US 20190138309A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2019/0138309 A1

LEE et al. 43) Pub. Date: May 9, 2019
(54) HARDWARE APPARATUSES AND METHODS GO6F 9/34 (2018.01)
TO PREFETCH A MULTIDIMENSIONAL GO6F 12/0811 (2016.01)
BLOCK OF ELEMENTS FROM A (52) U.S.CL
MULTIDIMENSIONAL ARRAY CPC ... GO6F 9/30047 (2013.01); GO6F 12/0207
(2013.01); GOGF 9/30145 (2013.01); GO6F
(71) Applicant: INTEL CORPORATION, Santa Clara, 12/0862 (2013.01); GOGF 2212/6026
CA (US) (2013.01); GO6F 12/0875 (2013.01); GO6F
9/34 (2013.01); GOGF 12/0811 (2013.01);
(72) Inventors: VICTOR LEE, Santa Clarg, CA (US); GO6F 22]12/452 (2013.01); GO6F 9/3455
Mikhail Smelyanskiy, Burlingame, CA (2013.01)
(US); Alexander Heinecke, San Jose,
CA US) (57) ABSTRACT
(21) Appl. No.: 16/004,081 . . .
Methods and apparatuses relating to a prefetch instruction to
(22) Filed: Jun. 8, 2018 prefetch a multidimensional block of elements from a mul-
tidimensional array into a cache. In one embodiment, a
Related U.S. Application Data hardware processor includes a decoder to decode a prefetch
. . o instruction to prefetch a multidimensional block of elements
(63) Continuation of application No. 14/583,651, filed on from a multidimensional array into a cache, wherein at least
Dec. 27, 2014, now Pat. No. 9,996,350. one operand of the prefetch instruction is to indicate a
. . . system memory address of an element of the multidimen-
Publication Classification s?onal block oriyelements, a stride of the multidimensional
(51) Int. CL block of elements, and boundaries of the multidimensional
GOG6F 9/30 (2018.01) block of elements, and an execution unit to execute the
GOG6F 12/02 (2006.01) prefetch instruction to generate system memory addresses of
GO6F 12/0862 (2016.01) the other elements of the multidimensional block of ele-
GO6F 9/345 (2018.01) ments, and load the multidimensional block of elements into
GOG6F 12/0875 (2016.01) the cache from the system memory addresses.

100~ —
& 108y
z
105
sl
: L
o
101y

Patent Application Publication @ May 9, 2019 Sheet 1 of 16 US 2019/0138309 A1

105«

&

g 105
o I

= /
b
k
?Q?XMMXX
G, 1
W0,
TRER TORER
D IR SYSTEM
el] eld MEMORY
G
W L 224
Ny e Wl e
g%f%_ MULTIDIMENSIONAL |
PREFETEN TN ; ARRAY §
2_2@ 200 § ,,,,,,,,,, %E %MHM_M:

Patent Appl

ication Publication

May 9, 2019 Sheet 2 of 16

US 2019/0138309 A1

3
32{}-»-\3ak %
3074
! 396
COMOL sl /L A
e 988 2
208
3
STATUS
REGISTER %3
313;2» WY
%33@3; %M@Sﬁfi
},;\«334 %wa:s@
00y, FiG. 3
| omPuT 42
¥
CREATE AN ADDHESS STREAM 404
¥
GENERATE AN ADDRESS 408 b

7 STREAM &
~ GOMPLETE?

TvES
| DONE 42 |

MO

FiG. 4

| FoSUE PREFETCH FOR ADDRESS
FROM MEMORY INTO CACHE 410

Patent Application Publication

ﬁﬁfﬁx

May 9, 2019 Sheet 3 of 16

DECODING, WITH A DECODE UNIT A
PREFETOH INSTRUCTION TO
PREFETOH A MULTIDIMENSIONAL
BLOCK OF ELEMENTS FROM &
MULTIDIMENSIONAL ARRAY INTC A
CACHE, WHERBIN AT LEAST ONE
OPERAND OF THE PREFETCH
INGTRUCTION IS TO INDICATE A
SYSTEM MEMORY ADDRESS OF AN
ELEMENT OF THE
MULTIDIMENSIGNAL BLOCK OF
ELEMENTS, ASTRIDEQOF THE
MULTIDIMENSIONAL BLOCK OF
ELEMENTS, AND BOUNDARIES OF
THE MULTIDIMENSIONAL BLOCK OF
ELEMENTS 502

%

EXECUTING WITH AN EXECUTION
UNIT THE PREFETCH INETRUCTION
TO GENERATE SYSTEM MEMORY
ADDRESSES OF THE OTHER
ELEMENTS OF THE
MULTIDIMENSIONAL BLOCK OF
ELEMENTS, AND LOAD THE
MULTIDIMENSIONAL BLOCK OF
ELEMENTS INTO THE CACHE FROM
THE SYSTEM MEMORY ADDRESSES

504

FiG. 5

US 2019/0138309 A1

May 9,2019 Sheet 4 of 16 US 2019/0138309 A1

Patent Application Publication

e BiD PG O sem.m.mm ...M.. N . A Y B irs o
2 Y Pl | omeata T HsY 959 o
LR TSR IR o) B Lo o m
- S A Y | RON T aalsomul aove Eﬁmﬁ
m | j M 000 THOIINON
! { i P 'S8aaov ANOWIN
U7 o hesamel gres | o g R T me 79 o
29 0T3O R 1 qzee | ves 99 1 omd | oad
St e ME .mmmw GerEi WG Rn WhOHaL| SV seicdy XION INOILYEZ0 i |
, SUEM PO | sl PO YivQ g ORI romyl ggyg (LYRROd
o e b |
; |58 0Tl m | IO TMOdNEL bes
; | 2 | SSHOVANORIN ss3oov
i
! 049 1998 0T . Y v | oo 259 -
Lo o) WO mseom LEVERI lvesovissmnovt gid | omy | OB
LRI sV R wuoashviL viva [FOITHTHH esvio iutiml xaa woilvi3aol S
- e ! \Wr _ON_jusisiomul dsve (oo
| R
———— N m 3 oN
| 959 Y b
V720 oo mm%m %%wwwwm > KWWWWW%MQ m%%% PY2ER L yomsy w%wmmwww aﬂ%m mm%um @mmmw ¥ m
[EVICaN SR LT R -] ONNGH | SSVI0 |AMOREM] XE0NL INOYE3d0] o P
m ik ¥AYO OHINES SRRy L SO T o pwalsinay) Geva o4 |
o m i wisg | m 019 °d0 BdAL RIND ONAOY 508
003 LYWHO NOLLONYASN M } G134 8 w M | T4'SS300Y AHONEIA ON SS300Y
MONEIS HOLOTA JREN3D n] w o
L] 3 ps—
w..a T PR OTHS 5788 | e y 258 b 2o5
s o) i L Tl 090 4 weamavizn |SROEE | qae | e | g5, | GO, | o |
B wiwogvoiven LERE H] povrry | O {1
VIR zw«ﬁ LIS O A0 XRON INGUYHESAD YN)
. YA g | 050 P NOILYHEH0 NOUVININGNY walseml asve Wk
f e 3 &

PLG QSIS 300040 TING

May 9,2019 Sheet 5 of 16 US 2019/0138309 A1

Patent Application Publication

[oo o e reen 5 m
¢ T . o
(00 BRSO BING 59 i) 759
o o s iial 0s Hases QU | g | 28 0B | gogny . B8 0 grmy | g | O M
ERC i an) Henys R o s I s C R el W cort Rl mmmmww AN INoiLviado] 3 H
m GiRg] viva | JO8, PSSO lavous pETE S A
B otor e e e e ¥ 3 8 IR
w P m m P tza
| P w W POCOWMIDOVREN Se0v
i { ; ;] § AHNEN
| i i i i t
i ! i] { f
! i i i { f
f i i i { i
i } i i ;
{ ! i {]
U T s s MR 2 |
. mww% mmﬁm e I W
. Si VYO HOL3A S AU L ON juiisiomy gva (oAHO4
M T 0 FdAL
m m D ISR PO 00V WIH ON
T T T e Jmsean “yon | e s .
B] —T w%mm ﬁ S g |
W;..,. T B VIO anfoY SYNALEM TP ON juaisiomul 3gvg oAECd
m Lyie m m w £ 2180 JdAL "HIND O
v Y89 | m 1V WA OOV WER ON,, 09
008 LYRMOS NOLLONHLSN ! 0T, { f $500Y
KON HOEDTA DIENaD : p ; m i »m%m%
o o oo e oo moone ooer o 3 i I)
m ¥99 011 . #38 A%
| 209 0l gl Ao | Sl 990 | veaammavize | BROBME) gmg | e ooy | oy | o]
(311G SV NI e T ssviD, B xaon oinvadol 598 L meay
- SLE Y e P 059 (13 NOLLYMEA0 NOWY ININSNY haiseae] 3oy xw
G R e)

P28 OEH 300040 T

May 9,2019 Sheet 6 of 16 US 2019/0138309 A1

Patent Application Publication

64 (N 300040 W S74 T

)
EREIE mmmwﬁmmmm I8l :mmmwﬂ%w 3

...... ; o ena .DJ
IR AR) 1 290
o Sh v
Ut e MN& - P
[sgs | oo | »? alaj [w1 o3 1A Laiady INGWETR VIVa ov T
IR e R ETSRE it
T ghL d¥H 300040
$29 (11314 3000 T 94
04 LYWHOS NOLLOMRMLSNI ATONGRA HOLOBA DEID3AS
’ N AS QAN 81 HOHM 827 O w
HOLOY INSWEOVISIO 3H1 A NG SOI0H 649 SNIGOONS
108 N2dSi0 87 0L G TL0=00H NIHM 0 XiaSvid
048I0} 8253 71314 HOL0V4 INSWEDVISIa yeu L 759 - OFS PN
: (, 854 Rl il . gnp . AYWHOd
48 @3 Bk A0 T GELOomEAMA | BO0DM0 RN
£ 1 i g i g o e m“,...;.s?.EJ “,,!,F.i,m
xawmm.ﬁijd Jmsu..sJ m‘ 4 3 3
R 04050404 88 %% s alalalalalalaladu A g0l ol alaln Al Al alwl il g X u b 2o
m | m m xw Mo
{0 =000 MEB Nm%m% m { ;w m\ $549 !
V288 G NNEDY 18I0 m 3 A OhL R
v, | ywi el | DMAXE 835 U1 $99 (1314 HAOH
gar | oser (% w 535 |00W m) S8Y10 INEREE VIYO N
5 57 & 5 %W N b 700 X140 ¥BAY -
ILAE Bg FLAH W QO W TRe

Patent Application Publication @ May 9, 2019 Sheet 7 of 16 US 2019/0138309 A1
FIG. 0 msésﬁg;%i ALPHATIELD peTa piEcD 854
BUGVENTATION GPERATION FIELD 550 NI ITIT
LD 748
; I e At R £
" oREDeRA | []
s AL L1 | o s I S EIED
658 " FAANGEORY oy
ROUNE OPERATION FIELD 653 (UBEIRD DATA TRANGEORM
e ROUND GONTROL FIELD 8544 ; FIELD 8548
WOTHRELD T
1 [Bejorfotlor 18]
- 624
EVICTION e e et
HINTFIELD L) LAY
8528 70 -7 dazm
DATA MANIPLLATION FIELD 8540
WIS FER TS
HL 11 :
7
MASK ROUND | < VSIZE
CONTROL— ol AL | 657A%
FELDESC L o | VECTORLENGTH FIELD
uei | MERGING—. FIELD 6594 | Bsa
WO F iz
SHORICTICR
ZERDING ol
e erETeT
biftof B! 8B [0y Dy Dy Dy
\\\;f\\ %{3 non
e BROADGAST FIELD 6578

May 9,2019 Sheet 8 of 16 US 2019/0138309 A1

Patent Application Publication

R E

iy

LS ¥9
515 snmilioy Heuy SR

058 34 M3 LBI0TY

L1 L O30 d XN
BLHE p2

?

OISV |
H

%

QL 08

e
598 T HILSIOTH HOVLS dd MY DS

o270 siombioy seoding RIS

sz
S48 957
A,
YA
e,
Slaghan Shiapiik
G ousud sz
SLIS 21
018 siosifiay OR8A
SLE P X8

408 HNUIDEHHONY 318153

US 2019/0138309 A1

48
LN BN e AN
FHIYD &b
Al LN mww kAN

¥iG
848 LIND

AHOWIA

4

+ 096 (SIURLSAYD NOWNDINE

¥05 {B3LINN
SR
AHOWIN

795
BN
NOLLNOEYE

&

[

May 9, 2019 Sheet 9 of 16

Patent Application Publication

2, BBEHHE.WBB.IHHHE

§
!
865 (SILIND BRI MALSISTN WS AN i
i
i

- 755
| 95 (SIND U3 TNOIHOS | i i |

b s e oo cope e e oo
S .. JS %

Y i :

58 1NN § 056 LIND

o o SCAYIOT NI SNIDNE NOLLNOZ

85 "4

088
w

m (V8 1IN 3000E0 LING) ONE NONA

3 //
] SR8 HO 1T memwumm‘wm@ i ORE SHOD

GE6 LINM 1L HOLL DTSN
VOB LN G090 MO TR BN

T ai8 P I S
AR 1T T AHONIN
NOHdR ATOHER RUER
IS A 1 1L MALSIOIY
8

£E8 110

- MNCHE RS HONYHE

¥

B

B8
AO¥LE N0

£ig 2 BOE ity
FINOIHE SNRYNIM 20TIVIRC003]

G086 ANl

US 2019/0138309 A1

May 9,2019 Sheet 10 of 16

Patent Application Publication

Yaiok

Eitwloa R AR Sl
5 I
:

gEoL P vz

! IMIANOD | LMIANOD

LN T
mﬂ :

#i0E
BURLGEEY

L HOLDEN,
TR

$E0L
LYo

vy |y

FEGE
VT ROLDEA 30D

T
am .

Tt
SRS HEVIN LM

o3

Z00E
WHOALLER Dk
%
#
P01
: BN
Lt A A0 ﬁmmﬁm O

S
YO LT

o

& " &
% ¥
FLOH FAL ()
SHILSIDBY | SuILNOEY
HOLEs T WYWDR

% " ¥ 4
LN 5001
LN LD

MOLOEA T WYTYOS

i ¥
: \W :
00
IOO0T0 NOLDMTELEN

Y 4

US 2019/0138309 A1

May 9, 2019 Sheet 11 of 16

Patent Application Publication

i s s et oo
P ovkisiunn 2T BT : :
P OHATIONINGED o o o e e e e s s o o
o seman] 901 ISIUNG HOVD OEYHS |
AN T T VI e m
WA TIOHANGD {om =m0 4 w negsd 4 ¥roLl m 0y g
s08 SN e wal SN g 0007
DLLE LMD ML I FHOYD 380dHNd
INIDY WIISAS | NEOLL OO | VDLl B00 | W3S
//%x HOBEITON

Patent Application Publication @ May 9, 2019 Sheet 12 of 16 US 2019/0138309 A1
1215
1200 \ S — 7/;“/‘"
~ i:! PROCESSOR ™™~ ™
- / 1295 |
WEW 1245 e | 1240
CONTROLLER
o B MEMORY
E ?ROQESESGRz | GH 1290 [
b e o
1260 ;f
l — -
- | oM 1250 |
» |

Fiz.12

US 2019/0138309 A1

May 9,2019 Sheet 13 of 16

Patent Application Publication

YLyl 814
a7el Y
Gy 2009 | s3oma 1 asnon
FOVHOLE VIV Leet HIHDD &Zet (CIYORATY
T 0zl T %
gLEt Zas) P15t pigi
HOSSID0N O QHONY SINAIA OF ADCE ENY
aigs 1 T
spL—1 # | zept -~ T
aig) ~et dd DASY 13RO et L gt M%mmwumm%uw
R S
paEL ZeE1 - %
e
0ass g el el el a0
QEE — ggpp d M /:1 Ay
251
05ek
e VL et
W]
651)
AHOWIN AHOHEN
HOSSITOYSND
OSSN HOSSIIOH

/// aney

US 2019/0138309 A1

May 9, 2019 Sheet 14 of 16

Patent Application Publication

pEEL
AHCHEIN

ZEEE
AHOREN

bt 04
il
Ot ASYETT
08E} OEEg e
g5} e dd R e k.
%ﬁ}\w W. mmﬂl% W,
R
$avh eded e o oimed 0484
988 = gy m /lﬁﬁ Lo g5
0oL
rison) &l
- 10 0
HOSSID0M HOSSIN0U
e
Fivl m

w SERAION

e

J/.. Ol

US 2019/0138309 A1

May 9, 2019 Sheet 15 of 16

Patent Application Publication

pELL (SIAND
avst ae81 HITIOULNG?
uinn A | | INRE e s AHONZW
RIVHORLN
gLit {ShuNn ST
HATIONINGD e e
M m
| oo (SN THOVO GEMVHS |
o o e e
P4 | ¥t
M gl w wwe | | (G
BLbL LN | LA, FHIVI
LNEEY WILBAS | NZoL 30D WELE AH0D
D81 HDSSI00U NOWLYHTddY

1 0261 {SIN0SBIN0NA0D

/, 408

JiHG ¥ NO WELEAS

LI E

US 2019/0138309 A1

May 9,2019 Sheet 16 of 16

Patent Application Publication

s

P

\
POBE Y MAR00 88

(o i

7

\\\‘I

%

T SO

\\ 7

wmmw FA00 AUYRIE 88X

o,
Sl VR
%,,”

81 "Gid

7
e

J/

\

-
o

bt rvneneertll " R

M F000 WA TIND
138 NOUONHLSH J
3 Exmwmq

et o,

CLBLHTIMIANGD
z@ﬁwm&.@xm /

-

7
—
e

6181 3000 Jrees
138 NOLLONMISN
NIVRELTY e

eesiraospensserr e

e
rsscsnsssssssers Al

“~

3
H

P

FEVATEYH

&
A

aia
FHY LAT HOONMLEN
B N0 LBV
1¥ H1A HOSSI0OH

FLOL JHOD 138 HOLLOMULSN
B MY LNOH LA AO8EI00M

US 2019/0138309 Al

HARDWARE APPARATUSES AND METHODS
TO PREFETCH A MULTIDIMENSIONAL
BLOCK OF ELEMENTS FROM A
MULTIDIMENSIONAL ARRAY

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present patent application is a continuation
application claiming priority from U.S. patent application
Ser. No. 14/583,651, filed Dec. 27, 2014, and titled: “Hard-
ware Apparatuses and Methods to Prefetch a Multidimen-
sional Block of Flements from a Multidimensional Array”,
which is incorporated herein by reference in its entirety.

TECHNICAL FIELD

[0002] The disclosure relates generally to electronics, and,
more specifically, an embodiment of the disclosure relates to
prefetching a multidimensional block of elements from a
multidimensional array.

BACKGROUND

[0003] A processor, or set of processors, executes instruc-
tions from an instruction set, e.g., the instruction set archi-
tecture (ISA). The instruction set is the part of the computer
architecture related to programming, and generally includes
the native data types, instructions, register architecture,
addressing modes, memory architecture, interrupt and
exception handling, and external input and output (I/O). It
should be noted that the term instruction herein may refer to
a macro-instruction, e.g., an instruction that is provided to
the processor for execution, or to a micro-instruction, e.g.,
an instruction that results from a processor’s decoder decod-
ing macro-instructions.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The present disclosure is illustrated by way of
example and not limitation in the figures of the accompa-
nying drawings, in which like references indicate similar
elements and in which:

[0005] FIG. 1 illustrates a sparse three-dimensional stencil
according to embodiments of the disclosure.

[0006] FIG.2 illustrates a block diagram of a multiple core
hardware processor with a prefetch unit according to
embodiments of the disclosure.

[0007] FIG. 3 illustrates a block diagram of a prefetch unit
according to embodiments of the disclosure.

[0008] FIG. 4 illustrates a flow diagram of prefetching a
multidimensional block of elements from a multidimen-
sional array according to embodiments of the disclosure.
[0009] FIG. 5 illustrates a flow diagram of prefetching a
multidimensional block of elements from a multidimen-
sional array according to embodiments of the disclosure.
[0010] FIG. 6A is a block diagram illustrating a generic
vector friendly instruction format and class A instruction
templates thereof according to embodiments of the disclo-
sure.

[0011] FIG. 6B is a block diagram illustrating the generic
vector friendly instruction format and class B instruction
templates thereof according to embodiments of the disclo-
sure.

[0012] FIG.7A s ablock diagram illustrating fields for the
generic vector friendly instruction formats in FIGS. 6A and
6B according to embodiments of the disclosure.

May 9, 2019

[0013] FIG. 7B is a block diagram illustrating the fields of
the specific vector friendly instruction format in FIG. 7A that
make up a full opcode field according to one embodiment of
the disclosure.

[0014] FIG. 7C is a block diagram illustrating the fields of
the specific vector friendly instruction format in FIG. 7A that
make up a register index field according to one embodiment
of the disclosure.

[0015] FIG. 7D is a block diagram illustrating the fields of
the specific vector friendly instruction format in FIG. 7A that
make up the augmentation operation field 650 according to
one embodiment of the disclosure.

[0016] FIG. 8 is a block diagram of a register architecture
according to one embodiment of the disclosure

[0017] FIG. 9A is a block diagram illustrating both an
exemplary in-order pipeline and an exemplary register
renaming, out-of-order issue/execution pipeline according
to embodiments of the disclosure.

[0018] FIG. 9B is a block diagram illustrating both an
exemplary embodiment of an in-order architecture core and
an exemplary register renaming, out-of-order issue/execu-
tion architecture core to be included in a processor according
to embodiments of the disclosure.

[0019] FIG. 10A is a block diagram of a single processor
core, along with its connection to the on-die interconnect
network and with its local subset of the Level 2 (L.2) cache,
according to embodiments of the disclosure.

[0020] FIG. 10B is an expanded view of part of the
processor core in FIG. 10A according to embodiments of the
disclosure.

[0021] FIG. 11 is a block diagram of a processor that may
have more than one core, may have an integrated memory
controller, and may have integrated graphics according to
embodiments of the disclosure.

[0022] FIG. 12 is a block diagram of a system in accor-
dance with one embodiment of the present disclosure.
[0023] FIG. 13 is a block diagram of a more specific
exemplary system in accordance with an embodiment of the
present disclosure.

[0024] FIG. 14, shown is a block diagram of a second
more specific exemplary system in accordance with an
embodiment of the present disclosure.

[0025] FIG. 15, shown is a block diagram of a system on
a chip (SoC) in accordance with an embodiment of the
present disclosure.

[0026] FIG. 16 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the disclosure.

DETAILED DESCRIPTION

[0027] In the following description, numerous specific
details are set forth. However, it is understood that embodi-
ments of the disclosure may be practiced without these
specific details. In other instances, well-known circuits,
structures and techniques have not been shown in detail in
order not to obscure the understanding of this description.
[0028] References in the specification to “one embodi-
ment,” “an embodiment,” “an example embodiment,” etc.,
indicate that the embodiment described may include a
particular feature, structure, or characteristic, but every
embodiment may not necessarily include the particular
feature, structure, or characteristic. Moreover, such phrases
are not necessarily referring to the same embodiment. Fur-

US 2019/0138309 Al

ther, when a particular feature, structure, or characteristic is
described in connection with an embodiment, it is submitted
that it is within the knowledge of one skilled in the art to
affect such feature, structure, or characteristic in connection
with other embodiments whether or not explicitly described.

[0029] Instruction processing hardware (e.g., a hardware
processor having one or more cores to decode and/or
execute instructions) may operate on data, for example, in
performing arithmetic or logic functions. A processor
accessing (e.g., loading or storing) the data may be forced to
wait for the data to arrive, for example, where the processor
is waiting for the data and not processing anything (e.g.,
sitting idle). In certain embodiments, a hardware processor
may load (e.g., copy) data to be operated on by the processor
from a slower (e.g., access and/or cycle time, usually
measured in processor cycles) memory to a faster memory,
which may generally be referred to as prefetching (e.g.,
prefetching data). For example, data to be operated on by a
processor (e.g., via a later in program order instruction) may
be loaded into a cache (e.g., cache memory) from a system
(e.g., main) memory. Cache (e.g., all or one or more levels
of'level L1, L2, .3, L4, etc.) may be part (e.g., on die) of a
hardware processor. In one embodiment, cache is static
random access memory (SRAM). System memory may be a
separate component from the hardware processor, e.g.,
memory accessible by the processor via a bus. In one
embodiment, system memory is dynamic random access
memory (DRAM) and/or an external (from the processor)
memory (e.g., a mass storage device). System memory may
be slower (e.g., by atleast 1,2,3,4,5,6,7,8,9, or 10 orders
of magnitude) in access and/or cycle time (e.g., in complet-
ing requested loads and/or stores therein) than a cache. As
used herein, a cache line may generally refer to a block (e.g.,
a sector) of data that may be managed as a unit for coherence
purposes. A cache line may include multiple, discrete ele-
ments, e.g., elements of a vector.

[0030] Prefetching data (e.g., a prefetch) to a cache (e.g.,
from system memory or from a lower level of a cache to a
higher level of cache, such as from [.3 to L.2 or [.1 cache)
may minimize the amount of time the processor spends
waiting (e.g., being idle) for that data. A prefetch may reduce
the memory access latency in a hardware processor. Certain
processing operations (e.g., stencil computations) may
include relatively large (e.g., larger than a cache’s or cache
level’s capacity) volumes of data. This may cause process-
ing delays, for example, where a hardware processor’s
request for the data (e.g., a cache line of data) from a cache
is a miss (e.g., the cache line is not in the cache or in the
requested cache level) and the data is loaded in an operation
that is slower than a load from that cache. A cache may be
smaller (e.g., by at least 1, 2,3, 4,5, 6,7, 8, 9, 10, 100, or
1000 orders of magnitude) than a system memory.

[0031] A stencil computation (e.g., operation) is one
example of an operation (e.g., vector computation) that is
commonly found in scientific computation, financial ser-
vices, and seismic imaging performed by a hardware pro-
cessor. A stencil computation has a general from of:

L (69)

May 9, 2019

[0032] where each element (e.g., node) may have its own
data, for example, to form a weighted contribution from
certain adjacent elements. A stencil computation may be
performed on a multidimensional block (e.g., subset) of
elements from a multidimensional array, e.g., using a pro-
cessor to operate on vector data, such as, but not limited to,
with SIMD vectors and/or SIMD hardware. An element may
generally refer to a discrete section of data that represents a
single value. For example, a 512 bit cache line may have 16
elements with 32 bits for each element, 64 elements with 8
bits for each element, etc. Certain embodiments herein may
assume a multidimensional array or multidimensional block
of elements is flattened into a single dimensional array or
block of elements in memory. Although certain embodi-
ments of this disclosure are discussed in reference to a
stencil, this is merely an example of one application of this
disclosure. Additional non-limiting examples of applications
of this disclosure are discussed below. FIG. 1 illustrates a
sparse three-dimensional (3D) stencil 100 according to
embodiments of the disclosure. For example, this stencil 100
may be used to calculate a new value for element 105 based
on the values of the 6%k elements that are covered by (e.g.,
in) this stencil (e.g., a weighted contribution from those 6*k
adjacent elements), where k is the half width of the stencil.
As illustrated with reference to FIG. 1, sparse may refer to
not all elements being present of the entire block (e.g., a
cube here would be there entire block) of data defined by the
outermost elements of the multidimensional block of ele-
ments (e.g., a (2¥k+1)*(2*k+1) element cube, which is a
9%9*9 (729) element cube as depicted).

[0033] A multidimensional (e.g., a two-dimensional,
three-dimensional, four-dimensional, etc.) array may be of
any size, for example, an order of magnitude or more in size
compared to a stencil’s dimensions. For example, a stencil
may be moved to new elements in the multidimensional
array to calculate the new value for those new elements
based on the previous (e.g., adjacent) elements. In one
embodiment, a multidimensional array is populated with
elements by a previous process, e.g., using database popu-
lation methods. In one embodiment, each element of a
multidimensional array is four bytes. In one embodiment,
each element of a multidimensional array is eight bytes. In
one embodiment, each element of a multidimensional array
is sixteen bytes. In one embodiment, each element of a
multidimensional array is the same size as an element of a
cache line. In one embodiment, each element of a multidi-
mensional block of elements is the same size as an element
of a cache line. In one embodiment, each element in a
multidimensional block of elements is the same size as each
element of a multidimensional array.

[0034] A (e.g., single) prefetch instruction (e.g., macro-
instruction) may allow a hardware processor (e.g., a prefetch
unit thereof) to prefetch a multidimensional block of ele-
ments from a multidimensional array into a cache. Some
non-limiting formats of such an instruction follow. In certain
embodiments, a prefetch instruction includes a data field
(e.g., an operand or operands) that indicates (e.g., to the
processor) a system (e.g., virtual) memory address of an
(e.g., starting or center) element of the multidimensional
block of elements, a stride (e.g., in one or more dimensions)
of the multidimensional block of elements, boundaries (e.g.,
and the shape) of the multidimensional block of elements, or
any combinations thereof. In one embodiment, that address
is a center of a stencil, e.g., element 105 in FIG. 1. In one

US 2019/0138309 Al

embodiment, that address is a boundary element of a stencil,
e.g., element 101x or 109x in FIG. 1 when k is 4. A stride
(e.g., a step size or increment) of an array may generally
refer to the number of (e.g., virtual or physical) addresses in
memory between the beginning of one element and the
beginning of the next element. A stride may be measured or
in units of the size of the array’s elements (e.g., cells). In one
embodiment, a stride is larger than the element size thus
indicating extra space between adjacent elements. In certain
embodiments, a prefetch instruction may indicate the stride
for all or certain dimensions of the multidimensional block
of elements (e.g., resultant array) and/or the multidimen-
sional (e.g., source) array, for example, a stride may be
indicated by a data field (e.g., operand or operands) of the
prefetch instruction. For example, a stride in a first dimen-
sion may be in the form of S1(stride value), a stride in a
second dimension may be in the form S2(stride value), etc.
in an operand field in a prefetch instruction to indicate the
stride in each dimension, in certain dimensions, or in one
dimension. A uniform stride in a first and second dimension
may be in the form of S12(immediate stride value). A
uniform stride in a first, second, and third dimension may be
in the form of S123(immediate stride value). Although
parenthesis are used here, any format of operand may be
utilized.

[0035] In one embodiment, boundaries may be the
addresses of the outermost dimensions of a multidimen-
sional block and/or multidimensional array. In one embodi-
ment, the boundary or boundaries may be the number of
elements in each dimension, e.g., as measured against the
element(s) of the known system memory address. For
example, if given the address for a center element 105 in
FIG. 1 and the dimension k, the boundaries may be deter-
mined. Further, the boundaries (or a stream of code repre-
senting the boundaries) may be used to determine the
address of the other elements in the multidimensional block
of elements (e.g., the sparse stencil 100 in FIG. 1). Bound-
aries may be different in each dimension of multiple dimen-
sions.

[0036] In certain embodiments, a prefetch instruction may
indicate which level of cache (e.g., level 1 (L1), level 2,
(L2), level 3 (L.3), level 4 (L4), etc.) to load the multidi-
mensional block of elements into, for example, via the
opcode and/or any data field (e.g., operand or operands). For
example, the text of “L1”, “L2”, “L3”, “L4”, or other
operand may be included in an operand field in a prefetch
instruction to indicate the target level of cache. In one
embodiment, a prefetch may include prefetching data from
system memory (or prefetching the system memory
addresses for that data) to a cache or prefetching from one
level of cache to a higher level of cache (e.g., from L3 to .2
or L1).

[0037] Example formats of a prefetch instruction (e.g.,
depicted in programming language and not machine lan-
guage) are provided below in Table 1.

TABLE 1

Example instruction formats:

Opcode Operands

PREFETCH2D base, region, stride, target (1)
cache

PREFETCH3D base, region, stride, target (2)
cache

May 9, 2019

TABLE 1-continued

Example instruction formats:
Opcode Operands
PREFETCH dimension, base, region, 3)
stride, target cache

2D_ BLOCK_PREFETCHx [A], k, nl)
2D_BLOCK__CENTER_PREFETCHx [A], k, nl (5)
3D_BLOCK__SPARSE_PREFETCHx [A], k, nl, n2 (6)
3D_BLOCK_PREFETCHx [Al, k, nl, n2)

[0038] Note the numbers in parenthesis at the end are
merely to aid in the discussion below and are not part of the
operand fields. The opcode names are merely examples and
other names may be used. An operand may be an immediate
value, an address, a register (e.g., a single vector register for
all operands or multiple registers for an operand or oper-
ands), etc. Although certain operands are listed with certain
opcodes, the disclosure is not so limited, e.g., the opcodes
and operand(s) may be utilized in any combination. A
prefetch instruction may use memory, for example, system
memory or a register (e.g., a single instruction multiple data
(SIMD) register), to hold all or various operands. In one
embodiment, an operand is stored in each element of a
multiple data register. In one embodiment, an operand is
stored in each of multiple registers. A prefetch instruction
may include an operand indicating additional information
about the region, for example, data type sizes (e.g., the bit
size of each element).

[0039] In reference to example instruction format (1), the
opcode PREFETCH2D may cause a hardware processor
(e.g., as discussed herein) to prefetch a two-dimensional
(2D) block of elements from a multidimensional (e.g., 2D or
3D) array. The operand field of base may indicate (e.g.,
encode) the base (e.g., system memory) address of the
two-dimensional block of elements that are to be fetched
into (e.g., the target) cache from a multidimensional array
located in the system memory by execution of the instruc-
tion. In one embodiment, the operand field of base is the
starting element, e.g., not necessarily an element on a
boundary. The operand field of region (which may be in a
single register or multiple registers, etc.) may indicate (e.g.,
encode) the dimensions (e.g., height and width) of the 2D
region that is to be fetched into (e.g., the target) cache from
a multidimensional array located in the system memory by
execution of the instruction. In one embodiment, the oper-
and field of region is the number of bits or elements in each
of the width (e.g., the x direction in Cartesian coordinates)
and the height (e.g., the y direction in in Cartesian coordi-
nates). The operand field of stride may indicate (e.g.,
encode) the stride (e.g., in bits or number of elements) of the
multidimensional block of elements to be prefetched and/or
the multidimensional array in system memory. The stride
may be different in each of the two dimensions, e.g., the
stride data field may include a first stride for one dimension
(e.g., the x direction in Cartesian coordinates) and a second
stride for a second dimension (e.g., the y direction in
Cartesian coordinates). The operand field of target cache
may indicate (e.g., encode) the identification of the (e.g.,
target) cache (e.g., cache level) that the two-dimensional
block of elements are to be fetched (e.g., loaded) into cache
from a multidimensional array located in the system
memory by execution of the instruction. In one embodiment,

US 2019/0138309 Al

the operand field of target cache is the last level cache or L3.
Execution of such an instruction may prefetch into cache the
entire rectangle of height by width of the system memory
region starting with the base address and using stride(s)
between corresponding rows and/or columns of the rectan-
gular region.

[0040] In reference to example instruction format (2), the
opcode PREFETCH3D may cause a hardware processor
(e.g., as discussed herein) to prefetch a three-dimensional
(3D) block of elements from a multidimensional (e.g., 3D or
4D) array. The operand field of base may indicate (e.g.,
encode) the base (e.g., system memory) address of the
three-dimensional block of elements that are to be fetched
into (e.g., the target) cache from a multidimensional array
located in the system memory by execution of the instruc-
tion. In one embodiment, the operand field of base is the
starting element, e.g., not necessarily an element on a
boundary. The operand field of region (which may be in a
single register or multiple registers, etc.) may indicate (e.g.,
encode) the dimensions (e.g., height, width, and depth) of
the 3D region that is to be fetched into (e.g., the target) cache
from a multidimensional array located in the system
memory by execution of the instruction. In one embodiment,
the operand field of region is the number of bits or elements
in each of the height (e.g., the z direction in Cartesian
coordinates), the width (e.g., the x direction in Cartesian
coordinates), and the depth (e.g., the y direction in in
Cartesian coordinates). The operand field of stride may
indicate (e.g., encode) the stride (e.g., in bits or number of
elements) of the multidimensional block of elements to be
prefetched and/or the multidimensional array in system
memory. The stride may be different in each of two dimen-
sions or three dimensions, e.g., the stride data field may
including a first stride for one dimension (e.g., the x direc-
tion in Cartesian coordinates), a second stride for a second
dimension (e.g., the y direction in Cartesian coordinates),
and a third stride for a third dimension (e.g., the z direction
in Cartesian coordinates). The operand field of target cache
may indicate (e.g., encode) the identification of the (e.g.,
target) cache (e.g., cache level) that the three-dimensional
block of elements are to be fetched (e.g., loaded) into cache
from a multidimensional array located in the system
memory by execution of the instruction. In one embodiment,
the operand field of target cache is the last level cache or L3.
Execution of such an instruction may prefetch into cache the
entire cuboid of height by width by depth of the system
memory region starting including the base address and using
stride(s) between corresponding elements of the rectangular
region.

[0041] In reference to example instruction format (3), the
opcode PREFETCH may cause a hardware processor (e.g.,
as discussed herein) to prefetch a multidimensional block of
elements from a multidimensional array with the number of
dimensions being an operand field, e.g., instead of being part
of the opcode. For example, the PREFETCH instruction
with an operand field of dimension being 2 may function as
the PREFETCH2D instruction above. For example, the
PREFETCH instruction with an operand field of dimension
being 3 may function as the PREFETCH3D instruction
above. The operand field of dimension may be 2, 3, 4, 5, 6,
7, 8, 9, etc., and may include scaling the operands, e.g.,
scaling (e.g., modifying) the stride operand(s) and/or the
region operand to define the boundaries of the multidimen-
sional block of elements to be prefetched. In one embodi-

May 9, 2019

ment, the stride for one or more dimensions (e.g., each
dimension) of the multidimensional block of elements to be
prefetched may be an immediate value and/or stored in
memory, e.g., in a register.

[0042] In reference to example instruction format (4), the
opcode 2D_BLOCK_PREFETCHx may cause a hardware
processor (e.g., as discussed herein) to prefetch a two-
dimensional (2D) block (e.g., square) of elements from a
multidimensional (e.g., 2D or 3D) array. The operand field
of [A] may indicate (e.g., encode) the base (e.g., system
memory) address of the two-dimensional block of elements
that are to be fetched into (e.g., the target) cache from a
multidimensional array located in the system memory by
execution of the instruction. In one embodiment, the oper-
and field of [A] is the starting element, e.g., an element on
a boundary. The operand field of k, e.g., which may refer to
a half width, (or corresponding to a full width of (2*k+1) in
at least one dimension of a multidimensional block of
elements, e.g., as in stencil 100 in FIG. 1) may indicate (e.g.,
encode) the dimensions (e.g., height and width) of the 2D
region that is to be fetched into (e.g., the target) cache from
a multidimensional array located in the system memory by
execution of the instruction. In one embodiment, the oper-
and field of k indicates that (2*k+1) is the number of bits or
elements in each of the width (e.g., the x direction in
Cartesian coordinates) and the height (e.g., the y direction in
in Cartesian coordinates). The operand field of nl may
indicate (e.g., encode) the stride (e.g., in bits or number of
elements) of the multidimensional block of elements to be
prefetched and/or the multidimensional array in system
memory. The stride may be different in each of the two
dimensions, e.g., the stride data field n1 may include a first
stride for one dimension (e.g., the x direction in Cartesian
coordinates) and a second stride for a second dimension
(e.g., the y direction in Cartesian coordinates). The opcode
field of x may indicate (e.g., encode) the identification of the
(e.g., target) cache (e.g., cache level) that the two-dimen-
sional block of elements are to be fetched (e.g., loaded) into
cache from a multidimensional array located in the system
memory by execution of the instruction. Alternatively, x
may be in an operand field. In one embodiment, the operand
field of target cache is the last level cache or [.3. Execution
of such an instruction may prefetch into cache the entire
square of height by width of the system memory region
starting at the base address and using stride(s) between
corresponding rows and/or columns of the rectangular
region. For example, this instruction may prefetch into cache
level “x” (where X is a variable) a number 2*k+1 elements
(e.g., cache lines) starting from address A (e.g., as specified
by the first operand). The set of k elements (e.g., cache lines)
prefetched may be square extending in each dimension as
[A]l, [A+nl], [A+2*n1], . . . [A+(k-1)*n1].

[0043] In reference to example instruction format (5), the
opcode 2D_BLOCK_CENTER_PREFETCHx may cause a
hardware processor (e.g., as discussed herein) to prefetch a
two-dimensional (2D) block (e.g., square) of elements from
a multidimensional (e.g., 2D or 3D) array. The operand field
of [A] may indicate (e.g., encode) the base (e.g., system
memory) address of the two-dimensional block of elements
that are to be fetched into (e.g., the target) cache from a
multidimensional array located in the system memory by
execution of the instruction. In one embodiment, the oper-
and field of [A] is the center element, e.g., element 105 in
FIG. 1, of the square of the multidimensional block of

US 2019/0138309 Al

elements. Other operands may be included, e.g., as dis-
cussed in reference to example instruction format (4) above.
For example, this instruction may prefetch into cache level
“x” (where X is a variable) a number k elements (e.g., cache
lines) including (e.g., in the center) address A (e.g., as
specified by the first operand). The set of k elements (e.g.,
cache lines) prefetched may be a square extending in each
dimension as [A-k*nl] to [A+k*nl].

[0044] A data field, e.g., operand nl, may include a
direction for a multidimensional block to extend towards,
e.g., (+ or -)x,y, or, z in 3D.

[0045] In reference to example instruction format (6), the
opcode 3D_BLOCK SPARSE_PREFETCHx may cause a
hardware processor (e.g., as discussed herein) to prefetch a
sparse three-dimensional (sparse 3D) block of elements
from a multidimensional (e.g., 3D or 4D) array. The operand
field of [A] may indicate (e.g., encode) the base (e.g., system
memory) address of the three-dimensional block of (sparse)
elements that are to be fetched into (e.g., the target) cache
from a multidimensional array located in the system
memory by execution of the instruction. In one embodiment,
the operand field of [A] is the starting element, e.g., an
element in the center of the sparse block. The operand field
of'k (e.g., which may refer to a half width or to a full width
of (2*k+1) in at least one dimension of a multidimensional
block of elements) may indicate (e.g., encode) the dimen-
sions (for example, the height, width, and depth, e.g., all of
the same value) of the 3D sparse block that is to be fetched
into (e.g., the target) cache from a multidimensional array
located in the system memory by execution of the instruc-
tion. In one embodiment, the operand field of (2*k+1) is the
number of bits or elements in each of the width (e.g., the x
direction in Cartesian coordinates), the height (e.g., the z
direction in in Cartesian coordinates), and the depth (e.g.,
the y direction in Cartesian coordinates). The operand fields
of nl and n2 may indicate (e.g., encode) the stride (e.g., in
bits or number of elements) in a first direction and a second
direction, respectively, of the multidimensional block of
elements to be prefetched and/or the multidimensional array
in system memory. The stride may be different in each of the
two dimensions, e.g., the stride data field may include a first
stride n1 for one dimension (e.g., the x direction in Cartesian
coordinates) and a second stride n2 for a second dimension
(e.g., the y direction in Cartesian coordinates). The stride in
the third direction may be n1*n2. For example, if the starting
element is A[x,y,z] and the element to go to is A[x,y,z+1],
the distance between them is A[X,y,z]+nl1*n2* size of ele-
ment. The opcode field of x may indicate (e.g., encode) the
identification of the (e.g., target) cache (e.g., cache level)
that the sparse three-dimensional block of elements are to be
fetched (e.g., loaded) into cache from a multidimensional
array located in the system memory by execution of the
instruction. Alternatively, X may be in an operand field. In
one embodiment, the operand field of target pOcache is the
last level cache or [.3. Execution of such an instruction may
prefetch into cache the three intersecting one dimensional
arrays (e.g., at right angles to each other) of height by width
by depth of the system memory region including the base
address and using stride(s) between corresponding rows
and/or columns of the region. For example, this instruction
may prefetch into cache level “x” (where x is a variable) a
number 6*k+1 of elements (e.g., cache lines) including
address A (e.g., as specified by the first operand). The set of
k elements (e.g., cache lines) prefetched may be the sparse

May 9, 2019

3D block extending in each dimension as [A-k*nl] to
[A+k*nl], e.g., as in stencil 100 in FIG. 1.

[0046] In reference to example instruction format (7), the
opcode 3D_BLOCK_PREFETCHx may cause a hardware
processor (e.g., as discussed herein) to prefetch a three-
dimensional (3D) block from a multidimensional (e.g., 3D
or 4D) block. The operand field of [A] may indicate (e.g.,
encode) the base (e.g., system memory) address of the
three-dimensional block of elements that are to be fetched
into (e.g., the target) cache from a multidimensional array
located in the system memory by execution of the instruc-
tion. In one embodiment, the operand field of [A] is the
starting element, e.g., an element in the center of the sparse
block. The operand field of k (e.g., which may refer to a half
width or to a full width of (2*k+1) in at least one dimension
of'a multidimensional block of elements (e.g., a stencil) may
indicate (e.g., encode) the dimensions (for example, the
height, width, and depth, e.g., all of the same value) of the
3D block that is to be fetched into (e.g., the target) cache
from a multidimensional array located in the system
memory by execution of the instruction. In one embodiment,
the operand field of k indicates that (2*k+1) is the number
of bits or elements in each of the width (e.g., the x direction
in Cartesian coordinates), the height (e.g., the z direction in
in Cartesian coordinates), and the depth (e.g., the y direction
in Cartesian coordinates). The operand fields of nl and n2
may indicate (e.g., encode) the stride (e.g., in bits or number
of elements) in a first direction and a second direction,
respectively, of the multidimensional block of elements to be
prefetched and/or the multidimensional array in system
memory. The stride may be different in each of the two
dimensions, e.g., the stride data field may include a first
stride n1 for one dimension (e.g., the x direction in Cartesian
coordinates) and a second stride n2 for a second dimension
(e.g., the y direction in Cartesian coordinates). The stride to
the third direction may be n1*n2. The opcode field of x may
indicate (e.g., encode) the identification of the (e.g., target)
cache (e.g., cache level) that the sparse three-dimensional
block of elements are to be fetched (e.g., loaded) into cache
from a multidimensional array located in the system
memory by execution of the instruction. Alternatively, x
may be in an operand field. In one embodiment, the operand
field of target cache is the last level cache or [.3. Execution
of such an instruction may prefetch into cache the cuboid of
height by width by depth of the system memory region
including the base address and using stride(s) between
corresponding rows and/or columns of the region. For
example, this instruction may prefetch into cache level “x”
(where x is a variable) a number (2¥k+1)*(2*k+1)*(2*k+1)
of elements (e.g., cache lines) starting at (e.g., corner)
address A (e.g., as specified by the first operand). The set of
k elements (e.g., cache lines) prefetched may be the cuboid
formed from [A], [A+nl], [A+2*nl] . . ., [A+(k-1)*nl],
[A+n1*n2], [A+nl*n2+nl], . . . [A+(k-D)*nl*n2+(k-1)
*nl]. Alternatively, this instruction may be replaced by a
quantity (2¥*k+1) of the 2D_BLOCK_PREFETCHXx instruc-
tions.

[0047] Although the target cache (e.g., the identification of
the cache to load the multidimensional block of elements
into) is shown above (e.g., as target cache or x), it is not
required, for example, no target cache field may be present.
Additionally or alternatively, the target cache may be
implicit in the operand, e.g., a prefetch opcode may indicate
to the hardware processor executing the instruction (e.g.,

US 2019/0138309 Al

during decoding) that the target cache is a certain cache level
(e.g., L1, L2, L3, L4, etc.). In one embodiment, the target
cache for the instruction is the same for an opcode that the
particular opcode indicates the target cache to the hardware
processor, e.g., the target cache is always a certain cache
level (e.g., L1, L.2, L3, L4, etc.).

[0048] FIG. 2 illustrates a block diagram 200 of a multiple
core hardware processor 202 with a prefetch unit 220
according to embodiments of the disclosure. Any processor
may include a prefetch unit, e.g., the processors discussed
below. FIG. 2 illustrates an embodiment of multiple proces-
sor cores (core A and core B) and multiple levels of caches
(L1, L2, and L3), e.g., in a cache coherency hierarchy.
Although two cores are depicted, a single or more than two
cores may be utilized. Although multiple levels of cache are
depicted, a single, or any number of caches may be utilized.
Cache(s) may be organized in any fashion, for example, as
a physically or logically centralized or distributed cache.
[0049] Inan embodiment, a processor, such as a processor
or processors including the processor cores illustrated in the
Figures, or any other processor, may include one or more
caches. FIG. 2 illustrates an embodiment of a three level
(e.g., levels 1 (LL1), 2 (L.2), and 3 (L.3)) cache. A processor
may include at least one core and at least one un-core. In one
embodiment, multiple cores (core A and B) are of a single
processor 202. A core (e.g., core A and core B) may include
the components of a processor to execute instructions. An
un-core may include all logic not in a core. A processor core
(e.g., core A) may include components such as a level 1
instruction cache (L.11) 208 and a level 1 data cache (L1D)
210. A core (e.g., core A) may include components such as
an address generation unit (AGU) 212, translation lookaside
buffer (TLB) 214, and a level 2 cache (I.2) 216. A core may
or may not share a cache with other cores, e.g., core A and
core B may share the level 3 cache (1.3) 218 but not the .2
216 or L1 (208.210). A core may include any combination
of'these components or none of these components. Processor
202 (e.g., core A and core B) may access (e.g., load and
store) data in the system memory 224, e.g., as indicated by
the arrows.

[0050] In one embodiment, the system memory 224 com-
municates with the core over a bus, e.g., at a slower access
and/or cycle time than the core accessing cache (e.g. cache
on the processor 202). System memory 224 may include a
multidimensional array 226, e.g., loaded into the system
memory 224 previously to the execution of a prefetch
instruction.

[0051] An address generation unit (e.g., AGU 212), for
example, address computation unit (ACU), may refer to an
execution unit inside a processor (e.g., a core) that calculates
addresses used to access memory (e.g., system memory
224), for example, to allow the core to access the system
memory. In one embodiment, the AGU takes an address
stream (e.g., equations) as an input and outputs the (e.g.,
virtual) addresses for that stream. An AGU (e.g., circuit)
may perform arithmetic operations, such as addition, sub-
traction, modulo operations, or bit shifts, for example,
utilizing an adder, multiplier, shifter, rotator, etc. thereof.
[0052] A translation lookaside buffer (e.g., TLB 214) may
convert a virtual address to a physical address (e.g., of the
system memory). A TLB may include a data table to store
(e.g., recently used) virtual-to-physical memory address
translations, e.g., such that the translation does not have to
be performed on each virtual address present to obtain the

May 9, 2019

physical memory address. If the virtual address entry is not
in the TLB, a processor may perform a page walk to
determine the virtual-to-physical memory address transla-
tion.

[0053] Prefetch unit 220 may be a separate functional unit,
e.g., not utilizing the functional units (e.g., execution unit,
Arithmetic Logic Unit (ALU), AGU, TLB, etc.) of a core.
Prefetch unit may be utilized by a prefetch instruction (e.g.,
as disclosed herein). Prefetch unit may include circuitry
and/or hardware logic to perform the prefetching discussed
herein. Prefetch unit may be part of a processor (e.g., on the
un-core). Prefetch unit may communicate with the core(s) of
the processor, e.g., via communication resources (not
shown), such as, but not limited to, a ring network. Processor
202 may communicate with the system memory 224 and/or
caches (e.g., L1, L2, or L3 in FIG. 2) via a memory
controller (e.g., as part of the processor) and/or an intercon-
nect. Prefetch unit 220 may output a system memory
addresses of the multidimensional block of elements that is
to-be-loaded (e.g., copied) into cache (e.g., L1, L2, or L3 in
FIG. 2) from multidimensional array 226 in system memory
224. Prefetch unit 220 may output the system memory
addresses to the memory controller (not shown) of processor
202.

[0054] FIG. 3 illustrates a block diagram of a hardware
prefetch unit 320 according to embodiments of the disclo-
sure. A hardware prefetch unit may include any combination
or none of the elements shown. For example, prefetch unit
may only include a control unit 324 (or control unit logic) to
take as input the specifications (e.g., dimension, base
address, region boundaries, stride, and/or target cache) of the
multidimensional block of elements to prefetch into cache
and/or output (e.g., via logic or a state machine, such as a
finite state machine (FSM)) the (e.g., physical) system
memory addresses of the multidimensional block of ele-
ments, for example, to move that data of the multidimen-
sional block of elements into the cache. In one embodiment,
the output of system memory addresses (e.g., memory
request) is sent to a queue or buffer of a memory control unit
(e.g., memory controller), for example, to complete those
requests.

[0055] In one embodiment, the hardware prefetch unit
may connect to the system memory and cause the move of
the multidimensional block of elements into the cache (e.g.,
without utilizing a core’s resources).

[0056] Inone embodiment, a prefetch unit is separate from
the execution unit and/or processor pipeline (e.g., 900 in
FIG. 9). For example, a prefetch instruction may be executed
(e.g., initiated) by the execution unit and thereafter utilize
the prefetch unit to obtain the system memory addresses of
the multidimensional block of element to be placed into the
cache without the addresses being generated in a (e.g.,
execution unit of) a core of the processor.

[0057] In FIG. 3, depicted prefetch unit 320 includes an
input 322. Input 322 may be the specifications (e.g., dimen-
sion, base address, region boundaries, stride, and/or target
cache) of the multidimensional block of elements to prefetch
into cache. Specifications may be the operand and/or opcode
data from the prefetch instruction. Input 322A (optional)
may connect directly to the control unit 324 to provide the
specifications and/or include a queue. Control unit 324 may
include the logic to convert the specifications into virtual
addresses. In one embodiment, control unit 324 includes a
finite state machine (FSM 325) to convert the specifications

US 2019/0138309 Al

into virtual addresses. For example, a FSM having a state (or
set of states) for each multidimensional block size (e.g., 2D,
3D, 4D, etc.) and utilizing certain states of the FSM to output
an address stream (e.g., equations) accordingly for the
specifications. For example, in reference to example instruc-
tion format (4) for the 2D_BLOCK_PREFETCHx opcode,
the address stream may include [A], [A+nl], [A+2*nl], . .
. [A+(k-1)*n1] and supplying the values for A, k, and nl.
[0058] The address stream may be output 326 to an
Address Generation Unit 312. An AGU may be prefetch
unit’s AGU 312 or a core’s AGU (e.g., AGU 212 in FIG. 2).
An AGU may generate a (e.g., virtual) address from the
address stream. As noted above, an AGU’s hardware circuit
may include arithmetic or other hardware components, e.g.,
an adder, multiplier, shift register, etc. The virtual addresses
for the (e.g., entire) stream may then be output 328 (e.g.,
sequentially) into the transition lookaside buffer (TLB) 314
(or other component to convert a virtual address into an
address format that that the processor may use to access the
system memory (e.g., system memory 224 in FIG. 2)). In
FIG. 3, TLB 314 may receive the virtual addresses and
convert them into physical addresses. In one embodiment, a
TLB may be prefetch unit’s TLB 314 or a core’s TLB (e.g.,
TLB 214 in FIG. 2). The physical addresses may be output
from the prefetch unit 320, e.g., via output 330 or directly
from the TLB via 300A. A queue may be included at 330 or
330A. As an optional feature, a prefetch unit 320 may
include a status register 332 (or other status indicator) such
that a component or user may query the status register 332
to determine the state of the prefetch unit. In one embodi-
ment, a status register 332 may indicate e.g., via output
334A, that the current prefetch operation is in progress,
completed, failed, etc. In one embodiment, a status register
332 may indicate that the prefetch unit is busy or not busy.
In one embodiment, an output from the status register and/or
an input query may occur via prefetch unit output 334.
Control unit 324 may control (e.g., update) the status register
332.

[0059] Note that in the use of arrows for communication
herein, a single direction arrow may allow communication
in either direction (e.g., to transmit and/or receive a signal).
[0060] FIG. 4 illustrates a flow diagram 400 of prefetching
a multidimensional block of elements from a multidimen-
sional array according to embodiments of the disclosure.
Input 402 may be the specifications (e.g., dimension, base
address, region boundaries, stride, and/or target cache) of the
multidimensional block of elements to be prefetched. Those
specifications may then be used to create an address stream
404 (e.g., by the control unit 324). The address stream may
then be used to generate the (e.g., virtual) addresses. The
stream may iterate at 408 until all addresses of the stream are
prefetched 410 into the cache, that is, until done (e.g.,
completed) 412. In one embodiment, prefetch logic (e.g., a
FSM) may control the performance of certain or all of the
actions in flow diagram 400.

[0061] As a further example, below are three possible
hardware logic (e.g., FSM) implementations. First, logic
(e.g., FSM) may include an integer adder (and/or multiplier,
etc.) to calculate addresses (e.g., address A (base address)+
64; see the address streams above for other examples) and a
TLB to translate the virtual address into a physical address
prior to sending to the memory subsystem (e.g., controller).
In this implementation, the FSM may be self-contained and
may be developed as a separate functional unit inside the

May 9, 2019

processor. In one embodiment, the prefetch unit’s TLB is
kept coherent with the processor’s TLB(s). Secondly, the
logic (e.g., FSM) may contain the AGU (e.g., integer adder)
to generate the virtual addresses and the virtual addresses
may then be fed into the processor’s memory pipeline for
virtual to physical translation (e.g., via a TLB) and/or
queued for cache and system memory accesses (e.g., alter-
nating each). Thirdly, the logic (e.g., FSM) may include a
control unit to generate an address stream but utilize the
processor core’s AGU to generate the virtual address of the
system memory and the processor core’s TLB to generate
physical system memory requests to be queued for cache
and system memory accesses.

[0062] FIG. Sillustrates a flow diagram 500 of prefetching
a multidimensional block of elements from a multidimen-
sional array according to embodiments of the disclosure.
The flow diagram includes decoding, with a decode unit, a
prefetch instruction to prefetch a multidimensional block of
elements from a multidimensional array into a cache,
wherein at least one operand of the prefetch instruction is to
indicate a system memory address of an element of the
multidimensional block of elements, a stride of the multi-
dimensional block of elements, and boundaries of the mul-
tidimensional block of elements 502, and executing with an
execution unit the prefetch instruction to: generate system
memory addresses of the other elements of the multidimen-
sional block of elements, and load the multidimensional
block of elements into the cache from the system memory
addresses 504.

[0063] Hardware prefetch methods and apparatuses dis-
closed herein may be utilized on regularly shaped (e.g., 1D,
2D, or 3D) blocks of data using regular access patterns
within these blocks. Adjacent blocks may either be contigu-
ous (e.g., in a convolution application) or non-contiguous
(e.g., in sparse solver, sparse block matrix vector multipli-
cation, or seismic modeling and prediction applications).
[0064] In certain embodiments, a prefetch instruction may
prefetch the multidimensional block of elements to one or
more of the cache levels. In one embodiment, the cache level
is a victim cache. A victim cache may be the last level cache
(LLC), for example, .3 218 in FIG. 2. In one example, a
(e.g., macro-) instruction prefetches the multidimensional
block of elements from system memory into a victim cache.
As a processor (e.g., core) may look through the caches (e.g.,
from highest (e.g. L1 in FIG. 2) to lowest (e.g., L3 in FIG.
2) for data (e.g., a cache line) before accessing the (e.g.,
much slower) system memory, a prefetch to the victim cache
may allow the processor to access that data without access-
ing the system memory and without providing other notice
to the processor that the data in question is in the cache. In
another embodiment, the prefetch of the multidimensional
block of elements may include notifying the processor (e.g.,
cores) that the multidimensional block of elements are
loaded into the cache (e.g., using a tag directory of those
cache lines in the cache).

[0065] In one embodiment where a speculative prefetch
data set may have been generated and placed into the cache,
the prefetch instructions, methods, and and apparatuses
discussed herein may replace that speculative prefetch data
set in the cache with the multidimensional block of ele-
ments. Replacing existing (e.g.. non-utilizable) cache may
be useful, for example, owing to the limited size of the cache
relative to the size of (e.g., the speculative prefetch data set
and/or) the multidimensional block of elements, the limited

US 2019/0138309 Al

resources for fetching data from system memory, and the
power consumption caused by incorrect prefetches In one
embodiment, the speculative prefetch data set and the mul-
tidimensional block of elements correspond to the same
future instruction that is to operate on this data.

[0066] In certain embodiments, hardware prefetch meth-
ods and apparatuses disclosed herein may generate multiple
memory requests with non-constant difference between the
(e.g., virtual) addresses, for example, not merely contiguous
virtual addresses for the entire multidimensional block of
elements. In certain embodiments, hardware methods and
apparatuses herein do not merely generate random numbers,
but instead may target a specific fixed pattern (e.g., as
discussed herein).

[0067] In certain embodiments, hardware prefetch meth-
ods and apparatuses disclosed herein may reduce the cache
miss rate and improve performance for operations that
operate on randomly located in memory (e.g., regularly
shaped (1D, 2D, or 3D)) blocks of elements, e.g., of different
sized blocks. While the access pattern within each block
may be regular (e.g., sequential or strided), as the operation
(e.g., stencil operation) moves to the next such block, the
access pattern may become interrupted and a speculative
prefetch engine may require the learning of another access
pattern (e.g., causing the correct data in a new block to not
be in the cache) within the new block as opposed to a
prefetch instruction that allows the prefetching of a (e.g.,
programmer) defined multidimensional block of elements as
disclosed herein.

[0068] Consider for example, prefetching that requires
seeing the same stride three times in order to learn the stream
and start speculatively prefetching with that stride. After
moving to a new block, an operation may experience three
misses of the data in the cache. If the data comes from
memory, assuming 300 cycles latency for memory access,
the processor pipeline may stall up to 1000 cycles. If the
computation within a block takes 500 cycles, there is a factor
of 3 performance loss (e.g.,1500/500) compared to the case
when data is available in the cache by or before the time the
operation on that data is being executed.

[0069] Inone embodiment, sparse linear is a direct method
to solve a sparse system of equations M*x=b. In one
implementation, an array (e.g., matrix) M is reordered.
Further, columns of the reordered matrix may be partitioned
into super-blocks, e.g., where each superblock is a small
subset of consecutive columns with the same non-zero
structure. Due to the same non-zero structure, these super-
blocks may be stored as relatively long and narrow dense
matrices, e.g., with additional indexing data structures to
access individual rows/columns of super block. The width
and height of these matrices may depend on a non-zero
structure, as well as their location within the matrix. Super-
nodes on one side (e.g., the left) may be (e.g., much) smaller
than super nodes on the other side (e.g., the right). In one
example, supernode sizes differ between 1x1 and 512x16.
To expose parallelism on multi-core processors, (e.g., larger)
supernodes may be further divided into (e.g., smaller) dense
matrices of variable dimension. As both supernodes may be
accessed in random fashion, e.g., as dictated by an elimi-
nation tree order, a speculative prefetch may not prefetch the
correct data, e.g., owing to not capturing the random tran-
sitions from one supernode to another and thus prefetch
beginning at the next supernode. In addition, the sizes of the
supernodes may be small and/or different. A supernode may

May 9, 2019

include a triangular 2D array. Certain embodiments herein
may allow prefetching of supernode data (e.g., for a trian-
gular 2D region).

[0070] Embodiments of this disclosure allow for prefetch-
ing of data for geometric multigrid methods (e.g., to prefetch
cells of a grid level); convolution-based kernels such as, but
not limited to, those in Intel® Integrated Performance Primi-
tives (IPP); high-order methods in computational fluid
dynamics (CFD); and high performance implementation of
Basic Linear Algebra Subprograms (e.g., BLAS3) dense
linear algebra kernels. Although prefetching by certain
embodiments herein may be utilized for convolution, this
disclosure is not so limited. For example, certain embodi-
ments may be utilized to prefetch data that does not exhibit
sequential or nearly sequential access patterns.

[0071] In one embodiment, the prefetch operands for
multiple prefetch instructions according to this disclosure
are stored in separate memory locations (e.g., in registers),
and each prefetch instruction may be executed on its respec-
tive set of operands to provide each set of prefetched data,
for example, at a desired time. In certain embodiments, this
may allow for the prefetching of multidimensional blocks of
elements where each block is of a different, non-sequential
(e.g., irregular) access pattern from other (e.g., previously
accessed) blocks.

[0072] Inyet another embodiment, spatial adaptivity in 3D
may be realized by flexible unstructured polyhedral (e.g.,
tetrahedral or hexahedral) meshes, e.g., in seismic modeling
and prediction applications. Tetrahedral meshes may form a
multidimensional array, e.g., of four triangular faces. Hexa-
hedral meshes may form a multidimensional array, e.g., of
six faces. Certain embodiments herein may allow prefetch-
ing of that data (e.g., for a face of a mesh). For example,
methods and apparatuses of this disclosure may provide a
prefetching operator for the global operators and time-
integrated unknowns. The access structure may be defined
by the mesh (e.g., it is known at runtime but not at compile
time). While the i face of a polyhedron (e.g,., tetrahedron or
hexahedron) is processed, this disclosure may provide a
range-prefetch of the matrices needed for the (i+1)” face. As
the required matrices may have varying sizes (e.g., depend-
ing on the sparsity pattern of the matrix), a 2D prefetch may
be utilized.

[0073] In one embodiment, sparse matrix-vector multipli-
cation using a block compressed row (BCR) format and
multiple right-hand sides may include non-contiguous
blocks of a multidimensional array. Certain embodiments
herein may allow prefetching of that non-contiguous data.

[0074] In one embodiment, a hardware processor includes
a decoder to decode a prefetch instruction to prefetch a
multidimensional block of elements from a multidimen-
sional array into a cache, wherein at least one operand of the
prefetch instruction is to indicate a system memory address
of an element of the multidimensional block of elements, a
stride of the multidimensional block of elements, and
boundaries of the multidimensional block of elements, and
an execution unit to execute the prefetch instruction to:
generate system memory addresses of the other elements of
the multidimensional block of elements, and load the mul-
tidimensional block of elements into the cache from the
system memory addresses. The execution unit may execute
the prefetch instruction to cause a hardware prefetch unit to:
generate system memory addresses of the other elements of
the multidimensional block of elements, and/or load the

US 2019/0138309 Al

multidimensional block of elements into the cache from the
system memory addresses. The hardware processor may
include a prefetch unit to generate the system memory
addresses of the other elements of the multidimensional
block of elements from a state machine. The prefetch unit
may include an adder to generate the system memory
addresses of the other elements of the multidimensional
block of elements. The prefetch unit may include an address
generation unit to generate the system memory addresses of
the other elements of the multidimensional block of ele-
ments. The at least one operand of the instruction may
indicate a level of the cache to load the multidimensional
block of elements. The stride may include a first stride in a
first dimension and a different, second stride in a second
dimension. The execution unit may load the multidimen-
sional block of elements into a victim cache. The execution
unit may replace a speculative prefetch data set in the cache
with the multidimensional block of elements.

[0075] In another embodiment, a method includes decod-
ing, with a decode unit, a prefetch instruction to prefetch a
multidimensional block of elements from a multidimen-
sional array into a cache, wherein at least one operand of the
prefetch instruction is to indicate a system memory address
of an element of the multidimensional block of elements, a
stride of the multidimensional block of elements, and
boundaries of the multidimensional block of elements, and
executing with an execution unit the prefetch instruction to:
generate system memory addresses of the other elements of
the multidimensional block of elements, and load the mul-
tidimensional block of elements into the cache from the
system memory addresses. The method may include pro-
viding a prefetch unit to generate the system memory
addresses of the other elements of the multidimensional
block of elements from a state machine. The prefetch unit
may include an adder to generate the system memory
addresses of the other elements of the multidimensional
block of elements. The prefetch unit may include an address
generation unit to generate the system memory addresses of
the other elements of the multidimensional block of ele-
ments. The at least one operand of the instruction may
indicate a level of the cache to load the multidimensional
block of elements. The stride may include a first stride in a
first dimension and a different, second stride in a second
dimension. The execution unit may load the multidimen-
sional block of elements into a victim cache. The execution
unit may replace a speculative prefetch data set in the cache
with the multidimensional block of elements.

[0076] In yet another embodiment, an apparatus includes
a set of one or more processors, and a set of one or more data
storage devices that stores code, that when executed by the
set of processors causes the set of one or more processors to
perform the following: decoding, with a decode unit, a
prefetch instruction to prefetch a multidimensional block of
elements from a multidimensional array into a cache,
wherein at least one operand of the prefetch instruction is to
indicate a system memory address of an element of the
multidimensional block of elements, a stride of the multi-
dimensional block of elements, and boundaries of the mul-
tidimensional block of elements, and executing with an
execution unit the prefetch instruction to: generate system
memory addresses of the other elements of the multidimen-
sional block of elements, and load the multidimensional
block of elements into the cache from the system memory
addresses. The set of data storage devices may further store

May 9, 2019

code, that when executed by the set of processors causes the
set of processors to perform the following: further compris-
ing providing a prefetch unit to generate the system memory
addresses of the other elements of the multidimensional
block of elements from a state machine. The set of data
storage devices may further store code, that when executed
by the set of processors causes the set of processors to
perform the following: wherein the prefetch unit further
comprises an adder to generate the system memory
addresses of the other elements of the multidimensional
block of elements. The set of data storage devices may
further store code, that when executed by the set of proces-
sors causes the set of processors to perform the following:
wherein the prefetch unit further comprises an address
generation unit to generate the system memory addresses of
the other elements of the multidimensional block of ele-
ments. The set of data storage devices may further store
code, that when executed by the set of processors causes the
set of processors to perform the following: wherein the at
least one operand of the instruction is to indicate a level of
the cache to load the multidimensional block of elements.
The set of data storage devices may further store code, that
when executed by the set of processors causes the set of
processors to perform the following: wherein the stride
comprises a first stride in a first dimension and a different,
second stride in a second dimension. The set of data storage
devices may further store code, that when executed by the
set of processors causes the set of processors to perform the
following: wherein the execution unit is to load the multi-
dimensional block of elements into a victim cache. The set
of data storage devices may further store code, that when
executed by the set of processors causes the set of processors
to perform the following: wherein the execution unit is to
replace a speculative prefetch data set in the cache with the
multidimensional block of elements.

[0077] In another embodiment, a hardware processor
includes means to decode a prefetch instruction to prefetch
a multidimensional block of elements from a multidimen-
sional array into a cache, wherein at least one operand of the
prefetch instruction is to indicate a system memory address
of an element of the multidimensional block of elements, a
stride of the multidimensional block of elements, and
boundaries of the multidimensional block of elements, and
means to execute the prefetch instruction to: agenerate
system memory addresses of the other elements of the
multidimensional block of elements, and load the multidi-
mensional block of elements into the cache from the system
memory addresses.

[0078] In yet another embodiment, a machine readable
storage medium includes code, that when executed causes a
machine to perform a method disclosed herein.

[0079] An instruction set may include one or more instruc-
tion formats. A given instruction format may define various
fields (e.g., number of bits, location of bits) to specify,
among other things, the operation to be performed (e.g.,
opcode) and the operand(s) on which that operation is to be
performed and/or other data field(s) (e.g., mask). Some
instruction formats are further broken down though the
definition of instruction templates (or subformats). For
example, the instruction templates of a given instruction
format may be defined to have different subsets of the
instruction format’s fields (the included fields are typically
in the same order, but at least some have different bit
positions because there are less fields included) and/or

US 2019/0138309 Al

defined to have a given field interpreted differently. Thus,
each instruction of an ISA is expressed using a given
instruction format (and, if defined, in a given one of the
instruction templates of that instruction format) and includes
fields for specifying the operation and the operands. For
example, an exemplary ADD instruction has a specific
opcode and an instruction format that includes an opcode
field to specity that opcode and operand fields to select
operands (sourcel/destination and source2); and an occur-
rence of this ADD instruction in an instruction stream will
have specific contents in the operand fields that select
specific operands. A set of SIMD extensions referred to as
the Advanced Vector Extensions (AVX) (AVX1 and AVX2)
and using the Vector Extensions (VEX) coding scheme has
been released and/or published (e.g., see Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Septem-
ber 2014; and see Intel® Advanced Vector Extensions
Programming Reference, October 2014).

Exemplary Instruction Formats

[0080] Embodiments of the instruction(s) described herein
may be embodied in different formats. Additionally, exem-
plary systems, architectures, and pipelines are detailed
below. Embodiments of the instruction(s) may be executed
on such systems, architectures, and pipelines, but are not
limited to those detailed.

Generic Vector Friendly Instruction Format

[0081] A vector friendly instruction format is an instruc-
tion format that is suited for vector instructions (e.g., there
are certain fields specific to vector operations). While
embodiments are described in which both vector and scalar
operations are supported through the vector friendly instruc-
tion format, alternative embodiments use only vector opera-
tions the vector friendly instruction format.

[0082] FIGS. 6A-6B are block diagrams illustrating a
generic vector friendly instruction format and instruction
templates thereof according to embodiments of the disclo-
sure. FIG. 6A is a block diagram illustrating a generic vector
friendly instruction format and class A instruction templates
thereof according to embodiments of the disclosure; while
FIG. 6B is a block diagram illustrating the generic vector
friendly instruction format and class B instruction templates
thereof according to embodiments of the disclosure. Spe-
cifically, a generic vector friendly instruction format 600 for
which are defined class A and class B instruction templates,
both of which include no memory access 605 instruction
templates and memory access 620 instruction templates. The
term generic in the context of the vector friendly instruction
format refers to the instruction format not being tied to any
specific instruction set.

[0083] While embodiments of the disclosure will be
described in which the vector friendly instruction format
supports the following: a 64 byte vector operand length (or
size) with 32 bit (4 byte) or 64 bit (8 byte) data element
widths (or sizes) (and thus, a 64 byte vector consists of either
16 doubleword-size elements or alternatively, 8 quadword-
size elements); a 64 byte vector operand length (or size) with
16 bit (2 byte) or 8 bit (1 byte) data element widths (or
sizes); a 32 byte vector operand length (or size) with 32 bit
(4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit (1 byte) data
element widths (or sizes); and a 16 byte vector operand
length (or size) with 32 bit (4 byte), 64 bit (8 byte), 16 bit

May 9, 2019

(2 byte), or 8 bit (1 byte) data element widths (or sizes);
alternative embodiments may support more, less and/or
different vector operand sizes (e.g., 256 byte vector oper-
ands) with more, less, or different data element widths (e.g.,
128 bit (16 byte) data element widths).

[0084] The class A instruction templates in FIG. 6A
include: 1) within the no memory access 605 instruction
templates there is shown a no memory access, full round
control type operation 610 instruction template and a no
memory access, data transform type operation 615 instruc-
tion template; and 2) within the memory access 620 instruc-
tion templates there is shown a memory access, temporal
625 instruction template and a memory access, non-tempo-
ral 630 instruction template. The class B instruction tem-
plates in FIG. 6B include: 1) within the no memory access
605 instruction templates there is shown a no memory
access, write mask control, partial round control type opera-
tion 612 instruction template and a no memory access, write
mask control, vsize type operation 617 instruction template;
and 2) within the memory access 620 instruction templates
there is shown a memory access, write mask control 627
instruction template.

[0085] The generic vector friendly instruction format 600
includes the following fields listed below in the order
illustrated in FIGS. 6A-6B.

[0086] Format field 640—a specific value (an instruction
format identifier value) in this field uniquely identifies the
vector friendly instruction format, and thus occurrences of
instructions in the vector friendly instruction format in
instruction streams. As such, this field is optional in the
sense that it is not needed for an instruction set that has only
the generic vector friendly instruction format.

[0087] Base operation field 642—its content distinguishes
different base operations.

[0088] Register index field 644—its content, directly or
through address generation, specifies the locations of the
source and destination operands, be they in registers or in
memory. These include a sufficient number of bits to select
N registers from a PxQ (e.g. 32x512, 16x128, 32x1024,
64x1024) register file. While in one embodiment N may be
up to three sources and one destination register, alternative
embodiments may support more or less sources and desti-
nation registers (e.g., may support up to two sources where
one of these sources also acts as the destination, may support
up to three sources where one of these sources also acts as
the destination, may support up to two sources and one
destination).

[0089] Modifier field 646—its content distinguishes
occurrences of instructions in the generic vector instruction
format that specify memory access from those that do not;
that is, between no memory access 605 instruction templates
and memory access 620 instruction templates. Memory
access operations read and/or write to the memory hierarchy
(in some cases specifying the source and/or destination
addresses using values in registers), while non-memory
access operations do not (e.g., the source and destinations
are registers). While in one embodiment this field also
selects between three different ways to perform memory
address calculations, alternative embodiments may support
more, less, or different ways to perform memory address
calculations.

[0090] Augmentation operation field 650—its content dis-
tinguishes which one of a variety of different operations to
be performed in addition to the base operation. This field is

US 2019/0138309 Al

context specific. In one embodiment of the disclosure, this
field is divided into a class field 668, an alpha field 652, and
a beta field 654. The augmentation operation field 650
allows common groups of operations to be performed in a
single instruction rather than 2, 3, or 4 instructions.

[0091] Scale field 660—its content allows for the scaling
of the index field’s content for memory address generation
(e.g., for address generation that uses 2°°“**index+base).
[0092] Displacement Field 662A—its content is used as
part of memory address generation (e.g., for address gen-
eration that uses 2°°“’** index+base+displacement).

[0093] Displacement Factor Field 662B (note that the
juxtaposition of displacement field 662A directly over dis-
placement factor field 662B indicates one or the other is
used)—its content is used as part of address generation; it
specifies a displacement factor that is to be scaled by the size
of'a memory access (N)—where N is the number of bytes in
the memory access (e.g., for address generation that uses
2scale¥index+base+scaled displacement). Redundant low-
order bits are ignored and hence, the displacement factor
field’s content is multiplied by the memory operands total
size (N) in order to generate the final displacement to be
used in calculating an effective address. The value of N is
determined by the processor hardware at runtime based on
the full opcode field 674 (described later herein) and the data
manipulation field 654C. The displacement field 662A and
the displacement factor field 662B are optional in the sense
that they are not used for the no memory access 605
instruction templates and/or different embodiments may
implement only one or none of the two.

[0094] Data element width field 664—its content distin-
guishes which one of a number of data element widths is to
be used (in some embodiments for all instructions; in other
embodiments for only some of the instructions). This field is
optional in the sense that it is not needed if only one data
element width is supported and/or data element widths are
supported using some aspect of the opcodes.

[0095] Write mask field 670—its content controls, on a per
data element position basis, whether that data element
position in the destination vector operand reflects the result
of the base operation and augmentation operation. Class A
instruction templates support merging-writemasking, while
class B instruction templates support both merging- and
zeroing-writemasking. When merging, vector masks allow
any set of elements in the destination to be protected from
updates during the execution of any operation (specified by
the base operation and the augmentation operation); in other
one embodiment, preserving the old value of each element
of the destination where the corresponding mask bit has a 0.
In contrast, when zeroing vector masks allow any set of
elements in the destination to be zeroed during the execution
of any operation (specified by the base operation and the
augmentation operation); in one embodiment, an element of
the destination is set to 0 when the corresponding mask bit
has a 0 value. A subset of this functionality is the ability to
control the vector length of the operation being performed
(that is, the span of elements being modified, from the first
to the last one); however, it is not necessary that the elements
that are modified be consecutive. Thus, the write mask field
670 allows for partial vector operations, including loads,
stores, arithmetic, logical, etc. While embodiments of the
disclosure are described in which the write mask field’s 670
content selects one of a number of write mask registers that
contains the write mask to be used (and thus the write mask

May 9, 2019

field’s 670 content indirectly identifies that masking to be
performed), alternative embodiments instead or additional
allow the mask write field’s 670 content to directly specify
the masking to be performed.

[0096] Immediate field 672—its content allows for the
specification of an immediate. This field is optional in the
sense that is it not present in an implementation of the
generic vector friendly format that does not support imme-
diate and it is not present in instructions that do not use an
immediate.

[0097] Class field 668—its content distinguishes between
different classes of instructions. With reference to FIGS.
6A-B, the contents of this field select between class A and
class B instructions. In FIGS. 6 A-B, rounded corner squares
are used to indicate a specific value is present in a field (e.g.,
class A 668A and class B 668B for the class field 668
respectively in FIGS. 6A-B).

Instruction Templates of Class A

[0098] In the case of the non-memory access 605 instruc-
tion templates of class A, the alpha field 652 is interpreted
as an RS field 652A, whose content distinguishes which one
of the different augmentation operation types are to be
performed (e.g., round 652A.1 and data transform 652A.2
are respectively specified for the no memory access, round
type operation 610 and the no memory access, data trans-
form type operation 615 instruction templates), while the
beta field 654 distinguishes which of the operations of the
specified type is to be performed. In the no memory access
605 instruction templates, the scale field 660, the displace-
ment field 662A, and the displacement scale filed 662B are
not present.

No-Memory Access Instruction Templates—Full Round
Control Type Operation

[0099] In the no memory access full round control type
operation 610 instruction template, the beta field 654 is
interpreted as a round control field 654 A, whose content(s)
provide static rounding. While in the described embodi-
ments of the disclosure the round control field 654 A includes
a suppress all floating point exceptions (SAE) field 656 and
around operation control field 658, alternative embodiments
may support may encode both these concepts into the same
field or only have one or the other of these concepts/fields
(e.g., may have only the round operation control field 658).

[0100] SAE field 656—its content distinguishes whether
or not to disable the exception event reporting; when the
SAE field’s 656 content indicates suppression is enabled, a
given instruction does not report any kind of floating-point
exception flag and does not raise any floating point excep-
tion handler.

[0101] Round operation control field 658—its content
distinguishes which one of a group of rounding operations to
perform (e.g., Round-up, Round-down, Round-towards-zero
and Round-to-nearest). Thus, the round operation control
field 658 allows for the changing of the rounding mode on
a per instruction basis. In one embodiment of the disclosure
where a processor includes a control register for specifying
rounding modes, the round operation control field’s 650
content overrides that register value.

US 2019/0138309 Al

No Memory Access Instruction Templates—Data Transform
Type Operation

[0102] In the no memory access data transform type
operation 615 instruction template, the beta field 654 is
interpreted as a data transform field 654B, whose content
distinguishes which one of a number of data transforms is to
be performed (e.g., no data transform, swizzle, broadcast).
[0103] In the case of a memory access 620 instruction
template of class A, the alpha field 652 is interpreted as an
eviction hint field 652B, whose content distinguishes which
one of the eviction hints is to be used (in FIG. 6A, temporal
652B.1 and non-temporal 652B.2 are respectively specified
for the memory access, temporal 625 instruction template
and the memory access, non-temporal 630 instruction tem-
plate), while the beta field 654 is interpreted as a data
manipulation field 654C, whose content distinguishes which
one of a number of data manipulation operations (also
known as primitives) is to be performed (e.g., no manipu-
lation; broadcast; up conversion of a source; and down
conversion of a destination). The memory access 620
instruction templates include the scale field 660, and option-
ally the displacement field 662A or the displacement scale
field 662B.

[0104] Vector memory instructions perform vector loads
from and vector stores to memory, with conversion support.
As with regular vector instructions, vector memory instruc-
tions transfer data from/to memory in a data element-wise
fashion, with the elements that are actually transferred is
dictated by the contents of the vector mask that is selected
as the write mask.

Memory Access Instruction Templates—Temporal

[0105] Temporal data is data likely to be reused soon
enough to benefit from caching. This is, however, a hint, and
different processors may implement it in different ways,
including ignoring the hint entirely.

Memory Access Instruction Templates—Non-Temporal

[0106] Non-temporal data is data unlikely to be reused
soon enough to benefit from caching in the 1st-level cache
and should be given priority for eviction. This is, however,
a hint, and different processors may implement it in different
ways, including ignoring the hint entirely.

Instruction Templates of Class B

[0107] In the case of the instruction templates of class B,
the alpha field 652 is interpreted as a write mask control (Z)
field 652C, whose content distinguishes whether the write
masking controlled by the write mask field 670 should be a
merging or a zeroing.

[0108] In the case of the non-memory access 605 instruc-
tion templates of class B, part of the beta field 654 is
interpreted as an RL field 657 A, whose content distinguishes
which one of the different augmentation operation types are
to be performed (e.g., round 657A.1 and vector length
(VSIZE) 657A.2 are respectively specified for the no
memory access, write mask control, partial round control
type operation 612 instruction template and the no memory
access, write mask control, VSIZE type operation 617
instruction template), while the rest of the beta field 654
distinguishes which of the operations of the specified type is
to be performed. In the no memory access 605 instruction

May 9, 2019

templates, the scale field 660, the displacement field 662A,
and the displacement scale filed 662B are not present.
[0109] In the no memory access, write mask control,
partial round control type operation 610 instruction tem-
plate, the rest of the beta field 654 is interpreted as a round
operation field 659A and exception event reporting is dis-
abled (a given instruction does not report any kind of
floating-point exception flag and does not raise any floating
point exception handler).

[0110] Round operation control field 659A—just as round
operation control field 658, its content distinguishes which
one of a group of rounding operations to perform (e.g.,
Round-up, Round-down, Round-towards-zero and Round-
to-nearest). Thus, the round operation control field 659A
allows for the changing of the rounding mode on a per
instruction basis. In one embodiment of the disclosure where
a processor includes a control register for specifying round-
ing modes, the round operation control field’s 650 content
overrides that register value.

[0111] In the no memory access, write mask control,
VSIZE type operation 617 instruction template, the rest of
the beta field 654 is interpreted as a vector length field 659B,
whose content distinguishes which one of a number of data
vector lengths is to be performed on (e.g., 128, 256, or 512
byte).

[0112] In the case of a memory access 620 instruction
template of class B, part of the beta field 654 is interpreted
as a broadcast field 657B, whose content distinguishes
whether or not the broadcast type data manipulation opera-
tion is to be performed, while the rest of the beta field 654
is interpreted the vector length field 659B. The memory
access 620 instruction templates include the scale field 660,
and optionally the displacement field 662A or the displace-
ment scale field 662B.

[0113] With regard to the generic vector friendly instruc-
tion format 600, a full opcode field 674 is shown including
the format field 640, the base operation field 642, and the
data element width field 664. While one embodiment is
shown where the full opcode field 674 includes all of these
fields, the full opcode field 674 includes less than all of these
fields in embodiments that do not support all of them. The
full opcode field 674 provides the operation code (opcode).
[0114] The augmentation operation field 650, the data
element width field 664, and the write mask field 670 allow
these features to be specified on a per instruction basis in the
generic vector friendly instruction format.

[0115] The combination of write mask field and data
element width field create typed instructions in that they
allow the mask to be applied based on different data element
widths.

[0116] The various instruction templates found within
class A and class B are beneficial in different situations. In
some embodiments of the disclosure, different processors or
different cores within a processor may support only class A,
only class B, or both classes. For instance, a high perfor-
mance general purpose out-of-order core intended for gen-
eral-purpose computing may support only class B, a core
intended primarily for graphics and/or scientific (through-
put) computing may support only class A, and a core
intended for both may support both (of course, a core that
has some mix of templates and instructions from both
classes but not all templates and instructions from both
classes is within the purview of the disclosure). Also, a
single processor may include multiple cores, all of which

US 2019/0138309 Al

support the same class or in which different cores support
different class. For instance, in a processor with separate
graphics and general purpose cores, one of the graphics
cores intended primarily for graphics and/or scientific com-
puting may support only class A, while one or more of the
general purpose cores may be high performance general
purpose cores with out of order execution and register
renaming intended for general-purpose computing that sup-
port only class B. Another processor that does not have a
separate graphics core, may include one more general pur-
pose in-order or out-of-order cores that support both class A
and class B. Of course, features from one class may also be
implemented in the other class in different embodiments of
the disclosure. Programs written in a high level language
would be put (e.g., just in time compiled or statically
compiled) into an variety of different executable forms,
including: 1) a form having only instructions of the class(es)
supported by the target processor for execution; or 2) a form
having alternative routines written using different combina-
tions of the instructions of all classes and having control
flow code that selects the routines to execute based on the
instructions supported by the processor which is currently
executing the code.

Exemplary Specific Vector Friendly Instruction Format

[0117] FIG. 7 is a block diagram illustrating an exemplary
specific vector friendly instruction format according to
embodiments of the disclosure. FIG. 7 shows a specific
vector friendly instruction format 700 that is specific in the
sense that it specifies the location, size, interpretation, and
order of the fields, as well as values for some of those fields.
The specific vector friendly instruction format 700 may be
used to extend the x86 instruction set, and thus some of the
fields are similar or the same as those used in the existing
x86 instruction set and extension thereof (e.g., AVX). This
format remains consistent with the prefix encoding field, real
opcode byte field, MOD R/M field, SIB field, displacement
field, and immediate fields of the existing x86 instruction set
with extensions. The fields from FIG. 6 into which the fields
from FIG. 7 map are illustrated.

[0118] It should be understood that, although embodi-
ments of the disclosure are described with reference to the
specific vector friendly instruction format 700 in the context
of the generic vector friendly instruction format 600 for
illustrative purposes, the disclosure is not limited to the
specific vector friendly instruction format 700 except where
claimed. For example, the generic vector friendly instruction
format 600 contemplates a variety of possible sizes for the
various fields, while the specific vector friendly instruction
format 700 is shown as having fields of specific sizes. By
way of specific example, while the data element width field
664 is illustrated as a one bit field in the specific vector
friendly instruction format 700, the disclosure is not so
limited (that is, the generic vector friendly instruction format
600 contemplates other sizes of the data element width field
664).

[0119] The generic vector friendly instruction format 600
includes the following fields listed below in the order
illustrated in FIG. 7A.

[0120] EVEX Prefix (Bytes 0-3) 702—is encoded in a
four-byte form.
[0121] Format Field 640 (EVEX Byte 0, bits [7:0])—the

first byte (EVEX Byte 0) is the format field 640 and it

May 9, 2019

contains 0x62 (the unique value used for distinguishing the
vector friendly instruction format in one embodiment of the
disclosure).

[0122] The second-fourth bytes (EVEX Bytes 1-3) include
a number of bit fields providing specific capability.

[0123] REX field 705 (EVEX Byte 1, bits [7-5])—consists
of a EVEX R bit field (EVEX Byte 1, bit [7]—R), EVEX.X
bit field (EVEX byte 1, bit [6]—X), and 657BEX byte 1,
bit[5]—B). The EVEX.R, EVEX.X, and EVEX.B bit fields
provide the same functionality as the corresponding VEX bit
fields, and are encoded using 1s complement form, i.e.
ZMMO is encoded as 1111B, ZMM135 is encoded as 0000B.
Other fields of the instructions encode the lower three bits of
the register indexes as is known in the art (rrr, xxx, and bbb),
so that Rrrr, Xxxx, and Bbbb may be formed by adding
EVEXR, EVEX X, and EVEX.B.

[0124] REX' field 610—this is the first part of the REX'
field 610 and is the EVEX.R' bit field (EVEX Byte 1, bit
[4]—R") that is used to encode either the upper 16 or lower
16 of the extended 32 register set. In one embodiment of the
disclosure, this bit, along with others as indicated below, is
stored in bit inverted format to distinguish (in the well-
known x86 32-bit mode) from the BOUND instruction,
whose real opcode byte is 62, but does not accept in the
MOD R/M field (described below) the value of 11 in the
MOD field; alternative embodiments of the disclosure do not
store this and the other indicated bits below in the inverted
format. A value of 1 is used to encode the lower 16 registers.
In her words, 1340 Rrrr is formed by combining EVEX.R',
EVEX R, and the other RRR from other fields.

[0125] Opcode map field 715 (EVEX byte 1, bit[3:0]—
mmmm)—its content encodes an implied leading opcode
byte (OF, OF 38, or OF 3).

[0126] Data element width field 664 (EVEX byte 2, bit
[7]—W)—is resed by the ntionEX.W. EVW is used to define
the granularity (size) of the datatype (either 32-bit data
elements or 64-bit data elements).

[0127] EVEX.wvvv 720 (EVEX Byte 2, bits [6:3]—
vvvv)—the role of EVEX.vvvv may include the following:
1) EVEX.vvvv encodes the first source register operand,
specified in inverted (1 s complement) form and is valid for
instructions with 2 or more source operands; 2) EVEX . vvvv
encodes the destination register operand, specified in 1 s
complement form for certain vector shifts; or 3) EVEX .vvvv
does not encode any operand, the field is reserved and
should contain 1111b. Thus, EVEX.vvvv field 720 encodes
the 4 low-order bits of the first source register specifier
stored in inverted (1 s complement) form. Depending on the
instruction, an extra different EVEX bit field is used to
extend the specifier size to 32 registers.

[0128] EVEX.U 668 Class field (EVEX byte 2, bit [2]—
U)—If EVEX.U=0, it indicates class A or EVEX.UO; if
EVEX.U=1, it indicates class B or EVEX.U1.

[0129] Prefix encoding field 725 (EVEX byte 2, bits
[1:0]—pp)—provides additional bits for the base operation
field. In addition to providing support for the legacy SSE
instructions in the EVEX prefix format, this also has the
benefit of compacting the SIMD prefix (rather than requiring
a byte to express the SIMD prefix, the EVEX prefix requires
only 2 bits). In one embodiment, to support legacy SSE
instructions that use a SIMD prefix (66H, F2H, F3H) in both
the legacy format and in the EVEX prefix format, these
legacy SIMD prefixes are encoded into the SIMD prefix
encoding field; and at runtime are expanded into the legacy

US 2019/0138309 Al

SIMD prefix prior to being provided to the decoder’s PLA
(so the PLA can execute both the legacy and EVEX format
of these legacy instructions without modification). Although
newer instructions could use the EVEX prefix encoding
field’s content directly as an opcode extension, certain
embodiments expand in a similar fashion for consistency but
allow for different meanings to be specified by these legacy
SIMD prefixes. An alternative embodiment may redesign
the PLA to support the 2 bit SIMD prefix encodings, and
thus not require the expansion.

[0130] Alpha field 652 (EVEX byte 3, bit [7]—EH; also
known as EVEX EH, EVEX.s, EVEX RL, EVEX write
mask control, and EVEX.N; also illustrated with a)—as
previously described, this field is context specific.

[0131] Betafield 654 (EVEX byte 3, bits [6:4]—SSS, also
known as EVEX.s2, ,, EVEX.r, o, EVEXrl, EVEX.LLO,
EVEX.LLB; also illustrated with PBpp)—as previously
described, this field is context specific.

[0132] REX' field 610—this is the remainder of the REX"
field and is the EVEX.V' bit field (EVEX Byte 3, bit
[3]—V") that may be used to encode either the upper 16 or
lower 16 of the extended 32 register set. This bit is stored in
bit inverted format. A value of 1 is used to encode the lower
16 registers. In other words, V'VVVV is formed by com-
bining EVEX.V', EVEX vvvv.

[0133] Write mask field 670 (EVEX byte 3, bits [2:0]—
kkk)—its content specifies the index of a register in the write
mask registers as previously described. In one embodiment
of the disclosure, the specific value EVEX kkk=000 has a
special behavior implying no write mask is used for the
particular instruction (this may be implemented in a variety
of ways including the use of a write mask hardwired to all
ones or hardware that bypasses the masking hardware).
[0134] Real Opcode Field 730 (Byte 4) is also known as
the opcode byte. Part of the opcode is specified in this field.
[0135] MOD R/M Field 740 (Byte 5) includes MOD field
742, Reg field 744, and R/M field 746. As previously
described, the MOD field’s 742 content distinguishes
between memory access and non-memory access operations.
The role of Reg field 744 can be summarized to two
situations: encoding either the destination register operand
or a source register operand, or be treated as an opcode
extension and not used to encode any instruction operand.
The role of R/M field 746 may include the following:
encoding the instruction operand that references a memory
address, or encoding either the destination register operand
or a source register operand.

[0136] Scale, Index, Base (SIB) Byte (Byte 6)—As pre-
viously described, the scale field’s 650 content is used for
memory address generation. SIBxxx 754 and SIB.bbb
756—the contents of these fields have been previously
referred to with regard to the register indexes Xxxx and
Bbbb.

[0137] Displacement field 662A (Bytes 7-10)—when
MOD field 742 contains 10, bytes 7-10 are the displacement
field 662A, and it works the same as the legacy 32-bit
displacement (disp32) and works at byte granularity.
[0138] Displacement factor field 662B (Byte 7)—when
MOD field 742 contains 01, byte 7 is the displacement factor
field 662B. The location of this field is that same as that of
the legacy x86 instruction set 8-bit displacement (disp8),
which works at byte granularity. Since disp8 is sign
extended, it can only address between —128 and 127 bytes
offsets; in terms of 64 byte cache lines, disp8 uses 8 bits that

May 9, 2019

can be set to only four really useful values —128, —-64, 0, and
64; since a greater range is often needed, disp32 is used;
however, disp32 requires 4 bytes. In contrast to disp8 and
disp32, the displacement factor field 662B is a reinterpre-
tation of disp8; when using displacement factor field 662B,
the actual displacement is determined by the content of the
displacement factor field multiplied by the size of the
memory operand access (N). This type of displacement is
referred to as disp8*N. This reduces the average instruction
length (a single byte of used for the displacement but with
a much greater range). Such compressed displacement is
based on the assumption that the effective displacement is
multiple of the granularity of the memory access, and hence,
the redundant low-order bits of the address offset do not
need to be encoded. In other words, the displacement factor
field 662B substitutes the legacy x86 instruction set 8-bit
displacement. Thus, the displacement factor field 662B is
encoded the same way as an x86 instruction set 8-bit
displacement (so no changes in the ModRM/SIB encoding
rules) with the only exception that disp8 is overloaded to
disp8*N. In other words, there are no changes in the
encoding rules or encoding lengths but only in the interpre-
tation of the displacement value by hardware (which needs
to scale the displacement by the size of the memory operand
to obtain a byte-wise address offset). Immediate field 672
operates as previously described.

Full Opcode Field

[0139] FIG. 7B is a block diagram illustrating the fields of
the specific vector friendly instruction format 700 that make
up the full opcode field 674 according to one embodiment of
the disclosure. Specifically, the full opcode field 674
includes the format field 640, the base operation field 642,
and the data element width (W) field 664. The base operation
field 642 includes the prefix encoding field 725, the opcode
map field 715, and the real opcode field 730.

Register Index Field

[0140] FIG. 7C is a block diagram illustrating the fields of
the specific vector friendly instruction format 700 that make
up the register index field 644 according to one embodiment
of the disclosure. Specifically, the register index field 644
includes the REX field 705, the REX' field 710, the MODR/
M.reg field 744, the MODR/M.r/m field 746, the VVVV
field 720, xxx field 754, and the bbb field 756.

Augmentation Operation Field

[0141] FIG. 7D is a block diagram illustrating the fields of
the specific vector friendly instruction format 700 that make
up the augmentation operation field 650 according to one
embodiment of the disclosure. When the class (U) field 668
contains 0, it signifies EVEX.UO (class A 668A); when it
contains 1, it signifies EVEX.U1 (class B 668B). When U=0
and the MOD field 742 contains 11 (signifying a no memory
access operation), the alpha field 652 (EVEX byte 3, bit
[7]—EH) is interpreted as the rs field 652A. When the rs
field 652A contains a 1 (round 652A.1), the beta field 654
(EVEX byte 3, bits [6:4]—SSS) is interpreted as the round
control field 654A. The round control field 654A includes a
one bit SAE field 656 and a two bit round operation field
658. When the rs field 652A contains a 0 (data transform
652A.2), the beta field 654 (EVEX byte 3, bits [b:4]—SSS)
is interpreted as a three bit data transform field 654B. When

US 2019/0138309 Al

U=0 and the MOD field 742 contains 00, 01, or 10 (signi-
fying a memory access operation), the alpha field 652
(EVEX byte 3, bit [7]—EH) is interpreted as the eviction
hint (EH) field 652B and the beta field 654 (EVEX byte 3,
bits [6:4]—SSS) is interpreted as a three bit data manipu-
lation field 654C.

[0142] When U=1, the alpha field 652 (EVEX byte 3, bit
[7]—EH) is interpreted as the write mask control (Z) field
652C. When U=1 and the MOD field 742 contains 11
(signifying a no memory access operation), part of the beta
field 654 (EVEX byte 3, bit [4]—So) is interpreted as the RL.
field 657A; when it contains a 1 (round 657A.1) the rest of
the beta field 654 (EVEX byte 3, bit [6-5]—S, ;) is inter-
preted as the round operation field 659A, while when the RL
field 657A contains a 0 (VSIZE 657.A2) the rest of the beta
field 654 (EVEX byte 3, bit [6-5]-S,_)) is interpreted as the
vector length field 659B (EVEX byte 3, bit [6-5]—L,).
When U=1 and the MOD field 742 contains 00, 01, or 10
(signifying a memory access operation), the beta field 654
(EVEX byte 3, bits [6:4]—SSS) is interpreted as the vector
length field 659B (EVEX byte 3, bit [6-5]—L, ;) and the
broadcast field 657B (EVEX byte 3, bit [4]—DB).

Exemplary Register Architecture

[0143] FIG. 8 is a block diagram of a register architecture
800 according to one embodiment of the disclosure. In the
embodiment illustrated, there are 32 vector registers 810 that
are 512 bits wide; these registers are referenced as zmmO
through zmm31. The lower order 256 bits of the lower 16
zmm registers are overlaid on registers ymmO-16. The lower
order 128 bits of the lower 16 zmm registers (the lower order
128 bits of the ymm registers) are overlaid on registers
xmmO-15. The specific vector friendly instruction format
700 operates on these overlaid register file as illustrated in
the below tables.

Adjustable Vector

Length Class Operations Registers

Instruction Templates A (FIG. 6A; 610, 615, zmm registers (the

that do not include U=0) 625, 630 vector length is 64

the vector length byte)

fleld 659B B (FIG. 6B; 612 zmm registers (the
U=1 vector length is 64

byte)
Instruction templates ZmMm, ymim, or Xmm
that do include the registers (the vector
vector length field length is 64 byte,
659B 32 byte, or 16 byte)
depending on the
vector length field
659B

B (FIG. 6B; 617, 627
U=1

[0144] In other words, the vector length field 659B selects
between a maximum length and one or more other shorter
lengths, where each such shorter length is half the length of
the preceding length; and instructions templates without the
vector length field 659B operate on the maximum vector
length. Further, in one embodiment, the class B instruction
templates of the specific vector friendly instruction format
700 operate on packed or scalar single/double-precision
floating point data and packed or scalar integer data. Scalar
operations are operations performed on the lowest order data
element position in an zmm/ymn/xmm register; the higher

May 9, 2019

order data element positions are either left the same as they
were prior to the instruction or zeroed depending on the
embodiment.

[0145] Write mask registers 815—in the embodiment
illustrated, there are 8 write mask registers (kO through k7),
each 64 bits in size. In an alternate embodiment, the write
mask registers 815 are 16 bits in size. As previously
described, in one embodiment of the disclosure, the vector
mask register kO cannot be used as a write mask; when the
encoding that would normally indicate kO is used for a write
mask, it selects a hardwired write mask of OxFFFF, effec-
tively disabling write masking for that instruction.

[0146] General-purpose registers 825—in the embodi-
ment illustrated, there are sixteen 64-bit general-purpose
registers that are used along with the existing x86 addressing
modes to address memory operands. These registers are
referenced by the names RAX, RBX, RCX, RDX, RBP, RSI,
RDI, RSP, and R8 through R15.

[0147] Scalar floating point stack register file (x87 stack)
845, on which is aliased the MMX packed integer flat
register file 850—in the embodiment illustrated, the x87
stack is an eight-element stack used to perform scalar
floating-point operations on 32/64/80-bit floating point data
using the x87 instruction set extension; while the MMX
registers are used to perform operations on 64-bit packed
integer data, as well as to hold operands for some operations
performed between the MMX and XMM registers.

[0148] Alternative embodiments of the disclosure may use
wider or narrower registers. Additionally, alternative
embodiments of the disclosure may use more, less, or
different register files and registers.

Exemplary Core Architectures, Processors, and Computer
Architectures

[0149] Processor cores may be implemented in different
ways, for different purposes, and in different processors. For
instance, implementations of such cores may include: 1) a
general purpose in-order core intended for general-purpose
computing; 2) a high performance general purpose out-of-
order core intended for general-purpose computing; 3) a
special purpose core intended primarily for graphics and/or
scientific (throughput) computing. Implementations of dif-
ferent processors may include: 1) a CPU including one or
more general purpose in-order cores intended for general-
purpose computing and/or one or more general purpose
out-of-order cores intended for general-purpose computing;
and 2) a coprocessor including one or more special purpose
cores intended primarily for graphics and/or scientific
(throughput). Such different processors lead to different
computer system architectures, which may include: 1) the
coprocessor on a separate chip from the CPU; 2) the
coprocessor on a separate die in the same package as a CPU;
3) the coprocessor on the same die as a CPU (in which case,
such a coprocessor is sometimes referred to as special
purpose logic, such as integrated graphics and/or scientific
(throughput) logic, or as special purpose cores); and 4) a
system on a chip that may include on the same die the
described CPU (sometimes referred to as the application
core(s) or application processor(s)), the above described
coprocessor, and additional functionality. Exemplary core
architectures are described next, followed by descriptions of
exemplary processors and computer architectures.

US 2019/0138309 Al

Exemplary Core Architectures

In-Order and Out-Of-Order Core Block Diagram

[0150] FIG. 9A is a block diagram illustrating both an
exemplary in-order pipeline and an exemplary register
renaming, out-of-order issue/execution pipeline according
to embodiments of the disclosure. FIG. 9B is a block
diagram illustrating both an exemplary embodiment of an
in-order architecture core and an exemplary register renam-
ing, out-of-order issue/execution architecture core to be
included in a processor according to embodiments of the
disclosure. The solid lined boxes in FIGS. 9A-B illustrate
the in-order pipeline and in-order core, while the optional
addition of the dashed lined boxes illustrates the register
renaming, out-of-order issue/execution pipeline and core.
Given that the in-order aspect is a subset of the out-of-order
aspect, the out-of-order aspect will be described.

[0151] In FIG. 9A, a processor pipeline 900 includes a
fetch stage 902, a length decode stage 904, a decode stage
906, an allocation stage 908, a renaming stage 910, a
scheduling (also known as a dispatch or issue) stage 912, a
register read/memory read stage 914, an execute stage 916,
a write back/memory write stage 918, an exception handling
stage 922, and a commit stage 924.

[0152] FIG. 9B shows processor core 990 including a
front end unit 930 coupled to an execution engine unit 950,
and both are coupled to a memory unit 970. The core 990
may be a reduced instruction set computing (RISC) core, a
complex instruction set computing (CISC) core, a very long
instruction word (VLIW) core, or a hybrid or alternative
core type. As yet another option, the core 990 may be a
special-purpose core, such as, for example, a network or
communication core, compression engine, COprocessor core,
general purpose computing graphics processing unit
(GPGPU) core, graphics core, or the like.

[0153] The front end unit 930 includes a branch prediction
unit 932 coupled to an instruction cache unit 934, which is
coupled to an instruction translation lookaside buffer (TLB)
936, which is coupled to an instruction fetch unit 938, which
is coupled to a decode unit 940. The decode unit 940 (or
decoder or decoder unit) may decode instructions (e.g.,
macro-instructions), and generate as an output one or more
micro-operations, micro-code entry points, micro-instruc-
tions, other instructions, or other control signals, which are
decoded from, or which otherwise reflect, or are derived
from, the original instructions. The decode unit 940 may be
implemented using various different mechanisms. Examples
of suitable mechanisms include, but are not limited to,
look-up tables, hardware implementations, programmable
logic arrays (PLAs), microcode read only memories
(ROMs), etc. In one embodiment, the core 990 includes a
microcode ROM or other medium that stores microcode for
certain macroinstructions (e.g., in decode unit 940 or oth-
erwise within the front end unit 930). The decode unit 940
is coupled to a rename/allocator unit 952 in the execution
engine unit 950.

[0154] The execution engine unit 950 includes the rename/
allocator unit 952 coupled to a retirement unit 954 and a set
of one or more scheduler unit(s) 956. The scheduler unit(s)
956 represents any number of different schedulers, including
reservations stations, central instruction window, etc. The
scheduler unit(s) 956 is coupled to the physical register
file(s) unit(s) 958. Each of the physical register file(s) units
958 represents one or more physical register files, different

May 9, 2019

ones of which store one or more different data types, such as
scalar integer, scalar floating point, packed integer, packed
floating point, vector integer, vector floating point—status
(e.g., an instruction pointer that is the address of the next
instruction to be executed), etc. In one embodiment, the
physical register file(s) unit 958 comprises a vector registers
unit, a write mask registers unit, and a scalar registers unit.
These register units may provide architectural vector regis-
ters, vector mask registers, and general purpose registers.
The physical register file(s) unit(s) 958 is overlapped by the
retirement unit 954 to illustrate various ways in which
register renaming and out-of-order execution may be imple-
mented (e.g., using a reorder buffer(s) and a retirement
register file(s); using a future file(s), a history buffer(s), and
a retirement register file(s); using a register maps and a pool
of registers; etc.). The retirement unit 954 and the physical
register file(s) unit(s) 958 are coupled to the execution
cluster(s) 960. The execution cluster(s) 960 includes a set of
one or more execution units 962 and a set of one or more
memory access Units 964. The execution units 962 may
perform various operations (e.g., shifts, addition, subtrac-
tion, multiplication) and on various types of data (e.g., scalar
floating point, packed integer, packed floating point, vector
integer, vector floating point). While some embodiments
may include a number of execution units dedicated to
specific functions or sets of functions, other embodiments
may include only one execution unit or multiple execution
units that all perform all functions. The scheduler unit(s)
956, physical register file(s) unit(s) 958, and execution
cluster(s) 960 are shown as being possibly plural because
certain embodiments create separate pipelines for certain
types of data/operations (e.g., a scalar integer pipeline, a
scalar floating point/packed integer/packed floating point/
vector integer/vector floating point pipeline, and/or a
memory access pipeline that each have their own scheduler
unit, physical register file(s) unit, and/or execution cluster—
and in the case of a separate memory access pipeline, certain
embodiments are implemented in which only the execution
cluster of this pipeline has the memory access unit(s) 964).
It should also be understood that where separate pipelines
are used, one or more of these pipelines may be out-of-order
issue/execution and the rest in-order.

[0155] The set of memory access units 964 is coupled to
the memory unit 970, which includes a data TLB unit 972
coupled to a data cache unit 974 coupled to a level 2 (L2)
cache unit 976. In one exemplary embodiment, the memory
access units 964 may include a load unit, a store address
unit, and a store data unit, each of which is coupled to the
data TLB unit 972 in the memory unit 970. The instruction
cache unit 934 is further coupled to a level 2 (1.2) cache unit
976 in the memory unit 970. The 1.2 cache unit 976 is
coupled to one or more other levels of cache and eventually
to a main memory.

[0156] By way of example, the exemplary register renam-
ing, out-of-order issue/execution core architecture may
implement the pipeline 900 as follows: 1) the instruction
fetch 938 performs the fetch and length decoding stages 902
and 904; 2) the decode unit 940 performs the decode stage
906; 3) the rename/allocator unit 952 performs the allocation
stage 908 and renaming stage 910; 4) the scheduler unit(s)
956 performs the schedule stage 912; 5) the physical register
file(s) unit(s) 958 and the memory unit 970 perform the
register read/memory read stage 914; the execution cluster
960 perform the execute stage 916; 6) the memory unit 970

US 2019/0138309 Al

and the physical register file(s) unit(s) 958 perform the write
back/memory write stage 918; 7) various units may be
involved in the exception handling stage 922; and 8) the
retirement unit 954 and the physical register file(s) unit(s)
958 perform the commit stage 924.

[0157] The core 990 may support one or more instructions
sets (e.g., the x86 instruction set (with some extensions that
have been added with newer versions); the MIPS instruction
set of MIPS Technologies of Sunnyvale, Calif.; the ARM
instruction set (with optional additional extensions such as
NEON) of ARM Holdings of Sunnyvale, Calif.), including
the instruction(s) described herein. In one embodiment, the
core 990 includes logic to support a packed data instruction
set extension (e.g., AVX1, AVX2), thereby allowing the
operations used by many multimedia applications to be
performed using packed data.

[0158] It should be understood that the core may support
multithreading (executing two or more parallel sets of
operations or threads), and may do so in a variety of ways
including time sliced multithreading, simultaneous multi-
threading (where a single physical core provides a logical
core for each of the threads that physical core is simultane-
ously multithreading), or a combination thereof (e.g., time
sliced fetching and decoding and simultaneous multithread-
ing thereafter such as in the Intel® Hyperthreading technol-
ogy).

[0159] While register renaming is described in the context
of out-of-order execution, it should be understood that
register renaming may be used in an in-order architecture.
While the illustrated embodiment of the processor also
includes separate instruction and data cache units 934/974
and a shared L2 cache unit 976, alternative embodiments
may have a single internal cache for both instructions and
data, such as, for example, a Level 1 (L1) internal cache, or
multiple levels of internal cache. In some embodiments, the
system may include a combination of an internal cache and
an external cache that is external to the core and/or the
processor. Alternatively, all of the cache may be external to
the core and/or the processor.

Specific Exemplary In-Order Core Architecture

[0160] FIGS. 10A-B illustrate a block diagram of a more
specific exemplary in-order core architecture, which core
would be one of several logic blocks (including other cores
of the same type and/or different types) in a chip. The logic
blocks communicate through a high-bandwidth interconnect
network (e.g., a ring network) with some fixed function
logic, memory I/O interfaces, and other necessary I/O logic,
depending on the application.

[0161] FIG. 10A is a block diagram of a single processor
core, along with its connection to the on-die interconnect
network 1002 and with its local subset of the Level 2 (L2)
cache 1004, according to embodiments of the disclosure. In
one embodiment, an instruction decode unit 1000 supports
the x86 instruction set with a packed data instruction set
extension. An L1 cache 1006 allows low-latency accesses to
cache memory into the scalar and vector units. While in one
embodiment (to simplify the design), a scalar unit 1008 and
a vector unit 1010 use separate register sets (respectively,
scalar registers 1012 and vector registers 1014) and data
transferred between them is written to memory and then read
back in from a level 1 (L1) cache 1006, alternative embodi-
ments of the disclosure may use a different approach (e.g.,
use a single register set or include a communication path that

May 9, 2019

allow data to be transferred between the two register files
without being written and read back).

[0162] The local subset of the .2 cache 1004 is part of a
global 1.2 cache that is divided into separate local subsets,
one per processor core. Each processor core has a direct
access path to its own local subset of the 1.2 cache 1004.
Data read by a processor core is stored in its [.2 cache subset
1004 and can be accessed quickly, in parallel with other
processor cores accessing their own local L2 cache subsets.
Data written by a processor core is stored in its own [.2
cache subset 1004 and is flushed from other subsets, if
necessary. The ring network ensures coherency for shared
data. The ring network is bi-directional to allow agents such
as processor cores, .2 caches and other logic blocks to
communicate with each other within the chip. Each ring
data-path is 1012-bits wide per direction.

[0163] FIG. 10B is an expanded view of part of the
processor core in FIG. 10A according to embodiments of the
disclosure. FIG. 10B includes an .1 data cache 1006 A part
of the LL1 cache 1004, as well as more detail regarding the
vector unit 1010 and the vector registers 1014. Specifically,
the vector unit 1010 is a 16-wide vector processing unit
(VPU) (see the 16-wide ALU 1028), which executes one or
more of integer, single-precision float, and double-precision
float instructions. The VPU supports swizzling the register
inputs with swizzle unit 1020, numeric conversion with
numeric convert units 1022A-B, and replication with repli-
cation unit 1024 on the memory input. Write mask registers
1026 allow predicating resulting vector writes.

[0164] FIG. 11 is a block diagram of a processor 1100 that
may have more than one core, may have an integrated
memory controller, and may have integrated graphics
according to embodiments of the disclosure. The solid lined
boxes in FIG. 11 illustrate a processor 1100 with a single
core 1102A, a system agent 1110, a set of one or more bus
controller units 1116, while the optional addition of the
dashed lined boxes illustrates an alternative processor 1100
with multiple cores 1102A-N, a set of one or more integrated
memory controller unit(s) 1114 in the system agent unit
1110, and special purpose logic 1108.

[0165] Thus, different implementations of the processor
1100 may include: 1) a CPU with the special purpose logic
1108 being integrated graphics and/or scientific (throughput)
logic (which may include one or more cores), and the cores
1102A-N being one or more general purpose cores (e.g.,
general purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the
cores 1102A-N being a large number of special purpose
cores intended primarily for graphics and/or scientific
(throughput); and 3) a coprocessor with the cores 1102A-N
being a large number of general purpose in-order cores.
Thus, the processor 1100 may be a general-purpose proces-
sor, coprocessor or special-purpose processor, such as, for
example, a network or communication processor, compres-
sion engine, graphics processor, GPGPU (general purpose
graphics processing unit), a high-throughput many inte-
grated core (MIC) coprocessor (including 30 or more cores),
embedded processor, or the like. The processor may be
implemented on one or more chips. The processor 1100 may
be a part of and/or may be implemented on one or more
substrates using any of a number of process technologies,
such as, for example, BICMOS, CMOS, or NMOS.

[0166] The memory hierarchy includes one or more levels
of cache within the cores, a set or one or more shared cache

US 2019/0138309 Al

units 1106, and external memory (not shown) coupled to the
set of integrated memory controller units 1114. The set of
shared cache units 1106 may include one or more mid-level
caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or
other levels of cache, a last level cache (LLC), and/or
combinations thereof. While in one embodiment a ring
based interconnect unit 1112 interconnects the integrated
graphics logic 1108, the set of shared cache units 1106, and
the system agent unit 1110/integrated memory controller
unit(s) 1114, alternative embodiments may use any number
of well-known techniques for interconnecting such units. In
one embodiment, coherency is maintained between one or
more cache units 1106 and cores 1102-A-N.

[0167] In some embodiments, one or more of the cores
1102A-N are capable of multi-threading. The system agent
1110 includes those components coordinating and operating
cores 1102A-N. The system agent unit 1110 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 1102A-N and the
integrated graphics logic 1108. The display unit is for
driving one or more externally connected displays.

[0168] The cores 1102A-N may be homogenous or het-
erogeneous in terms of architecture instruction set; that is,
two or more of the cores 1102A-N may be capable of
execution the same instruction set, while others may be
capable of executing only a subset of that instruction set or
a different instruction set.

Exemplary Computer Architectures

[0169] FIGS. 12, 13, 14, and 15 are block diagrams of
exemplary computer architectures. Other system designs
and configurations known in the arts for laptops, desktops,
handheld PCs, personal digital assistants, engineering work-
stations, servers, network devices, network hubs, switches,
embedded processors, digital signal processors (DSPs),
graphics devices, video game devices, set-top boxes, micro
controllers, cell phones, portable media players, hand held
devices, and various other electronic devices, are also suit-
able. In general, a huge variety of systems or electronic
devices capable of incorporating a processor and/or other
execution logic as disclosed herein are generally suitable.

[0170] Referring now to FIG. 12, shown is a block dia-
gram of a system 1200 in accordance with one embodiment
of the present disclosure. The system 1200 may include one
or more processors 1210, 1215, which are coupled to a
controller hub 1220. In one embodiment the controller hub
1220 includes a graphics memory controller hub (GMCH)
1290 and an Input/Output Hub (IOH) 1250 (which may be
on separate chips); the GMCH 1290 includes memory and
graphics controllers to which are coupled memory 1240 and
a coprocessor 1245; the IOH 1250 is couples input/output
(I/O) devices 1260 to the GMCH 1290. Alternatively, one or
both of the memory and graphics controllers are integrated
within the processor (as described herein), the memory 1240
and the coprocessor 1245 are coupled directly to the pro-
cessor 1210, and the controller hub 1220 in a single chip
with the IOH 1250.

[0171] The optional nature of additional processors 1215
is denoted in FIG. 12 with broken lines. Each processor
1210, 1215 may include one or more of the processing cores

described herein and may be some version of the processor
1100.

May 9, 2019

[0172] The memory 1240 may be, for example, dynamic
random access memory (DRAM), phase change memory
(PCM), or a combination of the two. For at least one
embodiment, the controller hub 1220 communicates with
the processor(s) 1210, 1215 via a multi-drop bus, such as a
frontside bus (FSB), point-to-point interface such as Quick-
Path Interconnect (QPI), or similar connection 1295.
[0173] In one embodiment, the coprocessor 1245 is a
special-purpose processor, such as, for example, a high-
throughput MIC processor, a network or communication
processor, compression engine, graphics processor, GPGPU,
embedded processor, or the like. In one embodiment, con-
troller hub 1220 may include an integrated graphics accel-
erator.

[0174] There can be a variety of differences between the
physical resources 1210, 1215 in terms of a spectrum of
metrics of merit including architectural, microarchitectural,
thermal, power consumption characteristics, and the like.
[0175] In one embodiment, the processor 1210 executes
instructions that control data processing operations of a
general type. Embedded within the instructions may be
coprocessor instructions. The processor 1210 recognizes
these coprocessor instructions as being of a type that should
be executed by the attached coprocessor 1245. Accordingly,
the processor 1210 issues these coprocessor instructions (or
control signals representing coprocessor instructions) on a
coprocessor bus or other interconnect, to coprocessor 1245.
Coprocessor(s) 1245 accept and execute the received copro-
cessor instructions.

[0176] Referring now to FIG. 13, shown is a block dia-
gram of a first more specific exemplary system 1300 in
accordance with an embodiment of the present disclosure.
As shown in FIG. 13, multiprocessor system 1300 is a
point-to-point interconnect system, and includes a first pro-
cessor 1370 and a second processor 1380 coupled via a
point-to-point interconnect 1350. Each of processors 1370
and 1380 may be some version of the processor 1100. In one
embodiment of the disclosure, processors 1370 and 1380 are
respectively processors 1210 and 1215, while coprocessor
1338 is coprocessor 1245. In another embodiment, proces-
sors 1370 and 1380 are respectively processor 1210 copro-
cessor 1245.

[0177] Processors 1370 and 1380 are shown including
integrated memory controller (IMC) units 1372 and 1382,
respectively. Processor 1370 also includes as part of its bus
controller units point-to-point (P-P) interfaces 1376 and
1378; similarly, second processor 1380 includes P-P inter-
faces 1386 and 1388. Processors 1370, 1380 may exchange
information via a point-to-point (P-P) interface 1350 using
P-P interface circuits 1378, 1388. As shown in FIG. 13,
IMCs 1372 and 1382 couple the processors to respective
memories, namely a memory 1332 and a memory 1334,
which may be portions of main memory locally attached to
the respective processors.

[0178] Processors 1370, 1380 may each exchange infor-
mation with a chipset 1390 via individual P-P interfaces
1352, 1354 using point to point interface circuits 1376,
1394, 1386, 1398. Chipset 1390 may optionally exchange
information with the coprocessor 1338 via a high-perfor-
mance interface 1339. In one embodiment, the coprocessor
1338 is a special-purpose processor, such as, for example, a
high-throughput MIC processor, a network or communica-
tion processor, compression engine, graphics processor,
GPGPU, embedded processor, or the like.

US 2019/0138309 Al

[0179] A shared cache (not shown) may be included in
either processor or outside of both processors, yet connected
with the processors via P-P interconnect, such that either or
both processors’ local cache information may be stored in
the shared cache if a processor is placed into a low power
mode.

[0180] Chipset 1390 may be coupled to a first bus 1316 via
an interface 1396. In one embodiment, first bus 1316 may be
a Peripheral Component Interconnect (PCI) bus, or a bus
such as a PCI Express bus or another third generation 1/0
interconnect bus, although the scope of the present disclo-
sure is not so limited.

[0181] As shown in FIG. 13, various I/O devices 1314
may be coupled to first bus 1316, along with a bus bridge
1318 which couples first bus 1316 to a second bus 1320. In
one embodiment, one or more additional processor(s) 1315,
such as coprocessors, high-throughput MIC processors,
GPGPU’s, accelerators (such as, e.g., graphics accelerators
or digital signal processing (DSP) units), field program-
mable gate arrays, or any other processor, are coupled to first
bus 1316. In one embodiment, second bus 1320 may be a
low pin count (LPC) bus. Various devices may be coupled to
a second bus 1320 including, for example, a keyboard and/or
mouse 1322, communication devices 1327 and a storage
unit 1328 such as a disk drive or other mass storage device
which may include instructions/code and data 1330, in one
embodiment. Further, an audio I/O 1324 may be coupled to
the second bus 1320. Note that other architectures are
possible. For example, instead of the point-to-point archi-
tecture of FIG. 13, a system may implement a multi-drop bus
or other such architecture.

[0182] Referring now to FIG. 14, shown is a block dia-
gram of a second more specific exemplary system 1400 in
accordance with an embodiment of the present disclosure.
Like elements in FIGS. 13 and 14 bear like reference
numerals, and certain aspects of FIG. 13 have been omitted
from FIG. 14 in order to avoid obscuring other aspects of
FIG. 14.

[0183] FIG. 14 illustrates that the processors 1370, 1380
may include integrated memory and /O control logic
(“CL”) 1372 and 1382, respectively. Thus, the CL 1372,
1382 include integrated memory controller units and include
1/0 control logic. FIG. 14 illustrates that not only are the
memories 1332, 1334 coupled to the CL. 1372, 1382, but also
that 1/0 devices 1414 are also coupled to the control logic
1372, 1382. Legacy 1/O devices 1415 are coupled to the
chipset 1390.

[0184] Referring now to FIG. 15, shown is a block dia-
gram of a SoC 1500 in accordance with an embodiment of
the present disclosure. Similar elements in FIG. 11 bear like
reference numerals. Also, dashed lined boxes are optional
features on more advanced SoCs. In FIG. 15, an interconnect
unit(s) 1502 is coupled to: an application processor 1510
which includes a set of one or more cores 202A-N and
shared cache unit(s) 1106; a system agent unit 1110; a bus
controller unit(s) 1116; an integrated memory controller
unit(s) 1114; a set or one or more coprocessors 1520 which
may include integrated graphics logic, an image processor,
an audio processor, and a video processor; an static random
access memory (SRAM) unit 1530; a direct memory access
(DMA) unit 1532; and a display unit 1540 for coupling to
one or more external displays. In one embodiment, the
coprocessor(s) 1520 include a special-purpose processor,
such as, for example, a network or communication proces-

May 9, 2019

sor, compression engine, GPGPU, a high-throughput MIC
processor, embedded processor, or the like.

[0185] Embodiments (e.g., of the mechanisms) disclosed
herein may be implemented in hardware, software, firm-
ware, or a combination of such implementation approaches.
Embodiments of the disclosure may be implemented as
computer programs or program code executing on program-
mable systems comprising at least one processor, a storage
system (including volatile and non-volatile memory and/or
storage elements), at least one input device, and at least one
output device.

[0186] Program code, such as code 1330 illustrated in
FIG. 13, may be applied to input instructions to perform the
functions described herein and generate output information.
The output information may be applied to one or more
output devices, in known fashion. For purposes of this
application, a processing system includes any system that
has a processor, such as, for example; a digital signal
processor (DSP), a microcontroller, an application specific
integrated circuit (ASIC), or a microprocessor.

[0187] The program code may be implemented in a high
level procedural or object oriented programming language to
communicate with a processing system. The program code
may also be implemented in assembly or machine language,
if desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

[0188] One or more aspects of at least one embodiment
may be implemented by representative instructions stored on
a machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

[0189] Such machine-readable storage media may
include, without limitation, non-transitory, tangible arrange-
ments of articles manufactured or formed by a machine or
device, including storage media such as hard disks, any
other type of disk including floppy disks, optical disks,
compact disk read-only memories (CD-ROMs), compact
disk rewritable’s (CD-RWs), and magneto-optical disks,
semiconductor devices such as read-only memories
(ROMs), random access memories (RAMs) such as dynamic
random access memories (DRAMs), static random access
memories (SRAMs), erasable programmable read-only
memories (EPROMs), flash memories, electrically erasable
programmable read-only memories (EEPROMs), phase
change memory (PCM), magnetic or optical cards, or any
other type of media suitable for storing electronic instruc-
tions.

[0190] Accordingly, embodiments of the disclosure also
include non-transitory, tangible machine-readable media
containing instructions or containing design data, such as
Hardware Description Language (HDL), which defines
structures, circuits, apparatuses, processors and/or system
features described herein. Such embodiments may also be
referred to as program products.

US 2019/0138309 Al

Emulation (Including Binary Translation, Code Morphing,
etc.)

[0191] In some cases, an instruction converter may be
used to convert an instruction from a source instruction set
to a target instruction set. For example, the instruction
converter may translate (e.g., using static binary translation,
dynamic binary translation including dynamic compilation),
morph, emulate, or otherwise convert an instruction to one
or more other instructions to be processed by the core. The
instruction converter may be implemented in software, hard-
ware, firmware, or a combination thereof. The instruction
converter may be on processor, off processor, or part on and
part off processor.

[0192] FIG. 16 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the disclosure.
In the illustrated embodiment, the instruction converter is a
software instruction converter, although alternatively the
instruction converter may be implemented in software, firm-
ware, hardware, or various combinations thereof. FIG. 16
shows a program in a high level language 1602 may be
compiled using an x86 compiler 1604 to generate x86 binary
code 1606 that may be natively executed by a processor with
at least one x86 instruction set core 1616. The processor with
at least one x86 instruction set core 1616 represents any
processor that can perform substantially the same functions
as an Intel processor with at least one x86 instruction set
core by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86
instruction set core or (2) object code versions of applica-
tions or other software targeted to run on an Intel processor
with at least one x86 instruction set core, in order to achieve
substantially the same result as an Intel processor with at
least one x86 instruction set core. The x86 compiler 1604
represents a compiler that is operable to generate x86 binary
code 1606 (e.g., object code) that can, with or without
additional linkage processing, be executed on the processor
with at least one x86 instruction set core 1616. Similarly,
FIG. 16 shows the program in the high level language 1602
may be compiled using an alternative instruction set com-
piler 1608 to generate alternative instruction set binary code
1610 that may be natively executed by a processor without
at least one x86 instruction set core 1614 (e.g., a processor
with cores that execute the MIPS instruction set of MIPS
Technologies of Sunnyvale, Calif. and/or that execute the
ARM instruction set of ARM Holdings of Sunnyvale,
Calif.). The instruction converter 1612 is used to convert the
x86 binary code 1606 into code that may be natively
executed by the processor without an x86 instruction set
core 1614. This converted code is not likely to be the same
as the alternative instruction set binary code 1610 because
an instruction converter capable of this is difficult to make;
however, the converted code will accomplish the general
operation and be made up of instructions from the alterna-
tive instruction set. Thus, the instruction converter 1612
represents software, firmware, hardware, or a combination
thereof that, through emulation, simulation or any other
process, allows a processor or other electronic device that
does not have an x86 instruction set processor or core to
execute the x86 binary code 1606.

May 9, 2019

1.-20. (canceled)

21. A hardware processor comprising:

a decoder to decode an instruction to prefetch a multidi-
mensional block of elements from a multidimensional
array into a cache, wherein one or more fields of the
instruction are to indicate a memory address of an
element of the multidimensional block of elements, a
stride of the multidimensional block of elements, and
boundaries of the multidimensional block of elements;
and

an execution unit to execute the instruction to:

generate memory addresses of the other elements of the
multidimensional block of elements, and load the mul-
tidimensional block of elements into the cache from the
memory addresses.

22. The hardware processor of claim 21, wherein the
execution unit is to execute the instruction to cause a
prefetch unit of the hardware processor to generate the
memory addresses of the other elements of the multidimen-
sional block of elements.

23. The hardware processor of claim 22, wherein the
memory addresses are virtual addresses and the prefetch unit
comprises a transition lookaside buffer to generate corre-
sponding physical addresses from the virtual addresses of
the memory addresses of the other elements of the multidi-
mensional block of elements.

24. The hardware processor of claim 22, wherein the
prefetch unit further comprises a status register to indicate a
status of the prefetch unit.

25. The hardware processor of claim 22, wherein the
execution unit is to execute the instruction to cause the
prefetch unit to load the multidimensional block of elements
into the cache from the memory addresses.

26. The hardware processor of claim 21, wherein an
opcode of the instruction is to indicate a level of the cache
to load the multidimensional block of elements.

27. The hardware processor of claim 21, wherein the
stride comprises a first stride in a first dimension and a
different, second stride in a second dimension.

28. The hardware processor of claim 21, wherein the
execution unit is to execute the instruction to cause a
replacement of a speculative prefetch data set in the cache
with the multidimensional block of elements.

29. A method comprising:

decoding, with a decode unit of a processor, an instruction

to prefetch a multidimensional block of elements from
a multidimensional array into a cache, wherein one or
more fields of the instruction are to indicate a memory
address of an element of the multidimensional block of
elements, a stride of the multidimensional block of
elements, and boundaries of the multidimensional
block of elements; and

executing, with an execution unit of the processor, the

instruction to:

generate memory addresses of the other elements of the

multidimensional block of elements; and

load the multidimensional block of elements into the

cache from the memory addresses.

30. The method of claim 29, wherein the executing the
instruction is to cause a prefetch unit of the processor to
generate the memory addresses of the other elements of the
multidimensional block of elements.

US 2019/0138309 Al

31. The method of claim 30, wherein the memory
addresses are virtual addresses and the prefetch unit com-
prises a transition lookaside buffer generating corresponding
physical addresses from the virtual addresses of the memory
addresses of the other elements of the multidimensional
block of elements.

32. The method of claim 30, further comprising updating
a status register of the prefetch unit to indicate a status of the
prefetch unit.

33. The method of claim 30, wherein the executing the
instruction is to cause the prefetch unit of the processor to
load the multidimensional block of elements into the cache
from the memory addresses.

34. The method of claim 29, wherein an opcode of the
instruction is to indicate a level of the cache to load the
multidimensional block of elements.

35. The method of claim 29, wherein the stride comprises
a first stride in a first dimension and a different, second stride
in a second dimension.

36. The method of claim 29, wherein the executing the
instruction replaces a speculative prefetch data set in the
cache with the multidimensional block of elements.

37. A non-transitory machine readable medium that stores
code that when executed by a machine causes the machine
to perform a method comprising:

decoding, with a decode unit of a processor, an instruction

to prefetch a multidimensional block of elements from
a multidimensional array into a cache, wherein one or
more fields of the instruction are to indicate a memory
address of an element of the multidimensional block of
elements, a stride of the multidimensional block of
elements, and boundaries of the multidimensional
block of elements; and

executing, with an execution unit of the processor, the

instruction to:

May 9, 2019

generate memory addresses of the other elements of the
multidimensional block of elements; and

load the multidimensional block of elements into the
cache from the memory addresses.

38. The non-transitory machine readable medium of claim
37, wherein the executing the instruction is to cause a
prefetch unit of the processor to generate the memory
addresses of the other elements of the multidimensional
block of elements.

39. The non-transitory machine readable medium of claim
38, wherein the memory addresses are virtual addresses and
the prefetch unit comprises a transition lookaside buffer
generating corresponding physical addresses from the vir-
tual addresses of the memory addresses of the other ele-
ments of the multidimensional block of elements.

40. The non-transitory machine readable medium of claim
38, further comprising updating a status register of the
prefetch unit to indicate a status of the prefetch unit.

41. The non-transitory machine readable medium of claim
38, wherein the executing the instruction is to cause the
prefetch unit of the processor to load the multidimensional
block of elements into the cache from the memory
addresses.

42. The non-transitory machine readable medium of claim
37, wherein an opcode of the instruction is to indicate a level
of the cache to load the multidimensional block of elements.

43. The non-transitory machine readable medium of claim
37, wherein the stride comprises a first stride in a first
dimension and a different, second stride in a second dimen-
sion.

44. The non-transitory machine readable medium of claim
37, wherein the executing the instruction replaces a specu-
lative prefetch data set in the cache with the multidimen-
sional block of elements.

#* #* #* #* #*

