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HARDWARE APPARATUSES AND METHODS 
TO PREFETCH A MULTIDIMENSIONAL 

BLOCK OF ELEMENTS FROM A 
MULTIDIMENSIONAL ARRAY 

CROSS - REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] The present patent application is a continuation 
application claiming priority from U . S . patent application 
Ser . No . 14 / 583 , 651 , filed Dec . 27 , 2014 , and titled : “ Hard 
ware Apparatuses and Methods to Prefetch a Multidimen 
sional Block of Elements from a Multidimensional Array ” , 
which is incorporated herein by reference in its entirety . 

TECHNICAL FIELD 
[ 0002 ] The disclosure relates generally to electronics , and , 
more specifically , an embodiment of the disclosure relates to 
prefetching a multidimensional block of elements from a 
multidimensional array . 

BACKGROUND 
[ 0003 ] A processor , or set of processors , executes instruc 
tions from an instruction set , e . g . , the instruction set archi 
tecture ( ISA ) . The instruction set is the part of the computer 
architecture related to programming , and generally includes 
the native data types , instructions , register architecture , 
addressing modes , memory architecture , interrupt and 
exception handling , and external input and output ( 1 / 0 ) . It 
should be noted that the term instruction herein may refer to 
a macro - instruction , e . g . , an instruction that is provided to 
the processor for execution , or to a micro - instruction , e . g . , 
an instruction that results from a processor ' s decoder decod 
ing macro - instructions . 

[ 0013 ] FIG . 7B is a block diagram illustrating the fields of 
the specific vector friendly instruction format in FIG . 7A that 
make up a full opcode field according to one embodiment of 
the disclosure . 
100141 . FIG . 7C is a block diagram illustrating the fields of 
the specific vector friendly instruction format in FIG . 7A that 
make up a register index field according to one embodiment 
of the disclosure . 
[ 0015 ] FIG . 7D is a block diagram illustrating the fields of 
the specific vector friendly instruction format in FIG . 7A that 
make up the augmentation operation field 650 according to 
one embodiment of the disclosure . 
[ 0016 ] FIG . 8 is a block diagram of a register architecture 
according to one embodiment of the disclosure 
[ 0017 ] FIG . 9A is a block diagram illustrating both an 
exemplary in - order pipeline and an exemplary register 
renaming , out - of - order issue / execution pipeline according 
to embodiments of the disclosure . 
[ 0018 ] FIG . 9B is a block diagram illustrating both an 
exemplary embodiment of an in - order architecture core and 
an exemplary register renaming , out - of - order issue / execu 
tion architecture core to be included in a processor according 
to embodiments of the disclosure . 
[ 0019 ] FIG . 10A is a block diagram of a single processor 
core , along with its connection to the on - die interconnect 
network and with its local subset of the Level 2 ( L2 ) cache , 
according to embodiments of the disclosure . 
0020 ] FIG . 10B is an expanded view of part of the 
processor core in FIG . 10A according to embodiments of the 
disclosure . 
[ 0021 ] FIG . 11 is a block diagram of a processor that may 
have more than one core , may have an integrated memory 
controller , and may have integrated graphics according to 
embodiments of the disclosure . 
[ 0022 ] FIG . 12 is a block diagram of a system in accor 
dance with one embodiment of the present disclosure . 
[ 0023 ] FIG . 13 is a block diagram of a more specific 
exemplary system in accordance with an embodiment of the 
present disclosure . 
[ 0024 ] FIG . 14 , shown is a block diagram of a second 
more specific exemplary system in accordance with an 
embodiment of the present disclosure . 
0025 ] FIG . 15 , shown is a block diagram of a system on 

a chip ( SOC ) in accordance with an embodiment of the 
present disclosure . 
[ 0026 ] FIG . 16 is a block diagram contrasting the use of a 
software instruction converter to convert binary instructions 
in a source instruction set to binary instructions in a target 
instruction set according to embodiments of the disclosure . 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0004 ] The present disclosure is illustrated by way of 
example and not limitation in the figures of the accompa 
nying drawings , in which like references indicate similar 
elements and in which : 
[ 0005 ] FIG . 1 illustrates a sparse three - dimensional stencil 
according to embodiments of the disclosure . 
[ 0006 ] FIG . 2 illustrates a block diagram of a multiple core 
hardware processor with a prefetch unit according to 
embodiments of the disclosure . 
[ 0007 ] FIG . 3 illustrates a block diagram of a prefetch unit 
according to embodiments of the disclosure . 
[ 0008 ] FIG . 4 illustrates a flow diagram of prefetching a 
multidimensional block of elements from a multidimen 
sional array according to embodiments of the disclosure . 
[ 0009 ] FIG . 5 illustrates a flow diagram of prefetching a 
multidimensional block of elements from a multidimen 
sional array according to embodiments of the disclosure . 
10010 ] FIG . 6A is a block diagram illustrating a generic 
vector friendly instruction format and class A instruction 
templates thereof according to embodiments of the disclo 
sure . 
[ 0011 ] FIG . 6B is a block diagram illustrating the generic 
vector friendly instruction format and class B instruction 
templates thereof according to embodiments of the disclo 
sure . 
[ 0012 ] FIG . 7A is a block diagram illustrating fields for the 
generic vector friendly instruction formats in FIGS . 6A and 
6B according to embodiments of the disclosure . 

DETAILED DESCRIPTION 
[ 0027 ] In the following description , numerous specific 
details are set forth . However , it is understood that embodi 
ments of the disclosure may be practiced without these 
specific details . In other instances , well - known circuits , 
structures and techniques have not been shown in detail in 
order not to obscure the understanding of this description . 
[ 0028 ] References in the specification to " one embodi 
ment , " " an embodiment , " " an example embodiment , " etc . , 
indicate that the embodiment described may include a 
particular feature , structure , or characteristic , but every 
embodiment may not necessarily include the particular 
feature , structure , or characteristic . Moreover , such phrases 
are not necessarily referring to the same embodiment . Fur 
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ther , when a particular feature , structure , or characteristic is 
described in connection with an embodiment , it is submitted 
that it is within the knowledge of one skilled in the art to 
affect such feature , structure , or characteristic in connection 
with other embodiments whether or not explicitly described . 
[ 0029 ] Instruction processing hardware ( e . g . , a hardware 
processor having one or more cores to decode and / or 
execute instructions ) may operate on data , for example , in 
performing arithmetic or logic functions . A processor 
accessing ( e . g . , loading or storing ) the data may be forced to 
wait for the data to arrive , for example , where the processor 
is waiting for the data and not processing anything ( e . g . , 
sitting idle ) . In certain embodiments , a hardware processor 
may load ( e . g . , copy ) data to be operated on by the processor 
from a slower ( e . g . , access and / or cycle time , usually 
measured in processor cycles ) memory to a faster memory , 
which may generally be referred to as prefetching ( e . g . , 
prefetching data ) . For example , data to be operated on by a 
processor ( e . g . , via a later in program order instruction ) may 
be loaded into a cache ( e . g . , cache memory ) from a system 
( e . g . , main ) memory . Cache ( e . g . , all or one or more levels 
of level L1 , L2 , L3 , L4 , etc . ) may be part ( e . g . , on die ) of a 
hardware processor . In one embodiment , cache is static 
random access memory ( SRAM ) . System memory may be a 
separate component from the hardware processor , e . g . , 
memory accessible by the processor via a bus . In one 
embodiment , system memory is dynamic random access 
memory ( DRAM ) and / or an external ( from the processor ) 
memory ( e . g . , a mass storage device ) . System memory may 
be slower ( e . g . , by at least 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , or 10 orders 
of magnitude ) in access and / or cycle time ( e . g . , in complet 
ing requested loads and / or stores therein ) than a cache . As 
used herein , a cache line may generally refer to a block ( e . g . , 
a sector ) of data that may be managed as a unit for coherence 
purposes . A cache line may include multiple , discrete ele 
ments , e . g . , elements of a vector . 
[ 0030 ] Prefetching data ( e . g . , a prefetch ) to a cache ( e . g . , 
from system memory or from a lower level of a cache to a 
higher level of cache , such as from L3 to L2 or Ll cache ) 
may minimize the amount of time the processor spends 
waiting ( e . g . , being idle ) for that data . A prefetch may reduce 
the memory access latency in a hardware processor . Certain 
processing operations ( e . g . , stencil computations ) may 
include relatively large ( e . g . , larger than a cache ' s or cache 
level ' s capacity ) volumes of data . This may cause process 
ing delays , for example , where a hardware processor ' s 
request for the data ( e . g . , a cache line of data ) from a cache 
is a miss ( e . g . , the cache line is not in the cache or in the 
requested cache level ) and the data is loaded in an operation 
that is slower than a load from that cache . A cache may be 
smaller ( e . g . , by at least 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 100 , or 
1000 orders of magnitude ) than a system memory . 
[ 0031 ] A stencil computation ( e . g . , operation ) is one 
example of an operation ( e . g . , vector computation ) that is 
commonly found in scientific computation , financial ser 
vices , and seismic imaging performed by a hardware pro 
cessor . A stencil computation has a general from of : 

[ 0032 ] where each element ( e . g . , node ) may have its own 
data , for example , to form a weighted contribution from 
certain adjacent elements . A stencil computation may be 
performed on a multidimensional block ( e . g . , subset ) of 
elements from a multidimensional array , e . g . , using a pro 
cessor to operate on vector data , such as , but not limited to , 
with SIMD vectors and / or SIMD hardware . An element may 
generally refer to a discrete section of data that represents a 
single value . For example , a 512 bit cache line may have 16 
elements with 32 bits for each element , 64 elements with 8 
bits for each element , etc . Certain embodiments herein may 
assume a multidimensional array or multidimensional block 
of elements is flattened into a single dimensional array or 
block of elements in memory . Although certain embodi 
ments of this disclosure are discussed in reference to a 
stencil , this is merely an example of one application of this 
disclosure . Additional non - limiting examples of applications 
of this disclosure are discussed below . FIG . 1 illustrates a 
sparse three - dimensional ( 3D ) stencil 100 according to 
embodiments of the disclosure . For example , this stencil 100 
may be used to calculate a new value for element 105 based 
on the values of the 6 * k elements that are covered by ( e . g . , 
in ) this stencil ( e . g . , a weighted contribution from those 6 * k 
adjacent elements ) , where k is the half width of the stencil . 
As illustrated with reference to FIG . 1 , sparse may refer to 
not all elements being present of the entire block ( e . g . , a 
cube here would be there entire block ) of data defined by the 
outermost elements of the multidimensional block of ele 
ments ( e . g . , a ( 2 * k + 1 ) * ( 2 * k + 1 ) element cube , which is a 
9 * 9 * 9 ( 729 ) element cube as depicted ) . 
[ 0033 ] A multidimensional ( e . g . , a two - dimensional , 
three - dimensional , four - dimensional , etc . ) array may be of 
any size , for example , an order of magnitude or more in size 
compared to a stencil ' s dimensions . For example , a stencil 
may be moved to new elements in the multidimensional 
array to calculate the new value for those new elements 
based on the previous ( e . g . , adjacent ) elements . In one 
embodiment , a multidimensional array is populated with 
elements by a previous process , e . g . , using database popu 
lation methods . In one embodiment , each element of a 
multidimensional array is four bytes . In one embodiment , 
each element of a multidimensional array is eight bytes . In 
one embodiment , each element of a multidimensional array 
is sixteen bytes . In one embodiment , each element of a 
multidimensional array is the same size as an element of a 
cache line . In one embodiment , each element of a multidi 
mensional block of elements is the same size as an element 
of a cache line . In one embodiment , each element in a 
multidimensional block of elements is the same size as each 
element of a multidimensional array . 
[ 0034 ] A ( e . g . , single ) prefetch instruction ( e . g . , macro 
instruction ) may allow a hardware processor ( e . g . , a prefetch 
unit thereof ) to prefetch a multidimensional block of ele 
ments from a multidimensional array into a cache . Some 
non - limiting formats of such an instruction follow . In certain 
embodiments , a prefetch instruction includes a data field 
( e . g . , an operand or operands ) that indicates ( e . g . , to the 
processor ) a system ( e . g . , virtual ) memory address of an 
( e . g . , starting or center ) element of the multidimensional 
block of elements , a stride ( e . g . , in one or more dimensions ) 
of the multidimensional block of elements , boundaries ( e . g . , 
and the shape ) of the multidimensional block of elements , or 
any combinations thereof . In one embodiment , that address 
is a center of a stencil , e . g . , element 105 in FIG . 1 . In one 
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TABLE 1 - continued 
Example instruction formats : 

Opcode Operands 

( 3 ) PREFETCH dimension , base , region , 
stride , target cache 

2D _ BLOCK _ PREFETCHx [ A ] , k , nl 
2D _ BLOCK _ CENTER _ PREFETCHX [ A ] , k , nl 
3D _ BLOCK _ SPARSE _ PREFETCHX [ A ] , k , n1 , n2 
3D _ BLOCK _ PREFETCHx [ A ] , k , nl , n2 

embodiment , that address is a boundary element of a stencil , 
e . g . , element 101x or 109x in FIG . 1 when k is 4 . A stride 
( e . g . , a step size or increment ) of an array may generally 
refer to the number of ( e . g . , virtual or physical ) addresses in 
memory between the beginning of one element and the 
beginning of the next element . A stride may be measured or 
in units of the size of the array ' s elements ( e . g . , cells ) . In one 
embodiment , a stride is larger than the element size thus 
indicating extra space between adjacent elements . In certain 
embodiments , a prefetch instruction may indicate the stride 
for all or certain dimensions of the multidimensional block 
of elements ( e . g . , resultant array ) and / or the multidimen 
sional ( e . g . , source ) array , for example , a stride may be 
indicated by a data field ( e . g . , operand or operands ) of the 
prefetch instruction . For example , a stride in a first dimen 
sion may be in the form of S1 ( stride value ) , a stride in a 
second dimension may be in the form S2 ( stride value ) , etc . 
in an operand field in a prefetch instruction to indicate the 
stride in each dimension , in certain dimensions , or in one 
dimension . A uniform stride in a first and second dimension 
may be in the form of S12 ( immediate stride value ) . A 
uniform stride in a first , second , and third dimension may be 
in the form of S123 ( immediate stride value ) . Although 
parenthesis are used here , any format of operand may be 
utilized . 
[ 0035 ] In one embodiment , boundaries may be the 
addresses of the outermost dimensions of a multidimen 
sional block and / or multidimensional array . In one embodi 
ment , the boundary or boundaries may be the number of 
elements in each dimension , e . g . , as measured against the 
element ( s ) of the known system memory address . For 
example , if given the address for a center element 105 in 
FIG . 1 and the dimension k , the boundaries may be deter 
mined . Further , the boundaries ( or a stream of code repre 
senting the boundaries ) may be used to determine the 
address of the other elements in the multidimensional block 
of elements ( e . g . , the sparse stencil 100 in FIG . 1 ) . Bound 
aries may be different in each dimension of multiple dimen 
sions . 
[ 0036 ] In certain embodiments , a prefetch instruction may 
indicate which level of cache ( e . g . , level 1 ( L1 ) , level 2 , 
( L2 ) , level 3 ( L3 ) , level 4 ( L4 ) , etc . ) to load the multidi 
mensional block of elements into , for example , via the 
opcode and / or any data field ( e . g . , operand or operands ) . For 
example , the text of " L1 ” , “ L2 ” , “ L3 ” , “ L4 " , or other 
operand may be included in an operand field in a prefetch 
instruction to indicate the target level of cache . In one 
embodiment , a prefetch may include prefetching data from 
system memory ( or prefetching the system memory 
addresses for that data ) to a cache or prefetching from one 
level of cache to a higher level of cache ( e . g . , from L3 to L2 
or L1 ) . 
[ 0037 ] Example formats of a prefetch instruction ( e . g . , 
depicted in programming language and not machine lan 
guage ) are provided below in Table 1 . 

[ 0038 ] Note the numbers in parenthesis at the end are 
merely to aid in the discussion below and are not part of the 
operand fields . The opcode names are merely examples and 
other names may be used . An operand may be an immediate 
value , an address , a register ( e . g . , a single vector register for 
all operands or multiple registers for an operand or oper 
ands ) , etc . Although certain operands are listed with certain 
opcodes , the disclosure is not so limited , e . g . , the opcodes 
and operand ( s ) may be utilized in any combination . A 
prefetch instruction may use memory , for example , system 
memory or a register ( e . g . , a single instruction multiple data 
( SIMD ) register ) , to hold all or various operands . In one 
embodiment , an operand is stored in each element of a 
multiple data register . In one embodiment , an operand is 
stored in each of multiple registers . A prefetch instruction 
may include an operand indicating additional information 
about the region , for example , data type sizes ( e . g . , the bit 
size of each element ) . 
[ 0039 ] In reference to example instruction format ( 1 ) , the 
opcode PREFETCH2D may cause a hardware processor 
( e . g . , as discussed herein ) to prefetch a two - dimensional 
( 2D ) block of elements from a multidimensional ( e . g . , 2D or 
3D ) array . The operand field of base may indicate ( e . g . , 
encode ) the base ( e . g . , system memory ) address of the 
two - dimensional block of elements that are to be fetched 
into ( e . g . , the target ) cache from a multidimensional array 
located in the system memory by execution of the instruc 
tion . In one embodiment , the operand field of base is the 
starting element , e . g . , not necessarily an element on a 
boundary . The operand field of region ( which may be in a 
single register or multiple registers , etc . ) may indicate ( e . g . , 
encode ) the dimensions ( e . g . , height and width ) of the 2D 
region that is to be fetched into ( e . g . , the target ) cache from 
a multidimensional array located in the system memory by 
execution of the instruction . In one embodiment , the oper 
and field of region is the number of bits or elements in each 
of the width ( e . g . , the x direction in Cartesian coordinates ) 
and the height ( e . g . , the y direction in in Cartesian coordi 
nates ) . The operand field of stride may indicate ( e . g . , 
encode ) the stride ( e . g . , in bits or number of elements ) of the 
multidimensional block of elements to be prefetched and / or 
the multidimensional array in system memory . The stride 
may be different in each of the two dimensions , e . g . , the 
stride data field may include a first stride for one dimension 
( e . g . , the x direction in Cartesian coordinates ) and a second 
stride for a second dimension ( e . g . , the y direction in 
Cartesian coordinates ) . The operand field of target cache 
may indicate ( e . g . , encode ) the identification of the ( e . g . , 
target ) cache ( e . g . , cache level ) that the two - dimensional 
block of elements are to be fetched ( e . g . , loaded ) into cache 
from a multidimensional array located in the system 
memory by execution of the instruction . In one embodiment , 

TABLE 1 
Example instruction formats : 

Opcode Operands 

PREFETCH2D ( 1 ) base , region , stride , target 
cache 
base , region , stride , target 
cache 

PREFETCH3D ( 2 ) 
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the operand field of target cache is the last level cache or L3 . 
Execution of such an instruction may prefetch into cache the 
entire rectangle of height by width of the system memory 
region starting with the base address and using stride ( s ) 
between corresponding rows and / or columns of the rectan 
gular region . 
[ 0040 ] In reference to example instruction format ( 2 ) , the 
opcode PREFETCH3D may cause a hardware processor 
( e . g . , as discussed herein ) to prefetch a three - dimensional 
( 3D ) block of elements from a multidimensional ( e . g . , 3D or 
4D ) array . The operand field of base may indicate ( e . g . , 
encode ) the base ( e . g . , system memory ) address of the 
three - dimensional block of elements that are to be fetched 
into ( e . g . , the target ) cache from a multidimensional array 
located in the system memory by execution of the instruc 
tion . In one embodiment , the operand field of base is the 
starting element , e . g . , not necessarily an element on a 
boundary . The operand field of region ( which may be in a 
single register or multiple registers , etc . ) may indicate ( e . g . , 
encode ) the dimensions ( e . g . , height , width , and depth ) of 
the 3D region that is to be fetched into ( e . g . , the target ) cache 
from a multidimensional array located in the system 
memory by execution of the instruction . In one embodiment , 
the operand field of region is the number of bits or elements 
in each of the height ( e . g . , the z direction in Cartesian 
coordinates ) , the width ( e . g . , the x direction in Cartesian 
coordinates ) , and the depth ( e . g . , the y direction in in 
Cartesian coordinates ) . The operand field of stride may 
indicate ( e . g . , encode ) the stride ( e . g . , in bits or number of 
elements ) of the multidimensional block of elements to be 
prefetched and / or the multidimensional array in system 
memory . The stride may be different in each of two dimen 
sions or three dimensions , e . g . , the stride data field may 
including a first stride for one dimension ( e . g . , the x direc 
tion in Cartesian coordinates ) , a second stride for a second 
dimension ( e . g . , the y direction in Cartesian coordinates ) , 
and a third stride for a third dimension ( e . g . , the z direction 
in Cartesian coordinates ) . The operand field of target cache 
may indicate ( e . g . , encode ) the identification of the ( e . g . , 
target ) cache ( e . g . , cache level ) that the three - dimensional 
block of elements are to be fetched ( e . g . , loaded ) into cache 
from a multidimensional array located in the system 
memory by execution of the instruction . In one embodiment , 
the operand field of target cache is the last level cache or L3 . 
Execution of such an instruction may prefetch into cache the 
entire cuboid of height by width by depth of the system 
memory region starting including the base address and using 
stride ( s ) between corresponding elements of the rectangular 
region . 
100411 In reference to example instruction format ( 3 ) , the 
opcode PREFETCH may cause a hardware processor ( e . g . , 
as discussed herein ) to prefetch a multidimensional block of 
elements from a multidimensional array with the number of 
dimensions being an operand field , e . g . , instead of being part 
of the opcode . For example , the PREFETCH instruction 
with an operand field of dimension being 2 may function as 
the PREFETCH2D instruction above . For example , the 
PREFETCH instruction with an operand field of dimension 
being 3 may function as the PREFETCH3D instruction 
above . The operand field of dimension may be 2 , 3 , 4 , 5 , 6 , 
7 , 8 , 9 , etc . , and may include scaling the operands , e . g . , 
scaling ( e . g . , modifying ) the stride operand ( s ) and / or the 
region operand to define the boundaries of the multidimen - 
sional block of elements to be prefetched . In one embodi - 

ment , the stride for one or more dimensions ( e . g . , each 
dimension ) of the multidimensional block of elements to be 
prefetched may be an immediate value and / or stored in 
memory , e . g . , in a register . 
[ 0042 ] In reference to example instruction format ( 4 ) , the 
opcode 2D _ BLOCK _ PREFETCHx may cause a hardware 
processor ( e . g . , as discussed herein ) to prefetch a two 
dimensional ( 2D ) block ( e . g . , square ) of elements from a 
multidimensional ( e . g . , 2D or 3D ) array . The operand field 
of [ A ] may indicate ( e . g . , encode ) the base ( e . g . , system 
memory ) address of the two - dimensional block of elements 
that are to be fetched into ( e . g . , the target ) cache from a 
multidimensional array located in the system memory by 
execution of the instruction . In one embodiment , the oper 
and field of [ A ] is the starting element , e . g . , an element on 
a boundary . The operand field of k , e . g . , which may refer to 
a half width , ( or corresponding to a full width of ( 2 * k + 1 ) in 
at least one dimension of a multidimensional block of 
elements , e . g . , as in stencil 100 in FIG . 1 ) may indicate ( e . g . , 
encode ) the dimensions ( e . g . , height and width ) of the 2D 
region that is to be fetched into ( e . g . , the target ) cache from 
a multidimensional array located in the system memory by 
execution of the instruction . In one embodiment , the oper 
and field of k indicates that ( 2 * k + 1 ) is the number of bits or 
elements in each of the width ( e . g . , the x direction in 
Cartesian coordinates ) and the height ( e . g . , the y direction in 
in Cartesian coordinates ) . The operand field of nl may 
indicate ( e . g . , encode ) the stride ( e . g . , in bits or number of 
elements ) of the multidimensional block of elements to be 
prefetched and / or the multidimensional array in system 
memory . The stride may be different in each of the two 
dimensions , e . g . , the stride data field nl may include a first 
stride for one dimension ( e . g . , the x direction in Cartesian 
coordinates ) and a second stride for a second dimension 
( e . g . , the y direction in Cartesian coordinates ) . The opcode 
field of x may indicate ( e . g . , encode ) the identification of the 
( e . g . , target ) cache ( e . g . , cache level ) that the two - dimen 
sional block of elements are to be fetched ( e . g . , loaded ) into 
cache from a multidimensional array located in the system 
memory by execution of the instruction . Alternatively , X 
may be in an operand field . In one embodiment , the operand 
field of target cache is the last level cache or L3 . Execution 
of such an instruction may prefetch into cache the entire 
square of height by width of the system memory region 
starting at the base address and using stride ( s ) between 
corresponding rows and / or columns of the rectangular 
region . For example , this instruction may prefetch into cache 
level “ x ” ( where x is a variable ) a number 2 * k + 1 elements 
( e . g . , cache lines ) starting from address A ( e . g . , as specified 
by the first operand ) . The set of k elements ( e . g . , cache lines ) 
prefetched may be square extending in each dimension as 
[ A ] , [ A + nl ] , [ A + 2 * nl ] , . . . [ A + ( k - 1 ) * nl ] . 
[ 0043 ] In reference to example instruction format ( 5 ) , the 
opcode 2D _ BLOCK _ CENTER _ PREFETCHx may cause a 
hardware processor ( e . g . , as discussed herein ) to prefetch a 
two - dimensional ( 2D ) block ( e . g . , square ) of elements from 
a multidimensional ( e . g . , 2D or 3D ) array . The operand field 
of [ A ] may indicate ( e . g . , encode ) the base ( e . g . , system 
memory ) address of the two - dimensional block of elements 
that are to be fetched into ( e . g . , the target ) cache from a 
multidimensional array located in the system memory by 
execution of the instruction . In one embodiment , the oper 
and field of [ A ] is the center element , e . g . , element 105 in 
FIG . 1 , of the square of the multidimensional block of 
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elements . Other operands may be included , e . g . , as dis - 
cussed in reference to example instruction format ( 4 ) above . 
For example , this instruction may prefetch into cache level 
“ X ” ( where x is a variable ) a number k elements ( e . g . , cache 
lines ) including ( e . g . , in the center ) address A ( e . g . , as 
specified by the first operand ) . The set of k elements ( e . g . , 
cache lines ) prefetched may be a square extending in each 
dimension as [ A - k * nl ] to [ A + k * nl ] . 
[ 0044 ] A data field , e . g . , operand nl , may include a 
direction for a multidimensional block to extend towards , 
e . g . , ( + or - ) x , y , or , z in 3D . 
[ 0045 ] In reference to example instruction format ( 6 ) , the 
opcode 3D _ BLOCK SPARSE _ PREFETCHx may cause a 
hardware processor ( e . g . , as discussed herein ) to prefetch a 
sparse three - dimensional ( sparse 3D ) block of elements 
from a multidimensional ( e . g . , 3D or 4D ) array . The operand 
field of [ A ] may indicate ( e . g . , encode ) the base ( e . g . , system 
memory ) address of the three - dimensional block of ( sparse ) 
elements that are to be fetched into ( e . g . , the target ) cache 
from a multidimensional array located in the system 
memory by execution of the instruction . In one embodiment , 
the operand field of [ A ] is the starting element , e . g . , an 
element in the center of the sparse block . The operand field 
of k ( e . g . , which may refer to a half width or to a full width 
of ( 2 * k + 1 ) in at least one dimension of a multidimensional 
block of elements ) may indicate ( e . g . , encode ) the dimen 
sions ( for example , the height , width , and depth , e . g . , all of 
the same value ) of the 3D sparse block that is to be fetched 
into ( e . g . , the target ) cache from a multidimensional array 
located in the system memory by execution of the instruc 
tion . In one embodiment , the operand field of ( 2 * k + 1 ) is the 
number of bits or elements in each of the width ( e . g . , the x 
direction in Cartesian coordinates ) , the height ( e . g . , the z 
direction in in Cartesian coordinates ) , and the depth ( e . g . , 
the y direction in Cartesian coordinates ) . The operand fields 
of nl and n2 may indicate ( e . g . , encode ) the stride ( e . g . , in 
bits or number of elements ) in a first direction and a second 
direction , respectively , of the multidimensional block of 
elements to be prefetched and / or the multidimensional array 
in system memory . The stride may be different in each of the 
two dimensions , e . g . , the stride data field may include a first 
stride nl for one dimension ( e . g . , the x direction in Cartesian 
coordinates ) and a second stride n2 for a second dimension 
( e . g . , the y direction in Cartesian coordinates ) . The stride in 
the third direction may be n1 * n2 . For example , if the starting 
element is A [ x , y , z ] and the element to go to is A [ x , y , z + 1 ] , 
the distance between them is Alx , y , z ] + n1 * n2 * size of ele 
ment . The opcode field of x may indicate ( e . g . , encode ) the 
identification of the ( e . g . , target ) cache ( e . g . , cache level ) 
that the sparse three - dimensional block of elements are to be 
fetched ( e . g . , loaded ) into cache from a multidimensional 
array located in the system memory by execution of the 
instruction . Alternatively , x may be in an operand field . In 
one embodiment , the operand field of target pocache is the 
last level cache or L3 . Execution of such an instruction may 
prefetch into cache the three intersecting one dimensional 
arrays ( e . g . , at right angles to each other ) of height by width 
by depth of the system memory region including the base 
address and using stride ( s ) between corresponding rows 
and / or columns of the region . For example , this instruction 
may prefetch into cache level “ X ” ( where x is a variable ) a 
number 6 * k + 1 of elements ( e . g . , cache lines ) including 
address A ( e . g . , as specified by the first operand ) . The set of 
k elements ( e . g . , cache lines ) prefetched may be the sparse 

3D block extending in each dimension as [ A - k * n1 ] to 
[ A + k * n1 ] , e . g . , as in stencil 100 in FIG . 1 . 
[ 0046 ] In reference to example instruction format ( 7 ) , the 
opcode 3D _ BLOCK _ PREFETCHx may cause a hardware 
processor ( e . g . , as discussed herein ) to prefetch a three 
dimensional ( 3D ) block from a multidimensional ( e . g . , 3D 
or 4D ) block . The operand field of JA ] may indicate ( e . g . , 
encode ) the base ( e . g . , system memory ) address of the 
three - dimensional block of elements that are to be fetched 
into ( e . g . , the target ) cache from a multidimensional array 
located in the system memory by execution of the instruc 
tion . In one embodiment , the operand field of [ A ] is the 
starting element , e . g . , an element in the center of the sparse 
block . The operand field of k ( e . g . , which may refer to a half 
width or to a full width of ( 2 * k + 1 ) in at least one dimension 
of a multidimensional block of elements ( e . g . , a stencil ) may 
indicate ( e . g . , encode ) the dimensions ( for example , the 
height , width , and depth , e . g . , all of the same value ) of the 
3D block that is to be fetched into ( e . g . , the target ) cache 
from a multidimensional array located in the system 
memory by execution of the instruction . In one embodiment , 
the operand field of k indicates that ( 2 * k + 1 ) is the number 
of bits or elements in each of the width ( e . g . , the x direction 
in Cartesian coordinates ) , the height ( e . g . , the z direction in 
in Cartesian coordinates ) , and the depth ( e . g . , the y direction 
in Cartesian coordinates ) . The operand fields of nl and n2 
may indicate ( e . g . , encode ) the stride ( e . g . , in bits or number 
of elements ) in a first direction and a second direction , 
respectively , of the multidimensional block of elements to be 
prefetched and / or the multidimensional array in system 
memory . The stride may be different in each of the two 
dimensions , e . g . , the stride data field may include a first 
stride nl for one dimension ( e . g . , the x direction in Cartesian 
coordinates ) and a second stride n2 for a second dimension 
( e . g . , the y direction in Cartesian coordinates ) . The stride to 
the third direction may be n1 * n2 . The opcode field of x may 
indicate ( e . g . , encode ) the identification of the ( e . g . , target ) 
cache ( e . g . , cache level ) that the sparse three - dimensional 
block of elements are to be fetched ( e . g . , loaded ) into cache 
from a multidimensional array located in the system 
memory by execution of the instruction . Alternatively , x 
may be in an operand field . In one embodiment , the operand 
field of target cache is the last level cache or L3 . Execution 
of such an instruction may prefetch into cache the cuboid of 
height by width by depth of the system memory region 
including the base address and using stride ( s ) between 
corresponding rows and / or columns of the region . For 
example , this instruction may prefetch into cache level “ X ” 
( where x is a variable ) a number ( 2 * k + 1 ) * ( 2 * k + 1 ) * ( 2 * k + 1 ) 
of elements ( e . g . , cache lines ) starting at ( e . g . , corner ) 
address A ( e . g . , as specified by the first operand ) . The set of 
k elements ( e . g . , cache lines ) prefetched may be the cuboid 
formed from [ A ] , [ A + nl ] , [ A + 2 * nl ] . . . , [ A + ( k - 1 ) * n1 ] , 
[ A + n1 * n2 ] , [ A + n1 * n2 + nl ] , . . . [ A + ( k - 1 ) * n1 * n2 + ( k - 1 ) 
* nl ] . Alternatively , this instruction may be replaced by a 
quantity ( 2 * k + 1 ) of the 2D _ BLOCK _ PREFETCHx instruc 
tions . 
[ 0047 ] Although the target cache ( e . g . , the identification of 
the cache to load the multidimensional block of elements 
into ) is shown above ( e . g . , as target cache or x ) , it is not 
required , for example , no target cache field may be present . 
Additionally or alternatively , the target cache may be 
implicit in the operand , e . g . , a prefetch opcode may indicate 
to the hardware processor executing the instruction ( e . g . , 
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during decoding ) that the target cache is a certain cache level 
( e . g . , L1 , L2 , L3 , L4 , etc . ) . In one embodiment , the target 
cache for the instruction is the same for an opcode that the 
particular opcode indicates the target cache to the hardware 
processor , e . g . , the target cache is always a certain cache 
level ( e . g . , L1 , L2 , L3 , L4 , etc . ) . 
[ 0048 ] FIG . 2 illustrates a block diagram 200 of a multiple 
core hardware processor 202 with a prefetch unit 220 
according to embodiments of the disclosure . Any processor 
may include a prefetch unit , e . g . , the processors discussed 
below . FIG . 2 illustrates an embodiment of multiple proces 
sor cores ( core A and core B ) and multiple levels of caches 
( L1 , L2 , and L3 ) , e . g . , in a cache coherency hierarchy . 
Although two cores are depicted , a single or more than two 
cores may be utilized . Although multiple levels of cache are 
depicted , a single , or any number of caches may be utilized . 
Cache ( s ) may be organized in any fashion , for example , as 
a physically or logically centralized or distributed cache . 
[ 0049 ] In an embodiment , a processor , such as a processor 
or processors including the processor cores illustrated in the 
Figures , or any other processor , may include one or more 
caches . FIG . 2 illustrates an embodiment of a three level 
( e . g . , levels 1 ( L1 ) , 2 ( L2 ) , and 3 ( L3 ) ) cache . A processor 
may include at least one core and at least one un - core . In one 
embodiment , multiple cores ( core A and B ) are of a single 
processor 202 . A core ( e . g . , core A and core B ) may include 
the components of a processor to execute instructions . An 
un - core may include all logic not in a core . A processor core 
( e . g . , core A ) may include components such as a level 1 
instruction cache ( L1I ) 208 and a level 1 data cache ( LID ) 
210 . A core ( e . g . , core A ) may include components such as 
an address generation unit ( AGU ) 212 , translation lookaside 
buffer ( TLB ) 214 , and a level 2 cache ( L2 ) 216 . A core may 
or may not share a cache with other cores , e . g . , core A and 
core B may share the level 3 cache ( L3 ) 218 but not the L2 
216 or L1 ( 208 . 210 ) . A core may include any combination 
of these components or none of these components . Processor 
202 ( e . g . , core A and core B ) may access ( e . g . , load and 
store ) data in the system memory 224 , e . g . , as indicated by 
the arrows . 
[ 0050 ] In one embodiment , the system memory 224 com 
municates with the core over a bus , e . g . , at a slower access 
and / or cycle time than the core accessing cache ( e . g . cache 
on the processor 202 ) . System memory 224 may include a 
multidimensional array 226 , e . g . , loaded into the system 
memory 224 previously to the execution of a prefetch 
instruction . 
[ 0051 ] An address generation unit ( e . g . , AGU 212 ) , for 
example , address computation unit ( ACU ) , may refer to an 
execution unit inside a processor ( e . g . , a core ) that calculates 
addresses used to access memory ( e . g . , system memory 
224 ) , for example , to allow the core to access the system 
memory . In one embodiment , the AGU takes an address 
stream ( e . g . , equations ) as an input and outputs the ( e . g . , 
virtual ) addresses for that stream . An AGU ( e . g . , circuit ) 
may perform arithmetic operations , such as addition , sub 
traction , modulo operations , or bit shifts , for example , 
utilizing an adder , multiplier , shifter , rotator , etc . thereof . 
[ 0052 ] A translation lookaside buffer ( e . g . , TLB 214 ) may 
convert a virtual address to a physical address ( e . g . , of the 
system memory ) . A TLB may include a data table to store 
( e . g . , recently used ) virtual - to - physical memory address 
translations , e . g . , such that the translation does not have to 
be performed on each virtual address present to obtain the 

physical memory address . If the virtual address entry is not 
in the TLB , a processor may perform a page walk to 
determine the virtual - to - physical memory address transla 
tion . 
[ 0053 ] Prefetch unit 220 may be a separate functional unit , 
e . g . , not utilizing the functional units ( e . g . , execution unit , 
Arithmetic Logic Unit ( ALU ) , AGU , TLB , etc . ) of a core . 
Prefetch unit may be utilized by a prefetch instruction ( e . g . , 
as disclosed herein ) . Prefetch unit may include circuitry 
and / or hardware logic to perform the prefetching discussed 
herein . Prefetch unit may be part of a processor ( e . g . , on the 
un - core ) . Prefetch unit may communicate with the core ( s ) of 
the processor , e . g . , via communication resources ( not 
shown ) , such as , but not limited to , a ring network . Processor 
202 may communicate with the system memory 224 and / or 
caches ( e . g . , L1 , L2 , or L3 in FIG . 2 ) via a memory 
controller ( e . g . , as part of the processor ) and / or an intercon 
nect . Prefetch unit 220 may output a system memory 
addresses of the multidimensional block of elements that is 
to - be - loaded ( e . g . , copied ) into cache ( e . g . , L1 , L2 , or L3 in 
FIG . 2 ) from multidimensional array 226 in system memory 
224 . Prefetch unit 220 may output the system memory 
addresses to the memory controller ( not shown ) of processor 
202 . 
[ 0054 ] FIG . 3 illustrates a block diagram of a hardware 
prefetch unit 320 according to embodiments of the disclo 
sure . A hardware prefetch unit may include any combination 
or none of the elements shown . For example , prefetch unit 
may only include a control unit 324 ( or control unit logic ) to 
take as input the specifications ( e . g . , dimension , base 
address , region boundaries , stride , and / or target cache ) of the 
multidimensional block of elements to prefetch into cache 
and / or output ( e . g . , via logic or a state machine , such as a 
finite state machine ( FSM ) ) the ( e . g . , physical ) system 
memory addresses of the multidimensional block of ele 
ments , for example , to move that data of the multidimen 
sional block of elements into the cache . In one embodiment , 
the output of system memory addresses ( e . g . , memory 
request ) is sent to a queue or buffer of a memory control unit 
( e . g . , memory controller ) , for example , to complete those 
requests . 
[ 0055 ] In one embodiment , the hardware prefetch unit 
may connect to the system memory and cause the move of 
the multidimensional block of elements into the cache ( e . g . , 
without utilizing a core ' s resources ) . 
[ 0056 ] In one embodiment , a prefetch unit is separate from 
the execution unit and / or processor pipeline ( e . g . , 900 in 
FIG . 9 ) . For example , a prefetch instruction may be executed 
( e . g . , initiated ) by the execution unit and thereafter utilize 
the prefetch unit to obtain the system memory addresses of 
the multidimensional block of element to be placed into the 
cache without the addresses being generated in a ( e . g . , 
execution unit of ) a core of the processor . 
[ 0057 ] In FIG . 3 , depicted prefetch unit 320 includes an 
input 322 . Input 322 may be the specifications ( e . g . , dimen 
sion , base address , region boundaries , stride , and / or target 
cache ) of the multidimensional block of elements to prefetch 
into cache . Specifications may be the operand and / or opcode 
data from the prefetch instruction . Input 322A ( optional ) 
may connect directly to the control unit 324 to provide the 
specifications and / or include a queue . Control unit 324 may 
include the logic to convert the specifications into virtual 
addresses . In one embodiment , control unit 324 includes a 
finite state machine ( FSM 325 ) to convert the specifications 
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into virtual addresses . For example , a FSM having a state ( or 
set of states ) for each multidimensional block size ( e . g . , 2D , 
3D , 4D , etc . ) and utilizing certain states of the FSM to output 
an address stream ( e . g . , equations ) accordingly for the 
specifications . For example , in reference to example instruc 
tion format ( 4 ) for the 2D _ BLOCK _ PREFETCHx opcode , 
the address stream may include [ A ] , [ A + nl ] , [ A + 2 * n1 ] , . . 
. [ A + ( k - 1 ) * n1 ] and supplying the values for A , k , and nl . 
[ 0058 ] The address stream may be output 326 to an 
Address Generation Unit 312 . An AGU may be prefetch 
unit ' s AGU 312 or a core ' s AGU ( e . g . , AGU 212 in FIG . 2 ) . 
An AGU may generate a ( e . g . , virtual ) address from the 
address stream . As noted above , an AGU ' s hardware circuit 
may include arithmetic or other hardware components , e . g . , 
an adder , multiplier , shift register , etc . The virtual addresses 
for the ( e . g . , entire ) stream may then be output 328 ( e . g . , 
sequentially ) into the transition lookaside buffer ( TLB ) 314 
( or other component to convert a virtual address into an 
address format that that the processor may use to access the 
system memory ( e . g . , system memory 224 in FIG . 2 ) ) . In 
FIG . 3 , TLB 314 may receive the virtual addresses and 
convert them into physical addresses . In one embodiment , a 
TLB may be prefetch unit ' s TLB 314 or a core ' s TLB ( e . g . , 
TLB 214 in FIG . 2 ) . The physical addresses may be output 
from the prefetch unit 320 , e . g . , via output 330 or directly 
from the TLB via 300A . A queue may be included at 330 or 
330A . As an optional feature , a prefetch unit 320 may 
include a status register 332 ( or other status indicator ) such 
that a component or user may query the status register 332 
to determine the state of the prefetch unit . In one embodi 
ment , a status register 332 may indicate e . g . , via output 
334A , that the current prefetch operation is in progress , 
completed , failed , etc . In one embodiment , a status register 
332 may indicate that the prefetch unit is busy or not busy . 
In one embodiment , an output from the status register and / or 
an input query may occur via prefetch unit output 334 . 
Control unit 324 may control ( e . g . , update ) the status register 
332 
[ 0059 ] Note that in the use of arrows for communication 
herein , a single direction arrow may allow communication 
in either direction ( e . g . , to transmit and / or receive a signal ) . 
[ 0060 ] FIG . 4 illustrates a flow diagram 400 of prefetching 
a multidimensional block of elements from a multidimen 
sional array according to embodiments of the disclosure . 
Input 402 may be the specifications ( e . g . , dimension , base 
address , region boundaries , stride , and / or target cache ) of the 
multidimensional block of elements to be prefetched . Those 
specifications may then be used to create an address stream 
404 ( e . g . , by the control unit 324 ) . The address stream may 
then be used to generate the ( e . g . , virtual ) addresses . The 
stream may iterate at 408 until all addresses of the stream are 
prefetched 410 into the cache , that is , until done ( e . g . , 
completed ) 412 . In one embodiment , prefetch logic ( e . g . , a 
FSM ) may control the performance of certain or all of the 
actions in flow diagram 400 . 
[ 0061 ] As a further example , below are three possible 
hardware logic ( e . g . , FSM ) implementations . First , logic 
( e . g . , FSM ) may include an integer adder ( and / or multiplier , 
etc . ) to calculate addresses ( e . g . , address A ( base address ) + 
64 ; see the address streams above for other examples ) and a 
TLB to translate the virtual address into a physical address 
prior to sending to the memory subsystem ( e . g . , controller ) . 
In this implementation , the FSM may be self - contained and 
may be developed as a separate functional unit inside the 

processor . In one embodiment , the prefetch unit ' s TLB is 
kept coherent with the processor ' s TLB ( s ) . Secondly , the 
logic ( e . g . , FSM ) may contain the AGU ( e . g . , integer adder ) 
to generate the virtual addresses and the virtual addresses 
may then be fed into the processor ' s memory pipeline for 
virtual to physical translation ( e . g . , via a TLB ) and / or 
queued for cache and system memory accesses ( e . g . , alter 
nating each ) . Thirdly , the logic ( e . g . , FSM ) may include a 
control unit to generate an address stream but utilize the 
processor core ' s AGU to generate the virtual address of the 
system memory and the processor core ' s TLB to generate 
physical system memory requests to be queued for cache 
and system memory accesses . 
10062 ] FIG . 5 illustrates a flow diagram 500 of prefetching 
a multidimensional block of elements from a multidimen 
sional array according to embodiments of the disclosure . 
The flow diagram includes decoding , with a decode unit , a 
prefetch instruction to prefetch a multidimensional block of 
elements from a multidimensional array into a cache , 
wherein at least one operand of the prefetch instruction is to 
indicate a system memory address of an element of the 
multidimensional block of elements , a stride of the multi 
dimensional block of elements , and boundaries of the mul 
tidimensional block of elements 502 , and executing with an 
execution unit the prefetch instruction to : generate system 
memory addresses of the other elements of the multidimen 
sional block of elements , and load the multidimensional 
block of elements into the cache from the system memory 
addresses 504 . 
[ 0063 ] Hardware prefetch methods and apparatuses dis 
closed herein may be utilized on regularly shaped ( e . g . , 1D , 
2D , or 3D ) blocks of data using regular access patterns 
within these blocks . Adjacent blocks may either be contigu 
ous ( e . g . , in a convolution application ) or non - contiguous 
( e . g . , in sparse solver , sparse block matrix vector multipli 
cation , or seismic modeling and prediction applications ) . 
[ 0064 ] In certain embodiments , a prefetch instruction may 
prefetch the multidimensional block of elements to one or 
more of the cache levels . In one embodiment , the cache level 
is a victim cache . A victim cache may be the last level cache 
( LLC ) , for example , L3 218 in FIG . 2 . In one example , a 
( e . g . , macro - ) instruction prefetches the multidimensional 
block of elements from system memory into a victim cache . 
As a processor ( e . g . , core ) may look through the caches ( e . g . , 
from highest ( e . g . L1 in FIG . 2 ) to lowest ( e . g . , L3 in FIG . 
2 ) for data ( e . g . , a cache line ) before accessing the ( e . g . , 
much slower ) system memory , a prefetch to the victim cache 
may allow the processor to access that data without access 
ing the system memory and without providing other notice 
to the processor that the data in question is in the cache . In 
another embodiment , the prefetch of the multidimensional 
block of elements may include notifying the processor ( e . g . , 
cores ) that the multidimensional block of elements are 
loaded into the cache ( e . g . , using a tag directory of those 
cache lines in the cache ) . 
[ 0065 ] In one embodiment where a speculative prefetch 
data set may have been generated and placed into the cache , 
the prefetch instructions , methods , and and apparatuses 
discussed herein may replace that speculative prefetch data 
set in the cache with the multidimensional block of ele 
ments . Replacing existing ( e . g . . non - utilizable ) cache may 
be useful , for example , owing to the limited size of the cache 
relative to the size of ( e . g . , the speculative prefetch data set 
and / or ) the multidimensional block of elements , the limited 
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resources for fetching data from system memory , and the 
power consumption caused by incorrect prefetches In one 
embodiment , the speculative prefetch data set and the mul 
tidimensional block of elements correspond to the same 
future instruction that is to operate on this data . 
[ 0066 ] In certain embodiments , hardware prefetch meth 
ods and apparatuses disclosed herein may generate multiple 
memory requests with non - constant difference between the 
( e . g . , virtual ) addresses , for example , not merely contiguous 
virtual addresses for the entire multidimensional block of 
elements . In certain embodiments , hardware methods and 
apparatuses herein do not merely generate random numbers , 
but instead may target a specific fixed pattern ( e . g . , as 
discussed herein ) . 
[ 0067 ] In certain embodiments , hardware prefetch meth 
ods and apparatuses disclosed herein may reduce the cache 
miss rate and improve performance for operations that 
operate on randomly located in memory ( e . g . , regularly 
shaped ( 1D , 2D , or 3D ) ) blocks of elements , e . g . , of different 
sized blocks . While the access pattern within each block 
may be regular ( e . g . , sequential or strided ) , as the operation 
( e . g . , stencil operation ) moves to the next such block , the 
access pattern may become interrupted and a speculative 
prefetch engine may require the learning of another access 
pattern ( e . g . , causing the correct data in a new block to not 
be in the cache ) within the new block as opposed to a 
prefetch instruction that allows the prefetching of a ( e . g . , 
programmer ) defined multidimensional block of elements as 
disclosed herein . 
[ 0068 ] Consider for example , prefetching that requires 
seeing the same stride three times in order to learn the stream 
and start speculatively prefetching with that stride . After 
moving to a new block , an operation may experience three 
misses of the data in the cache . If the data comes from 
memory , assuming 300 cycles latency for memory access , 
the processor pipeline may stall up to 1000 cycles . If the 
computation within a block takes 500 cycles , there is a factor 
of 3 performance loss ( e . g . , 1500 / 500 ) compared to the case 
when data is available in the cache by or before the time the 
operation on that data is being executed . 
[ 0069 ] In one embodiment , sparse linear is a direct method 
to solve a sparse system of equations M * x = b . In one 
implementation , an array ( e . g . , matrix ) M is reordered . 
Further , columns of the reordered matrix may be partitioned 
into super - blocks , e . g . , where each superblock is a small 
subset of consecutive columns with the same non - zero 
structure . Due to the same non - zero structure , these super 
blocks may be stored as relatively long and narrow dense 
matrices , e . g . , with additional indexing data structures to 
access individual rows / columns of super block . The width 
and height of these matrices may depend on a non - zero 
structure , as well as their location within the matrix . Super 
nodes on one side ( e . g . , the left ) may be ( e . g . , much ) smaller 
than super nodes on the other side ( e . g . , the right ) . In one 
example , supernode sizes differ between 1x1 and 512x16 . 
To expose parallelism on multi - core processors , ( e . g . , larger ) 
supernodes may be further divided into ( e . g . , smaller ) dense 
matrices of variable dimension . As both supernodes may be 
accessed in random fashion , e . g . , as dictated by an elimi 
nation tree order , a speculative prefetch may not prefetch the 
correct data , e . g . , owing to not capturing the random tran 
sitions from one supernode to another and thus prefetch 
beginning at the next supernode . In addition , the sizes of the 
supernodes may be small and / or different . A supernode may 

include a triangular 2D array . Certain embodiments herein 
may allow prefetching of supernode data ( e . g . , for a trian 
gular 2D region ) . 
[ 0070 ] Embodiments of this disclosure allow for prefetch 
ing of data for geometric multigrid methods ( e . g . , to prefetch 
cells of a grid level ) ; convolution - based kernels such as , but 
not limited to , those in Intel® Integrated Performance Primi 
tives ( IPP ) ; high - order methods in computational fluid 
dynamics ( CFD ) ; and high performance implementation of 
Basic Linear Algebra Subprograms ( e . g . , BLAS3 ) dense 
linear algebra kernels . Although prefetching by certain 
embodiments herein may be utilized for convolution , this 
disclosure is not so limited . For example , certain embodi 
ments may be utilized to prefetch data that does not exhibit 
sequential or nearly sequential access patterns . 
[ 0071 ] In one embodiment , the prefetch operands for 
multiple prefetch instructions according to this disclosure 
are stored in separate memory locations ( e . g . , in registers ) , 
and each prefetch instruction may be executed on its respec 
tive set of operands to provide each set of prefetched data , 
for example , at a desired time . In certain embodiments , this 
may allow for the prefetching of multidimensional blocks of 
elements where each block is of a different , non - sequential 
( e . g . , irregular ) access pattern from other ( e . g . , previously 
accessed ) blocks . 
[ 0072 ] In yet another embodiment , spatial adaptivity in 3D 
may be realized by flexible unstructured polyhedral ( e . g . , 
tetrahedral or hexahedral ) meshes , e . g . , in seismic modeling 
and prediction applications . Tetrahedral meshes may form a 
multidimensional array , e . g . , of four triangular faces . Hexa 
hedral meshes may form a multidimensional array , e . g . , of 
six faces . Certain embodiments herein may allow prefetch 
ing of that data ( e . g . , for a face of a mesh ) . For example , 
methods and apparatuses of this disclosure may provide a 
prefetching operator for the global operators and time 
integrated unknowns . The access structure may be defined 
by the mesh ( e . g . , it is known at runtime but not at compile 
time ) . While the ith face of a polyhedron ( e . g . , tetrahedron or 
hexahedron ) is processed , this disclosure may provide a 
range - prefetch of the matrices needed for the ( i + 1 ) ' face . As 
the required matrices may have varying sizes ( e . g . , depend 
ing on the sparsity pattern of the matrix ) , a 2D prefetch may 
be utilized . 
[ 0073 ] In one embodiment , sparse matrix - vector multipli 
cation using a block compressed row ( BCR ) format and 
multiple right - hand sides may include non - contiguous 
blocks of a multidimensional array . Certain embodiments 
herein may allow prefetching of that non - contiguous data . 
[ 0074 ] In one embodiment , a hardware processor includes 
a decoder to decode a prefetch instruction to prefetch a 
multidimensional block of elements from a multidimen 
sional array into a cache , wherein at least one operand of the 
prefetch instruction is to indicate a system memory address 
of an element of the multidimensional block of elements , a 
stride of the multidimensional block of elements , and 
boundaries of the multidimensional block of elements , and 
an execution unit to execute the prefetch instruction to : 
generate system memory addresses of the other elements of 
the multidimensional block of elements , and load the mul 
tidimensional block of elements into the cache from the 
system memory addresses . The execution unit may execute 
the prefetch instruction to cause a hardware prefetch unit to : 
generate system memory addresses of the other elements of 
the multidimensional block of elements , and / or load the 
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multidimensional block of elements into the cache from the 
system memory addresses . The hardware processor may 
include a prefetch unit to generate the system memory 
addresses of the other elements of the multidimensional 
block of elements from a state machine . The prefetch unit 
may include an adder to generate the system memory 
addresses of the other elements of the multidimensional 
block of elements . The prefetch unit may include an address 
generation unit to generate the system memory addresses of 
the other elements of the multidimensional block of ele 
ments . The at least one operand of the instruction may 
indicate a level of the cache to load the multidimensional 
block of elements . The stride may include a first stride in a 
first dimension and a different , second stride in a second 
dimension . The execution unit may load the multidimen 
sional block of elements into a victim cache . The execution 
unit may replace a speculative prefetch data set in the cache 
with the multidimensional block of elements . 
10075 ] In another embodiment , a method includes decod 
ing , with a decode unit , a prefetch instruction to prefetch a 
multidimensional block of elements from a multidimen 
sional array into a cache , wherein at least one operand of the 
prefetch instruction is to indicate a system memory address 
of an element of the multidimensional block of elements , a 
stride of the multidimensional block of elements , and 
boundaries of the multidimensional block of elements , and 
executing with an execution unit the prefetch instruction to : 
generate system memory addresses of the other elements of 
the multidimensional block of elements , and load the mul 
tidimensional block of elements into the cache from the 
system memory addresses . The method may include pro 
viding a prefetch unit to generate the system memory 
addresses of the other elements of the multidimensional 
block of elements from a state machine . The prefetch unit 
may include an adder to generate the system memory 
addresses of the other elements of the multidimensional 
block of elements . The prefetch unit may include an address 
generation unit to generate the system memory addresses of 
the other elements of the multidimensional block of ele 
ments . The at least one operand of the instruction may 
indicate a level of the cache to load the multidimensional 
block of elements . The stride may include a first stride in a 
first dimension and a different , second stride in a second 
dimension . The execution unit may load the multidimen 
sional block of elements into a victim cache . The execution 
unit may replace a speculative prefetch data set in the cache 
with the multidimensional block of elements . 
[ 0076 . In yet another embodiment , an apparatus includes 
a set of one or more processors , and a set of one or more data 
storage devices that stores code , that when executed by the 
set of processors causes the set of one or more processors to 
perform the following : decoding , with a decode unit , a 
prefetch instruction to prefetch a multidimensional block of 
elements from a multidimensional array into a cache , 
wherein at least one operand of the prefetch instruction is to 
indicate a system memory address of an element of the 
multidimensional block of elements , a stride of the multi 
dimensional block of elements , and boundaries of the mul 
tidimensional block of elements , and executing with an 
execution unit the prefetch instruction to : generate system 
memory addresses of the other elements of the multidimen 
sional block of elements , and load the multidimensional 
block of elements into the cache from the system memory 
addresses . The set of data storage devices may further store 

code , that when executed by the set of processors causes the 
set of processors to perform the following : further compris 
ing providing a prefetch unit to generate the system memory 
addresses of the other elements of the multidimensional 
block of elements from a state machine . The set of data 
storage devices may further store code , that when executed 
by the set of processors causes the set of processors to 
perform the following : wherein the prefetch unit further 
comprises an adder to generate the system memory 
addresses of the other elements of the multidimensional 
block of elements . The set of data storage devices may 
further store code , that when executed by the set of proces 
sors causes the set of processors to perform the following : 
wherein the prefetch unit further comprises an address 
generation unit to generate the system memory addresses of 
the other elements of the multidimensional block of ele 
ments . The set of data storage devices may further store 
code , that when executed by the set of processors causes the 
set of processors to perform the following : wherein the at 
least one operand of the instruction is to indicate a level of 
the cache to load the multidimensional block of elements . 
The set of data storage devices may further store code , that 
when executed by the set of processors causes the set of 
processors to perform the following : wherein the stride 
comprises a first stride in a first dimension and a different , 
second stride in a second dimension . The set of data storage 
devices may further store code , that when executed by the 
set of processors causes the set of processors to perform the 
following : wherein the execution unit is to load the multi 
dimensional block of elements into a victim cache . The set 
of data storage devices may further store code , that when 
executed by the set of processors causes the set of processors 
to perform the following : wherein the execution unit is to 
replace a speculative prefetch data set in the cache with the 
multidimensional block of elements . 
[ 0077 ] In another embodiment , a hardware processor 
includes means to decode a prefetch instruction to prefetch 
a multidimensional block of elements from a multidimen 
sional array into a cache , wherein at least one operand of the 
prefetch instruction is to indicate a system memory address 
of an element of the multidimensional block of elements , a 
stride of the multidimensional block of elements , and 
boundaries of the multidimensional block of elements , and 
means to execute the prefetch instruction to : agenerate 
system memory addresses of the other elements of the 
multidimensional block of elements , and load the multidi 
mensional block of elements into the cache from the system 
memory addresses . 
10078 ] In yet another embodiment , a machine readable 
storage medium includes code , that when executed causes a 
machine to perform a method disclosed herein . 
[ 0079 ] An instruction set may include one or more instruc 
tion formats . A given instruction format may define various 
fields ( e . g . , number of bits , location of bits ) to specify , 
among other things , the operation to be performed ( e . g . , 
opcode ) and the operand ( s ) on which that operation is to be 
performed and / or other data field ( s ) ( e . g . , mask ) . Some 
instruction formats are further broken down though the 
definition of instruction templates ( or subformats ) . For 
example , the instruction templates of a given instruction 
format may be defined to have different subsets of the 
instruction format ' s fields ( the included fields are typically 
in the same order , but at least some have different bit 
positions because there are less fields included ) and / or 
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defined to have a given field interpreted differently . Thus , 
each instruction of an ISA is expressed using a given 
instruction format ( and , if defined , in a given one of the 
instruction templates of that instruction format ) and includes 
fields for specifying the operation and the operands . For 
example , an exemplary ADD instruction has a specific 
opcode and an instruction format that includes an opcode 
field to specify that opcode and operand fields to select 
operands ( source1 / destination and source2 ) ; and an occur 
rence of this ADD instruction in an instruction stream will 
have specific contents in the operand fields that select 
specific operands . A set of SIMD extensions referred to as 
the Advanced Vector Extensions ( AVX ) ( AVX1 and AVX2 ) 
and using the Vector Extensions ( VEX ) coding scheme has 
been released and / or published ( e . g . , see Intel® 64 and 
IA - 32 Architectures Software Developer ' s Manual , Septem 
ber 2014 ; and see Intel® Advanced Vector Extensions 
Programming Reference , October 2014 ) . 

Exemplary Instruction Formats 
[ 0080 ] Embodiments of the instruction ( s ) described herein 
may be embodied in different formats . Additionally , exem 
plary systems , architectures , and pipelines are detailed 
below . Embodiments of the instruction ( s ) may be executed 
on such systems , architectures , and pipelines , but are not 
limited to those detailed . 

Generic Vector Friendly Instruction Format 
[ 0081 ] A vector friendly instruction format is an instruc 
tion format that is suited for vector instructions ( e . g . , there 
are certain fields specific to vector operations ) . While 
embodiments are described in which both vector and scalar 
operations are supported through the vector friendly instruc 
tion format , alternative embodiments use only vector opera 
tions the vector friendly instruction format . 
[ 0082 ] FIGS . 6A - 6B are block diagrams illustrating a 
generic vector friendly instruction format and instruction 
templates thereof according to embodiments of the disclo 
sure . FIG . 6A is a block diagram illustrating a generic vector 
friendly instruction format and class A instruction templates 
thereof according to embodiments of the disclosure ; while 
FIG . 6B is a block diagram illustrating the generic vector 
friendly instruction format and class B instruction templates 
thereof according to embodiments of the disclosure . Spe 
cifically , a generic vector friendly instruction format 600 for 
which are defined class A and class B instruction templates , 
both of which include no memory access 605 instruction 
templates and memory access 620 instruction templates . The 
term generic in the context of the vector friendly instruction 
format refers to the instruction format not being tied to any 
specific instruction set . 
[ 0083 ] While embodiments of the disclosure will be 
described in which the vector friendly instruction format 
supports the following : a 64 byte vector operand length ( or 
size ) with 32 bit ( 4 byte ) or 64 bit ( 8 byte ) data element 
widths ( or sizes ) ( and thus , a 64 byte vector consists of either 
16 doubleword - size elements or alternatively , 8 quadword 
size elements ) ; a 64 byte vector operand length ( or size ) with 
16 bit ( 2 byte ) or 8 bit ( 1 byte ) data element widths ( or 
sizes ) ; a 32 byte vector operand length ( or size ) with 32 bit 
( 4 byte ) , 64 bit ( 8 byte ) , 16 bit ( 2 byte ) , or 8 bit ( 1 byte ) data 
element widths ( or sizes ) ; and a 16 byte vector operand 
length ( or size ) with 32 bit ( 4 byte ) , 64 bit ( 8 byte ) , 16 bit 

( 2 byte ) , or 8 bit ( 1 byte ) data element widths ( or sizes ) ; 
alternative embodiments may support more , less and / or 
different vector operand sizes ( e . g . , 256 byte vector oper 
ands ) with more , less , or different data element widths ( e . g . , 
128 bit ( 16 byte ) data element widths ) . 
10084 ] The class A instruction templates in FIG . 6A 
include : 1 ) within the no memory access 605 instruction 
templates there is shown a no memory access , full round 
control type operation 610 instruction template and a no 
memory access , data transform type operation 615 instruc 
tion template ; and 2 ) within the memory access 620 instruc 
tion templates there is shown a memory access , temporal 
625 instruction template and a memory access , non - tempo 
ral 630 instruction template . The class B instruction tem 
plates in FIG . 6B include : 1 ) within the no memory access 
605 instruction templates there is shown a no memory 
access , write mask control , partial round control type opera 
tion 612 instruction template and a no memory access , write 
mask control , vsize type operation 617 instruction template ; 
and 2 ) within the memory access 620 instruction templates 
there is shown a memory access , write mask control 627 
instruction template . 
( 0085 ) The generic vector friendly instruction format 600 
includes the following fields listed below in the order 
illustrated in FIGS . 6A - 6B . 
10086 ) Format field 640 - a specific value ( an instruction 
format identifier value ) in this field uniquely identifies the 
vector friendly instruction format , and thus occurrences of 
instructions in the vector friendly instruction format in 
instruction streams . As such , this field is optional in the 
sense that it is not needed for an instruction set that has only 
the generic vector friendly instruction format . 
[ 0087 ) Base operation field 642 — its content distinguishes 
different base operations . 
10088 ] Register index field 644 — its content , directly or 
through address generation , specifies the locations of the 
source and destination operands , be they in registers or in 
memory . These include a sufficient number of bits to select 
N registers from a PxQ ( e . g . 32x512 , 16x128 , 32x1024 , 
64x1024 ) register file . While in one embodiment N may be 
up to three sources and one destination register , alternative 
embodiments may support more or less sources and desti 
nation registers ( e . g . , may support up to two sources where 
one of these sources also acts as the destination , may support 
up to three sources where one of these sources also acts as 
the destination , may support up to two sources and one 
destination ) . 
100891 . Modifier field 646 its content distinguishes 
occurrences of instructions in the generic vector instruction 
format that specify memory access from those that do not ; 
that is , between no memory access 605 instruction templates 
and memory access 620 instruction templates . Memory 
access operations read and / or write to the memory hierarchy 
( in some cases specifying the source and / or destination 
addresses using values in registers ) , while non - memory 
access operations do not ( e . g . , the source and destinations 
are registers ) . While in one embodiment this field also 
selects between three different ways to perform memory 
address calculations , alternative embodiments may support 
more , less , or different ways to perform memory address 
calculations . 
[ 0090 ] Augmentation operation field 650 — its content dis 
tinguishes which one of a variety of different operations to 
be performed in addition to the base operation . This field is 
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field ' s 670 content indirectly identifies that masking to be 
performed ) , alternative embodiments instead or additional 
allow the mask write field ' s 670 content to directly specify 
the masking to be performed . 
[ 0096 ] Immediate field 672 — its content allows for the 
specification of an immediate . This field is optional in the 
sense that is it not present in an implementation of the 
generic vector friendly format that does not support imme 
diate and it is not present in instructions that do not use an 
immediate . 
[ 0097 ] Class field 668 — its content distinguishes between 
different classes of instructions . With reference to FIGS . 
6A - B , the contents of this field select between class A and 
class B instructions . In FIGS . 6A - B , rounded corner squares 
are used to indicate a specific value is present in a field ( e . g . , 
class A 668A and class B 668B for the class field 668 
respectively in FIGS . 6A - B ) . 

Instruction Templates of Class A 

context specific . In one embodiment of the disclosure , this 
field is divided into a class field 668 , an alpha field 652 , and 
a beta field 654 . The augmentation operation field 650 
allows common groups of operations to be performed in a 
single instruction rather than 2 , 3 , or 4 instructions . 
[ 0091 ] Scale field 660 — its content allows for the scaling 
of the index field ' s content for memory address generation 
( e . g . , for address generation that uses 2scale * index + base ) . 
10092 ] Displacement Field 662A — its content is used as 
part of memory address generation ( e . g . , for address gen 
eration that uses 2 scale * index + base + displacement ) . 
10093 ] Displacement Factor Field 662B ( note that the 
juxtaposition of displacement field 662 A directly over dis 
placement factor field 662B indicates one or the other is 
used ) — its content is used as part of address generation ; it 
specifies a displacement factor that is to be scaled by the size 
of a memory access ( N ) — where N is the number of bytes in 
the memory access ( e . g . , for address generation that uses 
2 scale * index + base + scaled displacement ) . Redundant low 
order bits are ignored and hence , the displacement factor 
field ' s content is multiplied by the memory operands total 
size ( N ) in order to generate the final displacement to be 
used in calculating an effective address . The value of N is 
determined by the processor hardware at runtime based on 
the full opcode field 674 ( described later herein ) and the data 
manipulation field 654C . The displacement field 662A and 
the displacement factor field 662B are optional in the sense 
that they are not used for the no memory access 605 
instruction templates and / or different embodiments may 
implement only one or none of the two . 
10094 ) Data element width field 664 — its content distin 
guishes which one of a number of data element widths is to 
be used in some embodiments for all instructions ; in other 
embodiments for only some of the instructions ) . This field is 
optional in the sense that it is not needed if only one data 
element width is supported and / or data element widths are 
supported using some aspect of the opcodes . 
[ 0095 ] Write mask field 670 — its content controls , on a per 
data element position basis , whether that data element 
position in the destination vector operand reflects the result 
of the base operation and augmentation operation . Class A 
instruction templates support merging - writemasking , while 
class B instruction templates support both merging - and 
zeroing - writemasking . When merging , vector masks allow 
any set of elements in the destination to be protected from 
updates during the execution of any operation ( specified by 
the base operation and the augmentation operation ) ; in other 
one embodiment , preserving the old value of each element 
of the destination where the corresponding mask bit has a 0 . 
In contrast , when zeroing vector masks allow any set of 
elements in the destination to be zeroed during the execution 
of any operation ( specified by the base operation and the 
augmentation operation ) ; in one embodiment , an element of 
the destination is set to ( when the corresponding mask bit 
has a 0 value . A subset of this functionality is the ability to 
control the vector length of the operation being performed 
( that is , the span of elements being modified , from the first 
to the last one ) ; however , it is not necessary that the elements 
that are modified be consecutive . Thus , the write mask field 
670 allows for partial vector operations , including loads , 
stores , arithmetic , logical , etc . While embodiments of the 
disclosure are described in which the write mask field ' s 670 
content selects one of a number of write mask registers that 
contains the write mask to be used ( and thus the write mask 

[ 0098 ] In the case of the non - memory access 605 instruc 
tion templates of class A , the alpha field 652 is interpreted 
as an RS field 652A , whose content distinguishes which one 
of the different augmentation operation types are to be 
performed ( e . g . , round 652A . 1 and data transform 652A . 2 
are respectively specified for the no memory access , round 
type operation 610 and the no memory access , data trans 
form type operation 615 instruction templates ) , while the 
beta field 654 distinguishes which of the operations of the 
specified type is to be performed . In the no memory access 
605 instruction templates , the scale field 660 , the displace 
ment field 662A , and the displacement scale filed 662B are 
not present . 

No - Memory Access Instruction Templates Full Round 
Control Type Operation 

[ 0099 ] In the no memory access full round control type 
operation 610 instruction template , the beta field 654 is 
interpreted as a round control field 654A , whose content ( s ) 
provide static rounding . While in the described embodi 
ments of the disclosure the round control field 654A includes 
a suppress all floating point exceptions ( SAE ) field 656 and 
a round operation control field 658 , alternative embodiments 
may support may encode both these concepts into the same 
field or only have one or the other of these concepts / fields 
( e . g . , may have only the round operation control field 658 ) . 
[ 0100 ] SAE field 656 — its content distinguishes whether 
or not to disable the exception event reporting ; when the 
SAE field ' s 656 content indicates suppression is enabled , a 
given instruction does not report any kind of floating - point 
exception flag and does not raise any floating point excep 
tion handler . 
[ 0101 ] Round operation control field 658 — its content 
distinguishes which one of a group of rounding operations to 
perform ( e . g . , Round - up , Round - down , Round - towards - zero 
and Round - to - nearest ) . Thus , the round operation control 
field 658 allows for the changing of the rounding mode on 
a per instruction basis . In one embodiment of the disclosure 
where a processor includes a control register for specifying 
rounding modes , the round operation control field ' s 650 
content overrides that register value . 
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No Memory Access Instruction Templates — Data Transform 
Type Operation 
[ 0102 ] In the no memory access data transform type 
operation 615 instruction template , the beta field 654 is 
interpreted as a data transform field 654B , whose content 
distinguishes which one of a number of data transforms is to 
be performed ( e . g . , no data transform , swizzle , broadcast ) . 
[ 0103 ] In the case of a memory access 620 instruction 
template of class A , the alpha field 652 is interpreted as an 
eviction hint field 652B , whose content distinguishes which 
one of the eviction hints is to be used ( in FIG . 6A , temporal 
652B . 1 and non - temporal 652B . 2 are respectively specified 
for the memory access , temporal 625 instruction template 
and the memory access , non - temporal 630 instruction tem 
plate ) , while the beta field 654 is interpreted as a data 
manipulation field 654C , whose content distinguishes which 
one of a number of data manipulation operations ( also 
known as primitives ) is to be performed ( e . g . , no manipu 
lation ; broadcast ; up conversion of a source ; and down 
conversion of a destination ) . The memory access 620 
instruction templates include the scale field 660 , and option 
ally the displacement field 662A or the displacement scale 
field 662B . 
[ 0104 ] Vector memory instructions perform vector loads 
from and vector stores to memory , with conversion support . 
As with regular vector instructions , vector memory instruc 
tions transfer data from / to memory in a data element - wise 
fashion , with the elements that are actually transferred is 
dictated by the contents of the vector mask that is selected 
as the write mask . 

Memory Access Instruction Templates — Temporal 
[ 0105 ] Temporal data is data likely to be reused soon 
enough to benefit from caching . This is , however , a hint , and 
different processors may implement it in different ways , 
including ignoring the hint entirely . 

templates , the scale field 660 , the displacement field 662A , 
and the displacement scale filed 662B are not present . 
[ 0109 ] In the no memory access , write mask control , 
partial round control type operation 610 instruction tem 
plate , the rest of the beta field 654 is interpreted as a round 
operation field 659 A and exception event reporting is dis 
abled ( a given instruction does not report any kind of 
floating - point exception flag and does not raise any floating 
point exception handler ) . 
[ 0110 ] Round operation control field 659A — just as round 
operation control field 658 , its content distinguishes which 
one of a group of rounding operations to perform ( e . g . , 
Round - up , Round - down , Round - towards - zero and Round 
to - nearest ) . Thus , the round operation control field 659A 
allows for the changing of the rounding mode on a per 
instruction basis . In one embodiment of the disclosure where 
a processor includes a control register for specifying round 
ing modes , the round operation control field ' s 650 content 
overrides that register value . 
[ 0111 ] In the no memory access , write mask control , 
VSIZE type operation 617 instruction template , the rest of 
the beta field 654 is interpreted as a vector length field 659B , 
whose content distinguishes which one of a number of data 
vector lengths is to be performed on ( e . g . , 128 , 256 , or 512 
byte ) 
10112 ] In the case of a memory access 620 instruction 
template of class B , part of the beta field 654 is interpreted 
as a broadcast field 657B , whose content distinguishes 
whether or not the broadcast type data manipulation opera 
tion is to be performed , while the rest of the beta field 654 
is interpreted the vector length field 659B . The memory 
access 620 instruction templates include the scale field 660 , 
and optionally the displacement field 662A or the displace 
ment scale field 662B . 
[ 0113 ] With regard to the generic vector friendly instruc 
tion format 600 , a full opcode field 674 is shown including 
the format field 640 , the base operation field 642 , and the 
data element width field 664 . While one embodiment is 
shown where the full opcode field 674 includes all of these 
fields , the full opcode field 674 includes less than all of these 
fields in embodiments that do not support all of them . The 
full opcode field 674 provides the operation code ( opcode ) . 
[ 0114 ] The augmentation operation field 650 , the data 
element width field 664 , and the write mask field 670 allow 
these features to be specified on a per instruction basis in the 
generic vector friendly instruction format . 
0115 ] . The combination of write mask field and data 
element width field create typed instructions in that they 
allow the mask to be applied based on different data element 
widths . 
[ 0116 ] The various instruction templates found within 
class A and class B are beneficial in different situations . In 
some embodiments of the disclosure , different processors or 
different cores within a processor may support only class A , 
only class B , or both classes . For instance , a high perfor 
mance general purpose out - of - order core intended for gen 
eral - purpose computing may support only class B , a core 
intended primarily for graphics and / or scientific ( through 
put ) computing may support only class A , and a core 
intended for both may support both ( of course , a core that 
has some mix of templates and instructions from both 
classes but not all templates and instructions from both 
classes is within the purview of the disclosure ) . Also , a 
single processor may include multiple cores , all of which 

Memory Access Instruction Templates Non - Temporal 
[ 0106 ] Non - temporal data is data unlikely to be reused 
soon enough to benefit from caching in the 1st - level cache 
and should be given priority for eviction . This is , however , 
a hint , and different processors may implement it in different 
ways , including ignoring the hint entirely . 

Instruction Templates of Class B 
10107 ] In the case of the instruction templates of class B , 
the alpha field 652 is interpreted as a write mask control ( Z ) 
field 652C , whose content distinguishes whether the write 
masking controlled by the write mask field 670 should be a 
merging or a zeroing . 
[ 0108 ] In the case of the non - memory access 605 instruc 
tion templates of class B , part of the beta field 654 is 
interpreted as an RL field 657A , whose content distinguishes 
which one of the different augmentation operation types are 
to be performed ( e . g . , round 657A . 1 and vector length 
( VSIZE ) 657A . 2 are respectively specified for the no 
memory access , write mask control , partial round control 
type operation 612 instruction template and the no memory 
access , write mask control , VSIZE type operation 617 
instruction template ) , while the rest of the beta field 654 
distinguishes which of the operations of the specified type is 
to be performed . In the no memory access 605 instruction 
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support the same class or in which different cores support 
different class . For instance , in a processor with separate 
graphics and general purpose cores , one of the graphics 
cores intended primarily for graphics and / or scientific com 
puting may support only class A , while one or more of the 
general purpose cores may be high performance general 
purpose cores with out of order execution and register 
renaming intended for general - purpose computing that sup 
port only class B . Another processor that does not have a 
separate graphics core , may include one more general pur 
pose in - order or out - of - order cores that support both class A 
and class B . Of course , features from one class may also be 
implemented in the other class in different embodiments of 
the disclosure . Programs written in a high level language 
would be put ( e . g . , just in time compiled or statically 
compiled ) into an variety of different executable forms , 
including : 1 ) a form having only instructions of the class ( es ) 
supported by the target processor for execution ; or 2 ) a form 
having alternative routines written using different combina 
tions of the instructions of all classes and having control 
flow code that selects the routines to execute based on the 
instructions supported by the processor which is currently 
executing the code . 

Exemplary Specific Vector Friendly Instruction Format 
[ 0117 ] FIG . 7 is a block diagram illustrating an exemplary 
specific vector friendly instruction format according to 
embodiments of the disclosure . FIG . 7 shows a specific 
vector friendly instruction format 700 that is specific in the 
sense that it specifies the location , size , interpretation , and 
order of the fields , as well as values for some of those fields . 
The specific vector friendly instruction format 700 may be 
used to extend the x86 instruction set , and thus some of the 
fields are similar or the same as those used in the existing 
x86 instruction set and extension thereof ( e . g . , AVX ) . This 
format remains consistent with the prefix encoding field , real 
opcode byte field , MOD R / M field , SIB field , displacement 
field , and immediate fields of the existing x86 instruction set 
with extensions . The fields from FIG . 6 into which the fields 
from FIG . 7 map are illustrated . 
[ 0118 ] It should be understood that , although embodi 
ments of the disclosure are described with reference to the 
specific vector friendly instruction format 700 in the context 
of the generic vector friendly instruction format 600 for 
illustrative purposes , the disclosure is not limited to the 
specific vector friendly instruction format 700 except where 
claimed . For example , the generic vector friendly instruction 
format 600 contemplates a variety of possible sizes for the 
various fields , while the specific vector friendly instruction 
format 700 is shown as having fields of specific sizes . By 
way of specific example , while the data element width field 
664 is illustrated as a one bit field in the specific vector 
friendly instruction format 700 , the disclosure is not so 
limited ( that is , the generic vector friendly instruction format 
600 contemplates other sizes of the data element width field 
664 ) . 
[ 0119 ] The generic vector friendly instruction format 600 
includes the following fields listed below in the order 
illustrated in FIG . 7A . 
[ 0120 ] EVEX Prefix ( Bytes 0 - 3 ) 702 — is encoded in a 
four - byte form . 
[ 0121 ] Format Field 640 ( EVEX Byte 0 , bits [ 7 : 0 ] ) — the 
first byte ( EVEX Byte 0 ) is the format field 640 and it 

contains Ox62 ( the unique value used for distinguishing the 
vector friendly instruction format in one embodiment of the 
disclosure ) . 
[ 0122 ] The second - fourth bytes ( EVEX Bytes 1 - 3 ) include 
a number of bit fields providing specific capability . 
10123 ] . REX field 705 ( EVEX Byte 1 , bits [ 7 - 5 ] ) — consists 
of a EVEX . R bit field ( EVEX Byte 1 , bit [ 7 ] — R ) , EVEX . X 
bit field ( EVEX byte 1 , bit [ 6 ] — X ) , and 657BEX byte 1 , 
bit [ 5 ] — B ) . The EVEX . R , EVEX . X , and EVEX . B bit fields 
provide the same functionality as the corresponding VEX bit 
fields , and are encoded using ls complement form , i . e . 
ZMMO is encoded as 1111B , ZMM15 is encoded as 0000B . 
Other fields of the instructions encode the lower three bits of 
the register indexes as is known in the art ( rrr , xxx , and bbb ) , 
so that Rrrr , Xxxx , and Bbbb may be formed by adding 
EVEX . R , EVEX . X , and EVEX . B . 
[ 0124 ] REX ' field 610 — this is the first part of the REX ' 
field 610 and is the EVEX . R ' bit field ( EVEX Byte 1 , bit 
[ 4 ] — R ' ) that is used to encode either the upper 16 or lower 
16 of the extended 32 register set . In one embodiment of the 
disclosure , this bit , along with others as indicated below , is 
stored in bit inverted format to distinguish ( in the well 
known x86 32 - bit mode ) from the BOUND instruction , 
whose real opcode byte is 62 , but does not accept in the 
MOD R / M field ( described below ) the value of 11 in the 
MOD field ; alternative embodiments of the disclosure do not 
store this and the other indicated bits below in the inverted 
format . A value of 1 is used to encode the lower 16 registers . 
In her words , 1340 Rrrr is formed by combining EVEX . R ' , 
EVEX . R , and the other RRR from other fields . 
[ 0125 ] Opcode map field 715 ( EVEX byte 1 , bit [ 3 : 0 ] — 
mmmm ) — its content encodes an implied leading opcode 
byte ( OF , OF 38 , or OF 3 ) . 
[ 0126 ] Data element width field 664 ( EVEX byte 2 , bit 
[ 7 ] — W — is resed by the ntionEX . W . EVW is used to define 
the granularity ( size ) of the datatype ( either 32 - bit data 
elements or 64 - bit data elements ) . 
[ 0127 ] EVEX . vvwv 720 ( EVEX Byte 2 , bits [ 6 : 3 ] — 
VVVV ) — the role of EVEX . vvwv may include the following : 
1 ) EVEX . vvw encodes the first source register operand , 
specified in inverted ( 1 s complement ) form and is valid for 
instructions with 2 or more source operands ; 2 ) EVEX . VVVV 
encodes the destination register operand , specified in 1 s 
complement form for certain vector shifts ; or 3 ) EVEX . vvW 
does not encode any operand , the field is reserved and 
should contain 1111b . Thus , EVEX . vvvy field 720 encodes 
the 4 low - order bits of the first source register specifier 
stored in inverted ( 1 s complement ) form . Depending on the 
instruction , an extra different EVEX bit field is used to 
extend the specifier size to 32 registers . 
[ 0128 ] EVEX . U 668 Class field ( EVEX byte 2 , bit [ 2 ] — 
U - If EVEX . U = 0 , it indicates class A or EVEX . UO ; if 
EVEX . U = 1 , it indicates class B or EVEX . U1 . 
[ 0129 ] Prefix encoding field 725 ( EVEX byte 2 , bits 
[ 1 : 0 ] — pp ) - provides additional bits for the base operation 
field . In addition to providing support for the legacy SSE 
instructions in the EVEX prefix format , this also has the 
benefit of compacting the SIMD prefix ( rather than requiring 
a byte to express the SIMD prefix , the EVEX prefix requires 
only 2 bits ) . In one embodiment , to support legacy SSE 
instructions that use a SIMD prefix ( 66H , F2H , F3H ) in both 
the legacy format and in the EVEX prefix format , these 
legacy SIMD prefixes are encoded into the SIMD prefix 
encoding field ; and at runtime are expanded into the legacy 
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can be set to only four really useful values – 128 , - 64 , 0 , and 
64 ; since a greater range is often needed , disp32 is used ; 
however , disp32 requires 4 bytes . In contrast to disp8 and 
disp32 , the displacement factor field 662B is a reinterpre 
tation of disp8 ; when using displacement factor field 662B , 
the actual displacement is determined by the content of the 
displacement factor field multiplied by the size of the 
memory operand access ( N ) . This type of displacement is 
referred to as disp8 * N . This reduces the average instruction 
length ( a single byte of used for the displacement but with 
a much greater range ) . Such compressed displacement is 
based on the assumption that the effective displacement is 
multiple of the granularity of the memory access , and hence , 
the redundant low - order bits of the address offset do not 
need to be encoded . In other words , the displacement factor 
field 662B substitutes the legacy x86 instruction set 8 - bit 
displacement . Thus , the displacement factor field 662B is 
encoded the same way as an x86 instruction set 8 - bit 
displacement ( so no changes in the ModRM / SIB encoding 
rules ) with the only exception that disp8 is overloaded to 
disp8 * N . In other words , there are no changes in the 
encoding rules or encoding lengths but only in the interpre 
tation of the displacement value by hardware ( which needs 
to scale the displacement by the size of the memory operand 
to obtain a byte - wise address offset ) . Immediate field 672 
operates as previously described . 

SIMD prefix prior to being provided to the decoder ’ s PLA 
( so the PLA can execute both the legacy and EVEX format 
of these legacy instructions without modification ) . Although 
newer instructions could use the EVEX prefix encoding 
field ' s content directly as an opcode extension , certain 
embodiments expand in a similar fashion for consistency but 
allow for different meanings to be specified by these legacy 
SIMD prefixes . An alternative embodiment may redesign 
the PLA to support the 2 bit SIMD prefix encodings , and 
thus not require the expansion . 
[ 0130 ] Alpha field 652 ( EVEX byte 3 , bit [ 7 ] — EH ; also 
known as EVEX . EH , EVEX . rs , EVEX . RL , EVEX . write 
mask control , and EVEX . N ; also illustrated with a ) — as 
previously described , this field is context specific . 
[ 0131 ] Beta field 654 ( EVEX byte 3 , bits [ 6 : 4 ] — SSS , also 
known as EVEX . s22 - 0 , EVEX . 12 . 0 , EVEX . rr1 , EVEX . LLO , 
EVEX . LLB ; also illustrated with BBB ) — as previously 
described , this field is context specific 
10132 ] REX ' field 610 — this is the remainder of the REX ' 
field and is the EVEX . V ' bit field ( EVEX Byte 3 , bit 
[ 3 ] – V ' ) that may be used to encode either the upper 16 or 
lower 16 of the extended 32 register set . This bit is stored in 
bit inverted format . A value of 1 is used to encode the lower 
16 registers . In other words , V ' VVVV is formed by com 
bining EVEX . V ' , EVEX . vvvv . 
[ 0133 ] Write mask field 670 ( EVEX byte 3 , bits [ 2 : 0 ] — 
kkk ) — its content specifies the index of a register in the write 
mask registers as previously described . In one embodiment 
of the disclosure , the specific value EVEX . kkk = 000 has a 
special behavior implying no write mask is used for the 
particular instruction ( this may be implemented in a variety 
of ways including the use of a write mask hardwired to all 
ones or hardware that bypasses the masking hardware ) . 
[ 0134 ] Real Opcode Field 730 ( Byte 4 ) is also known as 
the opcode byte . Part of the opcode is specified in this field . 
[ 0135 ] MOD R / M Field 740 ( Byte 5 ) includes MOD field 
742 , Reg field 744 , and R / M field 746 . As previously 
described , the MOD field ' s 742 content distinguishes 
between memory access and non - memory access operations . 
The role of Reg field 744 can be summarized to two 
situations : encoding either the destination register operand 
or a source register operand , or be treated as an opcode 
extension and not used to encode any instruction operand . 
The role of R / M field 746 may include the following : 
encoding the instruction operand that references a memory 
address , or encoding either the destination register operand 
or a source register operand . 
[ 0136 ] Scale , Index , Base ( SIB ) Byte ( Byte 6 ) As pre 
viously described , the scale field ' s 650 content is used for 
memory address generation . SIB . xxx 754 and SIB . bbb 
756 — the contents of these fields have been previously 
referred to with regard to the register indexes Xxxx and 
Bbbb . 
[ 0137 ] Displacement field 662A ( Bytes 7 - 10 ) — when 
MOD field 742 contains 10 , bytes 7 - 10 are the displacement 
field 662A , and it works the same as the legacy 32 - bit 
displacement ( disp32 ) and works at byte granularity . 
[ 0138 ] Displacement factor field 662B ( Byte 7 ) — when 
MOD field 742 contains 01 , byte 7 is the displacement factor 
field 662B . The location of this field is that same as that of 
the legacy x86 instruction set 8 - bit displacement ( disp8 ) , 
which works at byte granularity . Since disp8 is sign 
extended , it can only address between – 128 and 127 bytes 
offsets ; in terms of 64 byte cache lines , disp8 uses 8 bits that 

Full Opcode Field 
[ 0139 ] FIG . 7B is a block diagram illustrating the fields of 
the specific vector friendly instruction format 700 that make 
up the full opcode field 674 according to one embodiment of 
the disclosure . Specifically , the full opcode field 674 
includes the format field 640 , the base operation field 642 , 
and the data element width ( W ) field 664 . The base operation 
field 642 includes the prefix encoding field 725 , the opcode 
map field 715 , and the real opcode field 730 . 

Register Index Field 
[ 0140 ] FIG . 7C is a block diagram illustrating the fields of 
the specific vector friendly instruction format 700 that make 
up the register index field 644 according to one embodiment 
of the disclosure . Specifically , the register index field 644 
includes the REX field 705 , the REX ' field 710 , the MODR / 
M . reg field 744 , the MODR / M . r / m field 746 , the VVVV 
field 720 , xxx field 754 , and the bbb field 756 . 

Augmentation Operation Field 
[ 0141 ] FIG . 7D is a block diagram illustrating the fields of 
the specific vector friendly instruction format 700 that make 
up the augmentation operation field 650 according to one 
embodiment of the disclosure . When the class ( U ) field 668 
contains 0 , it signifies EVEX . UO ( class A 668A ) ; when it 
contains 1 , it signifies EVEX . U1 ( class B 668B ) . When U = 0 
and the MOD field 742 contains 11 ( signifying a no memory 
access operation ) , the alpha field 652 ( EVEX byte 3 , bit 
[ 7 ] — EH ) is interpreted as the rs field 652A . When the rs 
field 652A contains a 1 ( round 652A . 1 ) , the beta field 654 
( EVEX byte 3 , bits [ 6 : 41 – SSS ) is interpreted as the round 
control field 654A . The round control field 654A includes a 
one bit SAE field 656 and a two bit round operation field 
658 . When the rs field 652A contains a 0 ( data transform 
652A . 2 ) , the beta field 654 ( EVEX byte 3 , bits [ b : 47 — SSS ) 
is interpreted as a three bit data transform field 654B . When 
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U = 0 and the MOD field 742 contains 00 , 01 , or 10 ( signi 
fying a memory access operation ) , the alpha field 652 
( EVEX byte 3 , bit [ 7 ] — EH ) is interpreted as the eviction 
hint ( EH ) field 652B and the beta field 654 ( EVEX byte 3 , 
bits [ 6 : 4 ] — SSS ) is interpreted as a three bit data manipu 
lation field 654C . 
[ 0142 ] When U = 1 , the alpha field 652 ( EVEX byte 3 , bit 
[ 7 ] — EH ) is interpreted as the write mask control ( Z ) field 
652C . When U = 1 and the MOD field 742 contains 11 
( signifying a no memory access operation ) , part of the beta 
field 654 ( EVEX byte 3 , bit [ 4 ] — So ) is interpreted as the RL 
field 657A ; when it contains a 1 ( round 657A . 1 ) the rest of 
the beta field 654 ( EVEX byte 3 , bit [ 6 - 5 ] — S2 - 1 ) is inter 
preted as the round operation field 659A , while when the RL 
field 657A contains a 0 ( VSIZE 657 . A2 ) the rest of the beta 
field 654 ( EVEX byte 3 , bit ( 6 - 5 ) - S1 ) is interpreted as the 
vector length field 659B ( EVEX byte 3 , bit [ 6 - 5 ] — L1 - 0 ) . 
When U = 1 and the MOD field 742 contains 00 , 01 , or 10 
( signifying a memory access operation ) , the beta field 654 
( EVEX byte 3 , bits [ 6 : 4 ] — SSS ) is interpreted as the vector 
length field 659B ( EVEX byte 3 , bit [ 6 - 5 ] - L1 - ) and the 
broadcast field 657B ( EVEX byte 3 , bit [ 4 ] — B ) . 

order data element positions are either left the same as they 
were prior to the instruction or zeroed depending on the 
embodiment . 
[ 0145 ] Write mask registers 815 — in the embodiment 
illustrated , there are 8 write mask registers ( k0 through k7 ) , 
each 64 bits in size . In an alternate embodiment , the write 
mask registers 815 are 16 bits in size . As previously 
described , in one embodiment of the disclosure , the vector 
mask register ko cannot be used as a write mask ; when the 
encoding that would normally indicate ko is used for a write 
mask , it selects a hardwired write mask of OxFFFF , effec 
tively disabling write masking for that instruction . 
[ 0146 ] General - purpose registers 825 — in the embodi 
ment illustrated , there are sixteen 64 - bit general - purpose 
registers that are used along with the existing x86 addressing 
modes to address memory operands . These registers are 
referenced by the names RAX , RBX , RCX , RDX , RBP , RSI , 
RDI , RSP , and R8 through R15 . 
101471 Scalar floating point stack register file ( x87 stack ) 
845 , on which is aliased the MMX packed integer flat 
register file 850 — in the embodiment illustrated , the x87 
stack is an eight - element stack used to perform scalar 
floating - point operations on 32 / 64 / 80 - bit floating point data 
using the x87 instruction set extension ; while the MMX 
registers are used to perform operations on 64 - bit packed 
integer data , as well as to hold operands for some operations 
performed between the MMX and XMM registers . 
[ 0148 ] Alternative embodiments of the disclosure may use 
wider or narrower registers . Additionally , alternative 
embodiments of the disclosure may use more , less , or 
different register files and registers . 

Exemplary Register Architecture 

[ 0143 ] FIG . 8 is a block diagram of a register architecture 
800 according to one embodiment of the disclosure . In the 
embodiment illustrated , there are 32 vector registers 810 that 
are 512 bits wide ; these registers are referenced as zmmo 
through zmm31 . The lower order 256 bits of the lower 16 
zmm registers are overlaid on registers ymm0 - 16 . The lower 
order 128 bits of the lower 16 zmm registers ( the lower order 
128 bits of the ymm registers ) are overlaid on registers 
xmm0 - 15 . The specific vector friendly instruction format 
700 operates on these overlaid register file as illustrated in 
the below tables . 

Exemplary Core Architectures , Processors , and Computer 
Architectures 

Adjustable Vector 
Length Class Operations Registers 

Instruction Templates 
that do not include 
the vector length 
field 659B 

Instruction templates 
that do include the 
vector length field 
659B 

A ( FIG . 6A ; 610 , 615 , zmm registers ( the 
U = 0 ) 625 , 630 vector length is 64 

byte ) 
B ( FIG . 6B ; 612 zmm registers ( the 
U = 1 ) vector length is 64 

byte ) 
B ( FIG . 6B ; 617 , 627 zmm , ymm , or xmm 
U = 1 ) registers ( the vector 

length is 64 byte , 
32 byte , or 16 byte ) 
depending on the 
vector length field 
659B 

[ 0149 ] Processor cores may be implemented in different 
ways , for different purposes , and in different processors . For 
instance , implementations of such cores may include : 1 ) a 
general purpose in - order core intended for general - purpose 
computing ; 2 ) a high performance general purpose out - of 
order core intended for general - purpose computing ; 3 ) a 
special purpose core intended primarily for graphics and / or 
scientific ( throughput ) computing . Implementations of dif 
ferent processors may include : 1 ) a CPU including one or 
more general purpose in - order cores intended for general 
purpose computing and / or one or more general purpose 
out - of - order cores intended for general - purpose computing ; 
and 2 ) a coprocessor including one or more special purpose 
cores intended primarily for graphics and / or scientific 
( throughput ) . Such different processors lead to different 
computer system architectures , which may include : 1 ) the 
coprocessor on a separate chip from the CPU ; 2 ) the 
coprocessor on a separate die in the same package as a CPU ; 
3 ) the coprocessor on the same die as a CPU ( in which case , 
such a coprocessor is sometimes referred to as special 
purpose logic , such as integrated graphics and / or scientific 
( throughput ) logic , or as special purpose cores ) ; and 4 ) a 
system on a chip that may include on the same die the 
described CPU ( sometimes referred to as the application 
core ( s ) or application processor ( s ) ) , the above described 
coprocessor , and additional functionality . Exemplary core 
architectures are described next , followed by descriptions of 
exemplary processors and computer architectures . 

[ 0144 ] In other words , the vector length field 659B selects 
between a maximum length and one or more other shorter 
lengths , where each such shorter length is half the length of 
the preceding length ; and instructions templates without the 
vector length field 659B operate on the maximum vector 
length . Further , in one embodiment , the class B instruction 
templates of the specific vector friendly instruction format 
700 operate on packed or scalar single / double - precision 
floating point data and packed or scalar integer data . Scalar 
operations are operations performed on the lowest order data 
element position in an zmm / ymm / xmm register ; the higher 
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Exemplary Core Architectures 
In - Order and Out - Of - Order Core Block Diagram 
[ 0150 ] FIG . 9A is a block diagram illustrating both an 
exemplary in - order pipeline and an exemplary register 
renaming , out - of - order issue / execution pipeline according 
to embodiments of the disclosure . FIG . 9B is a block 
diagram illustrating both an exemplary embodiment of an 
in - order architecture core and an exemplary register renam 
ing , out - of - order issue / execution architecture core to be 
included in a processor according to embodiments of the 
disclosure . The solid lined boxes in FIGS . 9A - B illustrate 
the in - order pipeline and in - order core , while the optional 
addition of the dashed lined boxes illustrates the register 
renaming , out - of - order issue / execution pipeline and core . 
Given that the in - order aspect is a subset of the out - of - order 
aspect , the out - of - order aspect will be described . 
[ 0151 ] In FIG . 9A , a processor pipeline 900 includes a 
fetch stage 902 , a length decode stage 904 , a decode stage 
906 , an allocation stage 908 , a renaming stage 910 , a 
scheduling ( also known as a dispatch or issue ) stage 912 , a 
register read / memory read stage 914 , an execute stage 916 , 
a write back / memory write stage 918 , an exception handling 
stage 922 , and a commit stage 924 . 
[ 0152 ] FIG . 9B shows processor core 990 including a 
front end unit 930 coupled to an execution engine unit 950 , 
and both are coupled to a memory unit 970 . The core 990 
may be a reduced instruction set computing ( RISC ) core , a 
complex instruction set computing ( CISC ) core , a very long 
instruction word ( VLIW ) core , or a hybrid or alternative 
core type . As yet another option , the core 990 may be a 
special - purpose core , such as , for example , a network or 
communication core , compression engine , coprocessor core , 
general purpose computing graphics processing unit 
( GPGPU ) core , graphics core , or the like . 
[ 0153 ] The front end unit 930 includes a branch prediction 
unit 932 coupled to an instruction cache unit 934 , which is 
coupled to an instruction translation lookaside buffer ( TLB ) 
936 , which is coupled to an instruction fetch unit 938 , which 
is coupled to a decode unit 940 . The decode unit 940 ( or 
decoder or decoder unit ) may decode instructions ( e . g . , 
macro - instructions ) , and generate as an output one or more 
micro - operations , micro - code entry points , micro - instruc 
tions , other instructions , or other control signals , which are 
decoded from , or which otherwise reflect , or are derived 
from , the original instructions . The decode unit 940 may be 
implemented using various different mechanisms . Examples 
of suitable mechanisms include , but are not limited to , 
look - up tables , hardware implementations , programmable 
logic arrays ( PLAs ) , microcode read only memories 
( ROMs ) , etc . In one embodiment , the core 990 includes a 
microcode ROM or other medium that stores microcode for 
certain macroinstructions ( e . g . , in decode unit 940 or oth 
erwise within the front end unit 930 ) . The decode unit 940 
is coupled to a rename / allocator unit 952 in the execution 
engine unit 950 . 
[ 0154 ] The execution engine unit 950 includes the rename / 
allocator unit 952 coupled to a retirement unit 954 and a set 
of one or more scheduler unit ( s ) 956 . The scheduler unit ( s ) 
956 represents any number of different schedulers , including 
reservations stations , central instruction window , etc . The 
scheduler unit ( s ) 956 is coupled to the physical register 
file ( s ) unit ( s ) 958 . Each of the physical register file ( s ) units 
958 represents one or more physical register files , different 

ones of which store one or more different data types , such as 
scalar integer , scalar floating point , packed integer , packed 
floating point , vector integer , vector floating point - status 
( e . g . , an instruction pointer that is the address of the next 
instruction to be executed ) , etc . In one embodiment , the 
physical register file ( s ) unit 958 comprises a vector registers 
unit , a write mask registers unit , and a scalar registers unit . 
These register units may provide architectural vector regis 
ters , vector mask registers , and general purpose registers . 
The physical register file ( s ) unit ( s ) 958 is overlapped by the 
retirement unit 954 to illustrate various ways in which 
register renaming and out - of - order execution may be imple 
mented ( e . g . , using a reorder buffer ( s ) and a retirement 
register file ( s ) ; using a future file ( s ) , a history buffer ( s ) , and 
a retirement register file ( s ) ; using a register maps and a pool 
of registers , etc . ) . The retirement unit 954 and the physical 
register file ( s ) unit ( s ) 958 are coupled to the execution 
cluster ( s ) 960 . The execution cluster ( s ) 960 includes a set of 
one or more execution units 962 and a set of one or more 
memory access units 964 . The execution units 962 may 
perform various operations ( e . g . , shifts , addition , subtrac 
tion , multiplication ) and on various types of data ( e . g . , scalar 
floating point , packed integer , packed floating point , vector 
integer , vector floating point ) . While some embodiments 
may include a number of execution units dedicated to 
specific functions or sets of functions , other embodiments 
may include only one execution unit or multiple execution 
units that all perform all functions . The scheduler unit ( s ) 
956 , physical register file ( s ) unit ( s ) 958 , and execution 
cluster ( s ) 960 are shown as being possibly plural because 
certain embodiments create separate pipelines for certain 
types of data / operations ( e . g . , a scalar integer pipeline , a 
scalar floating point / packed integer / packed floating point / 
vector integer / vector floating point pipeline , and / or a 
memory access pipeline that each have their own scheduler 
unit , physical register file ( s ) unit , and / or execution cluster 
and in the case of a separate memory access pipeline , certain 
embodiments are implemented in which only the execution 
cluster of this pipeline has the memory access unit ( s ) 964 ) . 
It should also be understood that where separate pipelines 
are used , one or more of these pipelines may be out - of - order 
issue / execution and the rest in - order . 
[ 0155 ] The set of memory access units 964 is coupled to 
the memory unit 970 , which includes a data TLB unit 972 
coupled to a data cache unit 974 coupled to a level 2 ( L2 ) 
cache unit 976 . In one exemplary embodiment , the memory 
access units 964 may include a load unit , a store address 
unit , and a store data unit , each of which is coupled to the 
data TLB unit 972 in the memory unit 970 . The instruction 
cache unit 934 is further coupled to a level 2 ( L2 ) cache unit 
976 in the memory unit 970 . The L2 cache unit 976 is 
coupled to one or more other levels of cache and eventually 
to a main memory . 
[ 0156 ] By way of example , the exemplary register renam 
ing , out - of - order issue / execution core architecture may 
implement the pipeline 900 as follows : 1 ) the instruction 
fetch 938 performs the fetch and length decoding stages 902 
and 904 ; 2 ) the decode unit 940 performs the decode stage 
906 ; 3 ) the rename / allocator unit 952 performs the allocation 
stage 908 and renaming stage 910 ; 4 ) the scheduler unit ( s ) 
956 performs the schedule stage 912 ; 5 ) the physical register 
file ( s ) unit ( s ) 958 and the memory unit 970 perform the 
register read / memory read stage 914 ; the execution cluster 
960 perform the execute stage 916 ; 6 ) the memory unit 970 
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and the physical register file ( s ) unit ( s ) 958 perform the write 
back / memory write stage 918 ; 7 ) various units may be 
involved in the exception handling stage 922 ; and 8 ) the 
retirement unit 954 and the physical register file ( s ) unit ( s ) 
958 perform the commit stage 924 
[ 0157 ] The core 990 may support one or more instructions 
sets ( e . g . , the x86 instruction set ( with some extensions that 
have been added with newer versions ) ; the MIPS instruction 
set of MIPS Technologies of Sunnyvale , Calif . ; the ARM 
instruction set ( with optional additional extensions such as 
NEON ) of ARM Holdings of Sunnyvale , Calif . ) , including 
the instruction ( s ) described herein . In one embodiment , the 
core 990 includes logic to support a packed data instruction 
set extension ( e . g . , AVX1 , AVX2 ) , thereby allowing the 
operations used by many multimedia applications to be 
performed using packed data . 
[ 0158 ] It should be understood that the core may support 
multithreading ( executing two or more parallel sets of 
operations or threads ) , and may do so in a variety of ways 
including time sliced multithreading , simultaneous multi 
threading ( where a single physical core provides a logical 
core for each of the threads that physical core is simultane 
ously multithreading ) , or a combination thereof ( e . g . , time 
sliced fetching and decoding and simultaneous multithread 
ing thereafter such as in the Intel® Hyperthreading technol 
ogy ) . 
[ 0159 ] While register renaming is described in the context 
of out - of - order execution , it should be understood that 
register renaming may be used in an in - order architecture . 
While the illustrated embodiment of the processor also 
includes separate instruction and data cache units 934 / 974 
and a shared L2 cache unit 976 , alternative embodiments 
may have a single internal cache for both instructions and 
data , such as , for example , a Level 1 ( L1 ) internal cache , or 
multiple levels of internal cache . In some embodiments , the 
system may include a combination of an internal cache and 
an external cache that is external to the core and / or the 
processor . Alternatively , all of the cache may be external to 
the core and / or the processor . 

allow data to be transferred between the two register files 
without being written and read back ) . 
[ 0162 ] The local subset of the L2 cache 1004 is part of a 
global L2 cache that is divided into separate local subsets , 
one per processor core . Each processor core has a direct 
access path to its own local subset of the L2 cache 1004 . 
Data read by a processor core is stored in its L2 cache subset 
1004 and can be accessed quickly , in parallel with other 
processor cores accessing their own local L2 cache subsets . 
Data written by a processor core is stored in its own L2 
cache subset 1004 and is flushed from other subsets , if 
necessary . The ring network ensures coherency for shared 
data . The ring network is bi - directional to allow agents such 
as processor cores , L2 caches and other logic blocks to 
communicate with each other within the chip . Each ring 
data - path is 1012 - bits wide per direction . 
10163 ) FIG . 10B is an expanded view of part of the 
processor core in FIG . 10A according to embodiments of the 
disclosure . FIG . 10B includes an L1 data cache 1006A part 
of the L1 cache 1004 , as well as more detail regarding the 
vector unit 1010 and the vector registers 1014 . Specifically , 
the vector unit 1010 is a 16 - wide vector processing unit 
( VPU ) ( see the 16 - wide ALU 1028 ) , which executes one or 
more of integer , single - precision float , and double - precision 
float instructions . The VPU supports swizzling the register 
inputs with swizzle unit 1020 , numeric conversion with 
numeric convert units 1022A - B , and replication with repli 
cation unit 1024 on the memory input . Write mask registers 
1026 allow predicating resulting vector writes . 
[ 0164 ] FIG . 11 is a block diagram of a processor 1100 that 
may have more than one core , may have an integrated 
memory controller , and may have integrated graphics 
according to embodiments of the disclosure . The solid lined 
boxes in FIG . 11 illustrate a processor 1100 with a single 
core 1102A , a system agent 1110 , a set of one or more bus 
controller units 1116 , while the optional addition of the 
dashed lined boxes illustrates an alternative processor 1100 
with multiple cores 1102A - N , a set of one or more integrated 
memory controller unit ( s ) 1114 in the system agent unit 
1110 , and special purpose logic 1108 . 
[ 0165 ] Thus , different implementations of the processor 
1100 may include : 1 ) a CPU with the special purpose logic 
1108 being integrated graphics and / or scientific ( throughput ) 
logic ( which may include one or more cores ) , and the cores 
1102A - N being one or more general purpose cores ( e . g . , 
general purpose in - order cores , general purpose out - of - order 
cores , a combination of the two ) ; 2 ) a coprocessor with the 
cores 1102A - N being a large number of special purpose 
cores intended primarily for graphics and / or scientific 
( throughput ) ; and 3 ) a coprocessor with the cores 1102A - N 
being a large number of general purpose in - order cores . 
Thus , the processor 1100 may be a general - purpose proces 
sor , coprocessor or special - purpose processor , such as , for 
example , a network or communication processor , compres 
sion engine , graphics processor , GPGPU ( general purpose 
graphics processing unit ) , a high - throughput many inte 
grated core ( MIC ) coprocessor ( including 30 or more cores ) , 
embedded processor , or the like . The processor may be 
implemented on one or more chips . The processor 1100 may 
be a part of and / or may be implemented on one or more 
substrates using any of a number of process technologies , 
such as , for example , BiCMOS , CMOS , or NMOS . 
( 0166 ] The memory hierarchy includes one or more levels 
of cache within the cores , a set or one or more shared cache 

Specific Exemplary In - Order Core Architecture 
[ 0160 ] FIGS . 10A - B illustrate a block diagram of a more 
specific exemplary in - order core architecture , which core 
would be one of several logic blocks ( including other cores 
of the same type and / or different types ) in a chip . The logic 
blocks communicate through a high - bandwidth interconnect 
network ( e . g . , a ring network ) with some fixed function 
logic , memory I / O interfaces , and other necessary I / O logic , 
depending on the application . 
[ 0161 ] FIG . 10A is a block diagram of a single processor 
core , along with its connection to the on - die interconnect 
network 1002 and with its local subset of the Level 2 ( L2 ) 
cache 1004 , according to embodiments of the disclosure . In 
one embodiment , an instruction decode unit 1000 supports 
the x86 instruction set with a packed data instruction set 
extension . An L1 cache 1006 allows low - latency accesses to 
cache memory into the scalar and vector units . While in one 
embodiment ( to simplify the design ) , a scalar unit 1008 and 
a vector unit 1010 use separate register sets ( respectively , 
scalar registers 1012 and vector registers 1014 ) and data 
transferred between them is written to memory and then read 
back in from a level 1 ( L1 ) cache 1006 , alternative embodi 
ments of the disclosure may use a different approach ( e . g . , 
use a single register set or include a communication path that 
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units 1106 , and external memory ( not shown ) coupled to the 
set of integrated memory controller units 1114 . The set of 
shared cache units 1106 may include one or more mid - level 
caches , such as level 2 ( L2 ) , level 3 ( L3 ) , level 4 ( L4 ) , or 
other levels of cache , a last level cache ( LLC ) , and / or 
combinations thereof . While in one embodiment a ring 
based interconnect unit 1112 interconnects the integrated 
graphics logic 1108 , the set of shared cache units 1106 , and 
the system agent unit 1110 / integrated memory controller 
unit ( s ) 1114 , alternative embodiments may use any number 
of well - known techniques for interconnecting such units . In 
one embodiment , coherency is maintained between one or 
more cache units 1106 and cores 1102 - A - N . 
[ 0167 ] In some embodiments , one or more of the cores 
1102A - N are capable of multi - threading . The system agent 
1110 includes those components coordinating and operating 
cores 1102A - N . The system agent unit 1110 may include for 
example a power control unit ( PCU ) and a display unit . The 
PCU may be or include logic and components needed for 
regulating the power state of the cores 1102A - N and the 
integrated graphics logic 1108 . The display unit is for 
driving one or more externally connected displays . 
[ 0168 ] The cores 1102A - N may be homogenous or het 
erogeneous in terms of architecture instruction set ; that is , 
two or more of the cores 1102A - N may be capable of 
execution the same instruction set , while others may be 
capable of executing only a subset of that instruction set or 
a different instruction set . 

Exemplary Computer Architectures 
[ 0169 ] FIGS . 12 , 13 , 14 , and 15 are block diagrams of 
exemplary computer architectures . Other system designs 
and configurations known in the arts for laptops , desktops , 
handheld PCs , personal digital assistants , engineering work 
stations , servers , network devices , network hubs , switches , 
embedded processors , digital signal processors ( DSPs ) , 
graphics devices , video game devices , set - top boxes , micro 
controllers , cell phones , portable media players , hand held 
devices , and various other electronic devices , are also suit 
able . In general , a huge variety of systems or electronic 
devices capable of incorporating a processor and / or other 
execution logic as disclosed herein are generally suitable . 
[ 0170 ] Referring now to FIG . 12 , shown is a block dia 
gram of a system 1200 in accordance with one embodiment 
of the present disclosure . The system 1200 may include one 
or more processors 1210 , 1215 , which are coupled to a 
controller hub 1220 . In one embodiment the controller hub 
1220 includes a graphics memory controller hub ( GMCH ) 
1290 and an Input / Output Hub ( IOH ) 1250 ( which may be 
on separate chips ) ; the GMCH 1290 includes memory and 
graphics controllers to which are coupled memory 1240 and 
a coprocessor 1245 ; the IOH 1250 is couples input / output 
( 1 / 0 ) devices 1260 to the GMCH 1290 . Alternatively , one or 
both of the memory and graphics controllers are integrated 
within the processor ( as described herein ) , the memory 1240 
and the coprocessor 1245 are coupled directly to the pro 
cessor 1210 , and the controller hub 1220 in a single chip 
with the IOH 1250 . 
[ 0171 ] The optional nature of additional processors 1215 
is denoted in FIG . 12 with broken lines . Each processor 
1210 , 1215 may include one or more of the processing cores 
described herein and may be some version of the processor 
1100 . 

f0172 ] The memory 1240 may be , for example , dynamic 
random access memory ( DRAM ) , phase change memory 
( PCM ) , or a combination of the two . For at least one 
embodiment , the controller hub 1220 communicates with 
the processor ( s ) 1210 , 1215 via a multi - drop bus , such as a 
frontside bus ( FSB ) , point - to - point interface such as Quick 
Path Interconnect ( QPI ) , or similar connection 1295 . 
[ 0173 ] In one embodiment , the coprocessor 1245 is a 
special - purpose processor , such as , for example , a high 
throughput MIC processor , a network or communication 
processor , compression engine , graphics processor , GPGPU , 
embedded processor , or the like . In one embodiment , con 
troller hub 1220 may include an integrated graphics accel 
erator . 
[ 0174 ] There can be a variety of differences between the 
physical resources 1210 , 1215 in terms of a spectrum of 
metrics of merit including architectural , microarchitectural , 
thermal , power consumption characteristics , and the like . 
0175 ] In one embodiment , the processor 1210 executes 
instructions that control data processing operations of a 
general type . Embedded within the instructions may be 
coprocessor instructions . The processor 1210 recognizes 
these coprocessor instructions as being of a type that should 
be executed by the attached coprocessor 1245 . Accordingly , 
the processor 1210 issues these coprocessor instructions ( or 
control signals representing coprocessor instructions ) on a 
coprocessor bus or other interconnect , to coprocessor 1245 . 
Coprocessor ( s ) 1245 accept and execute the received copro 
cessor instructions . 
[ 0176 ] Referring now to FIG . 13 , shown is a block dia 
gram of a first more specific exemplary system 1300 in 
accordance with an embodiment of the present disclosure . 
As shown in FIG . 13 , multiprocessor system 1300 is a 
point - to - point interconnect system , and includes a first pro 
cessor 1370 and a second processor 1380 coupled via a 
point - to - point interconnect 1350 . Each of processors 1370 
and 1380 may be some version of the processor 1100 . In one 
embodiment of the disclosure , processors 1370 and 1380 are 
respectively processors 1210 and 1215 , while coprocessor 
1338 is coprocessor 1245 . In another embodiment , proces 
sors 1370 and 1380 are respectively processor 1210 copro 
cessor 1245 . 
( 0177 ] Processors 1370 and 1380 are shown including 
integrated memory controller ( IMC ) units 1372 and 1382 , 
respectively . Processor 1370 also includes as part of its bus 
controller units point - to - point ( P - P ) interfaces 1376 and 
1378 ; similarly , second processor 1380 includes P - P inter 
faces 1386 and 1388 . Processors 1370 , 1380 may exchange 
information via a point - to - point ( PPP ) interface 1350 using 
P - P interface circuits 1378 , 1388 . As shown in FIG . 13 , 
IMCs 1372 and 1382 couple the processors to respective 
memories , namely a memory 1332 and a memory 1334 , 
which may be portions of main memory locally attached to 
the respective processors . 
[ 0178 ] Processors 1370 , 1380 may each exchange infor 
mation with a chipset 1390 via individual P - P interfaces 
1352 , 1354 using point to point interface circuits 1376 , 
1394 , 1386 , 1398 . Chipset 1390 may optionally exchange 
information with the coprocessor 1338 via a high - perfor 
mance interface 1339 . In one embodiment , the coprocessor 
1338 is a special - purpose processor , such as , for example , a 
high - throughput MIC processor , a network or communica 
tion processor , compression engine , graphics processor , 
GPGPU , embedded processor , or the like . 
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[ 0179 ] A shared cache ( not shown ) may be included in 
either processor or outside of both processors , yet connected 
with the processors via P - P interconnect , such that either or 
both processors ' local cache information may be stored in 
the shared cache if a processor is placed into a low power 
mode . 
10180 ] Chipset 1390 may be coupled to a first bus 1316 via 
an interface 1396 . In one embodiment , first bus 1316 may be 
a Peripheral Component Interconnect ( PCI ) bus , or a bus 
such as a PCI Express bus or another third generation I / O 
interconnect bus , although the scope of the present disclo 
sure is not so limited . 
[ 0181 ] As shown in FIG . 13 , various I / O devices 1314 
may be coupled to first bus 1316 , along with a bus bridge 
1318 which couples first bus 1316 to a second bus 1320 . In 
one embodiment , one or more additional processor ( s ) 1315 , 
such as coprocessors , high - throughput MIC processors , 
GPGPU ' s , accelerators ( such as , e . g . , graphics accelerators 
or digital signal processing ( DSP ) units ) , field program 
mable gate arrays , or any other processor , are coupled to first 
bus 1316 . In one embodiment , second bus 1320 may be a 
low pin count ( LPC ) bus . Various devices may be coupled to 
a second bus 1320 including , for example , a keyboard and / or 
mouse 1322 , communication devices 1327 and a storage 
unit 1328 such as a disk drive or other mass storage device 
which may include instructions / code and data 1330 , in one 
embodiment . Further , an audio I / O 1324 may be coupled to 
the second bus 1320 . Note that other architectures are 
possible . For example , instead of the point - to - point archi 
tecture of FIG . 13 , a system may implement a multi - drop bus 
or other such architecture . 
10182 ] Referring now to FIG . 14 , shown is a block dia 
gram of a second more specific exemplary system 1400 in 
accordance with an embodiment of the present disclosure . 
Like elements in FIGS . 13 and 14 bear like reference 
numerals , and certain aspects of FIG . 13 have been omitted 
from FIG . 14 in order to avoid obscuring other aspects of 
FIG . 14 . 
[ 0183 ] FIG . 14 illustrates that the processors 1370 , 1380 
may include integrated memory and I / O control logic 
( " CL " ) 1372 and 1382 , respectively . Thus , the CL 1372 , 
1382 include integrated memory controller units and include 
I / O control logic . FIG . 14 illustrates that not only are the 
memories 1332 , 1334 coupled to the CL 1372 , 1382 , but also 
that I / O devices 1414 are also coupled to the control logic 
1372 , 1382 . Legacy I / O devices 1415 are coupled to the 
chipset 1390 . 
[ 0184 ] Referring now to FIG . 15 , shown is a block dia 
gram of a SoC 1500 in accordance with an embodiment of 
the present disclosure . Similar elements in FIG . 11 bear like 
reference numerals . Also , dashed lined boxes are optional 
features on more advanced SoCs . In FIG . 15 , an interconnect 
unit ( s ) 1502 is coupled to : an application processor 1510 
which includes a set of one or more cores 202A - N and 
shared cache unit ( s ) 1106 ; a system agent unit 1110 ; a bus 
controller unit ( s ) 1116 ; an integrated memory controller 
unit ( s ) 1114 ; a set or one or more coprocessors 1520 which 
may include integrated graphics logic , an image processor , 
an audio processor , and a video processor ; an static random 
access memory ( SRAM ) unit 1530 ; a direct memory access 
( DMA ) unit 1532 ; and a display unit 1540 for coupling to 
one or more external displays . In one embodiment , the 
coprocessor ( s ) 1520 include a special - purpose processor , 
such as , for example , a network or communication proces 

sor , compression engine , GPGPU , a high - throughput MIC 
processor , embedded processor , or the like . 
[ 0185 ] Embodiments ( e . g . , of the mechanisms ) disclosed 
herein may be implemented in hardware , software , firm 
ware , or a combination of such implementation approaches . 
Embodiments of the disclosure may be implemented as 
computer programs or program code executing on program 
mable systems comprising at least one processor , a storage 
system ( including volatile and non - volatile memory and / or 
storage elements ) , at least one input device , and at least one 
output device . 
[ 0186 ] Program code , such as code 1330 illustrated in 
FIG . 13 , may be applied to input instructions to perform the 
functions described herein and generate output information . 
The output information may be applied to one or more 
output devices , in known fashion . For purposes of this 
application , a processing system includes any system that 
has a processor , such as , for example ; a digital signal 
processor ( DSP ) , a microcontroller , an application specific 
integrated circuit ( ASIC ) , or a microprocessor . 
[ 0187 ] The program code may be implemented in a high 
level procedural or object oriented programming language to 
communicate with a processing system . The program code 
may also be implemented in assembly or machine language , 
if desired . In fact , the mechanisms described herein are not 
limited in scope to any particular programming language . In 
any case , the language may be a compiled or interpreted 
language . 
[ 0188 ] One or more aspects of at least one embodiment 
may be implemented by representative instructions stored on 
a machine - readable medium which represents various logic 
within the processor , which when read by a machine causes 
the machine to fabricate logic to perform the techniques 
described herein . Such representations , known as “ IP cores " 
may be stored on a tangible , machine readable medium and 
supplied to various customers or manufacturing facilities to 
load into the fabrication machines that actually make the 
logic or processor . 
[ 0189 ] Such machine - readable storage media may 
include , without limitation , non - transitory , tangible arrange 
ments of articles manufactured or formed by a machine or 
device , including storage media such as hard disks , any 
other type of disk including floppy disks , optical disks , 
compact disk read - only memories ( CD - ROMs ) , compact 
disk rewritable ' s ( CD - RWs ) , and magneto - optical disks , 
semiconductor devices such as read - only memories 
( ROMs ) , random access memories ( RAMs ) such as dynamic 
random access memories ( DRAMs ) , static random access 
memories ( SRAMs ) , erasable programmable read - only 
memories ( EPROMs ) , flash memories , electrically erasable 
programmable read - only memories ( EEPROMs ) , phase 
change memory ( PCM ) , magnetic or optical cards , or any 
other type of media suitable for storing electronic instruc 
tions . 
[ 0190 ] Accordingly , embodiments of the disclosure also 
include non - transitory , tangible machine - readable media 
containing instructions or containing design data , such as 
Hardware Description Language ( HDL ) , which defines 
structures , circuits , apparatuses , processors and / or system 
features described herein . Such embodiments may also be 
referred to as program products . 
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Emulation ( Including Binary Translation , Code Morphing , 
etc . ) 

0191 ] In some cases , an instruction converter may be 
used to convert an instruction from a source instruction set 
to a target instruction set . For example , the instruction 
converter may translate ( e . g . , using static binary translation , 
dynamic binary translation including dynamic compilation ) , 
morph , emulate , or otherwise convert an instruction to one 
or more other instructions to be processed by the core . The 
instruction converter may be implemented in software , hard 
ware , firmware , or a combination thereof . The instruction 
converter may be on processor , off processor , or part on and 
part off processor . 
[ 0192 ] FIG . 16 is a block diagram contrasting the use of a 
software instruction converter to convert binary instructions 
in a source instruction set to binary instructions in a target 
instruction set according to embodiments of the disclosure . 
In the illustrated embodiment , the instruction converter is a 
software instruction converter , although alternatively the 
instruction converter may be implemented in software , firm 
ware , hardware , or various combinations thereof . FIG . 16 
shows a program in a high level language 1602 may be 
compiled using an x86 compiler 1604 to generate x86 binary 
code 1606 that may be natively executed by a processor with 
at least one x86 instruction set core 1616 . The processor with 
at least one x86 instruction set core 1616 represents any 
processor that can perform substantially the same functions 
as an Intel processor with at least one x86 instruction set 
core by compatibly executing or otherwise processing ( 1 ) a 
substantial portion of the instruction set of the Intel x86 
instruction set core or ( 2 ) object code versions of applica 
tions or other software targeted to run on an Intel processor 
with at least one x86 instruction set core , in order to achieve 
substantially the same result as an Intel processor with at 
least one x86 instruction set core . The x86 compiler 1604 
represents a compiler that is operable to generate x86 binary 
code 1606 ( e . g . , object code ) that can , with or without 
additional linkage processing , be executed on the processor 
with at least one x86 instruction set core 1616 . Similarly , 
FIG . 16 shows the program in the high level language 1602 
may be compiled using an alternative instruction set com 
piler 1608 to generate alternative instruction set binary code 
1610 that may be natively executed by a processor without 
at least one x86 instruction set core 1614 ( e . g . , a processor 
with cores that execute the MIPS instruction set of MIPS 
Technologies of Sunnyvale , Calif . and / or that execute the 
ARM instruction set of ARM Holdings of Sunnyvale , 
Calif . ) . The instruction converter 1612 is used to convert the 
x86 binary code 1606 into code that may be natively 
executed by the processor without an x86 instruction set 
core 1614 . This converted code is not likely to be the same 
as the alternative instruction set binary code 1610 because 
an instruction converter capable of this is difficult to make ; 
however , the converted code will accomplish the general 
operation and be made up of instructions from the alterna 
tive instruction set . Thus , the instruction converter 1612 
represents software , firmware , hardware , or a combination 
thereof that , through emulation , simulation or any other 
process , allows a processor or other electronic device that 
does not have an x86 instruction set processor or core to 
execute the x86 binary code 1606 . 

1 . - 20 . ( canceled ) 
21 . A hardware processor comprising : 
a decoder to decode an instruction to prefetch a multidi 
mensional block of elements from a multidimensional 
array into a cache , wherein one or more fields of the 
instruction are to indicate a memory address of an 
element of the multidimensional block of elements , a 
stride of the multidimensional block of elements , and 
boundaries of the multidimensional block of elements ; 
and 

an execution unit to execute the instruction to : 
generate memory addresses of the other elements of the 
multidimensional block of elements , and load the mul 
tidimensional block of elements into the cache from the 
memory addresses . 

22 . The hardware processor of claim 21 , wherein the 
execution unit is to execute the instruction to cause a 
prefetch unit of the hardware processor to generate the 
memory addresses of the other elements of the multidimen 
sional block of elements . 

23 . The hardware processor of claim 22 , wherein the 
memory addresses are virtual addresses and the prefetch unit 
comprises a transition lookaside buffer to generate corre 
sponding physical addresses from the virtual addresses of 
the memory addresses of the other elements of the multidi 
mensional block of elements . 

24 . The hardware processor of claim 22 , wherein the 
prefetch unit further comprises a status register to indicate a 
status of the prefetch unit . 

25 . The hardware processor of claim 22 , wherein the 
execution unit is to execute the instruction to cause the 
prefetch unit to load the multidimensional block of elements 
into the cache from the memory addresses . 

26 . The hardware processor of claim 21 , wherein an 
opcode of the instruction is to indicate a level of the cache 
to load the multidimensional block of elements . 

27 . The hardware processor of claim 21 , wherein the 
stride comprises a first stride in a first dimension and a 
different , second stride in a second dimension . 

28 . The hardware processor of claim 21 , wherein the 
execution unit is to execute the instruction to cause a 
replacement of a speculative prefetch data set in the cache 
with the multidimensional block of elements . 

29 . A method comprising : 
decoding , with a decode unit of a processor , an instruction 

to prefetch a multidimensional block of elements from 
a multidimensional array into a cache , wherein one or 
more fields of the instruction are to indicate a memory 
address of an element of the multidimensional block of 
elements , a stride of the multidimensional block of 
elements , and boundaries of the multidimensional 
block of elements ; and 

executing , with an execution unit of the processor , the 
instruction to : 

generate memory addresses of the other elements of the 
multidimensional block of elements ; and 

load the multidimensional block of elements into the 
cache from the memory addresses . 

30 . The method of claim 29 , wherein the executing the 
instruction is to cause a prefetch unit of the processor to 
generate the memory addresses of the other elements of the 
multidimensional block of elements . 
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31 . The method of claim 30 , wherein the memory 
addresses are virtual addresses and the prefetch unit com 
prises a transition lookaside buffer generating corresponding 
physical addresses from the virtual addresses of the memory 
addresses of the other elements of the multidimensional 
block of elements . 

32 . The method of claim 30 , further comprising updating 
a status register of the prefetch unit to indicate a status of the 
prefetch unit . 

33 . The method of claim 30 , wherein the executing the 
instruction is to cause the prefetch unit of the processor to 
load the multidimensional block of elements into the cache 
from the memory addresses . 

34 . The method of claim 29 , wherein an opcode of the 
instruction is to indicate a level of the cache to load the 
multidimensional block of elements . 

35 . The method of claim 29 , wherein the stride comprises 
a first stride in a first dimension and a different , second stride 
in a second dimension . 

36 . The method of claim 29 , wherein the executing the 
instruction replaces a speculative prefetch data set in the 
cache with the multidimensional block of elements . 

37 . A non - transitory machine readable medium that stores 
code that when executed by a machine causes the machine 
to perform a method comprising : 

decoding , with a decode unit of a processor , an instruction 
to prefetch a multidimensional block of elements from 
a multidimensional array into a cache , wherein one or 
more fields of the instruction are to indicate a memory 
address of an element of the multidimensional block of 
elements , a stride of the multidimensional block of 
elements , and boundaries of the multidimensional 
block of elements ; and 

executing , with an execution unit of the processor , the 
instruction to : 

generate memory addresses of the other elements of the 
multidimensional block of elements ; and 

load the multidimensional block of elements into the 
cache from the memory addresses . 

38 . The non - transitory machine readable medium of claim 
37 , wherein the executing the instruction is to cause a 
prefetch unit of the processor to generate the memory 
addresses of the other elements of the multidimensional 
block of elements . 

39 . The non - transitory machine readable medium of claim 
38 , wherein the memory addresses are virtual addresses and 
the prefetch unit comprises a transition lookaside buffer 
generating corresponding physical addresses from the vir 
tual addresses of the memory addresses of the other ele 
ments of the multidimensional block of elements . 

40 . The non - transitory machine readable medium of claim 
38 , further comprising updating a status register of the 
prefetch unit to indicate a status of the prefetch unit . 
41 . The non - transitory machine readable medium of claim 

38 , wherein the executing the instruction is to cause the 
prefetch unit of the processor to load the multidimensional 
block of elements into the cache from the memory 
addresses . 

42 . The non - transitory machine readable medium of claim 
37 , wherein an opcode of the instruction is to indicate a level 
of the cache to load the multidimensional block of elements . 
43 . The non - transitory machine readable medium of claim 

37 , wherein the stride comprises a first stride in a first 
dimension and a different , second stride in a second dimen 
sion . 
44 . The non - transitory machine readable medium of claim 

37 , wherein the executing the instruction replaces a specu 
lative prefetch data set in the cache with the multidimen 
sional block of elements . 


