and description
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below. Further details of one or more examples are set forth in the accompanying drawings

and the description below.

BRIEF DESCRIPTION OF DRAWINGS
[0017] FIG. 1 is a block diagram illustrating an example system configured detect acute
health events of a patient, and to respond to such detections, in accordance with one or more
techniques of this disclosure.
[0018] FIG. 2 is a block diagram illustrating an example configuration of a patient
sensing device that operates in accordance with one or more techniques of the present
disclosure.
[0019] FIG. 3 is block diagram illustrating an example configuration of a computing
device that operates in accordance with one or more techniques of the present disclosure.
[0020] FIG. 4 is a block diagram illustrating an example configuration of a health
monitoring system that operates in accordance with one or more techniques of the present
disclosure.
[0021] FIG. 5 is a flow diagram illustrating an example operation for applying rules to
patient parameter data to determine whether an acute health event is detected.
[0022] FIG. 6 is a flow diagram illustrating another example operation for applying rules
to patient parameter data to determine whether an acute health event is detected.
[0023] FIG. 7 is a flow diagram illustrating an example operation for configuring rules
applied to patient parameter data to determine whether an acute health event is detected for a
patient.
[0024] FIG. 8 is a flow diagram illustrating another example operation for configuring
rules applied to patient parameter data to determine whether an acute health event is detected
for a patient.
[0025] FIG. 9 is a block diagram illustrating an example of an ensemble of neural
networks configured to classify ventricular tachyarrhythmias.
[0026] FIG. 10 is a block diagram illustrating an example of a single classifier utilizing
raw signals and derived features.
[0027] FIG. 11 is a block diagram illustrating a staged approach for classifying a
ventricular tachyarrhythmia episode.
[0028] FIGS. 12A and 12B illustrate frequency decompositions of a monomorphic

ventricular tachycardia episode and a supraventricular tachycardia episode, respectively.
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[0029] FIG. 13 is a block diagram illustrating an example configuration of a classifier
configured to classify episode data.

[0030] FIGS. 14-17 are tables illustrating example segment classifications and associated
episode classifications.

[0031] FIG. 18 is a flow diagram illustrating an example operation of the classifier of
FIG. 13.

[0032] FIG. 19 is a block diagram illustrating an example configuration of a classifier
configured to classify episode data.

[0033] FIG. 20 is a flow diagram illustrating an example operation of the classifier of
FIG. 19.

[0034] FIG. 21 is a conceptual diagram illustrating an example machine learning model
configured to determine an extent to which data of a patient indicates an acute health event.
[0035] FIG. 22 is a conceptual diagram illustrating an example training process for a
machine learning model, in accordance with examples of the current disclosure.

[0036] FIG. 23A is a perspective drawing illustrating an insertable cardiac monitor.
[0037] FIG. 23B is a perspective drawing illustrating another insertable cardiac monitor.
[0038] Like reference characters refer to like elements throughout the figures and

description.

DETAILED DESCRIPTION
[0039] A variety of types of implantable and external devices are configured to detect
arthythmia episodes and other acute health events based on sensed ECGs and, in some cases,
other physiological signals. External devices that may be used to non-invasively sense and
monitor ECGs and other physiological signals include wearable devices with electrodes
configured to contact the skin of the patient, such as patches, watches, rings, necklaces,
hearing aids, a wearable cardiac monitor or automated external defibrillator (AED), clothing,
car seats, or bed linens. Such external devices may facilitate relatively longer-term
monitoring of patient health during normal daily activities.
[0040] Implantable medical devices (IMDs) also sense and monitor ECGs and other
physiological signals, and detect acute health events such as episodes of arrhythmia, cardiac
arrest, myocardial infarction, stroke, and seizure. Example IMDs include pacemakers and
implantable cardioverter-defibrillators, which may be coupled to intravascular or

extravascular leads, as well as pacemakers with housings configured for implantation within



WO 2024/059054 PCT/US2023/032517

the heart, which may be leadless. Some IMDs do not provide therapy, such as implantable
patient monitors. One example of such an IMD is the Reveal LINQ™ and LINQ [I™
Insertable Cardiac Monitors (ICMs), available from Medtronic, Inc., which may be inserted
subcutaneously. Some IMDs do not provide therapy, such as implantable patient monitors.
One example of such an IMD is the Reveal LINQ™ and LINQ II™ Insertable Cardiac
Monitors (ICMs), available from Medtronic, Inc., which may be inserted subcutaneously.
Such IMDs may facilitate relatively longer-term monitoring of patients during normal daily
activities, and may periodically transmit collected data, e.g., episode data for detected
arrhythmia episodes, to a remote patient monitoring system, such as the Medtronic
Carelink™ Network.

[0041] FIG. 1 is a block diagram illustrating an example system 2 configured detect acute
health events of a patient 4, and to respond to such detection, in accordance with one or more
techniques of this disclosure. As used herein, the terms “detect,” “detection,” and the like
may refer to detection of an acute health event presently (at the time the data is collected)
being experienced by patient 4, as well as detection based on the data that the condition of
patient 4 is such that they have a suprathreshold likelihood of experiencing the event within a
particular timeframe, e.g., prediction of the acute health event. The example techniques may
be used with one or more patient sensing devices, ¢.g., IMD 10, which may be in wireless
communication with one or more patient computing devices, e.g., patient computing devices
12A and 12B (collectively, “patient computing devices 127). Although not illustrated in FIG.
1, IMD 10 include electrodes and other sensors to sense physiological signals of patient 4,
and may collect and store sensed physiological data based on the signals and detect episodes
based on the data.

[0042] IMD 10 may be implanted outside of a thoracic cavity of patient 4 (e.g.,
subcutaneously in the pectoral location illustrated in FIG. 1). IMD 10 may be positioned near
the sternum near or just below the level of the heart of patient 4, ¢.g., at least partially within
the cardiac silhouette. In some examples, IMD 10 takes the form of a LINQ ICM. Although
described primarily in the context of examples in which IMD 10 takes the form of an [CM,
the techniques of this disclosure may be implemented in systems including any one or more
implantable or external medical devices, including monitors, pacemakers, defibrillators (¢.g.,
subcutaneous or substernal), wearable external defibrillators (WAEDs), neurostimulators, or
drug pumps. Furthermore, although described primarily in the context of examples including
a single implanted patient sensing device, in some examples a system includes one or more

patient sensing devices, which may be implanted within patient 4 or external to (e.g., worn
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by) patient 4. For example, a system with two IMDs 10 may capture different values of a
common patient parameter with different resolution/accuracy based on their respective
locations. In some examples, instead of or in addition to two IMDs 10, system 2 may include
a ventricular assist device or WAED in addition to IMD 10.

[0043] Patient computing devices 12 are configured for wireless communication with
IMD 10. Computing devices 12 retrieve event data and other sensed physiological data from
IMD 10 that was collected and stored by the IMD. In some examples, computing devices 12
take the form of personal computing devices of patient 4. For example, computing device
12A may take the form of a smartphone of patient 4, and computing device 12B may take the
form of a smartwatch or other smart apparel of patient 4. In some examples, computing
devices 12 may be any computing device configured for wireless communication with IMD
10, such as a desktop, laptop, or tablet computer. Computing devices 12 may communicate
with IMD 10 and each other according to the Bluetooth® or Bluetooth® Low Energy (BLE)
protocols, as examples. In some examples, only one of computing devices 12, e.g.,
computing device 12A, is configured for communication with IMD 10, e.g., due to execution
of software (¢.g., part of a health monitoring application as described herein) enabling
communication and interaction with an IMD.

[0044] In some examples, computing device(s) 12, ¢.g., wearable computing device 12B
in the example illustrated by FIG. 1, may include electrodes and other sensors to sense
physiological signals of patient 4, and may collect and store physiological data and detect
episodes based on such signals. Computing device 12B may be incorporated into the apparel
of patient 14, such as within clothing, shoes, eyeglasses, a watch or wristband, a hat, etc. In
some examples, computing device 12B is a smartwatch or other accessory or peripheral for a
smartphone computing device 12A.

[0045] One or more of computing devices 12 may be configured to communicate with a
variety of other devices or systems via a network 16. For example, one or more of computing
devices 12 may be configured to communicate with one or more computing systems, €.g.,
computing systems 20A and 20B (collectively, “computing systems 207) via network 16.
Computing systems 20A and 20B may be respectively managed by manufacturers of IMD 10
and computing devices 12 to, for example, provide cloud storage and analysis of collected
data, maintenance and software services, or other networked functionality for their respective
devices and users thereof. Computing system 20A may comprise, or may be implemented
by, the Medtronic Carelink™ Network, in some examples. In the example illustrated by FIG.
1, computing system 20A implements a health monitoring system (HMS) 22, although in
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other examples, cither of both of computing systems 20 may implement HMS 22, As will be
described in greater detail below, HMS 22 facilities detection of acute health events of patient
4 by system 2, and the responses of system 2 to such acute health events.

[0046] Computing device(s) 12 may transmit data, including data retrieved from IMD 10,
to computing system(s) 20 via network 16. The data may include sensed data, ¢.g., values of
physiological parameters measured by IMD 10 and, in some cases one or more of computing
devices 12, data regarding episodes of arrhythmia or other acute health events detected by
IMD 10 and computing device(s) 12, and other physiological signals or data recorded by
IMD 10 and/or computing device(s) 12. HMS 22 may also retrieve data regarding patient 4
from one or more sources of electronic health records (EHR) 24 via network. EHR 24 may
include data regarding historical (e.g., baseline) physiological parameter values, previous
health events and treatments, disease states, comorbidities, demographics, height, weight, and
body mass index (BMI), as examples, of patients including patient 4. HMS 22 may use data
from EHR 24 to configure algorithms implemented by IMD 10 and/or computing devices 12
to detect acute health events for patient 4. In some examples, HMS 22 provides data from
EHR 24 to computing device(s) 12 and/or IMD 10 for storage therein and use as part of their
algorithms for detecting acute health events.

[0047] Network 16 may include one or more computing devices, such as one or more
non-edge switches, routers, hubs, gateways, security devices such as firewalls, intrusion
detection, and/or intrusion prevention devices, servers, cellular base stations and nodes,
wireless access points, bridges, cable modems, application accelerators, or other network
devices. Network 16 may include one or more networks administered by service providers,
and may thus form part of a large-scale public network infrastructure, ¢.g., the Internet.
Network 16 may provide computing devices and systems, such as those illustrated in FIG. 1,
access to the Internet, and may provide a communication framework that allows the
computing devices and systems to communicate with one another. In some examples,
network 16 may include a private network that provides a communication framework that
allows the computing devices and systems illustrated in FIG. 1 to communicate with each
other, but isolates some of the data flows from devices external to the private network for
security purposes. In some examples, the communications between the computing devices
and systems illustrated in FIG. 1 are encrypted.

[0048] As will be described herein, IMD 10 may be configured to detect acute health
events of patient 4, such as SCA, based on data sensed by IMD 10 and, in some cases, other

data, such as data sensed by computing devices 12A and/or 12B, and data from EHR 24. To
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detect acute health events, IMD 10 may apply rules to the data, which may be referred to as
patient parameter data. In response to detection of an acute health event, IMD 10 may
wirelessly transmit a message to one or both of computing devices 12A and 12B. The
message may indicate that IMD 10 detected an acute health event of the patient. The
message may indicate a time that IMD 10 detected the acute health event. The message may
include physiological data collected by IMD 10, e.g., data which lead to detection of the
acute health event, data prior to detection of the acute health event, and/or real-time or more
recent data collected after detection of the acute health event. The physiological data may
include values of one or more physiological parameters and/or digitized physiological
signals. Examples of acute health events are SCA, a ventricular fibrillation, a ventricular
tachycardia, myocardial infarction, a pause in heart rhythm (asystole), or Pulseless Electrical
Activity (PEA), acute respiratory distress syndrome (ARDS), a stroke, a seizure, or a fall.
[0049] In some examples, the detection of the acute health event by IMD 10 may include
multiple phases. For example, IMD 10 may complete an initial detection of the acute health
event, ¢.g., SCA or tachyarrhythmia, and initiate wireless communication, ¢.g., Bluetooth®
or Bluetooth Low Energy®, with computing device(s) 12 in response to the initial detection.
The initial detection may occur five to ten seconds after onset of the acute health event, for
example. IMD 10 may continue monitoring to determine whether the acute health event is
sustained, ¢.g., a sustained detection of SCA or tachyarrhythmia. In some examples, IMD 10
may use more patient parameters and/or different rules to determine whether event is
sustained or otherwise confirm detection.

[0050] Initiating communication with computing device(s) 12 in response to an initial
detection may facilitate the communication being established at the time the acute health
event is confirmed as sustained. To conserve power of IMD 10 and computing device(s) 12,
IMD 10 may wait to send the message, ¢.g., including sensed data associated with the acute
health event, until it is confirmed as sustained, which may be determined about thirty seconds
after onset of the event, or after a longer period of time. Less urgent events may have longer
confirmation phases and may be alerted with less urgency, such being alerted as health care
events rather than acute health events. However, the initiation of communication after initial
detection may still benefit less urgent events. Conserving power may be significant in the
case of non-rechargeable IMDs to prolong their life prior to needing surgery for replacement,
as well as for rechargeable IMDs or external devices to reduce recharge frequency.

[0051] Based on the message from IMD 10, computing device(s) 12 may output an alarm

that may be visual and/or audible, and configured to immediately attract the attention of

10



WO 2024/059054 PCT/US2023/032517

patient 4 or any person in environment 28 with patient 4, e.g., a bystander 26. Additionally
or alternatively, computing device(s) 12 may transmit an alert or alarm message to devices
and users outside the visible/audio range of computing device(s) 12, ¢.g., to IoT devices 30,
bystander computing device 42, or HMS 22. Environment 28 may be a home, office, or place
of business, or public venue, as examples. An alert or alarm message sent to HMS 22 via
network 16, or other messages sent by computing device(s) 12, may include the data received
from IMD 10 and, in some cases, additional data collected by computing device(s) 12 or
other devices in response to the detection of the acute health event by IMD 10. For example,
the message may include a location of patient 4 determined by computing device(s) 12. In
some examples, computing device(s) 12 may further configure or change the content of alert
or alarm messages based on the location of patient 4, ¢.g., different messages may be sent
depending on whether patient 4 is at home, another residence, an office or business, a public
location, or in a health care facility. The health care needed by patient, and thus the
messaging of system 2, may vary depending on the location of patient 4.

[0052] Other devices in the environment 28 of patient 4 may also be configured to output
alarms or take other actions to attract the attention of patient 4 and, possibly, a bystander 26,
or to otherwise facilitate the delivery of care to patient 4. For example, environment 28 may
include one or more Internet of Things (IoT) devices, such as loT devices 30A-30D
(collectively “IoT devices 307) illustrated in the example of FIG. 1. ToT devices 30 may
include, as examples, so called “smart” speakers, cameras, televisions, lights, locks,
thermostats, appliances, actuators, controllers, or any other smart home (or building) devices.
In the example of FIG. 1, IoT device 30C is a smart speaker and/or controller, which may
include a display. IoT devices 30 may provide audible and/or visual alarms when configured
with output devices to do so. As other examples, [oT devices 30 may cause smart lights
throughout environment 28 to flash or blink and unlock doors. In some examples, [oT
devices 30 that include cameras, microphones, or other sensors may activate those sensors to
collect data regarding patient 4, ¢.g., for evaluation of the condition of patient 4.

[0053] Computing device(s) 12 may be configured to wirelessly communicate with [oT
devices 30 to cause loT devices 30 to take the actions described herein. In some examples,
HMS 22 communicates with IoT devices 30 via network 16 to cause loT devices 30 to take
the actions described herein, e.g., in response to receiving the alert message from computing
device(s) 12 as described above. In some examples, IMD 10 is configured to communicate
wirelessly with one or more of [oT devices 30, ¢.g., in response to detection of an acute

health event when communication with computing devices 12 is unavailable. In such
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examples, loT device(s) 30 may be configured to provide some or all of the functionality
ascribed to computing devices 12 herein.

[0054] Environment 28 includes computing facilities, ¢.g., a local network 32, by which
computing devices 12, IoT devices 30, and other devices within environment 28 may
communicate via network 16, e.g., with HMS 22. For example, environment 28 may be
configured with wireless technology, such as IEEE 802.11 wireless networks, IEEE 802.15
ZigBee networks, an ultra-wideband protocol, near-field communication, or the like.
Environment 28 may include one or more wireless access points, €.g., wireless access points
34A and 34B (collectively, “wireless access points 347) that provide support for wireless
communications throughout environment 28. Additionally or alternatively, e.g., when local
network is unavailable, computing devices 12, [oT devices 30, and other devices within
environment 28 may be configured to communicate with network 16, ¢.g., with HMS 22, via
a cellular base station 36 and a cellular network.

[0055] Computing device(s) 12, and in some examples loT device(s) 30, may include
input devices and interfaces to allow a user to override the alarm in the event the detection of
the acute health event by IMD 10 was false. In some examples, one or more of computing
device(s) 12 and IoT device(s) 30 may implement an event assistant. The event assistant may
provide a conversational interface for patient 4 and/or bystander 26 to exchange information
with the computing device or [oT device. The event assistant may query the user regarding
the condition of patient 4 in response to receiving the alert message from IMD 10. Responses
from the user may be used to confirm or override detection of the acute health event by IMD
10, or to provide additional information about the acute health event or the condition of
patient 4 more generally that may improve the efficacy of the treatment of patient 4. For
example, information received by the event assistant may be used to provide an indication of
severity or type (differential diagnosis) for the acute health event. The event assistant may
use natural language processing and context data to interpret utterances by the user. In some
examples, in addition to receiving responses to queries posed by the assistant, the event
assistant may be configured to respond to queries posed by the user. For example, patient 4
may indicate that they feel dizzy and ask the event assistant, “how am [ doing?”.

[0056] In some examples, computing device(s) 12 and/or HMS 22 may implement one or
more techniques to evaluate the sensed physiological data received from IMD 10, and in
some cases additional physiological or other patient parameter data sensed or otherwise
collected by the computing device(s) or IoT devices 30, to confirm or override the detection

of the acute health event by IMD 10. In some examples, computing device(s) 12 and/or

12



WO 2024/059054 PCT/US2023/032517

computing system(s) 20 may have greater processing capacity than IMD 10, enabling more
complex analysis of the data. In some examples, the computing device(s) 12 and/or HMS 22
may apply the data to one or more machine learning models or other artificial intelligence
developed algorithms, e.g., to determine whether the data is sufficiently indicative of the
acute health event.

[0057] In examples in which computing device(s) 12 are configured perform an acute
health event confirmation analysis, computing device(s) 12 may output alert messages and/or
transmit alert messages to HMS 22 and/or IoT devices 30 in response to confirming the acute
health event. In some examples, computing device(s) 12 may be configured to
output/transmit the alert messages prior to completing the confirmation analysis, and
output/transmit cancellation messages in response to the analysis overriding the detection of
the acute health event by IMD 10. HMS 22 may be configured to perform a number of
operations in response to receiving an alert message from computing device(s) 12 and/or IoT
device(s) 30. HMS 22 may be configured to cancel such operations in response to receiving
a cancellation message from computing device(s) 12 and/or IoT device(s) 30.

[0058] For example, HMS 22 may be configured to transmit alert messages to one or
computing devices 38 associated with one or more care providers 40 via network 16. Care
providers may include emergency medical systems (EMS) and hospitals, and may include
particular departments within a hospital, such as an emergency department, catheterization
lab, or a stroke response department. Computing devices 38 may include smartphones,
desktop, laptop, or tablet computers, or workstations associated with such systems or entities,
or employees of such systems or entities. The alert messages may include any of the data
collected by IMD 10, computing device(s) 12, and [oT device(s) 30, including sensed
physiological data, time of the acute health event, location of patient 4, and results of the
analysis by IMD 10, computing device(s) 12, [oT device(s) 30, and/or HMS 22. The
information transmitted from HMS 22 to care providers 40 may improve the timeliness and
effectiveness of treatment of the acute health event of patient 4 by care providers 40. In some
examples, instead of or in addition to HMS 22 providing an alert message to one or more
computing devices 38 associated with an EMS care provider 40, computing device(s) 12
and/or loT devices 30 may be configured to automatically contact EMS, ¢.g., autodial 911, in
response to receiving an alert message from IMD 10. Again, such operations may be
cancelled by patient 4, bystander 26, or another user via a user interface of computing

device(s) 12 or [oT device(s) 30, or automatically cancelled by computing device(s) 12 based
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on a confirmatory analysis performed by the computing device(s) overriding the detection of
the acute health event by IMD 10.

[0059] Similarly, HMS 22 may be configured to transmit an alert message to computing
device 42 of bystander 26, which may improve the timeliness and effectiveness of treatment
of the acute health event of patient 4 by bystander 26. Computing device 42 may be similar
to computing devices 12 and computing devices 38, ¢.g., a smartphone. In some examples,
HMS 22 may determine that bystander 26 is proximate to patient 4 based on a location of
patient 4, ¢.g., received from computing device(s) 12, and a location of computing device 42,
¢.g., reported to HMS 22 by an application implemented on computing device 42. In some
examples, HMS 22 may transmit the alert message to any computing devices 42 in an alert
area determined based on the location of patient 4, ¢.g., by transmitting the alert message to
all computing devices in communication with base station 36, using any of the networking
methods described herein.

[0060] In some examples, the alert message to bystander 26 may be configured to assist a
layperson in treating patient. For example, the alert message to bystander 26 may include a
location (and in some cases a description) of patient 4, the general nature of the acute health
event, directions for providing care to patient 4, such as directions for providing cardio-
pulmonary resuscitation (CPR), a location of nearby medical equipment for treatment of
patient 4, such as an automated external defibrillator (AED) 44 or life vest, and instructions
for use of the equipment. In some examples, computing device(s) 12, [oT device(s) 30,
and/or computing device 42 may implement an event assistant configured to use natural
language processing and context data to provide a conversational interface for bystander 42.
The assistant may provide bystander 26 with directions for providing care to patient 4, and
respond to queries from bystander 26 about how to provide care to patient 4.

[0061] In some examples, HMS 22 may mediate bi-directional audio (and in some cases
video) communication between care providers 40 and patient 4 or bystander 26. Such
communication may allow care providers 40 to evaluate the condition of patient 4, ¢.g.,
through communication with patient 4 or bystander 26, or through use of a camera or other
sensors of the computing device or [oT device, in advance of the time they will begin caring
for the patient, which may improve the efficacy of care delivered to the patient. Such
communication may also allow the care providers to instruct bystander 42 regarding first
responder treatment of patient 4.

[0062] In some examples, HMS 22 may control dispatch of a drone 46 to environment

28, or a location near environment 28 or patient 4. Drone 46 may be a robot and/or
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unmanned aerial vehicle (UAV). Drone 46 may be equipped with a number of sensors and/or
actuators to perform a number of operations. For example, drone 46 may include a camera or
other sensors to navigate to its intended location, identify patient 4 and, in some cases,
bystander 26, and to evaluate a condition of patient. In some examples, drone 46 may
include user interface devices to communicate with patient 4 and/or bystander 26. In some
examples, drone 46 may provide directions to bystander 26, to the location of patient 4 and
regarding how to provide first responder care, such as CPR, to patient 4. In some examples,
drone 46 may carry medical equipment, e.g., AED 44, and/or medication to the location of
patient 4.

[0063] Any of IMD 10, computing device(s) 12, IoT device(s) 30, computing device(s)
38 and 42, AED 44, drone 46, or HMS 22 may, individually or in any combination, perform
the operations described herein for detection of acute health events, such as SCA, by applying
rules, which may include one or more machine learning models, to patient parameter data to
detect acute health events. For example, one of these devices, or more than one of them in
cooperation, may apply a first set of rules to patient parameter data for a first determination
of whether an acute health event is detected and, based on whether one or more context
criteria associated with the first determination are satisfied, determine whether to apply a
second set of rules to patient parameter data to determine whether the acute health event is
detected.

[0064] FIG. 2 is a block diagram illustrating an example configuration of IMD 10 of FIG.
1. As shown in FIG. 2, IMD 10 includes processing circuitry 50, memory 52, sensing
circuitry 54 coupled to electrodes S6A and 56B (hereinafter, “electrodes 56) and one or
more sensor(s) 58, and communication circuitry 60.

[0065] Processing circuitry 50 may include fixed function circuitry and/or programmable
processing circuitry. Processing circuitry 50 may include any one or more of a
microprocessor, a controller, a graphics processing unit (GPU), a tensor processing unit
(TPU), a digital signal processor (DSP), an application specific integrated circuit (ASIC), a
field-programmable gate array (FPGA), or equivalent discrete or analog logic circuitry. In
some examples, processing circuitry 50 may include multiple components, such as any
combination of one or more microprocessors, one or more controllers, one or more GPUSs,
one or more TPUs, one or more DSPs, one or more ASICs, or one or more FPGAs, as well as
other discrete or integrated logic circuitry. The functions attributed to processing circuitry 50
herein may be embodied as software, firmware, hardware, or any combination thereof. In

some examples, memory 53 includes computer-readable instructions that, when executed by
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processing circuitry 50, cause IMD 10 and processing circuitry 50 to perform various
functions attributed herein to IMD 10 and processing circuitry 50. Memory 53 may include
any volatile, non-volatile, magnetic, optical, or electrical media, such as a random-access
memory (RAM), read-only memory (ROM), non-volatile RAM (NVRAM), electrically-
erasable programmable ROM (EEPROM), flash memory, or any other digital media.

[0066] Sensing circuitry 54 may monitor signals from electrodes 56 in order to, for
example, monitor electrical activity of a heart of patient 4 and produce ECG data for patient
4. In some examples, processing circuitry 50 may identify features of the sensed ECG, such
as heart rate, heart rate variability, T-wave alternans, intra-beat intervals (e.g., QT intervals),
and/or ECG morphologic features, to detect an episode of cardiac arrhythmia of patient 4.
Example Processing circuitry 50 may store the digitized ECG and features of the ECG used
to detect the arrhythmia episode in memory 52 as episode data for the detected arrthythmia
episode.

[0067] In some examples, sensing circuitry 54 measures impedance, e.g., of tissue
proximate to IMD 10, via electrodes 56. The measured impedance may vary based on
respiration, cardiac pulse or flow, and a degree of perfusion or edema. Processing circuitry
50 may determine physiological data relating to respiration, cardiac pulse or flow, perfusion,
and/or edema based on the measured impedance.

[0068] In some examples, IMD 10 includes one or more sensors 58, such as one or more
accelerometers, gyroscopes, microphones, optical sensors, temperature sensors, pressure
sensors, and/or chemical sensors. In some examples, sensing circuitry 52 may include one or
more filters and amplifiers for filtering and amplifying signals received from one or more of
electrodes 56 and/or sensors 58. In some examples, sensing circuitry 54 and/or processing
circuitry 50 may include a rectifier, filter and/or amplifier, a sense amplifier, comparator,
and/or analog-to-digital converter. Processing circuitry 50 may determine physiological data,
¢.g., values of physiological parameters of patient 4, based on signals from sensors 58, which
may be stored in memory 52. Patient parameters determined from signals from sensors 58
may include oxygen saturation, glucose level, stress hormone level, heart sounds, body
motion, body posture, or blood pressure.

[0069] Memory 52 may store applications 70 executable by processing circuitry 50, and
data 80. Applications 70 may include an acute health event surveillance application 72.
Processing circuitry 50 may execute event surveillance application 72 to detect an acute
health event of patient 4 based on combination of one or more of the types of physiological

data described herein, which may be stored as sensed data 82. In some examples, sensed data
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82 may additionally include patient parameter data sensed by other devices, ¢.g., computing
device(s) 12 or IoT device(s) 30, and received via communication circuitry 60. Event
surveillance application 72 may be configured with a rules engine 74. Rules engine 74 may
apply rules 84 to sensed data 82. Rules 84 may include one or more models, algorithms,
decision trees, and/or thresholds. In some cases, rules 84 may be developed based on
machine learning, ¢.g., may include one or more machine learning models.

[0070] As examples, event surveillance application 72 may detect SCA, a ventricular
fibrillation, a ventricular tachycardia, supra-ventricular tachycardia (e.g., conducted atrial
fibrillation), ventricular asystole, or a myocardial infarction based on an ECG and/or other
patient parameter data indicating the electrical or mechanical activity of the heart of patient 4.
In some examples, event surveillance application 72 may detect stroke based on such cardiac
activity data. In some examples, sensing circuitry 54 may detect brain activity data, e.g., an
electroencephalogram (EEG) via electrodes 56, and event surveillance application 72 may
detect stroke or a seizure based on the brain activity alone, or in combination with cardiac
activity data or other physiological data. In some examples, event surveillance application 72
detects whether the patient has fallen based on data from an accelerometer alone, or in
combination with other physiological data. When event surveillance application 72 detects
an acute health event, event surveillance application 72 may store the sensed data 82 that lead
to the detection (and in some cases a window of data preceding and/or following the
detection) as event data 86, also referred to herein as episode data.

[0071] In some examples, in response to detection of an acute health event, processing
circuitry 50 transmits, via communication circuitry 60, event data 86 for the event to
computing device(s) 12 (FIG. 1). This transmission may be included in a message indicating
the acute health event, as described herein. Transmission of the message may occur on an ad
hoc basis and as quickly as possible. Communication circuitry 60 may include any suitable
hardware, firmware, software, or any combination thereof for wirelessly communicating with
another device, such as computing devices 12 and/or [oT devices 30.

[0072] FIG. 3 is a block diagram illustrating an example configuration of a computing
device 12 of patient 4, which may correspond to either (or both operating in coordination) of
computing devices 12A and 12B illustrated in FIG. 1. In some examples, computing device
12 takes the form of a smartphone, a laptop, a tablet computer, a personal digital assistant
(PDA), a smartwatch or other wearable computing device. In some examples, loT devices
30, computing devices 38 and 42, AED 44, and/or drone 46 may be configured similarly to

the configuration of computing device 12 illustrated in FIG. 3.
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[0073] As shown in the example of FIG. 3, computing device 12 may be logically divided
into user space 102, kernel space 104, and hardware 106. Hardware 106 may include one or
more hardware components that provide an operating environment for components executing
in user space 102 and kernel space 104. User space 102 and kernel space 104 may represent
different sections or segmentations of memory, where kernel space 104 provides higher
privileges to processes and threads than user space 102. For instance, kernel space 104 may
include operating system 120, which operates with higher privileges than components
executing in user space 102.

[0074] As shown in FIG. 3, hardware 106 includes processing circuitry 130, memory
132, one or more input devices 134, one or more output devices 136, one or more sensors
138, and communication circuitry 140. Although shown in FIG. 3 as a stand-alone device for
purposes of example, computing device 12 may be any component or system that includes
processing circuitry or other suitable computing environment for executing software
instructions and, for example, need not necessarily include one or more elements shown in
FIG. 3.

[0075] Processing circuitry 130 is configured to implement functionality and/or process
instructions for execution within computing device 12. For example, processing circuitry 130
may be configured to receive and process instructions stored in memory 132 that provide
functionality of components included in kernel space 104 and user space 102 to perform one
or more operations in accordance with techniques of this disclosure. Examples of processing
circuitry 130 may include, any one or more microprocessors, controllers, GPUs, TPUs, DSPs,
ASICs, FPGAs, or equivalent discrete or integrated logic circuitry.

[0076] Memory 132 may be configured to store information within computing device 12,
for processing during operation of computing device 12. Memory 132, in some examples, is
described as a computer-readable storage medium. In some examples, memory 132 includes
a temporary memory or a volatile memory. Examples of volatile memories include random
access memories (RAM), dynamic random access memories (DRAM), static random access
memories (SRAM), and other forms of volatile memories known in the art. Memory 132, in
some examples, also includes one or more memories configured for long-term storage of
information, e.g. including non-volatile storage elements. Examples of such non-volatile
storage elements include magnetic hard discs, optical discs, floppy discs, flash memories, or
forms of electrically programmable memories (EPROM) or electrically erasable and
programmable (EEPROM) memories. In some examples, memory 132 includes cloud-

associated storage.
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[0077] One or more input devices 134 of computing device 12 may receive input, e.g.,
from patient 4 or another user. Examples of input are tactile, audio, kinetic, and optical input.
Input devices 134 may include, as examples, a mouse, keyboard, voice responsive system,
camera, buttons, control pad, microphone, presence-sensitive or touch-sensitive component
(e.g., screen), or any other device for detecting input from a user or a machine.

[0078] One or more output devices 136 of computing device 12 may generate output,
¢.g., to patient 4 or another user. Examples of output are tactile, haptic, audio, and visual
output. Output devices 134 of computing device 12 may include a presence-sensitive screen,
sound card, video graphics adapter card, speaker, cathode ray tube (CRT) monitor, liquid
crystal display (LCD), light emitting diodes (LEDs), or any type of device for generating
tactile, audio, and/or visual output.

[0079] One or more sensors 138 of computing device 12 may sense physiological
parameters or signals of patient 4. Sensor(s) 138 may include electrodes, accelerometers
(e.g., 3-axis accelerometers), an optical sensor, impedance sensors, temperature sensors,
pressure sensors, heart sound sensors (e.g., microphones), and other sensors, and sensing
circuitry (e.g., including an ADC), similar to those described above with respect to IMD 10
and FIG. 2.

[0080] Communication circuitry 140 of computing device 12 may communicate with
other devices by transmitting and receiving data. Communication circuitry 140 may include
a network interface card, such as an Ethernet card, an optical transceiver, a radio frequency
transceiver, or any other type of device that can send and receive information. For example,
communication circuitry 140 may include a radio transceiver configured for communication
according to standards or protocols, such as 3G, 4G, 5G, WiFi (e.g., 802.11 or 802.15
ZigBee), Bluetooth®, or Bluetooth® Low Energy (BLE).

[0081] As shown in FIG. 3, health monitoring application 150 executes in user space 102
of computing device 12. Health monitoring application 150 may be logically divided into
presentation layer 152, application layer 154, and data layer 156. Presentation layer 152 may
include a user interface (UD) component 160, which generates and renders user interfaces of
health monitoring application 150.

[0082] Application layer 154 may include, but is not limited to, an event engine 170,
rules engine 172, rules configuration component 174, event assistant 176, and location
service 178. Event engine 172 may be responsive to receipt of an alert transmission from
IMD 10 indicating that IMD 10 detected an acute health event. Event engine 172 may

control performance of any of the operations in response to detection of an acute health event
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ascribed herein to computing device 12, such as activating an alarm, transmitting alert
messages to HMS 22, controlling [oT devices 30, and analyzing data to confirm or override
the detection of the acute health event by IMD 10.

[0083] Rules engine 174 analyzes sensed data 190, and in some examples, patient input
192 and/or EHR data 194, to determine whether there is a sufficient likelihood that patient 4
is experiencing the acute health event detected by IMD 10. Sensed data 190 may include
data received from IMD 10 as part of the alert transmission, additional data transmitted from
IMD 10, e.g., in “real-time,” and physiological and other data related to the condition of
patient 4 collected by, for example, computing device(s) 12 and/or loT devices 30. As
examples sensed data 190 from computing device(s) 12 may include one or more of: activity
levels, walking/running distance, resting energy, active energy, exercise minutes,
quantifications of standing, body mass, body mass index, heart rate, low, high, and/or
irregular heart rate events, heart rate variability, walking heart rate, heart beat series, digitized
ECQG, blood oxygen saturation, blood pressure (systolic and/or diastolic), respiratory rate,
maximum volume of oxygen, blood glucose, peripheral perfusion, and sleep patterns.

[0084] Patient input 192 may include responses to queries posed by health monitoring
application 150 regarding the condition of patient 4, input by patient 4 or another user, such
as bystander 26. The queries and responses may occur responsive to the detection of the
event by IMD 10, or may have occurred prior to the detection, ¢.g., as part long-term
monitoring of the health of patient 4. User recorded health data may include one or more of:
exercise and activity data, sleep data, symptom data, medical history data, quality of life data,
nutrition data, medication taking or compliance data, allergy data, demographic data, weight,
and height. EHR data 194 may include any of the information regarding the historical
condition or treatments of patient 4 described above. EHR data 194 may relate to history of
SCA, tachyarrhythmia, myocardial infarction, stroke, seizure, one or more discase states,
such as status of heart failure chronic obstructive pulmonary disease (COPD), renal
dysfunction, or hypertension, aspects of disease state, such as ECG characteristics, cardiac
ischemia, oxygen saturation, lung fluid, activity, or metabolite level, genetic conditions,
congenital anomalies, history of procedures, such as ablation or cardioversion, and healthcare
utilization. EHR data 194 may also include cardiac indicators, such as ejection fraction and
left-ventricular wall thickness. EHR data 194 may also include demographic and other
information of patient 4, such as age, gender, race, height, weight, and BMI.

[0085] Rules engine 172 may apply rules 196 to the data. Rules 196 may include one or

more models, algorithms, decision trees, and/or thresholds. In some cases, rules 196 may be
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developed based on machine learning, ¢.g., may include one or more machine learning
models. In some examples, rules 196 and the operation of rules engine 172 may provide a
more complex analysis the patient parameter data, ¢.g., the data received from IMD 10, than
is provided by rules engine 74 and rules 84. In examples in which rules 196 include one or
more machine learning models, rules engine 172 may apply feature vectors derived from the
data to the model(s).

[0086] Rules configuration component 174 may be configured to modify rules 196 (and
in some examples rules 84) based on feedback indicating whether the detections and
confirmations of acute health events by IMD 10 and computing device 12 were accurate. The
feedback may be received from patient 4, or from care providers 40 and/or EHR 24 via HMS
22. In some examples, rules configuration component 174 may utilize the data sets from true
and false detections and confirmations for supervised machine learning to further train
models included as part of rules 196.

[0087] Rules configuration component 174, or another component executed by
processing circuitry of system 2, may select a configuration of rules 196 based on etiological
data for patient, e.g., any combination of one or more of the examples of sensed data 190,
patient input 192, and EHR data 194 discussed above. In some examples, different sets of
rules 196 tailored to different cohorts of patients may be available for selection for patient 4
based on such ctiological data.

[0088] As discussed above, event assistant 176 may provide a conversational interface for
patient 4 and/or bystander 26 to exchange information with computing device 12. Event
assistant 176 may query the user regarding the condition of patient 4 in response to receiving
the alert message from IMD 10. Responses from the user may be included as patient input
192. Event assistant 176 may use natural language processing and context data to interpret
utterances by the user. In some examples, in addition to receiving responses to queries posed
by the assistant, event assistant 176 may be configured to respond to queries posed by the
user. In some examples, event assistant 176 may provide directions to and respond to queries
regarding treatment of patient 4 from patient 4 or bystander 26.

[0089] Location service 178 may determine the location of computing device 12 and,
thereby, the presumed location of patient 4. Location service 178 may use global position
system (GPS) data, multilateration, and/or any other known techniques for locating
computing devices.

[0090] FIG. 4 is a block diagram illustrating an operating perspective of HMS 22. HMS

22 may be implemented in a computing system 20, which may include hardware components
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such as those of computing device 12, ¢.g., processing circuitry, memory, and communication
circuitry, embodied in one or more physical devices. FIG. 4 provides an operating
perspective of HMS 22 when hosted as a cloud-based platform. In the example of FIG. 4,
components of HMS 22 are arranged according to multiple logical layers that implement the
techniques of this disclosure. Each layer may be implemented by one or more modules
comprised of hardware, software, or a combination of hardware and software.

[0091] Computing devices, such as computing devices 12, loT devices 30, computing
devices 38, and computing device 42, operate as clients that communicate with HMS 22 via
interface layer 200. The computing devices typically execute client software applications,
such as desktop application, mobile application, and web applications. Interface layer 200
represents a set of application programming interfaces (API) or protocol interfaces presented
and supported by HMS 22 for the client software applications. Interface layer 200 may be
implemented with one or more web servers.

[0092] As shown in FIG. 4, HMS 22 also includes an application layer 202 that
represents a collection of services 210 for implementing the functionality ascribed to HMS
herein. Application layer 202 receives information from client applications, e.g., an alert of
an acute health event from a computing device 12 or [oT device 30, and further processes the
information according to one or more of the services 210 to respond to the information.
Application layer 202 may be implemented as one or more discrete software services 210
executing on one or more application servers, e.g., physical or virtual machines. That is, the
application servers provide runtime environments for execution of services 210. In some
examples, the functionality interface layer 200 as described above and the functionality of
application layer 202 may be implemented at the same server. Services 210 may
communicate via a logical service bus 212. Service bus 212 generally represents a logical
interconnections or set of interfaces that allows different services 210 to send messages to
other services, such as by a publish/subscription communication model.

[0093] Data layer 204 of HMS 22 provides persistence for information in PPEMS 6 using
ong or more data repositories 220. A data repository 220, generally, may be any data
structure or software that stores and/or manages data. Examples of data repositories 220
include but are not limited to relational databases, multi-dimensional databases, maps, and
hash tables, to name only a few examples.

[0094] As shown in FIG. 4, each of services 230-238 is implemented in a modular form
within HMS 22. Although shown as separate modules for each service, in some examples the

functionality of two or more services may be combined into a single module or component.
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Each of services 230-238 may be implemented in software, hardware, or a combination of
hardware and software. Moreover, services 230-238 may be implemented as standalone
devices, separate virtual machines or containers, processes, threads or software instructions
generally for execution on one or more physical processors.

[0095] Event processor service 230 may be responsive to receipt of an alert transmission
from computing device(s) 12 and/or IoT device(s) 30 indicating that IMD 10 detected an
acute health event of patient and, in some examples, that the transmitting device confirmed
the detection. Event processor service 230 may initiate performance of any of the operations
in response to detection of an acute health event ascribed herein to HMS 22, such as
communicating with patient 4, bystander 26, and care providers 40, activating drone 46 and,
in some cases, analyzing data to confirm or override the detection of the acute health event by
IMD 10.

[0096] Record management service 238 may store the patient data included in a received
alert message within event records 252. Alert service 232 may package the some or all of the
data from the event record, in some cases with additional information as described herein,
into one more alert messages for transmission to bystander 26 and/or care providers 40. Care
giver data 256 may store data used by alert service 232 to identify to whom to send alerts
based on locations of potential bystanders 26 and care givers 40 relative to a location of
patient 4 and/or applicability of the care provided by care givers 40 to the acute health event
experienced by patient 4.

[0097] In examples in which HMS 22 performs an analysis to confirm or override the
detection of the acute health event by IMD 10, event processor service 230 may apply one or
more rules 250 to the data received in the alert message, e.g., to feature vectors derived by
event processor service 230 from the data, or to raw data, ¢.g., digitized ECG or other
waveforms. Rules 250 may include one or more models, algorithms, decision trees, and/or
thresholds, which may be developed by rules configuration service 234 based on machine
learning. Example machine learning techniques that may be employed to generate rules 250
(as well as rules 84 and/or 196) can include various learning styles, such as supervised
learning, unsupervised learning, and semi-supervised learning. Example types of algorithms
include Bayesian algorithms, Clustering algorithms, decision-tree algorithms, regularization
algorithms, regression algorithms, instance-based algorithms, artificial neural network
algorithms, deep learning algorithms, dimensionality reduction algorithms and the like.
Various examples of specific algorithms include Bayesian Linear Regression, Boosted

Decision Tree Regression, and Neural Network Regression, Back Propagation Neural

23



WO 2024/059054 PCT/US2023/032517

Networks, Convolution Neural Networks (CNN), Long Short Term Networks (LSTM), the
Apriori algorithm, K-Means Clustering, k-Nearest Neighbour (kNN), Learning Vector
Quantization (LVQ), Self-Organizing Map (SOM), Locally Weighted Learning (LWL),
Ridge Regression, Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net,
and Least-Angle Regression (LARS), Principal Component Analysis (PCA) and Principal
Component Regression (PCR).

[0098] In some examples, in addition to rules used by HMS 22 to confirm acute health
event detection, (or in examples in which HMS 22 does not confirm event detection) rules
250 maintained by HMS 22 may include rules 196 utilized by computing devices 12 and
rules 84 used by IMD 10. In such examples, rules configuration service 250 may be
configured to develop and maintain rules 196 and rules 84. Rules configuration service 234
may be configured to develop different sets of rules 84, 196, 250, e.g., different machine
learning models, for different cohorts of patients. Rules configuration service 234 may be
configured to modify these rules based on event feedback data 254 that indicates whether the
detections and confirmations of acute health events by IMD 10, computing device 12, and/or
HMS 22 were accurate. Event feedback 254 may be received from patient 4, e.g., via
computing device(s) 12, or from care providers 40 and/or EHR 24. In some examples, rules
configuration service 234 may utilize event records from true and false detections (as
indicated by event feedback data 254) and confirmations for supervised machine learning to
further train models included as part of rules 250.

[0099] As illustrated in the example of FIG. 4, services 210 may also include an assistant
configuration service 236 for configuring and interacting with event assistant 176
implemented in computing device 12 or other computing devices. For example, assistant
configuration service 236 may provide event assistants updates to their natural language
processing and context analyses to improve their operation over time. In some examples,
assistant configuration service 236 may apply machine learning techniques to analyze sensed
data and event assistant interactions stored in event records 252, as well as the ultimate
disposition of the event, e.g., indicated by EHR 24, to modify the operation of event
assistants, e.g., for patient 4, a class of patients, all patients, or for particular users or devices,
¢.g., care givers, bystanders, etc.

[0100] FIG. 5 is a flow diagram illustrating an example operation for applying rules to
patient parameter data to determine whether an acute health event is detected. The example
operation of FIG. 5 may be performed by processing circuitry of any one of IMD 10,
computing device(s) 12, 38, 42, IoT devices 30, AED 44, drone 46, or HMS 22 (e.g., by
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processing circuitry 50 or 130 implementing rules engine 74 or 172 and applying rules 84 or
196), or by processing circuitry of two or more of these devices respectively performing
portions of the example operation.

[0101] According to the example of FIG. 5, the processing circuitry applies a first set of
rules to first patient parameter data for a first determination of whether an acute health event,
¢.g., SCA, is detected (300). The processing circuitry determines whether one or more
context criteria associated with the first determination are satisfied (302). If the one or more
context criteria are not satisfied (NO of 302), the processing circuitry may determine whether
the acute health event is detected based on the first determination (304). If the acute health
event is detected (YES of 304), the processing circuitry may generate an alert, e.g., a message
to another device and/or a user-perceptible alert as described herein (306). If the acute health
event is not detected (NO of 304) or the alert has been generated, the example operation of
FIG. 5 may end. Ifthe one or more context criteria are satisfied (YES of 302), the processing
circuitry may apply a second set of rules to second patient parameter data for a second
determination of whether the acute health event, e.g., SCA, is detected (308), and determine
whether the acute health event is detected based on the second determination (304).

[0102] The first and second sets of rules are different in at least one aspect. In some
examples, the second set of rules comprises at least one machine learning model. In some
examples, both the first and second sets of rules comprise at least one machine learning
model.

[0103] In some examples, the processing circuitry determines a risk score of the acute
health event, e.g., SCA, based on the application of the first set of rules to the first patient
parameter data, and compares the risk score to a threshold to determine whether the one or
more context criteria are satisfied. In some examples, the context indicating that the second
set of rules should be applied to the second patient parameter data may be that the risk score
produced by the first determination does not meet a threshold indicating a sufficient certainty
that the acute health event is occurring. The risk score may be a percentage likelihood of the
acute health event.

[0104] In some examples, the processing circuitry determines a confidence level of the
first determination of whether the acute health event is detected, and compares the confidence
level to a threshold. In some examples, the one or more context criteria may be satisfied
where the first determination does not have a threshold degree of confidence, or where the
first determination is associated with a likelihood of being a false positive that exceeds a

threshold. In such examples, application of the second set of rules to the second patient
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parameter data may act as a “tie-breaker” when the first determination is not confident. In
some examples, the processing circuitry determines that the one or more context criteria are
satisfied when input from a user, ¢.g., the patient, contradicts the first determination (e.g., that
the acute health event was detected or not detected), indicating that the likelihood that the
first determination is false may be relatively high.

[0105] The processing circuitry may determine a confidence level of the first
determination of whether the acute health event is present using a variety of techniques. For
example, the application of the first set of rules to the first patient parameter data may
produce a level of confidence through its output, ¢.g., a risk score. In such examples, a
higher output indicating a higher likelihood of the acute health event may indicate a higher
level of confidence. Examples of rules that may produce such outputs include machine
learning models and time-domain signal processing algorithms.

[0106] In some examples, the processing circuitry may determine a noise level of one or
more signals from which the first patient parameter data is determined. In such examples, the
processing circuitry may determine a confidence level of the first determination of whether
the acute health event is present based on a noise level. In general, confidence level and
noise level may be inversely related. In some examples, the processing circuitry may
determine the confidence level based on health record data for patient 4. For example, if a
clinician has indicated in a health record or via programming IMD 10 that patient 4 has
experienced a myocardial infarction or has heart failure, confidence levels may be increased
and/or thresholds included in the rules applied to the first patient parameter data may be
lowered.

[0107] In some examples, a context criterion may be satisfied when a component of
system 2, ¢.g., IMD 10 or computing devices 12, has sufficient power to enable the
application of the second set of rules to the second patient parameter data. In some examples,
to determine whether the one or more context criteria are satisfied, the processing may
determine a power level of system 2, e.g., of the relevant device, and compare the power
level threshold. In some examples, the second patient parameter data includes data of at least
one patient parameter that is not included in the first patient parameter data. In some
examples, the processing circuitry activates a sensor to sense this patient parameter, ¢.g.,
when the device including the sensor has sufficient power for the measurement.

[0108] In some examples, the first patient parameter data and the second patient
parameter data are both sensed by an implantable medical device. In some examples, the at

least one patient parameter that is included in the second patient parameter data but not
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included in the first patient parameter data is sensed by an external device. In some
examples, processing circuitry 50 of IMD 10 or processing circuitry 130 of computing
device(s) 12 (or IoT devices 30 or the other devices discussed herein) performs each of sub-
operations 300-308. In other examples, processing circuitry 50 of IMD 10 performs the first
determination of whether the acute health event, e.g., SCA, is detected (300), and processing
circuitry 130 of computing device(s) 12 (or [oT devices 30 or the other devices discussed
herein) performs each of sub-operations 302—-308.

[0109] In some examples, the first patient parameter data includes at least one patient
parameter determined from ECG data, and the at least one patient parameter comprises a
patient parameter determined from at least one of heart sounds of the patient, an impedance
of the patient, motion of the patient (e.g., whether a fall occurred or is suspected), respiration
of the patient, posture of the patient, blood pressure of the patient, a chemical detected in the
patient, or an optical signal from the patient. In some examples, the first patient parameter
data and second patient parameter data may be determined using different combinations of
sensors, ¢.g., internal and/or external sensors. The first and second determinations may be
considered different tiers, with the second determination utilizing additional sensor(s), data,
and/or power if the context suggests it would be desirable to supplement the first
determination.

[0110] In some examples, the processing circuitry selects at least one of the second set of
rules or the parameters used for the second patient parameter data based on at least one of
user (¢.g., patient or care giver or bystander) input or medical record information of the
patient. In some examples, the user input and/or medical history information may include
information entered by a clinician when programming IMD 10. For example, the processing
circuitry may select at least one of the second set of rules or the parameters used for the
second patient parameter data based on user input or medical record information indicating a
particular symptom or condition of the patient. In some examples, the first patient parameter
data comprises data for a first set of patient parameters, and the processing circuitry may
select at least one of the second set of rules or a second patient parameter for the second
patient parameter data based on the level. A level for a particular parameter that is clinically
significant but contrary to the first determination (either a detection or non-detection), may
suggest that the second determination should be performed, and should be performed with a
particular parallel (but different) or orthogonal patient parameter to resolve the uncertainty

about whether the acute health event is detected.
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[0111] In some examples, the first patient parameter data includes at least one patient
parameter determined from ECG data of the patient, and the second patient parameter data
comprises at least one of a morphological change or a frequency shift of the ECG data over
time. The processing circuitry may analyze ECG data for timing or morphology changes.
For example, morphological or frequency changes as a ventricular fibrillation persists may
indicate an increase lethality of the ventricular fibrillation. In some examples, the rules
applied processing circuitry may determine a higher likelihood of the acute health event, e.g.,
lethal ventricular fibrillation or SCA, the presence of such morphological or frequency shifts.
[0112] The example operation of FIG. 5 may result in a hierarchy of rules or even sensor
measurements. In some examples, one or more sensors may be activated in certain contexts,
and may be inactive for first determinations of whether the acute health event is detected,
e.g., to conserve power of IMD 10. For example, if in a first determination ECG data
indicates ventricular fibrillation and other sensor data indicates no pulse and no heart sounds,
there may be no need for the second determination. But if those levels of evidence are not
high, e.g., not sure if it definitely ventricular fibrillation there might be faint heart sounds,
faint pulses, a fall, or a gait change, then a second determination could be employed.

[0113] Further, the rules and sensors used in either or both of the first as second
determinations can be configured/personalized for each patient based on their medical history
from EMR or their history of previous events or by their physicians/caregivers depending on
the situation. For example, if a caregiver has to leave town for few days, the processing
circuitry could configure the rules to be satisfied by lower levels of evidence, ¢.g.,
automatically, which may advantageously tailor the monitoring provided by system 2 to the
context of patient 4 and care givers of the patient.

[0114] FIG. 6 is a flow diagram illustrating another example operation for applying rules
to patient parameter data to determine whether an acute health event is detected. The
example operation of FIG. 6 may be performed by processing circuitry of any one of IMD 10,
computing device(s) 12, 38, 42, IoT devices 30, AED 44, drone 46, or HMS 22 (e.g., by
processing circuitry 50 or 130 implementing rules engine 74 or 172 and applying rules 84 or
196), or by processing circuitry of two or more of these devices respectively performing
portions of the example operation.

[0115] According to the example of FIG. 6, the processing circuitry applies a set of rules
to patient parameter data to determine whether an acute health event, ¢.g., SCA, is detected
(320). The processing circuitry determines whether one or more context criteria associated

with the determination are satisfied (322). If the one or more context criteria are not satisfied
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(NO of 322), the processing circuitry may determine whether the acute health event is
detected based on the determination (324). If the acute health event is detected (YES of 324),
the processing circuitry may generate an alert, e.g., a message to another device and/or a
user-perceptible alert as described herein (326). If the acute health event is not detected (NO
of 324) or the alert has been generated, the example operation of FIG. 6 may end. If the one
or more context criteria are satisfied (YES of 322), the processing circuitry may apply modify
the set of rules (328), apply second patient parameter data to the second set of rules (330),
and determine whether the acute health event is detected based on the application of the
second patient parameter data to the second set of rules (324).

[0116] The processing circuitry may determine whether the one or more context criteria
are satisfied in the manner described with respect to FIG. 5. In some examples, the first and
second patient parameter data may be determined from the same patient parameters or (with
respect to at least one parameter) different patient parameters. In some examples, the first
patient parameter data and the second patient parameter data include at least one common
patient parameter, and the processing circuitry may change a mode sensing for the common
patient parameter between the first patient parameter data and the second patient parameter
data in response to satisfaction of the one or more context criteria. For example, the
processing circuitry may change a sampling frequency for the common patient parameter.
[0117] In some examples in which IMD 10 senses patient parameters used to determine
the first patient parameter data, the processing circuitry may determine that a context criterion
is satisfied by detecting that IMD 10 has flipped or otherwise migrated within patient 4. Such
migration may lead to significant changes in patient parameter data, e.g., ECG data,
impedance data, or heart sound data. Changing a mode employed by IMD 10 to sense one or
more patient parameters, or changing rules to account for changes in patient parameter data
resulting from device migration, may help ameliorate the device migration and maintain
effective acute health event detection. In addition to the mode of sensing and/or rules, the
processing circuity may adjust other aspects of system, such mode of wireless
communication between the IMD and other devices. Techniques for detecting and mitigating
migration of IMD 10 are described in commonly-assigned U.S. Patent Application No.
17/101,945, filed November 23, 2020 by Anderson et al., titled “DETECTION AND
MITIGATION OF INACCURATE SENSING BY AN IMPLANTED SENSOR OF A
MEDICAL SYSTEM,” which is incorporated herein by reference in its entirety.

[0118] In some examples, the processing circuitry determines that the one or more

context criteria are satisfied when the processing circuitry determines that the acute health
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event, ¢.g., ventricular tachyarrhythmia or SCA, is detected, but the patient or another user
cancels the alarm or otherwise provides user input contradicting the determination. In such
examples, the processing circuitry may modify one or both of the sensed patient parameters
or the rules applied to the patient parameter data.

[0119] For example, the patient may have tolerated a rapid ventricular tachycardia that
lasted for a sustained period (¢.g., a programmed 10 or 20 seconds), but could experience
another arrhythmia, e.g., syncope, soon even though the patient believes they are OK. The
modification may include adapting the rules based on the rhythm. Sometimes a long duration
episode accelerates to ventricular fibrillation or more rapid ventricular tachycardia.
Sometimes ventricular fibrillation slows down. In either case, the modification could include
changing a heart rate threshold, e.g., applying hysteresis to the heart rate threshold. In some
examples, ventricular fibrillation becomes difficult to sense. In such examples, the
modification may include changing a ventricular depolarization detection threshold to allow
more undersensing of depolarizations.

[0120] In some examples, the processing circuitry determines that the one or more
context criteria are satisfied based on a recent history of high arrhythmia burden. Some
patients have electrical storms. Their electrolytes may be imbalanced, and they may
experience a cluster of ventricular arrhythmias, but the patient parameter data may not satisfy
the rules for detection of the acute health event. In such cases, the processing circuitry may
adapt a tachyarrhythmia duration the threshold, may alert patient and caregivers and inform
them to seek care ASAP, and/or may alert a clinician and send patient parameter data, e.g.,
ECG data, so the clinician can review.

[0121] FIG. 7 is a flow diagram illustrating an example operation for configuring rules
applied to patient parameter data to determine whether an acute health event is detected for a
patient. The example operation of FIG. 7 may be performed by processing circuitry that
implements HMS 22, e.g., that implements rules configuration service 234. In some
examples, the operation of FIG. 7 may be performed by processing circuitry of any one of
IMD 10, computing device(s) 12, 38, 42, IoT devices 30, AED 44, drone 46, or HMS 22, ¢.g.,
implementing a rules configuration module, or by processing circuitry of two or more of
these devices respectively performing portions of the example operation.

[0122] According to the example operation of FIG. 7, the processing circuitry determines
whether an acute health event, e.g., SCA, is detected (340). The processing circuitry receives
feedback for the event (342). The feedback indicates whether the detection a true or false

positive, or the non-detection is a true or false negative. The processing circuitry may receive
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the feedback from patient 4, care giver 40, bystander 26, or EHR 24. The processing circuity
updates rules (e.g., rules 84, rules 196, and/or rules 250) based on the feedback and event
data, e.g., event data 86 or event records 252. In some examples, uses the event data as a
training set for one or more machine learning models based on the feedback.

[0123] Through predictive and “self-learning” techniques, the operation of a system used
to provide an alert for SCA can be improved. Time-to-treatment (either CPR or a shock from
AED 44) may be improved by providing a timely alert, either to bystanders 26 or the EMS
care givers 40. The information used to improve the performance could include physiologic
sensor data that may indicate an SCA event is likely (QT prolongation, T-wave alternans,
changes in respiration rate or thoracic impedance, history of PVCs or non-sustained VT,
reduction in O2 saturation and/or perfusion, etc.). The information used to improve the
performance could include information indicating whether the prior SCA event was alerted
appropriately and accurately, clinical or physiologic characteristics of the patient (discase
state, weight, gender, etc.), data from EHR 24, and data input from the patient (¢.g., symptom
logging, confirmation that he/she is OK and not suffering from SCA, etc.).

[0124] Implementing the example operation of FIG. 7, the processing circuitry may
personalize the rules for patient 4 over time. If patient 4 has a lot of false positives, the
example operation of FIG. 7 may modify the rules to be less sensitive and, conversely, if the
patient 4 has a lot of false negatives may modify the rules to be more sensitive. In some
examples, the processing circuitry may use the feedback and event data to update rules, e.g.,
machine learning models, for other patients, such as all patients whose IMDs are served by
EMS 22, or a particular population or cohort of patients. In some examples, the processing
circuitry may use data from a number of sources (e.g., computing devices 12, IoT devices 30,
AED 44, or drone 46) to modify the rules or the collection of patient parameter data. Data
used by processing circuitry to update rules may include data indicating a duration of CPR,
¢.g., input by a user, or data collected using an accelerometer, speaker, light detector, or
camera on a computing device or [oT device.

[0125] FIG. 8 is a flow diagram illustrating another example operation for configuring
rules applied to patient parameter data to determine whether an acute health event is detected
for a patient. The example operation of FIG. 7 may be performed by processing circuitry that
implements HMS 22, e.g., that implements rules configuration service 234. In some
examples, the operation of FIG. 8 may be performed by processing circuitry of any one of

IMD 10, computing device(s) 12, 38, 42, IoT devices 30, AED 44, drone 46, or HMS 22, e.g.,
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implementing a rules configuration module, or by processing circuitry of two or more of
these devices respectively performing portions of the example operation.

[0126] According to the example operation of FIG. 8, the processing circuitry determines
an ctiology or risk stratification of patient 4 (360). The processing circuitry selects a set of
rules (e.g., a set of rules 84, rules 196, and/or rules 250), which may be a first set of rules
and/or a second set of rules, for acute health event, e.g., SCA, detection for patient 4 based on
the patient etiology (362). In some examples, rules 250 include different sets of rules for
different patient cohorts having different etiologies, and processing circuitry may select
different rule sets to implement as rules 84 in IMD 10 and rules 196 in computing device(s)
12 for a given patient based on the etiology of that patient. The processing circuitry may
apply the selected set of rules to patient parameter data to determine whether the acute health
event is detected using any of the techniques described herein (364).

[0127] Detection of SCA can be achieved by looking at a number of possible markers
that occur prior to and during the event. The best markers to detect an impending or ongoing
event are likely to be different based on an etiology of the patient. An SCA detection
algorithm which uses a generic algorithm designed for a broad population may not achieve
satisfactory sensitivity and specificity. The etiology of patient 4 may include baseline
characteristics, medical history, or disease state. The etiology of patient 4 may include any
EHR data 194 described herein, as well as patient activity level or metabolite level. With
such possible inputs, the rules could look for certain markers to exhibit certain trends or
threshold crossings to detect an impending or ongoing acute health event, ¢.g., SCA.

[0128] In some examples, selection of a set of rules may include modification of a
universal rule set to turn certain rules (or markers of the acute health event) on or off, or
change the weight of certain rules or markers. In some examples, a family of devices could be
designed such that individual models have sensors or calculation for only a limited set of
inputs motivated by a need to reduce manufacturing costs or energy consumption.

[0129] While SCA is typically detected by heart rate/rhythm, rules related to other patient
parameter data may be set to a heightened alert based patient etiology. For example, a patient
with prior myocardial infarction may have rules that weigh ischemia factors such as ST
segment ¢levation more heavily than for patients lacking this etiology. As another example, a
patient with long QT syndrome may have rules that more heavily weight QT interval and
activity. As another example, rules for a heart failure patient may have rules that apply

greater weight to patient parameter data related to lung fluid and QRS duration.
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[0130] In some examples, processing circuitry of system 2 may use patient etiology to
“personalize™ other aspects of the operation of system 2 for patient 4 or a cohort including
patient 4. For example, the processing circuitry may provide alerts and user interfaces that
guide care givers 40, bystanders 26, patient 4, or others based on the etiology. The
processing circuitry can provide patient-specific care recommendations (¢.g., AED or
potential drug therapy for prevention or therapy of SCA). The ability of the system to detect
the acute health event with adequate sensitivity and specificity may, for example, guide an
EMS care giver 40 to what they can expect when they arrive on the scene and how best to
treat the presenting rhythm, e.g., is the patient hypoxic, hypovolemic, hypothermic, tension
pneumothorax, cardiac tamponade (the H’s and T’s of Advanced Cardiac Life Support). The
etiology may indicate of patient 4 is more at risk for pulseless electrical activity vs.
ventricular fibrillation/ventricular tachycardia. The processing circuitry of system 2 may
provide care givers information based on the etiology current patient parameter data of
patient 4, such as recommendations to provide CPR or defibrillation, provide drugs, or induce
hypothermia. The processing circuitry of system 2 may recommend patient-specific care
actions based on the ctiology, ¢.g., purchase an AED or Chest Compression System
(LUCAS).

[0131] Although described primarily in the context of detection of SCA, system 2 may be
used to detection any of a number of acute health events of patient 4. For example, system 2
may be used to detect stroke. Stroke can often present in the form of facial droop. This
change in facial tone could be identified using facial image processing on a computing device
12, e.g., a smartphone, or [oT 30. Such image processing could be a primary indicator of
possible stroke or a part of a confirmation after another device indications changes related to
stroke.

[0132] Some computing devices 12, e.g., smartphones, include facial processing for
access, ¢.g., face ID, and are accessed in this manner frequently throughout the day.
Processing circuitry, €.g., of the computing device, may analyze the facial images to detect
subtle changes in facial tone over time. The processing circuitry could detect possible stroke,
and various devices of system 2 could provide alerts as described herein.

[0133] In some examples, in response to detection based on the camera images, the
device could output a series of prompts (audible and/or visual) to access a current state of
patient 4. Patient 4 could be prompted to repeat a phrase or answer audible questions to
assess cognitive ability. The device could use additional motion processing to further verify

the state of patient 4, ¢.g., using an accelerometer of computing device 12A and/or 12B.

33



WO 2024/059054 PCT/US2023/032517

Changes in body motion and asymmetry, ¢.g., of the face and/or body motion, are indictive of
stroke. In some examples, the device may ask patient 4 questions. Processing circuitry may
analyze the response to detect speech difficulties associated with stroke. In some examples,
the alert could include information on where the facial tone has changed, which could aid in
diagnosis by guiding care givers 40 to possible primary locations for scans (ex: left side
droop= right side clot).

[0134] As described herein, processing circuitry of one or more devices of system 2, ¢.g.,
IMD 10, edge devices such as computing devices 12 or IoT devices 30, and/or HMS 22 (or
other cloud services), may be configured to analyze episode data associated with an acute
health event, such a ventricular tachyarrhythmia or SCA, detected by IMD 10. The episode
data may include ECG and other physiological parameter data collected by IMD 10 for the
event, ¢.g., leading up to, during, and/or after the event. As described herein, the analysis
may include the application of a second set of rules (as opposed to a first set applied by IMD
10), ¢.g., a machine learning model or other artificial intelligence algorithm, decision trees,
and/or thresholds, to the episode data and, in some cases, a variety of patient data collected
by devices of system 2.

[0135] The initial detection of a ventricular tachyarrhythmia episode by IMD 10 may be
based on a first set rules relating to rate and regularity of RR intervals as well as
morphological features of the ECG, ¢.g., of the R-wave. These rules may lead to
inappropriate detections due to oversensing R-waves. Further, true ventricular
tachyarrhythmia can be of supraventricular origin, e.g., SVT or SVT with aberrancy, or
ventricular origin such as VF and VT. VT may be monomorphic or polymorphic. In some
cases, VT may be wide complex VT. In general, polymorphic VT (PVT) and VF are life
threatening, while monomorphic VT (MVT) are life threatening if sustained for durations on
the order of minutes, and SVTs are generally not life threatening unless sustained for greater
than 1 hour. The techniques of this disclosure may include use of a second set of rules that
includes machine learning models or other Al algorithms to improve accuracy of
classification of these different forms of ventricular tachyarrhythmia that maybe detected by
IMDs.

[0136] In some examples, the second set of rules may comprise an ensemble of deep
learning neural networks configured to discriminate or classify these rhythms. Techniques
for configuring an ensemble of deep learning neural networks for classifying cardiac rthythms
are described in U.S. Provisional Application Serial No. 63/194,451, filed May 28, 2021, and
titled “DYNAMIC AND MODULAR CARDIAC EVENT DETECTION,” the entire
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contents of which are incorporated herein by reference. In some examples, the second set of
rules may comprise a single classifier that receives, as input, a raw ECG data or a specific
feature derived from raw ECG data.

[0137] In some examples, an ensemble of neural networks may include CNNs and/or
recurrent neural networks. One or more neural networks of the ensemble may be trained to
discriminate or classify based on raw ECG data collected by IMD 10 as an input. One or
more networks of the ensemble may be trained to discriminate or classify based on custom
features determined by IMD 10 from the ECG or other signals sensed by IMD 10, or
determined by the processing circuitry implementing the second set of rules (e.g., processing
circuitry of any of, or any combination of, the devices of system 2). An ensemble of neural
networks may improve sensitivity and specificity of the overall analysis by allowing for
different inputs to have respective networks of different forms, e.g., one can use recurrent
neural networks for one or more specific inputs and CNNs for one or more other inputs. In
some examples, the output of ecach network may be concatenated and flattened, and then fed
as input into the final stages of the ensemble network which may have fully connected layers
and classification layers.

[0138] FIG. 9 is a block diagram illustrating an example of an ensemble 400 of neural
networks configured to classify ventricular tachyarrhythmias. Processing circuitry, e.g.,
processing circuitry 130 of computing device 12 or loT device 30, may apply a plurality of
inputs 402 to a plurality of neural networks 404 of ensemble 400. Inputs 402 include raw
signal inputs 406A or other raw parameter data of patient 4, e.g., from IMD 10 or other
devices as described herein, and inputs 406B comprising features derived from the raw data.
Inputs 406A may include a raw ECG segment sensed by IMD 10 including a ventricular
tachyarrhythmia onset detected by IMD 10 based on the ECG, and a raw ECG segment
sensed by IMD 10 including a portion of the ECG by which IMD 10 determined the
ventricular tachyarrhythmia was sustained.

[0139] Inputs 406B may include features derived from the raw ECG sensed by IMD 10
and data indicating timing of and intervals between R-waves detected by IMD 10 during, and
in some cases before and/or after, an episode of ventricular tachyarrhythmia sensed by IMD
10. The features may include a sequence of R-R intervals during, and in some cases prior to,
detection of the ventricular tachyarrhythmia by IMD 10, an overly of raw ECG data and R-
sense timing information, autocorrelation, cross-correlation, and/or wavelet transformation of
ECG signal data, a histogram of R-R intervals, and a temporal history of prior ventricular

tachyarrhythmia episodes detected by IMD 10 and their adjudication by the processing
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circuitry applying the ensemble 400. Inputs 402 may also include any other sensed
parameters of patient 4, e.g., sensed by IMD 10 or other devices as described above. In some
examples, inputs 406B may include a feature determined by the processing circuitry based on
a temporal history of other sensed parameters of patient 4.

[0140] In some examples, one or more inputs 402 or portions thereof may be fed into
separate individual neural networks 404, which may include 1 or 2-dimensional CNNs,
RNNs, or long short-term memory (LSTM) memory networks (which may be a type of
RNN). The processing circuitry may flatten 408 and concatenate 410 the outputs from the
plurality of neural networks to provide ensemble 400. The processing circuitry may apply
the flattened and concatenated outputs to a fully connected layer 412, and the outputs of the
fully connected layer to one or more SoftMax functions 414. The outputs of the one or more
SoftMax functions 414 are probabilities 416, ¢.g., respective probabilities of different
classifications of the data for the episode of ventricular tachyarrhythmia detected by IMD 10.
In the example illustrated by FIG. 9, the classifications are different classifications are PVT,
MVT, SVT, noise, and oversensing.

[0141] The processing circuitry, €.g., processing circuitry 130 of computing device 12 or
IoT device 30, may determine a classification of the episode based on probabilities 416. In
this manner processing circuitry may confirm or overrule the detection of a ventricular
tachyarrhythmia by IMD 10. Ensemble 400 may be an example of a second set of rules as
described above.

[0142] In some examples, however, the processing circuitry may combine the raw signals
and derived features in a 2D array format (to form an input ensemble) for a single CNN or
other neural network. FIG. 10 is a block diagram illustrating an example of a single classifier
430 utilizing raw signals and derived features as inputs 432. Inputs 432 of FIG. 10 may be
substantially similar to inputs 406B of FIG. 9.

[0143] The processing circuitry, €.g., processing circuitry 130 of computing device 12 or
IoT device 30, may concatenate 434 inputs 432. In the example of FIG. 10, the processing
circuitry may concatenate 434 inputs 432 to form a concatenated 2D array 436 of input
values to be applied to a neural network 438 including one or more of an LSTM/RNN,
rectifier function, and/or multiplex pooling layers. The processing circuitry may concatenate
440 the output of neural network 438 for application to a fully connected layer 442 and
SoftMax function 444 to produce probabilities 446 in the manner described above with
respect to FIG. 9. Classifier 430 may be an example of a second set of rules as described

above.

36



WO 2024/059054 PCT/US2023/032517

[0144] In some examples, the processing circuitry uses different segments of ECG, such
as a segment from period of time at onset of arrhythmia, another segment when the episode
reaches sustained detection, and multiple ongoing segments thereafter, as respective inputs to
the one or more neural networks, e.g., of ensemble classifier 400 or classifier 430. In some
examples, the processing circuitry uses features derived from different segments of the ECG
in the episode data as respective inputs to the one or more neural networks, such as RR
intervals during the episode and prior to start of episode, RR interval stability or variability,
or short term HRV prior to onset of the episode. In general, the segments may be timewise,
¢.g., respective periods of the ECG. The segments may be contiguous, separated by time,
and/or overlapping.

[0145] In some examples, the processing circuitry uses data from other sensors, ¢.g., of
IMD 10, computing devices 12, and/or IoT devices 30. The additional data may include
patient motion (e.g., gait) or posture, €.g., from an accelerometer, which may indicate activity
level during arrhythmia or gait/posture during arrhythmia or if patient 4 had a fall during the
detected episode. In some examples, other data, ¢.g., historical data, may be obtained from
IMD 10, computing devices 12, HMS 22, and/or EHR 24. The other data may include, as
examples, ventricular tachyarrhythmia episode detection history, Al based episode
classification history, AF burden history, or clinical history. The processing circuitry may
derive features from sensor signals using signal processing techniques such as
autocorrelation, Short Time Fourier transforms, Continuous Wavelet transforms, principal
component analysis, independent component analysis, etc.

[0146] In some examples, the processing circuitry may use a staged approach to classify
an episode detected by IMD 10. FIG. 11 is a block diagram illustrating a staged classifier
460 for classifying a ventricular tachyarrhythmia episode. For example, the processing
circuitry, e.g., processing circuitry 130 of computing device 12 or [oT device 30, may first
apply a 5-class classifier 462, e.g., similar to ensemble classifier 400 or classifier 430, and the
most dominant classes, such as inappropriate detections, noise, and oversensing episodes, are
removed. The processing circuitry then classifies episodes that are classified as appropriate
tachycardia (PVT, MVT, and SVT) using a 3-class classifier 464. Then the next dominant
class (SVT) is removed. The processing circuitry then classifies the remainder episodes
using a 2-class classifier 466 to classify PVT vs MVT episodes.

[0147] In some examples, the processing circuitry may discriminate SVT from other
ventricular tachyarrhythmia classifications based on a comparison of ECG data for the

episode to a historical ECG segment. The episode ECG data may be received from IMD 10
37



WO 2024/059054 PCT/US2023/032517

as described herein, and the historical ECG segment may be retrieved from HMS 22. The
historical ECG segment may be from a previous transmission from IMD 10 to HMS 22, e.g.,
a daily transmission, such as the most recent transmission. The historical ECG segment may
be a segment prior, e.g., most recently prior to a fast heart rate associated with the detected
ventricular tachyarrhythmia, or a most recent periodically, ¢.g., every hour, collected ECG.
The historical ECG segment may be a segment of normal sinus thythm ECG collected when
the device was not currently detecting any cardiac events nor arrhythmias, or may be a
segment previously verified as SVT, e.g., based on a user or algorithmic analysis of the
segment.

[0148] In such examples, the processing circuitry may apply a convolutional filter and/or
bank of convolutional filters to the ECG data for an episode to discriminate SVT from other
classifications. The processing circuitry may generate the convolutional filter based on the
historical ECG segment, which may be about 8 seconds in length. The processing circuitry
may generate the bank of convolutional filters based on a wavelet or other decomposition of
the historical ECG segment. The processing circuitry may classify the episode as SVT based
on a suprathreshold output of the convolutional filter(s). In some examples, an additional
classifier may further classify SVT as one of sis tachyeardia, atrial arthyvthioia, SVT with
aberrancy, pnctional rhythms, atrioventricolar nodal reentry tachyeardia, or others.

[0149] In some examples, the processing circuitry, €.g., processing circuitry 130 of
computing device 12 or [oT device 30, or any processing circuitry of any device of system 2
described herein, may discriminate SVT from other ventricular tachyarrhythmia
classifications based on a feature indicative of the presence of absence of high frequency
harmonics in the episode ECG data. FIGS. 12A and 12B illustrate frequency decompositions
470 and 480 of a MVT episode and an SVT episode, respectively. As illustrated by FIGS.
12A and 12B, the magnitude at certain higher frequency harmonics is greater in the
decomposed ECG 480 for the SVT episode (FIG. 12B) than the decomposed ECG 470 for the
MVT episode (FIG. 12A). In some examples, the processing circuitry applies a bank of
complex exponential functions as convolutional filters to the ECG data for the episode. The
frequency range of the bank may be configured to span a frequencies of interest, which may
be integer multiples of a lowest frequency in the decomposed ECG data for the episode. For
example, the lowest frequency may be about 60 Hertz (Hz), and the bank may span a range
from 100 Hz to 500 Hz, continuously across the range or via bands centered on respective
integer multiples of 60 Hz. The processing circuitry may classify the episode as SVT based

on a suprathreshold output of the convolutional filter(s).
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[0150] In some examples, the processing circuitry, €.g., processing circuitry 130 of
computing device 12 or [oT device 30, or any processing circuitry of any device of system 2
described herein, may apply a beat-wise morphological comparator to discriminate PVT from
MVT. In such examples, the processing circuitry may generate a convolutional filter from a
selected beat, ¢.g., the first beat, in the ECG stored by IMD 10 for the episode. The
processing circuitry may generate a plurality of convolutional filters based on a
decomposition, ¢.g., Walsh, Fourier, or wavelet, of the selected beat. The processing
circuitry may apply the filter(s) to some or all of the other beats in the ECG stored by IMD 10
for the episode, ¢.g., sequentially. The processing circuitry may classify the episode as PVT
based on a suprathreshold variability in the output of the convolutional filter(s).

[0151] In some examples, the processing circuitry, €.g., processing circuitry 130 of
computing device 12, applies a classifier to event or episode data collected by IMD 10 for a
suspected acute health event to determine one of a plurality of possible classifications. The
possible classifications may include one or more acute health events of interest, including the
one suspected by the IMD. The event data may include ECG data, and the classifications
may include the classifications discussed above with respect to FIGS. 9-11. The classifier
may be implemented by a rules engine, such as rules engine 172, and may be an example of
application of a second set of rules to patient parameter data.

[0152] FI1G. 13 is a block diagram illustrating an example configuration of a classifier
490 configured to classify episode data collected and transmitted by IMD 10 in response to
detecting an acute health event, ¢.g., transmitted by the IMD based on application of a first
set of rules, as described herein. Classifier 490 respectively analyzes timewise segments 492
of the episode data, ¢.g., M second segments of N seconds of episode data transmitted by
IMD 10, to determine a classification 494. In some examples, the episode data comprises
ECG data transmitted by IMD 10 in response to detecting a sustained ventricular
tachyarrhythmia, and possible classifications include the classifications discussed above with
respect to FIGS. 9-11. Classifier 490 may be implemented by processing circuitry 130 of
computing device 12, and/or processing circuitry of any one or more devices described
herein.

[0153] Classifier 490 may analyze all available segments of the episode data, or selected
segments of the episode data, which may be consecutive or non-consecutive. For example,
classifier 490 may analyze a plurality of consecutive segments at the end of the episode and,
in some cases, additionally analyze one or more non-consecutive segments preceding the

plurality of segments. The segments may be adjacent in time, overlap in time, or be spaced
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apart in time. In some examples, segments 492 include a historical or baseline segment, from
the beginning of the episode data or from another transmission from IMD 10, as described
above. Additionally, in some examples, classifier 490 may analyze later segments, after the
end of the episode data, when computing device 12 and/or any one or more devices described
herein requests additional data from IMD 10 based on an uncertain (¢.g., lower confidence
level) classification.

[0154] As illustrated in FIG. 13, classifier 490 includes one or more maching learning
models 496. One or more machine learning models 496 may be configured and operate as
illustrated and described with respect to FIGS. 9-11. One or more machine learning models
496 may output, for each of one or more segments 492, respective classifications,
probabilities, decisions, or other outputs 499 to classification logic 498. For example, one or
more machine learning models 496 may output, for cach of segments 492, a respective
classification (¢.g., tachyarrhythmia type as described above) and, in some cases, an
associated probability or confidence level. In some examples, one or more machine learning
models 496 may output, for cach of segments 492, a respective probability for each possible
classification (e.g., each tachyarrhythmia type).

[0155] Classification logic 498 determines a classification 494 of the episode data based
on the classifications of segments 492 of episode data by machine learning model(s) 496.
Based on the classification of the episode data, ¢.g., based on the classification being certain
tachyarrhythmias such as VF or PVT, processing circuitry 130 may control output of an
alarm or alert as described herein. In some examples, processing circuitry 130 requests
additional patient parameter data from IMD 10 based on the classification, ¢.g., if the
classification being certain tachyarrhythmias such as VF or PVT, but with a relatively lower
probability and/or duration. Segment-based classification of episode data according to the
techniques described herein may improve the accuracy of classification/detection of health
events, particularly in situations where shorter segments of continuous episode data are
available to train the one or more machine learning models. Segment-based classification of
episode data according to the techniques described herein may improve the accuracy of
classification/detection of health events where the patient condition may change during an
episode, ¢.g., where a tachyarrhythmia may spontancously terminate or change during an
episode.

[0156] In some examples, classification logic 498 determines the classification of the
episode based on a number of the segments determined to have the classification, or a total

duration of segments having the classification, satisfying a threshold. In some examples,
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classification logic 498 additionally or alternatively determines the classification of the
episode based on a time location of one or more segments determined to have the
classification within the episode data. For example, classification logic 498 may require that
the last N segments, where N is an integer greater than or equal to 1, have the classification in
order for the episode data as a whole to have the same classification.

[0157] In some examples, classification logic 498 additionally or alternatively determines
the classification of the episode based on respective probabilities associated with the
classifications of the segments, e.g., probabilities output by machine learning model(s) 496.
In some examples, classification logic 498 compares the respective probabilities to one or
more thresholds. In some examples, classification logic 498 compares a number or duration
of segments having a common classification to a threshold as described above, but not
include segments for which the probability of the classification does not satisfy a threshold.
[0158] In some examples, classification logic 498 additionally or alternatively determines
the classification of the episode based on a comparison of a combination, e.g., sum or
average, of the probabilities associated with segments having the classification to a threshold.
In some examples, the combination is weighted, with one or more segments being weighted
differently than one or more other segments. In some examples, one or more segments later
in the episode are weighted more heavily than one or more segments earlier in the episode.
[0159] FIGS. 14-17 are tables 500-800 illustrating example segment classifications, and
associated episode classifications that may be determined by classification logic 498 based on
the segment classifications. For example, as illustrated by table 500 of FIG. 14, classification
logic 498 may determine a classification PVT/VF or MVT in response to each of the four
segments W5—W8 (at the end of the episode) being classified as PVT/VF or MVT. In
response to the classification of PVT/VF or MVT, processing circuitry 130 may cause output
devices 136 to output an alarm, ¢.g., giving the patient or another user an opportunity to
indicate that the patient is okay.

[0160] As illustrated by table 600 of FIG. 15, classification logic 498 may determine a
classification of semi-sustained or non-sustained PVT/VF or MVT based on the
number/location of segments classified as PVT/VF or MVT not satisfying a threshold or
criterion. In response to such a classification, processing circuitry 130 may control
communication circuitry 140 to communicate with IMD 10 to retrieve additional ECG data
and/or other patient parameter data.

[0161] As illustrated by table 700 of FIG. 16, classification logic 498 may also determine

a classification of semi-sustained or non-sustained PVT/VF or MVT based on a certain
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amount of, ¢.g., 2 of 4, segments being classified as PVT/VF or MVT, and in which N most
recent segments did not have that classification. Where one or more of the N most recent
segments did have that classification, classification logic 498 may determine a classification
of PVT/VF or MVT, or non-sustained PVT/VF or MVT, based on the probabilities associated
with the segments classified as PVT/VF or MVT, ¢.g., based on comparison of the
probabilities to a threshold. Example probability criteria include: 2 of 4 segments having a
classification with a probability being greater than 0.98; 3 of 4 segments having a
classification with a probability greater than 0.9; and/or an average probability of a
classification across segments greater than 0.5. As illustrated by table 800 of FIG. 17,
classification logic 498 may also determine a classification of semi-sustained or non-
sustained PVT/VF or MVT based on the presence of normal sinus rhythm (NSR)
classifications for N latest segments of episode data.

[0162] In some examples, to determine the classification of the episode data,
classification logic 498 may apply a second one or more machine learning models to the
classifications and, in some examples, probabilities, determined for cach segment by one or
more machine learning models 496. In some examples, the second one or more machine
learning models implemented by classification logic 498 may include on or more
convolutional neural networks or recurrent neural networks, such as long short-term networks
(LSTMs) that encode changes over time. Other examples of machine learning methods to
combine classifications from individual segments that may be implemented by classification
logic 498 include state space machines, Bayesian belief networks or fuzzy logic, or other data
fusion techniques. In some examples classification logic 498 includes one or more machine
learning models that receive as input features identified automatically by a deep learning
model, ¢.g., convolutional neural network, of one or more machine learning models 496
and/or output from non-machine learning rules 497 (FIG. 19). Non-machine learning rules
497 may provide outputs to classification logic 498 based on morphological features, such as
morphological features determined using wavelets or cross-correlation, or RR interval
features, such as metrics of regularity, irregularity or entropy, or presence of rate onset or
irregularity onset.

[0163] FIG. 18 is a flow diagram illustrating an example operation of classifier 490 of
FIG. 13. According to the example of FIG. 18, processing circuitry, €.g., processing circuitry
130 of computing device 12, receives episode data (also referred to as event data) from IMD
10 (900). IMD 10 may have transmitted the episode data to computing device 12 in response

to detecting a tachyarrhythmia or other health event based on application of a first set of rules
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as described herein. Processing circuitry 130 may implement classifier 490, which may
apply one or more machine learning models 496 to each segment of a plurality of segments
492 of the episode data received from IMD 10 (902). Based on the respective segment
classifications, classification logic 498 may output a classification 494 of the episode (904).
[0164] FIG. 19 is a block diagram illustrating another example configuration of a
classifier 1000 configured to classify episode data collected and transmitted by IMD 10 in
response to detecting an acute health event, e.g., transmitted by the IMD based on application
of a first set of rules, as described herein. Classifier 1000 may be configured similarly to
classifier 400 of FIG. 13 except as noted herein. Classifier 1000 may be implemented by
processing circuitry 130 of computing device 12, and/or processing circuitry of any one or
more devices described herein.

[0165] As illustrated in FIG. 19, in addition to one or more machine learning models 496,
classifier 1000 includes one or more non-machine learning rules 497. One or more non-
machine learning rules 497 may include rules applied to morphological stability or variability
of the electrocardiogram data, frequency content of the electrocardiogram data, and/or heart
rate stability or variability. One or more non-machine learning rules 497 may include
template matching or RR interval modesum.

[0166] One or more non-machine learning rules 497 may output, for each of one or more
segments 492, respective classifications, probabilities, decisions, parameter values, or other
outputs 495 to classification logic 498. For example, one or more non-machine learning rules
497 may output, for each of one or more segments 492, a classification, binary decision (e.g.,
between classifications), or parameter value indicative of one or more classifications (e.g., of
different types of tachyarrhythmia as described above). Based on outputs 499 and outputs
495 for segments 492, classification logic 498 determines a classification for the episode or,
in some cases, whether to request additional data from IMD 10 for making the classification.
[0167] In examples in which outputs 499 comprise respective classifications for segments
492, classification logic 498 may require a threshold level of agreement, ¢.g., complete,
majority, or other voting threshold, between the classifications of segments 492 in order to
output the predominant classification as classification 494. In some examples, classification
logic 498 determines classification 494 based on a weighted combination of outputs 499, ¢.g.,
in comparison to a threshold. Classification logic 498 may weight outputs 499 based on
respective probabilities and and/or the time sequence position of segments, ¢.g., with one or
more segments 492 later in the episode data being weighted more than one or more segments

492 earlier in the episode.
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[0168] Based on outputs 495 from non-machine learning rules 497 that contradict
classification outputs 499 from machine learning models 496 for a segment 492,
classification logic 498 may adopt the output 495 of non-machine learning rules 497, ignore
the output 499 from machine learning models 496, or decrease a weight applied to the output
499 from machine learning models 496 for the segment 492. In some examples,
classification logic 498 only considers outputs 495 (and/or classifier 1000 only applies non-
machine learning rules 497) for a subset of segments 492 to which machine learning models
496 are applied, such as segments 492 for which a probability/confidence of a classification
output 499 is less than (or equal to) a threshold, or for which classification output 499 is a
predetermined classification. In the latter case, non-machine learning rules 497 may provide
independent assessment of a key classification (e.g., VT vs. VF or VT vs. PVT
discrimination). In general, classifier 1000 that applies both machine learning models 496
and non-machine learning rules 497 to segments 492 of episode data as described herein may
improve the accuracy of classification/detection of health events, such as tachyarrhythmias,
particularly in situations where availability of training data may limit the accuracy of one or
more machine learning models 496 in isolation.

[0169] Machine learning models have clear advantages but require significant quantities
of representative signals for training to achieve accurate and robust results on independent
data sets. There are important clinical/physiologic conditions that are less common (e.g., for
rhythm classification problem, ventricular tachycardia and ventricular fibrillation occur much
less frequently than noise/oversensing and supraventricular rhythms) thus causing major
challenges in training a purely machine learning approach to be accurate and robust to the
“rare” events due to a lesser quantity of representative data.

[0170] FIG. 20 is a flow diagram illustrating an example operation of classifier 1000 of
FIG. 19. According to the example of FIG. 20, processing circuitry, €.g., processing circuitry
130 of computing device 12, receives episode data (also referred to as event data) from IMD
10 (1100). IMD 10 may have transmitted the episode data to computing device 12 in
response to detecting a tachyarrhythmia or other health event based on application of a first
set of rules as described herein.

[0171] Processing circuitry 130 may implement classifier 1000, which may apply one or
more machine learning models 496 to each segment of a plurality of segments 492 of the
episode data received from IMD 10 (1102). Classifier 1000 may also apply one or more non-
machine learning rules 497 to one or more segments of the plurality of segments 492 (1104).

Based on resulting outputs 499 and 495 of one or more machine learning models 496 and one
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or more non-machine learning rules 497, classifier 1000 may output a classification 494 of
the episode (1106).

[0172] In some examples, one or more non-machine learning rules 497 may be
configured to discriminate MVT and PVT. In some examples, one or more non-machine
learning rules 497 may include one or more rules applied to a metric of regularity/variability
of heart rate (¢.g., RR intervals). In some examples, one or more non-machine learning rules
497 may include one or more rules, e.g., thresholds, applied to a modesum of RR intervals.
In some examples, one or more non-machine learning rules 497 may include a linear
modesum threshold (LMS), which is a modesum threshold that linearly decreases with
increasing cycle length (RR interval length). An LMS may be advantageously account for a
phenomenon in which cycle length variability for faster MV Ts is less than slower MV Ts. In
some examples, a metric value to which classifier 1000 may apply one or more non-machine
learning rules 497 includes a sum of standard deviations of cycle lengths.

[0173] In general, the beat (¢.g., R-wave) morphology of MV Ts is more stable than PVTs
over an episode. In some examples, one or more non-machine learning rules 497 may
include one or more rules applied to a metric of stability/variability or instability of beat
morphology. The metric may be a degree of similarity of morphology of different beats
during the episode. Morphology of beats may be compared using any known techniques,
¢.g., cross-correlation, point-by-point differences, or comparison of wavelet decompositions.
In some examples, selective wavelet coefficients may be compared. In some examples,
morphology of beats may be compared by comparing features of beats, such as peak-to-peak
amplitude, maximum amplitude, minimum amplitude, slope or slew rate, or relative timing or
values of the maximum and minimum. In some examples, morphology of beats may be
compared by comparing normalized energy distributions or imprints for the beats, e.g.,
comparing histograms for each beat with bins corresponding to different energy levels.
[0174] In some examples, one or more non-machine learning rules 497 may be
configured to discriminate VF and rapidly conducting SVT, such as AF. Beat morphology of
rapidly conducting SV Ts generally is distinct from VF due to conduction of SVTs through
the His-Purkinje system. In some examples, a weighted zero crossing sum (WZCS)
technique uses baseline information and frequency content information for discrimination
between VF and SVT. The WZCS technique may include determining zero crossings of a
filtered ECG signal and weighting each zero crossing point by consecutive sample difference
or slope at that point. The WZCS technique may include summing absolute values of the

weighted zero-crossings within a window and comparing the sum to a sum for a baseline
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window. In some examples, a slope metric is a metric of comparison of slopes within a
window for a beat to slopes within a baseline window and/or a previous beat window.

[0175] Metrics to which one or more non-machine learning rules 497 are applied may be
designed such that the values show distinctly different distribution depending on the
tachyarrhythmia type. Based on the distribution of metric values, a threshold can be set to
provide a desired sensitivity and specificity.

[0176] In some examples, instead of or in addition to ECG features, non-machine
learning rules 497 may be applied to data from other sensors indicative of other physiological
signals or parameters, ¢.g., respiration, perfusion, activity and/or posture, heart sounds, blood
pressure, blood oxygen saturation signals, or other data orthogonal to ECG features but
indicative of the presence of or classification of tachyarrhythmia. Based on such data, non-
machine learning rules 497 may provide inputs to classification logic 498 indicating falls,
respiration changes, lack of tissue perfusion, or lack of pulsatile flow, the presence of which
may indicate that ventricular tachyarrhythmia, e.g., PVT or VF, is more likely.

[0177] FIG. 21 is a conceptual diagram illustrating an example machine learning

model 1200 configured to determine an extent to which patient parameter data is indicative of
an acute health event, such as a ventricular tachyarrhythmia or SCA. Machine learning
model 1200 is an example of a set of rules implemented by any rules engine described herein,
neural networks 404 and 438 described with respect to FIGS. 9 and 10, or machine learning
model(s) 496 of FIGS. 13 and 19, any of which may be implemented by processing circuitry
130 and/or rules engine 172 of computing device 12 in wireless communication with IMD
10, as discussed above. Machine learning model 1200 is an example of a deep learning
model, or deep learning algorithm, trained to determine whether a particular set of patient
parameter data indicates the presence of an acute health event, e.g., whether a particular
segment of ECG signal data indicates SCA, or a certain classification related to ventricular
tachyarrhythmia, as described herein.

[0178] One or more of IMD 10, computing device 12, an loT device 30, or a computing
system 20 may train, store, and/or utilize machine learning model 1200, but other devices
may apply inputs associated with a particular patient to machine learning model 1200 in other
examples. As discussed above, other types of machine learning and deep learning models or
algorithms may be utilized in other examples. For example, a CNN model of ResNet-18 may
be used. Some non-limiting examples of models that may be used for transfer learning

include AlexNet, VGGNet, GoogleNet, ResNet50, or DenseNet, etc. Some non-limiting
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examples of machine learning techniques include Support Vector Machines, K-Nearest
Neighbor algorithm, and Multi-layer Perceptron.

[0179] As shown in the example of FIG. 21, machine learning model 1200 may include
three layers. These three layers include input layer 1202, hidden layer 1204, and output

layer 1206. Output layer 1206 comprises the output from the transfer function 1205 of output
layer 1206. Input layer 1202 represents each of the input values X1 through X4 provided to
machine learning model 1200. The number of inputs may be equal to, less than, or greater
than 4, including much greater than 4, ¢.g., hundreds or thousands. In some examples, the
input values may any of the of values input into a machine learning model, as described
above. In some examples, input values may include samples of an ECG signal. In addition,
in some examples input values of machine learning model 1200 may include additional data,
such as R-wave data, R-R interval data, or other data relating to one or more additional
parameters of patient 4, as described herein.

[0180] Each of the input values for each node in the input layer 1202 is provided to each
node of hidden layer 1204. In the example of FIG. 21, hidden layers 1204 include two layers,
ong layer having four nodes and the other layer having three nodes, but fewer or greater
number of nodes may be used in other examples. Each input from input layer 1202 is
multiplied by a weight and then summed at each node of hidden layers 1204. During training
of machine learning model 1200, the weights for each input are adjusted to establish the
relationship between the inputs, ¢.g., input ECG segment, to determining whether a particular
set of inputs represents an acute health event and/or determining a score indicative of whether
a set of inputs may be representative of SCA, MVT, PVT, VR, or another acute health event.
In some examples, one hidden layer may be incorporated into machine learning model 1200,
or three or more hidden layers may be incorporated into machine learning model 1200, where
cach layer includes the same or different number of nodes.

[0181] The result of each node within hidden layers 1204 is applied to the transfer
function of output layer 1206. The transfer function may be liner or non-linear, depending on
the number of layers within machine learning model 1200. Example non-linear transfer
functions may be a sigmoid function or a rectifier function. The output 1207 of the transfer
function may be a classification that indicates whether the particular ECG segment or other
input set represents an acute health event, ¢.g., ventricular tachyarrhythmia, and/or a score
indicative of an extent to which the input data set represents an acute health event. In some
examples, output 1207 may include respective probabilities for a plurality of classifications,

¢.g., as discussed herein with respect to FIGS. 9-11, 13, and 20.
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[0182] By applying the ECG signal data and/or other patient parameter data to a machine
learning model, such as machine learning model 1200, processing circuitry, such as
processing circuitry 130 of computing device 12, is able to determine a patient is
experiencing or will soon experience an acute health event with great accuracy, specificity,
and sensitivity. This may facilitate determinations of risk of sudden cardiac death and may
lead to alerts and other interventions as described herein. Machine learning model 1200 may
correspond to any one or more of rules 84, rules 196, and rules 250 described herein.

[0183] FIG. 22 is an example of a machine learning model 1200 being trained using
supervised and/or reinforcement learning techniques. Machine learning model 1200 may be
implemented using any number of models for supervised and/or reinforcement learning, such
as but not limited to, an artificial neural network, a decision tree, naive Bayes network,
support vector machine, or k-nearest neighbor model, to name only a few of the examples
discussed above. In some examples, processing circuitry one or more of IMD 10, computing
device 12, an IoT device 30, and/or computing system(s) 20 (e.g., rules configuration
modules 174 and/or 234) initially trains the machine learning model 1200 based on training
set data 1300 including numerous instances of input data corresponding to acute health events
and non-acute health events, ¢.g., as labeled by an expert. A prediction or classification by
the machine learning model 1200 may be compared 1304 to the target output 1303, ¢.g., as
determined based on the label. Based on an error signal representing the comparison, the
processing circuitry implementing a learning/training function 1305 may send or apply a
modification to weights of machine learning model 1200 or otherwise modify/update the
machine learning model 1200. For example, one or more of IMD 10, computing device 12,
IoT device 30, and/or computing system(s) 20 may, for each training instance in the training
set 1300, modify machine learning model 1200 to change a score generated by the machine
learning model 1200 in response to data applied to the machine learning model 1200,

[0184] FIG. 23A is a perspective drawing illustrating an IMD 10A, which may be an
example configuration of IMD 10 of FIGS. 1 and 2 as an ICM. In the example shown in FIG.
23A, IMD 10A may be embodied as a monitoring device having housing 1412, proximal
electrode 1416A and distal electrode 1416B. Housing 1412 may further comprise first major
surface 1414, second major surface 1418, proximal end 1420, and distal end 1422. Housing
1412 encloses electronic circuitry located inside the IMD 10A and protects the circuitry
contained therein from body fluids. Housing 1412 may be hermetically sealed and
configured for subcutancous implantation. Electrical feedthroughs provide electrical

connection of electrodes 1416A and 1416B.
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[0185] In the example shown in FIG. 23A, IMD 10A is defined by a length £, a width W
and thickness or depth D and is in the form of an elongated rectangular prism wherein the
length Z is much larger than the width #, which in turn is larger than the depth D. In one
example, the geometry of the IMD 10A — in particular a width W greater than the depth D —is
selected to allow IMD 10A to be inserted under the skin of the patient using a minimally
invasive procedure and to remain in the desired orientation during insertion. For example,
the device shown in FIG. 23A includes radial asymmetries (notably, the rectangular shape)
along the longitudinal axis that maintains the device in the proper orientation following
insertion. For example, the spacing between proximal electrode 1416A and distal electrode
1416B may range from 5 millimeters (mm) to 55 mm, 30 mm to 55 mm, 35 mm to 55 mm,
and from 40 mm to 55 mm and may be any range or individual spacing from 5 mm to 60 mm.
In addition, IMD 10A may have a length L that ranges from 30 mm to about 70 mm. In other
examples, the length L may range from 5 mm to 60 mm, 40 mm to 60 mm, 45 mm to 60 mm
and may be any length or range of lengths between about 30 mm and about 70 mm. In
addition, the width W of major surface 1414 may range from 3 mm to 15, mm, from 3 mm to
10 mm, or from 5 mm to 15 mm, and may be any single or range of widths between 3 mm
and 15 mm. The thickness of depth D of IMD 10A may range from 2 mm to 15 mm, from 2
mm to 9 mm, from 2 mm to 5 mm, from 5 mm to 15 mm, and may be any single or range of
depths between 2 mm and 15 mm. In addition, IMD 10A according to an example of the
present disclosure is has a gecometry and size designed for ease of implant and patient
comfort. Examples of IMD 10A described in this disclosure may have a volume of three
cubic centimeters (cm) or less, 1.5 cubic cm or less or any volume between three and 1.5
cubic centimeters.

[0186] In the example shown in FIG. 23A, once inserted within the patient, the first
major surface 1414 faces outward, toward the skin of the patient while the second major
surface 1418 is located opposite the first major surface 1414. In addition, in the example
shown in FIG. 23A, proximal end 1420 and distal end 1422 are rounded to reduce discomfort
and irritation to surrounding tissue once inserted under the skin of the patient. IMD 10A,
including instrument and method for inserting IMD 10A is described, for example, in U.S.
Patent Publication No. 2014/0276928, incorporated herein by reference in its entirety.

[0187] Proximal electrode 1416A is at or proximate to proximal end 1420, and distal
clectrode 14168 is at or proximate to distal end 1422, Proximal electrode 1416A and distal
electrode 1416B are used to sense cardiac EGM signals, e.g., ECG signals, thoracically

outside the ribcage, which may be sub-muscularly or subcutaneously. Cardiac signals may
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be stored in a memory of IMD 10A, and data may be transmitted via integrated antenna
1430A to another device, which may be another implantable device or an external device,
such as external device 1412. In some example, electrodes 1416A and 1416B may
additionally or alternatively be used for sensing any bio-potential signal of interest, which
may be, for example, an EGM, EEG, EMG, or a nerve signal, or for measuring impedance,
from any implanted location.

[0188] In the example shown in FIG. 23A, proximal electrode 1416A is at or in close
proximity to the proximal end 1420 and distal electrode 1416B is at or in close proximity to
distal end 1422. In this example, distal electrode 1416B is not limited to a flattened, outward
facing surface, but may extend from first major surface 1414 around rounded edges 1424
and/or end surface 1426 and onto the second major surface 1418 so that the electrode 1416B
has a three-dimensional curved configuration. In some examples, electrode 1416B is an
uninsulated portion of a metallic, e.g., titanium, part of housing 1412.

[0189] In the example shown in FIG. 23A, proximal electrode 1416A is located on first
major surface 1414 and is substantially flat, and outward facing. However, in other examples
proximal electrode 1416A may utilize the three-dimensional curved configuration of distal
clectrode 1416B, providing a three-dimensional proximal ¢lectrode (not shown in this
example). Similarly, in other examples distal electrode 1416B may utilize a substantially flat,
outward facing electrode located on first major surface 1414 similar to that shown with
respect to proximal electrode 1416A.

[0190] The various electrode configurations allow for configurations in which proximal
electrode 1416A and distal electrode 1416B are located on both first major surface 1414 and
second major surface 1418. In other configurations, such as that shown in FIG. 23A, only
one of proximal electrode 1416A and distal electrode 1416B is located on both major
surfaces 1414 and 1418, and in still other configurations both proximal electrode 1416A and
distal electrode 1416B are located on one of the first major surface 1414 or the second major
surface 1418 (e.g., proximal electrode 1416A located on first major surface 1414 while distal
electrode 14168 is located on second major surface 1418). In another example, IMD 10A
may include electrodes on both major surface 1414 and 1418 at or near the proximal and
distal ends of the device, such that a total of four electrodes are included on IMD 10A.
Electrodes 1416A and 1416B may be formed of a plurality of different types of
biocompatible conductive material, ¢.g., stainless steel, titanium, platinum, iridium, or alloys
thereof, and may utilize one or more coatings such as titanium nitride or fractal titanium

nitride.
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[0191] In the example shown in FIG. 23A, proximal end 1420 includes a header
assembly 1428 that includes one or more of proximal electrode 1416A, integrated antenna
1430A, anti-migration projections 1482, and/or suture hole 1434. Integrated antenna 1430A
is located on the same major surface (i.¢., first major surface 1414) as proximal electrode
1416A and is also included as part of header assembly 1428, Integrated antenna 1430A
allows IMD 10A to transmit and/or receive data. In other examples, integrated antenna
1430A may be formed on the opposite major surface as proximal electrode 1416A or may be
incorporated within the housing 1412 of IMD 10A. In the example shown in FIG. 23A, anti-
migration projections 1432 are located adjacent to integrated antenna 1430A and protrude
away from first major surface 1414 to prevent longitudinal movement of the device. In the
example shown in FIG. 23A, anti-migration projections 1432 include a plurality (e.g., nine)
small bumps or protrusions extending away from first major surface 1414. As discussed
above, in other examples anti-migration projections 1432 may be located on the opposite
major surface as proximal electrode 1416A and/or integrated antenna 1430A. In addition, in
the example shown in FIG. 23A, header assembly 1428 includes suture hole 1434, which
provides another means of securing IMD 10A to the patient to prevent movement following
insertion. In the example shown, suture hole 1434 is located adjacent to proximal electrode
1416A. In one example, header assembly 1428 is a molded header assembly made from a
polymeric or plastic material, which may be integrated or separable from the main portion of
IMD 10A.

[0192] FI1G. 23B is a perspective drawing illustrating another IMD 10B, which may be
another example configuration of IMD 10 from FIGS. 1 and 2 as an ICM. IMD 10B of FIG.
23B may be configured substantially similarly to IMD 10A of FIG. 23A, with differences
between them discussed herein.

[0193] IMD 10B may include a leadless, subcutancously-implantable monitoring device,
¢.g., an ICM. IMD 10B includes housing having a base 1440 and an insulative cover 1442,
Proximal electrode 1416C and distal electrode 1416D may be formed or placed on an outer
surface of cover 1442, Various circuitries and components of IMD 10B, ¢.g., described
above with respect to FIG. 2, may be formed or placed on an inner surface of cover 1442, or
within base 1440. In some examples, a battery or other power source of IMD 10B may be
included within base 1440. In the illustrated example, antenna 1430B is formed or placed on
the outer surface of cover 1442, but may be formed or placed on the inner surface in some
examples. In some examples, insulative cover 1442 may be positioned over an open base

1440 such that base 1440 and cover 1442 enclose the circuitries and other components and
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protect them from fluids such as body fluids. The housing including base 1440 and insulative
cover 1442 may be hermetically sealed and configured for subcutancous implantation.

[0194] Circuitries and components may be formed on the inner side of insulative cover
1442, such as by using flip-chip technology. Insulative cover 1442 may be flipped onto a
base 1440. When flipped and placed onto base 1440, the components of IMD 10B formed on
the inner side of insulative cover 1442 may be positioned in a gap 1444 defined by base 1440.
Electrodes 1216C and 1216D and antenna 1230B may be electrically connected to circuitry
formed on the inner side of insulative cover 1442 through one or more vias (not shown)
formed through insulative cover 1442, Insulative cover 1442 may be formed of sapphire (i.c.,
corundum), glass, parylene, and/or any other suitable insulating material. Base 1440 may be
formed from titanium or any other suitable material (e.g., a biocompatible material).
Electrodes 1416C and 1246D may be formed from any of stainless steel, titanium, platinum,
iridium, or alloys thereof. In addition, electrodes 1246C and 1246D may be coated with a
material such as titanium nitride or fractal titanium nitride, although other suitable materials
and coatings for such electrodes may be used.

[0195] In the example shown in FIG. 23B, the housing of IMD 10B defines a length L, a
width W and thickness or depth D and is in the form of an elongated rectangular prism
wherein the length L is much larger than the width W, which in turn is larger than the depth
D, similar to IMD 10A of FIG. 23A. For example, the spacing between proximal electrode
1416C and distal electrode 1416D may range from 5 mm to 50 mm, from 30 mm to 50 mm,
from 35 mm to 45 mm, and may be any single spacing or range of spacings from 5 mm to 50
mm, such as approximately 40 mm. In addition, IMD 10B may have a length L that ranges
from 5 mm to about 70 mm. In other examples, the length /. may range from 30 mm to 70
mm, 40 mm to 60 mm, 45 mm to 55 mm, and may be any single length or range of lengths
from 5 mm to 50 mm, such as approximately 45 mm. In addition, the width # may range
from 3 mm to 15 mm, 5 mm to 15 mm, 5 mm to 10 mm, and may be any single width or
range of widths from 3 mm to 15 mm, such as approximately 8 mm. The thickness or depth
D of IMD 10B may range from 2 mm to 15 mm, from 5 mm to 15 mm, or from 3 mm to 5
mm, and may be any single depth or range of depths between 2 mm and 15 mm, such as
approximately 4 mm. IMD 10B may have a volume of three cubic centimeters (cm) or less,
or 1.5 cubic cm or less, such as approximately 1.4 cubic cm.

[0196] In the example shown in FIG. 23B, once inserted subcutaneously within the
patient, outer surface of cover 1442 faces outward, toward the skin of the patient. In addition,

as shown in FIG. 23B, proximal end 1446 and distal end 1448 are rounded to reduce
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discomfort and irritation to surrounding tissue once inserted under the skin of the patient. In
addition, edges of IMD 10B may be rounded.

[0197] It should be understood that various aspects disclosed herein may be combined in
different combinations than the combinations specifically presented in the description and
accompanying drawings. It should also be understood that, depending on the example, certain
acts or events of any of the processes or methods described herein may be performed in a
different sequence, may be added, merged, or left out altogether (¢.g., all described acts or
events may not be necessary to carry out the techniques). In addition, while certain aspects of
this disclosure are described as being performed by a single module, unit, or circuit for
purposes of clarity, it should be understood that the techniques of this disclosure may be
performed by a combination of units, modules, or circuitry associated with, for example, a
medical device.

[0198] In one or more examples, the described techniques may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software, the
functions may be stored as one or more instructions or code on a computer-readable medium
and executed by a hardware-based processing unit. Computer-readable media may include
non-transitory computer-readable media, which corresponds to a tangible medium such as
data storage media (e.g., RAM, ROM, EEPROM, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures and
that can be accessed by a computer).

[0199] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other equivalent
integrated or discrete logic circuitry. Accordingly, the term “processor” or “processing
circuitry” as used herein may refer to any of the foregoing structure or any other physical
structure suitable for implementation of the described techniques. Also, the techniques could
be fully implemented in one or more circuits or logic elements.

[0200] The following examples are illustrative of the techniques described herein.

[0201] Example 1. A computing device comprising: communication circuitry
configured to wirelessly communicate with a sensor device on a patient or implanted within
the patient; one or more output devices; and processing circuitry configured to: receive
episode data for an acute health event detected by the sensor device via the communication
circuitry, the episode data transmitted by the sensor device in response to detecting the acute

health event; apply one or more machine learning models to each segment of a plurality of
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segments of the episode data to determine a respective classification of a plurality of
predetermined classifications for each segment of the plurality of segments; determine a
classification of the acute health event from the plurality of predetermined classifications
based on the respective classifications of the plurality of segments; and determine whether to
control the one or more output devices to output an alarm based on the classification.

[0202] Example 2. The computing device of example 1, wherein the processing
circuitry is configured to control the communication circuitry to request additional episode
data from the sensor device based on the classification.

[0203] Example 3. The computing device of example 1 or 2, wherein the
processing circuitry is configured to determine the classification of the acute health event
based on a number of the segments determined to have the classification.

[0204] Example 4. The computing device of any one or more of examples 1 to 3,
wherein the processing circuitry is configured to determine the classification of the acute
health event based on a time location of one or more segments determined to have the
classification within the episode data.

[0205] Example 5. The computing device of any one or more of examples 1 to 4,
wherein the processing circuitry is configured to: apply the one or more machine learning
models to each segment of the plurality of segments to determine a respective probability
associated with the respective classification for each segment of the plurality of segments;
and determine the classification of the acute health event based on the respective
probabilities.

[0206] Example 6. The computing device of example 5, wherein, to determine the
classification of the acute health event based on the respective probabilities, the processing
circuitry is configured to compare the respective probabilities to a threshold.

[0207] Example 7. The computing device of example 5 or 6, wherein, to determine
the classification the acute health event based on the respective probabilities, the processing
circuitry is configured to compare a combination of probabilities to a threshold.

[0208] Example 8. The computing device of example 7, wherein the combination
comprises a weighted combination.

[0209] Example 9. The computing device of example 8, wherein the processing
circuitry weights the probabilities based on a time location of the corresponding segments
within the episode data.

[0210] Example 10. The computing device of example 1, wherein the one or more

machine learning models comprise a first one or more machine learning models, and wherein,
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to determine the classification of acute health event from the plurality of predetermined
classifications based on the respective classifications of the plurality of segments, the
processing circuitry is configured to apply the respective classifications to a second one or
more machine learning models.

[0211] Example 11. The computing device of example 10, wherein the second one
or more machine learning models comprise a long short-term memory network.

[0212] Example 12. The computing device of any one or more of examples 1 to 11,
wherein the computing device comprises a smartphone.

[0213] Example 13. The computing device of any one or more of examples 1 to 11,
wherein the computing device comprises an Internet of Things device.

[0214] Example 14. A system comprising: the sensor device; and the computing
device of any one or more of examples 1 to 13.

[0215] Example 15. The system of example 14, wherein the sensor device
comprises an implantable medical device.

[0216] Example 16. The system of example 15, wherein the implantable medical
device comprises an insertable cardiac monitor.

[0217] Example 17. The system of example 16, wherein the episode data comprises
electrocardiogram data and the insertable cardiac monitor comprises: a housing configured
for subcutancous implantation in a patient, the housing having a length between 40
millimeters (mm) and 60 mm between a first end and a second end, a width less than the
length, and a depth less than the width; a first electrode at or proximate to the first end; a
second electrode at or proximate to the second end; and circuitry within the housing and
configured to sense an electrocardiogram corresponding to the electrocardiogram data via the
first electrode and the second electrode and detect the acute health event based on the
electrocardiogram.

[0218] Example 18. A method of operating a computing device to classify episode
data for an acute health event detected by a sensor device, the method comprising: receiving,
by processing circuitry of the computing device via communication circuitry of the
computing device, the episode data, the episode data transmitted by the sensor device in
response to detecting the acute health event; applying, by the processing circuitry, one or
more machine learning models to each segment of a plurality of segments of the episode data
to determine a respective classification of a plurality of predetermined classifications for each
segment of the plurality of segments; determining, by the processing circuitry, a classification

of the acute health event from the plurality of predetermined classifications based on the
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respective classifications of the plurality of segments; and determining, by the processing
circuitry, whether to control one or more output devices of the computing device to output an
alarm based on the classification.

[0219] Example 19. The method of example 18, further comprising controlling, by
the processing circuitry, the communication circuitry to request additional episode data from
the sensor device based on the classification.

[0220] Example 20. The method of example 18 or 19, wherein determining the
classification of the acute health event comprises determining the classification of the acute
health event based on a number of the segments determined to have the classification.

[0221] Example 21. The method of any one or more of examples 18 to 20, wherein
determining the classification of the acute health event comprises determining the
classification of the acute health event based on a time location of one or more segments
determined to have the classification within the episode data.

[0222] Example 22. The method of any one or more of examples 18 to 21, further
comprising applying, by the processing circuitry, the one or more machine learning models to
cach segment of the plurality of segments to determine a respective probability associated
with the respective classification for each segment of the plurality of segments, wherein
determining the classification of the acute health event comprises determining the
classification of the acute health event based on the respective probabilities.

[0223] Example 23. The method of example 22, wherein determining the
classification of the acute health event comprises comparing the respective probabilities to a
threshold.

[0224] Example 24. The method of example 22 or 23, wherein determining the
classification of the acute health event comprises determining the classification of the acute
health event comprises comparing a combination of probabilities to a threshold.

[0225] Example 25. The method of example 24, wherein the combination comprises
a weighted combination.

[0226] Example 26. The method of example 25, further comprising weighting the
probabilities based on a time location of the corresponding segments within the episode data.
[0227] Example 27. The method of example 18, wherein the one or more machine
learning models comprise a first one or more machine learning models, and determining the
classification of acute health event from the plurality of predetermined classifications based
on the respective classifications of the plurality of segments comprises applying the

respective classifications to a second one or more machine learning models.
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[0228] Example 28. The method of example 27, wherein the second one or more
machine learning models comprise a long short-term memory network.

[0229] Example 29. A non-transitory computer-readable storage medium
comprising instructions that cause processing circuitry to: receive episode data for an acute
health event detected by a sensor device, the episode data transmitted by the sensor device in
response to detecting the acute health event; apply one or more machine learning models to
cach segment of a plurality of segments of the episode data to determine a respective
classification of a plurality of predetermined classifications for each segment of the plurality
of segments; determine a classification of the acute health event from the plurality of
predetermined classifications based on the respective classifications of the plurality of
segments; and determine whether to control one or more output devices of the computing
device to output an alarm based on the classification.

[0230] Various examples have been described. These and other examples are within the

scope of the following claims.
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WHAT IS CLAIMED IS:

1. A computing device comprising:
communication circuitry configured to wirelessly communicate with a sensor device
on a patient or implanted within the patient;
ong or more output devices; and
processing circuitry configured to:
receive episode data for an acute health event detected by the sensor device
via the communication circuitry, the episode data transmitted by the sensor device in
response to detecting the acute health event;
apply one or more machine learning models to each segment of a plurality of
segments of the episode data to determine a respective classification of a plurality of
predetermined classifications for each segment of the plurality of segments;
determine a classification of the acute health event from the plurality of
predetermined classifications based on the respective classifications of the plurality of
segments; and
determine whether to control the one or more output devices to output an

alarm based on the classification.

2. The computing device of claim 1, wherein the processing circuitry is configured to
control the communication circuitry to request additional episode data from the sensor device

based on the classification.

3. The computing device of claim 1 or 2, wherein the processing circuitry is configured
to determine the classification of the acute health event based on a number of the segments

determined to have the classification.

4, The computing device of any one or more of claims 1 to 3, wherein the processing
circuitry is configured to determine the classification of the acute health event based on a
time location of one or more segments determined to have the classification within the

episode data.
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5. The computing device of any one or more of claims 1 to 4, wherein the processing
circuitry is configured to:

apply the one or more machine learning models to each segment of the plurality of
segments to determine a respective probability associated with the respective classification
for each segment of the plurality of segments; and

determine the classification of the acute health event based on the respective

probabilities.

0. The computing device of claim 5, wherein, to determine the classification of the acute
health event based on the respective probabilities, the processing circuitry is configured to

compare the respective probabilities to a threshold.

7. The computing device of claim 5 or 6, wherein, to determine the classification the
acute health event based on the respective probabilities, the processing circuitry is configured

to compare a combination of probabilities to a threshold.

8. The computing device of claim 7, wherein the combination comprises a weighted
combination.
9. The computing device of claim 8, wherein the processing circuitry weights the

probabilities based on a time location of the corresponding segments within the episode data.

10.  The computing device of claim 1, wherein the one or more machine learning models
comprise a first one or more machine learning models, and wherein, to determine the
classification of acute health event from the plurality of predetermined classifications based
on the respective classifications of the plurality of segments, the processing circuitry is
configured to apply the respective classifications to a second one or more machine learning

models.

11. The computing device of claim 10, wherein the second one or more machine learning

models comprise a long short-term memory network.

12. The computing device of any one or more of claims 1 to 11, wherein the computing

device comprises a smartphone.
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13. The computing device of any one or more of claims 1 to 11, wherein the computing

device comprises an Internet of Things device.
14. A system comprising:
the sensor device; and

the computing device of any one or more of claims 1 to 13.

15. The system of claim 14, wherein the sensor device comprises an implantable medical

device.
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AMENDED CLAIMS

received by the International Bureau on 07 Feb 2024 (07.02.2024)
WHAT IS CLAIMED IS:

1. A computing device comprising:
communication circuitry configured to wirelessly communicate with a sensor device
on a patient or implanted within the patient;
one or more output devices; and
processing circuitry configured to:
receive episode data for an acute health event detected by the sensor device
via the communication circuitry, the episode data transmitted by the sensor device in
response to detecting the acute health event;
segment the episode data into a plurality of segments, wherein each segment
of the plurality of segments consists of a respective portion of the episode data
associated with a respective portion of the acute health event;
apply one or more machine learning models to each segment of the plurality of
segments of the episode data to determine a respective classification of a plurality of
predetermined classifications for each segment of the plurality of segments;
determine a classification of the acute health event from the plurality of
predetermined classifications based on the respective classifications of the plurality of
segments; and
determine whether to control the one or more output devices to output an

alarm based on the classification.

2. The computing device of claim 1, wherein the processing circuitry is configured to
control the communication circuitry to request additional episode data from the sensor device

based on the classification.

3. The computing device of claim 1 or 2, wherein the processing circuitry is configured
to determine the classification of the acute health event based on a number of the segments

determined to have the classification.

4. The computing device of any one or more of claims 1 to 3, wherein the processing
circuitry is configured to determine the classification of the acute health event based on a
time location of one or more segments determined to have the classification within the

episode data.
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5. The computing device of any one or more of claims 1 to 4, wherein the processing
circuitry is configured to:

apply the one or more machine learning models to each segment of the plurality of
segments to determine a respective probability associated with the respective classification
for each segment of the plurality of segments; and

determine the classification of the acute health event based on the respective

probabilities.

6. The computing device of claim 5, wherein, to determine the classification of the acute
health event based on the respective probabilities, the processing circuitry is configured to

compare the respective probabilities to a threshold.

7. The computing device of claim 5 or 6, wherein, to determine the classification the
acute health event based on the respective probabilities, the processing circuitry is configured

to compare a combination of probabilities to a threshold.

8. The computing device of claim 7, wherein the combination comprises a weighted
combination.
9. The computing device of claim 8, wherein the processing circuitry weights the

probabilities based on a time location of the corresponding segments within the episode data.

10.  The computing device of claim 1, wherein the one or more machine learning models
comprise a first one or more machine learning models, and wherein, to determine the
classification of acute health event from the plurality of predetermined classifications based
on the respective classifications of the plurality of segments, the processing circuitry is
configured to apply the respective classifications to a second one or more machine learning

models.

11. The computing device of claim 10, wherein the second one or more machine learning

models comprise a long short-term memory network.
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12. The computing device of any one or more of claims 1 to 11, wherein the computing

device comprises a smartphone.

13. The computing device of any one or more of claims 1 to 11, wherein the computing

device comprises an Internet of Things device.

14. A system comprising:
the sensor device; and

the computing device of any one or more of claims 1 to 13.

15. The system of claim 14, wherein the sensor device comprises an implantable medical

device.
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