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A computer implemented method for encoding bits by qubits 
to perform information - theoretically secure quantum gate 
computation , according to which pairs of quantum bits 
consisting of a first qubit as an encoding of “ O ” and a second 
qubit as an encoding of “ 1 ” are randomly selected , such that 
the first and second qubits are orthogonal to each other as 
quantum states and are interchanged by a NOT gate . Each 
qubit rotating to a desired initial direction and then each 
rotated qubit is further rotated to its antipodal direction by 
applying a quantum NOT or CNOT gate to the each rotated 
qubit , without any knowledge about the desired direction . A 
unitary gate is further applied over the qubits , using an 
ancillary 10 ) qubit that creates an equally weighted super 
position of the qubits . 
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SYSTEM AND METHOD FOR PERFORMING 
INFORMATION - THEORETICALLY SECURE 
QUANTUM GATE COMPUTATION AND 

QUANTUM KEY DISTRIBUTION , BASED ON 
RANDOM ROTATION OF QUBITS 

3 

simultaneously , because each qubit represents two values . If 
more qubits are added , the increased capacity is expanded 
exponentially . 
[ 0008 ] Practically , each qubit y is a unit vector in R 3 , that 
may be represented by two real numbers 0 and op : using 
sphere representation : 

y = cos ( 8/2 ) 0 + eisin ( 0/2 ) 1 , 

a 2 

FIELD OF THE INVENTION 

where 0 , QER [ 0001 ] The present invention relates to the field of secure 
quantum computation . More particularly , the present inven 
tion relates to a system and method for performing infor 
mation - theoretically secure quantum gate computation and 
quantum key distribution , based on random rotation of 
qubits . 

W = cos ( 0/2 ) 0 + e * sin ( 0/2 ) 1 , 

BACKGROUND OF THE INVENTION 

where 0 , QER , as shown in FIG . 1 . 
[ 0009 ] The basic building block of quantum computation 
protocols is the qubit . The qubit is the quantum version of 
the classical bit used in classical computing . Whereas a 
classical bit may be described as an element of { 0,1 } , a qubit 
may be described as a unit vector in the Hilbert space C ?. 

?? Denote = C2 , and 0 and 1 be the elements = 
9 

and 

IH of respectively . { 0,1 } is the computational basis of 
?? The notation denote qubits by 4. A system composed 

IH On 

[ 0002 ] Quantum computations are typically based on rep 
resenting the classical bits 0 and 1 as the pure state qubits of 
the computational basis 10 % and 11 > , utilizing quantum 
phenomena of superposition and entanglement . 
[ 0003 ] A qubit is a quantum bit , the counterpart in quan 
tum computing to the binary digit or bit of classical com 
puting . Just as a bit is the basic unit of information in a 
classical computer , a qubit is the basic unit of information in 
a quantum computer . 
[ 0004 ] In a quantum computer , a number of elemental 
particles such as electrons or photons can be used , with 
either their charge or polarization acting as a representation 
of “ O ” and / or “ 1 ” . Each of these particles is known as a 
qubit . The nature and behavior of these particles ( as 
expressed in quantum theory ) form the basis of quantum 
computing . The two most relevant aspects of quantum 
physics are the principles of superposition and entangle 
ment . 
[ 0005 ] According to quantum law each qubit utilized 
could take a superposition of both 0 and 1. Thus , the number 
of computations that a quantum computer could undertake is 
2 " , where n is the number of qubits used . A quantum 
computer consisting of 500 qubits would have a potential to 
do 2500 calculations in a single step . Qubits interact with 
each other via quantum entanglement . 
[ 0006 ] Particles that have interacted at some point retain a 
type of connection and can be entangled with each other in 
pairs , in a process known as correlation . Knowing the spin 
state of one entangled particle — up or down — allows know 
ing that the spin of its mate is in the opposite direction . 
[ 0007 ] Due to the phenomenon of superposition , the mea 
sured particle has no single spin direction before being 
measured , but is simultaneously in both a spin - up and 
spin - down state . The spin state of the particle being mea 
sured is decided at the time of measurement and communi 
cated to the correlated particle , which simultaneously 
assumes the opposite spin direction to that of the measured 
particle . Quantum entanglement allows qubits that are sepa 
rated by incredible distances to interact with each other 
instantaneously ( not limited to the speed of light ) . No matter 
how great the distance between the correlated particles , they 
will remain entangled as long as they are isolated . Therefore , 
quantum superposition and entanglement create an enor 
mously enhanced computing power . Where a 2 - bit register 
in an ordinary computer can store only one of four binary 
configurations ( 00,01 , 10 , or 11 ) at any given time , a 2 - qubit 
register in a quantum computer can store all four numbers 

of n qubits is described by a unit vector of the n - fold 
TH tensor product of with itself . Such a system of n qubits 

is the quantum version of an n - long string of classical bits . 
??? [ 0010 ] An arbitrary qubit yo H may be described by 

its coordinates in the computational basis using four real 
numbers : = -40 + B1 , where a , BEC . If w , and are two 
elements of ?? such that wi = e Y42 for some YER , then 41 
and 42 are equal up to a global phase factor . Global phase 
factors have no influence on quantum computations , and 
hence may be ignored . Hence , and as y is a unit vector , that 
may be written y using only two real numbers : 

W = cos ( 0/2 ) 0 + esin ( 0/2 ) 1 , 

1 

2 

where 0 , QER . This is the Bloch sphere representation of 
4. The name sphere representation comes from the fact that 
O and q may be used to visualize y as a unit vector in R 3 . 
11 : 
[ 0011 ] In classical computing , strings of classical bits are 
manipulated using logic gates , information is represented as 
a string of bits , and the function to be computed over the 
information is represented as a logic circuit , which is com 
posed of logic gates . In quantum computing , systems of 
qubits are manipulated using quantum gates , information is 
represented as a system of qubits and the function to be 
computed over the information is represented as a quantum 
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( ) 

Since B ( 0,0 ) 
19 

n 

circuit , which is composed of quantum gates . In order to 
implement a classical computation , bits are physically real 
ized and the physical realizations of the bits are manipulated 
using physical realizations of logic gates . To implement 
quantum computations , qubits are physically realized , and 
these physical realizations of the qubits are manipulated 
using physical realizations of quantum gates . 
[ 0012 ] While classical logic gates are Boolean functions , 
quantum gates are unitary operators on Hilbert spaces . The 
Kronecker product notation is used to represent unitary 
operations as matrices . 
[ 0013 ] Quantum computers may be used to perform com 
putations that have been performed using classical comput 
ers , as well as other tasks . For example , any information that 
may be represented classically as a string of bits may be 
represented in the quantum model as a tensor product of 

? elements of the computational basis { 0,1 } of 
classical circuit may be implemented in the quantum model 
using a quantum circuit composed of Toffoli gates , which is 
the quantum version of the classical universal NAND gate . 

position of 4o and 1'1 , and the elements of Be , q ) are pure 
states in reference to B ( 0,0 ) . is an orthonormal 
basis , a and ß are the inner products of and the elements of 
Bo , q ) In general , if B = { v ... , Vn } , is an orthonormal basis 
of an n - dimensional Hilbert space and v = v = Ej = 1 " a ; V ; the inner 
product of Vk V , denoted by Velv , is 

valv = { v 12 , - , " av ) -2 ; - , " anx / 0,00.z . ( 5 ) 

[ 0015 ] Hence , lal ? = 14,1412 and 1312 = 14,1412 . This fact is 
used to compute the probabilities of obtaining the different 
outcomes when measuring a given qubit ( or a system of 
qubits ) in reference to a given orthonormal basis . Measure 
ments of systems of 1 qubits are performed in reference to 

= 

THI ?? 
9 

Then , any 

orthonormal bases of and result in a collapse of the 
system into one of the elements of that basis . The possible 
outcomes of such a measurement are the corresponding 
binary strings of length 1 , and the probability of obtaining 
each of the possible outcomes is the square of the absolute 
value of the corresponding coordinate of the system in the 
chosen basis . These may be computed using ( 5 ) . 
[ 0016 ] If1 = 2 , and let B 0,0 ) = { WoW , } and B ( 0,0 ) = { 4'034'1 } 

IH two orthonormal bases of Tensor products of elements 
of these bases give the following orthonormal basis { W.4o , 

( 

Reading Quantum Information 

H 02 
1 ) 

( ? 
O 

[ 0014 ] A physical realization of a qubit may come in 
different forms . However , according to the postulates of 
quantum mechanics , no matter what form of realization is 
chosen , given a physical realization of an arbitrary qubit , y , 
one cannot determine its coordinates . This phenomenon is 
known as the uncertainty principle . The inability to deter 
mine the coordinates of an arbitrary qubit is not an issue of 
insufficient measuring devices , but a consequence of the 
fundamental laws of quantum mechanics . According to 
these laws , an arbitrary qubit may be realized ( up to a certain 
amount of precision , dependent of the accuracy of the 
equipment used ) , but it cannot be read . Qubits may be 
measured . Measurements of qubits are performed in refer 

?? ence to a chosen orthonormal basis of and the outcome 
of the measurement is random , either zero or one , as detailed 
below . As a result of the measurement , the qubit is trans 
formed into one of the two qubits of that orthonormal basis . 
The probability of obtaining each of the possible outcomes 
is the square of the absolute value of the corresponding 
coordinate of the qubit in the chosen basis . Explicitly , given 

??? ? , ?E denoting 

WoW ' W.WO , W.W'1 } , denoted B 0.00 0,0 " ) of 
Given a system of two qubits , measuring that system in 
reference to B ( 0.2 ) B ( 0,0 % ) is equivalent to measuring the 
first qubit in reference to B ( 0,0 ) and the second qubit in 
reference to B ( 0 ' , op ' ) . 
[ 0017 ] Delegation of computation , while preserving the 
confidentiality of the data ( and sometimes even the pro 
gram ) , is a challenging practical task that has kept researches 
busy ever since it was brought up in 1978 by Rivest , 
Adelman , and Dertouzos [ “ On data banks and privacy 
homomorphisms ” , 1978 ] . That problem addresses scenarios 
similar to the following . A user is holding information in the 
form of a string x . The user wishes to use the services of a 
remote server , which will be referred to as the cloud , to store 
x and perform computations over the stored data using 
computing engines provided by the cloud . Assume that x is 
confidential , and hence , the user does not want to share x 
with the cloud infrastr ucture enterprises . For example , the 
user may be a financial company and x some information 
regarding the financial activity of the company . The com 
pany wishes to use the services of a distrustful cloud to store 
the data and perform computations over the data . 
[ 0018 ] In particular , there can be much use in information 
theoretically secure ( IT - secure ) schemes that would enable 
such a delegation of data and computations . The security of 
computationally secure schemes is based on ( a ) unproven 
assumptions regarding the computational hardness of spe 
cific mathematical problems , and ( b ) the assumption that the 
computing power of the adversary is insufficient for solving 
instances of these assumed - to - be - hard mathematical prob 
lems . The security of IT - secure schemes is free of such 
assumptions and is derived from information theory . 
[ 0019 ] Existing solutions to the problem of delegation of 
computation are based on either the distributed approach of 
secure multi - party computation ( MPC , see [ CDN15 ] ) or the 
single - server approach of homomorphic encryption ( HE , see 
[ AAUC18 ] ) . MPC - oriented solutions often achieve IT - se 
curity , but to support processing of any function over the 
encrypted data , they require ongoing communication 

sin ( 0/2 ) ( 4 ) 
VO - = 1 072 ) cos ( 0/2 ) 

eie sin ( 0/2 ) V1 ( 012 ) -ei cos ( 0/2 ) 

. 

and denoting by B ( 0,0 ) the orthonormal basis { 40341 } of 
??? ??? For a qubit WE and an orthonormal basis B6,9 ) of 
H write y = ayo + B41 . When y is measured in reference 

to Be , q ) , there is a probability of lal that will transform into 
4o , yielding the outcome 0 , and a probability of IB12 that it 
will transform into 41 , yielding the outcome 1. When y is 
measured in reference to the basis B6,9 ) , it collapses into 
one of the elements of that basis . Given B ( 0,0 ) , an orthonor 

IHI mal basis of any unit vector y = ayo + By , is a super 1 
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between the servers among whom the ciphertext is distrib 
uted . HE - oriented solutions typically require no communi 
cation , but to maintain IT - security , they can support pro 
cessing of only a limited set of functions over the encrypted 
data . Fully homomorphic encryption ( FHE ) schemes , which 
may support processing of any function over the encrypted 
data , can only achieve computational security . 
[ 0020 ] HE schemes may be described by a collection of 
four algorithms . The key space , the message space and the 
ciphertext space of a given scheme are denote by K , M , 
and C , respectively . 
[ 0021 ] The algorithms are as follows . 

[ 0022 ] Gen - A key generation algorithm which , given 
a security parameter input , n , outputs a key , kEK . 

[ 0023 ] Enc — An encryption algorithm which , given a 
plaintext input , xM , and a key , k , outputs a cipher 
text cEC.c = Encz ( x ) to emphasize that the encryption 
depends on k . 

[ 0024 ] Eval - An evaluation algorithm which , given a 
ciphertext input , c = Encz ( x ) , and a function , f , outputs 
F ( c ) , where FC ) is an encryption of f ( x ) using the same 
key . Namely , F ( C ) = Encz ( f ( x ) ) . 

[ 0025 ] Dec — A decryption algorithm which , given a 
ciphertext input , c = Encz ( x ) , and a key , k , outputs x . 

[ 0026 ] An example of such an HE scheme is shown in 
FIG . 2 
[ 0027 ] HE schemes may be classified according to their 
level of security , complexity , and other attributes . Infor 
mally , a scheme is secure if the ciphertext leaks a negligible 
amount of information regarding the plaintext . Security is 
typically formalized in the IT or computational setting using 
standard privacy definitions . The collection of functions f , 
for which Eval is defined , may be different for different 
schemes . If Eval is defined for all Boolean functions , then 
the scheme is fully homomorphic . The first FHE scheme was 
presented in [ Gen09 ] , followed by several revisions and 
further solutions [ VDGHV10 ] , [ GHS12 ] , [ BP16 ] , [ GHS16 ] , 
[ XWZ + 18 ] . If Dec is efficient ( i.e. , poly - time ) , the scheme 
is compact . If Dec requires O ( 1 ) time and space , the scheme 
is fully compact . In some schemes ( e.g. , most quantum 
one - time pad based schemes , see below ) , the evaluation 
algorithm may output an encryption of the evaluated plain 
text that uses a different key . Namely , on input c = | Enclz ( x ) , 
Eavl outputs F ( C ) = Encx ( f ( x ) ) , an encryption of f ( x ) using 
a different key , k ' . Typically , In such schemes , k ' is depen 
dent on f , and decryption of the evaluated ciphertext 
requires the user to modify her keys according to f . Such 
schemes cannot achieve full compactness . 
[ 0028 ] The collection of functions f , for which Eval is 
defined , may be different for different schemes . If Eval is 
defined for all Boolean functions , then the scheme is fully 
homomorphic . The first fully homomorphic encryption 
scheme was presented in [ Gen09 ] , followed by several 
revisions and further solutions suggested since . All known 
fully homomorphic encryption schemes are computationally 
secure . The security of such a scheme is based on ( a ) 
unproven assumptions regarding the computational hardness 
of certain mathematical problems ; ( b ) the assumption that 
the computing power of the adversary is insufficient for 
solving instances of these assumed - to - be - hard mathematical 
problems ; ( c ) the secrecy of a key . A different approach to 
the problem of outsourcing storage and computation of 

information to a distrustful party is the distributed approach 
of secure multi - party computation schemes , which yields 
communication overhead ( see [ BD18 ] ) . 
[ 0029 ] Quantum computers threaten the security of com 
putationally secure schemes , allowing , if built in scale , 
feasible solutions to problems which are currently consid 
ered impractical to solve . For example , Deutsch and Jozsa 
showed in 1992 that quantum computers are able to solve 
certain problems exponentially faster than classical comput 
ers [ DJ92 ] . Shor suggested in 1994 algorithms which may be 
invoked by quantum computers to efficiently compute dis 
crete logarithms and factor large integers [ Sho94 ] . These 
two problems are considered computationally hard , and 
stand in the basis of many commonly used cryptographic 
systems . In 1996 , Grover developed a quantum search 
algorithm that finds a desired record in an N records data 
base in O ( N ) steps [ Gro96 ] . These are but three well - known 
algorithms out of numerous results established in the grow 
ing field of quantum computation ( Jor18 ] . In light of these 
results , it is natural to ask whether an efficient information 
theoretically secure solution to the problem of homomorphic 
encryption may be found in the scope of quantum comput 
ing . 
[ 0030 ] In 2014 , it was shown in [ YPDF14 ] that it is 
impossible to construct an efficient information - theoretically 
secure quantum homomorphic encryption scheme . Specifi 
cally , it was proved that , the size of the encryption of an 
information - theoretically secure quantum homomorphic 
encryption scheme must grow exponentially in the input 
size . Hence , practical perfectly secure encryption systems 
can only be used to evaluate a subset of all possible 
functions , e.g. , [ Lia13 ] , [ TKO + 16 ] , [ OTF18 ] . 
[ 0031 ] Several works used computationally - secure classi 
cal fully homomorphic encryption schemes to construct 
computationally - secure quantum homomorphic encryption 
schemes , e.g. , [ D5516 ] . 
[ 0032 ] Broadbent suggested a client - server scheme based 
on combining the QOTP encryption scheme with a compu 
tationally secure classical FHE scheme . Their scheme 
enables the delegation of quantum information to a quantum 
server and homomorphic processing of a universal set of 
quantum gates over the encrypted data . However , their 
scheme falls short of achieving the properties listed above . 
First , their scheme employs a computationally - secure FHE 
protocol , which makes their scheme only computationally 
secure ( while IT - secure schemes are required ) . Second , their 
scheme requires quantum and classical interaction between 
the user and the server for the processing of non - Clifford 
gates ( while the scope of this work is constructing non 
interactive schemes ) . Third , their scheme is not fully com 
pact , as it requires the user to update the keys used to encrypt 
the data throughout the computation . Namely , to homomor 
phically evaluate a quantum circuit over encrypted data , the 
client should re - adjust her knowledge of the encryption keys 
on each relevant quantum wire after each gate processing . 
That re - adjustment requires O ( s ) time , where s is the size of 
the circuit . 
[ 0033 ] An approach similar to [ Bro15 ] was adopted by 
[ BJ15 ] . There , two schemes were proposed . The first has a 
decryption procedure whose time - complexity scales with 
the square of the number of T - gates ( and hence falls short of 
achieving full compactness ) . The second scheme uses a 
quantum evaluation key of length given by a polynomial of 
degree exponential in the circuit’s T - gate depth , yielding a 

2 
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homomorphic scheme only for quantum circuits with con 
stant T - depth . The evaluation key includes auxiliary qubits 
that encode the required corrections that should be per 
formed over the processed data . Since a large number of 
possible corrections must be available , the length of the 
evaluation key is exponential in the circuit's T - gate depth , 
yielding a homomorphic scheme that is efficient only for 
quantum circuits with constant T - depth . Both the schemes of 
[ Bro15 ] and [ BJ15 ] are only computationally secure . 
[ 0034 ] Dulek et al . [ DSS16 ] used a classical FHE scheme 
to construct quantum gadgets that allow perfect correction of 
the errors that occur during the homomorphic evaluation of 
T - gates on encrypted quantum data . These gadgets give rise 
to an efficient non - interactive QFHE scheme . Their scheme 
is compact , but not fully compact , since decryption requires 
the user to apply classical changes to the keys according to 
f . Furthermore , it is only computationally secure . 
[ 0035 ] Mahadev presented in [ Mah18 ] a non - interactive 
FHE scheme for quantum circuits that is based on QOTP and 
uses classical keys . The scheme allows a classical user to 
delegate quantum computations to a quantum server , while 
the server is unable to learn any information about the 
computation . Their scheme falls short of achieving the 
requirement of perfect correctness as it has positive error 
probability . 
[ 0036 ] Brakerski [ Bra18 ] used the high - level outline of 
[ Mah18 ] to construct a computationally secure QFHE 
scheme that enables homomorphic evaluation of classical 
circuits with bounded depth over classical data and with 
improved correctness . To support unbounded depth , 
[ Mah18 ] further rely on a circular security assumption . 
[ 0037 ] The schemes listed above suggest practical solu 
tions to the problem of homomorphic encryption . However , 
all these schemes have computational security ( and not 
IT - security ) and fail to fulfill the requirements . The security 
of their schemes is based on unproven computational hard 
ness assumptions . 
[ 0038 ] As mentioned above , it was shown in [ AMTDW00 ] 
that QOTP is an IT - secure encryption scheme that supports 
homomorphic evaluation of Pauli gates . Encryption is per 
formed by randomly applying X and Z gates to qubits , 
conditioned on a two - bit ( classical ) key , and decryption is 
performed by applying the same gates in the opposite 
direction . However , this method alone provides no means 
for constructing a QHE scheme that withstands our require 
ments . In particular , homomorphic evaluation of Clifford 
gates over QOTP - encrypted data requires that the user 
performs computations over the classical keys in compliance 
to the computations that are performed by the server over the 
encrypted qubits . This requirement results in decryption 
complexity linear in the size of the circuit , and hence , the 
scheme is not fully - compact . 
[ 0039 ] Childs [ Chi05 ] discussed ways in which a powerful 
quantum server may assist a user in performing operations 
while preserving the confidentiality of the data . In their 
work , the user is assumed to have capabilities significantly 
inferior to those of the server . In particular , the user is only 
allowed to generate qubits in the 0 state , store qubits , 
perform swap and Pauli gates , and perform no measure 
ments . Under these considerations , they suggest a ( QOTP 
based ) way in which the server may perform measurements 
on encrypted data . They also suggest algorithms which 
enable the server to help the user in performing a universal 
set of quantum gates over encrypted data , but these algo 

rithms are neither compact nor non - interactive — they 
require the user to perform at least as many operations as the 
server for each gate , and some of them require rounds of 
client - server interaction . 
[ 0040 ] Rhode et al . presented in [ RFG12 ] a protocol that 
enables a quantum user to manipulate client data in two 
models of restricted quantum computation — the boson sam 
pling and quantum walk models . Their protocol is non 
interactive , fully compact , and assumes no computational 
hardness assumptions and no limitations on the computing 
power of the adversary . However , in their scheme , the same 
key is used for encoding each of the input qubits , and hence , 
their scheme withstands no standard cryptographic criterion 
of security . Tan et al . [ TKO + 16 ] improved on [ RFG12 ] and 
presented a protocol that supports a class of quantum 
computations , including and beyond boson sampling , with 
improved security ( under similar assumptions ) . However , 
they achieve no standard criterion of IT - security , as they 
only bound the amount of information accessible to an 
adversary . 
[ 0041 ] Ouyang , Tan , and Fitzsimons [ OTF18 ] took a dif 
ferent approach and further improved on the results of 
[ TKO + 16 ] . Built on constructions taken from quantum 
codes , they achieved an encryption scheme that supports the 
evaluation of circuits with a constant number of non - Clifford 
gates . Though achieving stronger security guarantees than 
[ RFG12 , TKO + 16 ] , their scheme withstands no standard 
cryptographic criterion of security . Furthermore , their 
scheme is neither perfectly correct nor fully compact . It 
suggests a tradeoff between the size of the encoding and the 
success probability , where achieving constant success prob 
ability costs in increasing the size of the encoding exponen 
tially with the total number of T gates . 
[ 0042 ] [ Lia13 ] constructed a QOTP - based quantum 
encryption scheme which , given the encryption key , permits 
any unitary transformation to be evaluated on an arbitrary 
encrypted n - qubit state . Their scheme is efficient , compact , 
and IT - secure against an eavesdropper who may intercept an 
encrypted message ( before or after evaluation ) . However , 
their scheme suggests no solution to the main problem 
discussed in this paper , as their evaluation algorithm is 
dependent on the key . Under this restriction , the server must 
hold the key to compute on the encrypted data . Given the 
key , the server may decrypt and read the message , which by 
no means provides the user with any level of privacy . They 
also constructed a scheme in which the evaluation algorithm 
is independent of the key , but it only supports trivial 
operations that are independent of the key . 

Weak Measurements ( WM ) and QKD 
[ 0043 ] Weak measurements were discussed in several 
places , but never as a tool to attack QKD schemes . In 
[ GDL + 10 ) , an improved feedback - control of quantum sys 
tems was experimentally shown to be possible using weak 
measurements . Troupe and Farinholt [ TF17 ] used weak 
measurements to construct a QKD scheme with an improved 
key - rate , immunity to detector basis - dependent attacks ( such 
as detector blinding ) , and other various side - channel attacks . 
However , they have not considered WM - based attacks 
against their scheme , and only suggested ways in which WM 
could be used by Alice and Bob ( the parties that wish to 
share the key ) . In [ HK08 ] , weak measurements were used to 
detect a spin - dependent displacement of photons passing 
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[ 0056 ] c ) further rotating each rotated qubit to its 
antipodal direction by applying a quantum NOT or 
CNOT gate to the each rotated qubit , without any 
knowledge about the desired direction ; and 

[ 0057 ] d ) further applying a unitary gate over the qubits , 
using an ancillary 10 ) qubit , that creates an equally 
weighted superposition of the qubits . 

[ 0058 ] A computer implemented method for distributing a 
quantum key for performing information - theoretically 
secure quantum gate computation , comprising the steps of : 

[ 0059 ] a ) generating a quantum key k = ( 0,2 ) by uni 
formly selecting a random pair ( 0,0 ) from 

? [ 0 , 27 ] { 5 ; -5 
[ 0060 ] b ) setting an element 

Vo = cos ( ) + eil sin ( 0/2 ) , + 

through an air - glass interface , the photonic version of the 
spin Hall effect in electronic systems . 
[ 0044 ] Weak Measurement ( WM ) based attack against 
conventional QKD schemes enables an adversary to gain 
information regarding the secret key , while reducing the risk 
of getting caught . Assuming that Alice and Bob use the 
conventional QKD schemes ( such as BB84 that will be 
described later on ) a WM attack obligates Alice and Bob to 
invoke expensive data - reconciliation and privacy - amplifica 
tion processes , which reduce the bandwidth and compromise 
the security . 
[ 0045 ] Though WM - based attacks on QKD schemes were 
not suggested elsewhere before , Kak’s QKD protocol , pre 
sented in [ Kak , S .: A three - stage quantum cryptography 
protocol . Foundations of Physics Letters 19 , 293-296 
( 2006 ) ] , is resilient against such WM - based attacks . How 
ever , Kak's protocol requires three stages of communication 
which increases communication overhead . Also , in Kak's 
protocol each of the parties must have the capability of 
applying arbitrary quantum gates to quantum states . 
[ 0046 ] Quantum entanglement is known to be an essential 
resource in many quantum settings . The utilization of 
entanglement in communication , computation , and other 
scenarios is a very active area of research . In practice , 
entanglement is usually created by direct interactions 
between subatomic particles . The creation of entangled 
systems requires efforts and expenditures . 
[ 0047 ] It is therefore an object of the present invention to 
provide a system and method for of performing information 
theoretically secure quantum gate computation , for securing 
QKD scheme resilient against WM - based attacks . 
[ 0048 ] It is another object of the present invention to 
provide a system and method for of performing information 
theoretically secure quantum gate computation , for provid 
ing QKD schemes that are perfectly secure . 
[ 0049 ] It is a further object of the present invention to 
provide a system and method for of performing information 
theoretically secure quantum gate computation , while secur 
ing entanglement once it was created , such that only its 
rightful owners will be able to use it . 
[ 0050 ] It is still another object of the present invention to 
provide a system and method for of performing information 
theoretically secure quantum gate computation , which 
requires only two stages of communication . 
[ 0051 ] It is yet another object of the present invention to 
provide a system and method for of performing information 
theoretically secure quantum gate computation , where only 
one party must have the capability of applying arbitrary 
quantum gates to quantum states , while the other party 
should be able to apply only NOT gates to qubits . 
[ 0052 ] Other objects and advantages of the invention will 
become apparent as the description proceeds . 

as an encryption of “ O ” using the quantum key k = ( ( 0,9 ) as 
the encryption key ; 

[ 0061 ] c ) setting an element i = sin ( 0/2 ) -e ' % cos ( 0/2 ) to 
be the encryption of “ 1 ” using the key , such that Wo and 
41 are orthogonal . 

[ 0062 ] d ) constituting a random orthonormal basis Bre , ( , 

m ) ; and 
[ 0063 ] e ) allowing Wo to be equal to NOTY , and vice 

versa by selecting q = + 1 / 2 , such that the random ortho 
normal basis is 

- B ( 0 , + u ) = { cos ( 0/2 ) – isin ( 0/2 ) , sin ( 0/2 ) # icos ( 0/2 ) } . 

[ 0064 ] Elements 4o and W1 are used for bit - wise encryp 
tion of a string x of classical bits . 
[ 0065 ] Encryption operation on an input message be 
M may be done using the key k = ( 0,0 ) , by : 

[ 0066 ] a ) generating the qubit [ b ) ; 
[ 0067 ] b ) applying K to b ) to obtain Iq ) = K [ b ) , where 

cos ( 2/2 ) sin ( 0/2 ) 
K = 2 ) ) EM2 ( C ) ; 

SUMMARY OF THE INVENTION 
and 

[ 0068 ] c ) outputting an encrypted message lq ) . 
[ 0069 ] Decryption operation on input ciphertext 14 ) may 
be done using the key k = ( 0 , 0 ) , by : 

[ 0070 ] a ) applying K being the conjugate transpose of 

a 

[ 0053 ] A computer implemented method for encoding bits 
by qubits to perform information - theoretically secure quan 
tum gate computation , comprising the steps of : 

[ 0054 ] a ) randomly selecting pairs of quantum bits 
consisting of a first qubit as an encoding of “ O ” and a 
second qubit as an encoding of “ 1 ” , such that the first 
and second qubits are orthogonal to each other as 
quantum states and are interchanged by a NOT gate ; 

[ 0055 ] b ) rotating each qubit to a desired initial direc 
tion ; 

K = El 0 ) 2 ) cos ( 0/2 ) sin ( 0/2 ) 
eik sin ( 0/2 ) -pille cos ( 0/2 ) EM2 ( C ) 

to 14 ) to obtain Kly ) 
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[ 0071 ] b ) measuring Kly ) with reference to the com 
putational basis 

= B ( 0,1 % ) = { cos ( 0/2 ) – isin ( 0/2 ) , sin ( O / 2 ) F icos ( 0/2 ) } ; 

and 
[ 0072 ] c ) outputting the measurement result . 

[ 0073 ] In one aspect , IT - secure quantum gate computa 
tions over the encrypted data may be further performed . 
[ 0074 ] The quantum gate may be selected from the group 
of : 

[ 0075 ] NOT gates ; 
[ 0076 ] a quantum gate , using an ancillary 10 > qubit , that 

takes the elements of the orthonormal basis to equally 
weighted superpositions of the elements ; 

[ 0077 ] controlled - NOT ( CNOT ) and CnNOT gates , 
where the control qubits are set as plaintext qubits . 

[ 0078 ] In one aspect , entanglement of pairs of qubits may 
be secured by the steps of : 

[ 0079 ] a ) a first party uses our random basis encryption 
for generating independent encryptions of two 0 bits 
and two 1 bits using a four - qubit system by 4.4.4141 ; 

[ 0080 ] b ) independently encrypting each of the qubits ; 
[ 0081 ] c ) The first party generates a pair of ancillary O 

qubits and applies the random basis entanglement gate 
to his system of six qubits ; 

[ 0082 ] d ) the first party keeps the next two qubits to 
himself and transmits the last two to the second party ; 

[ 0083 ] e ) the first and second parties communicate 
through a secure communication channel and the first 
party shares with the second party the keys the first 
party used to generate the encrypted qubits ; and 

[ 0084 ] f ) both parties decrypt the qubits they hold and 
obtain a system of four entangled qubits . 

[ 0085 ] Two - stage information - theoretically secure and 
WM attacks resilient Quantum Key Distribution ( QKD ) may 
be performed between two parties , by the steps of : 
[ 008 ] a ) a first party randomly selects bits b ' = b1 , ... by + m ' 
from { 0,1 } ; 

[ 0087 ] b ) for 1sisn + m , the first party generates an 
independent encryption of b ' ;, using the random 
basis ; 

[ 0088 ] c ) the first party transmits the independent 
encryption to a second party ; Ubiy 

[ 0089 ] d ) the second party randomly selects m of the 
n + m qubits received from the first party and commu 
nicates with the first party over a public channel , while 
announces the positions of the selected m qubits ; 

[ 0090 ] e ) the second party reveals the keys used for 
encrypting the m qubits ; 

[ 0091 ] f ) the first party decrypts the m qubits using the 
keys obtained at the preceding step , while announcing 
the outcomes to the second party ; 

[ 0092 ] g ) the second party checks the correctness of the 
outcomes to detect possible adversarial eavesdropping 
attempts by measuring the error rate ; 

[ 0093 ] h ) if the error rate is below a predetermined 
value , 

[ 0094 ] i ) the first party uses the unmeasured n qubits , 
and for 1sisn , if b? = 1 a first party applies a NOT gate 
to the i'th qubit , otherwise the i'th qubit remains 
unchanged ; 

[ 0095 ) j ) the first party sends the unmeasured n qubits 
back to the second party ; 

100961 k ) the second party decrypts the unmeasured n 
qubits to obtain a string b " ; 

[ 0097 ] 1 ) the second party computes b'? to obtain the 
qubit b , where ÞE { 0,1 } " represents the n - bit string obtained 
from b ' after omitting the m of the n + m qubits randomly 
selected by the second party . 
[ 0098 ] In one aspect , only one party has the capability of 
applying arbitrary quantum gates to quantum states , while 
the first party has only the capability to apply NOT gates to 
qubits . 
[ 0099 ] Preferably , the parties do not agree on an encoding 
of the bits before performing the two - stage QKD operations . 
[ 0100 ] Coalitions - resilient secure multi - party XOR com 
putation may be performed , by : 

[ 0101 ] a ) a first participant randomly picks be { 0,1 } 
uniformly and uses the random basis encryption to 
generate an encryption of b ; 

[ 0102 ] for 1sisN : 
[ 0103 ] b ) if b? = 1 , then another party P. applies a NOT 

gate to the received qubit ; 
[ 0104 ] c ) Pitransmits the qubit to the next participant ; 
[ 0105 ] d ) P 1 decrypts the received qubit to obtain an 
outcome b ' ; and 

[ 0106 ] e ) computing bOb ' , a first participant obtains the 
desired XOR of the bits of all the participants and sends 
the result to the all participants . 

[ 0107 ] At each stage , the qubit may be received by a 
participant Pi is an encryption of a random bit . 
[ 0108 ] In one aspect , measuring the encryption - qubit , P i 
obtains zero and one with equal probabilities , regardless of 
the actual value of the encrypted bit . 
[ 0109 ] Any gate that commutes with the family of unitary 
matrices K , defined in | Encl , may be applied homomorphic 
ally to the encrypted data . 
[ 0110 ] A computer being capable of distributing a quan 
tum key for performing information - theoretically secure 
quantum gate computation , comprising at least one proces 
sor adapted to : 

[ 0111 ] a ) generate a quantum key k = ( 0,0 ) by selecting 
a uniformly random pair ( 0 , 0 ) from 

1 

T [ 0 , 27 ] x { 5 . - } 
[ 0112 ] b ) set an element 

A 
Yo = COSI o ( ) teil sin ( 0/2 ) , 

1 

as an encryption of “ O ” using the quantum key k = ( 0,0 ) as 
the encryption key ; 

[ 0113 ] c ) set an element wi = sin ( 0/2 ) -e ?? cos ( 0/2 ) to be 
the encryption of “ 1 ” using the key , such that 40 and 41 
are orthogonal . 

[ 0114 ] d ) constitute a random orthonormal basis Bre , o ) ; 
and 

( 
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[ 0115 ] e ) select q = 1 / 2 , such that the random ortho 
normal basis is 

B ( 0,1 % ) = { cos ( 0/2 ) – isin ( 0/2 ) , sin ( 0/2 ) F icos ( 0/2 ) } , 

[ 0135 ] FIG . 5 schematically illustrates an adversarial 
attack by a single adversary ; 
[ 0136 ] FIG . 6 shows a random basis entanglement gate ; 
[ 0137 ] Alice and Bob may follow the scheme of sharing 
key by random base , as illustrated in FIG . 7 illustrates a 
scheme of sharing key by random base ; 
[ 0138 ] FIG . 8 illustrates the use of BB84 QKD protocol 
between the parties ; 
[ 0139 ] FIG . 9 illustrates the Weak Measurement ( WM ) 
attack ; 
[ 0140 ] FIG . 10 illustrates a decision tree of the probabili 
ties of possible outcomes for the WM attack ; 
[ 0141 ] FIG . 11 illustrates a trivial solution to the multi 
party XOR computation problem ; and 
[ 0142 ] FIG . 12 shows the coalitions - resilient solution to 
the multi - party XOR computation problem . 

DETAILED DESCRIPTION OF THE 
INVENTION 

for setting Wo to be equal to NOTY , and vice versa . 
[ 0116 ] A quantum key distribution system adapted to 
perform two - stage information - theoretically secure and WM 
attacks resilient Quantum Key Distribution ( CKD ) between 
two transceivers implementing parties that should share one 
or more quantum keys , comprising : 

[ 0117 ] a ) a first transceiver implementing a first party 
randomly selects bits b ' = b1 , ... bn + m ' from { 0,1 } n + m ; 

[ 0118 ] b ) for 1sisn + m , the first party generates an 
independent encryption Wbs of b'i , using the random 
basis ; 

[ 0119 ] c ) the first party transmits the independent 
encryption 4's , to a second transceiver implementing a 
second party : 

[ 0120 ] d ) the second party randomly selects m of the 
n + m qubits received from the first party and commu 
nicates with the first party over a public channel , while 
announces the positions of the selected m qubits ; 

[ 0121 ] e ) the second party reveals the keys used for 
encrypting the m qubits ; 

[ 0122 ] f ) the first party decrypts the m qubits using the 
keys obtained at the preceding step , while announcing 
the ou nes to the second party ; 

[ 0123 ] g ) the second party checks the correctness of the 
outcomes to detect possible adversarial eavesdropping 
attempts by measuring the error rate ; 

[ 0124 ] h ) if the error rate is below a predetermined 
value , 

[ 0125 ] i ) the first party uses the unmeasured n qubits , 
and for 1sisn , if b ; = 1 a first party applies a NOT gate 
to the i'th qubit , otherwise the i'th qubit remains 
unchanged ; 

[ 0126 ] j ) the first party sends the unmeasured n qubits 
back to the second party ; 

[ 0127 ] k ) the second party decrypts the unmeasured n 
qubits to obtain a string b " ; 

[ 0128 ] 1 ) the second party computes bob to obtain the 
qubit b , where ÞE { 0,1 } ” represents the n - bit string 
obtained from b ' after omitting the m of the n + m qubits 
randomly selected by the second party . 

[ 0129 ] The random basis QKD may encode both 0 and 1 
as the same qubit . 

a 

[ 0143 ] The present invention provides a system and 
method for encrypting and outsourcing the storage of clas 
sical data , while enabling IT - secure quantum gate compu 
tations over the encrypted data . The proposed method is 
based on using a specific family of random bases to encrypt 
classical bits . The proposed schemes support fully - compact 
IT - secure homomorphic evaluation of NOT gates , and a 
modified version of the Hadamard gate , which is useful in 
several applications . 
[ 0144 ] The proposed schemes can also support CNOT 
gates , where the control qubits are set in a non - random basis 
( i.e. , plaintext qubits ) . This implies that cascading is pos 
sible only in specific important ) cases The proposed 
schemes specifies several applications , including random 
basis QKD and coalitions - resilient secure multi - party XOR 
computation . 
[ 0145 ] The proposed QHE schemes support these appli 
cations , while maintaining IT - security , full compactness , 
perfect correctness , and non - interactivity . These attributes 
makes the proposed scheme computation agnostic , with 
safer security implications against weak measurements . The 
proposed schemes are based on adding extra randomness 
which implies safer security against weak measurements . 
This allows encrypting and outsourcing storage of classical 
data , while enabling quantum gate computations over the 
encrypted data . Instead of using typical computational basis , 
the proposed schemes use randomized bases to represent 
strings of classical bits , { loi , lli ) , and are perfectly secure 
( rather than only computationally secure ) . 
[ 0146 ] The proposed method suggests perfectly secure 
implementation of CNOT and Hadamard gates , where the 
control qubits are set in non - randomized based . This imple 
mentation has important applications , including coalitions 
resilient secure multi - party XOR computation , randomized 
base CNOT QKD , and secure Quantum Pseudo - Telepathy 
scheme . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0130 ] The above and other characteristics and advantages 
of the invention will be better understood through the 
following illustrative and non - limitative detailed description 
of preferred embodiments thereof , with reference to the 
appended drawings , wherein : 
[ 0131 ] FIG . 1 ( prior art ) illustrates a representation of a 
qubit as a unit vector in R 3 ; 
[ 0132 ] FIG . 2 is an example of an HE scheme ; 
[ 0133 ] FIG . 3 shows a Random Based D gate ; 
[ 0134 ] FIG . 4 schematically illustrates an adversarial 
attack by two adversaries ; 

The Random Basis Encryption Scheme 
[ 0147 ] The goal is encrypting the classical bits 0 and 1 
while enabling some operations to be performed homomor 
phically over the ciphertext . Typically , these bits are 
encoded in quantum computation as the elements 0 and 1 of 

THI the standard basis of = C 2. Of course , that encoding is 
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by no means an encryption of the bits . Approaching proper 
encryption , we take some random ( 0 , 0 ) E [ 0,21 ] ?, set 

o vo = cos ( 9 ) + evt sin ( 0/2 ) , ? 

BO , ? ) : 

[ 0156 ] Measure K'y in reference to the computational 
basis . 

[ 0157 ] Output the outcome of the measurement . 
[ 0158 ] The matrix K defined in the scheme is the unitary 
matrix whose columns are the elements of B , o ) . Multi 
plying the elements of the computational basis , { 0,1 } by K , 
we obtain the elements of B We refer to the encryption 
algorithm as taking the elements of the computational basis 
to the elements of the random basis Bo , p ) . Since K is a 
unitary transformation , K is its inverse , and hence , given ( 0 , 
Q ) , the decryption algorithm takes the elements of Bre , op ) to 
the elements of the computational basis . Of course , the 
scheme may be applied bit - wise to a string x of classical bits 
to enable outsourcing the storage of x to an untrusted 
quantum server . The scheme is perfectly correct . Indeed , 
assuming that q is the encryption of be { 0,1 } using ( 0,0 ) . 
By Enc , q = Kb . In Dec , K ' is applied to q . One has K.q = K 
Kb = b . Since b is a pure state , measuring it in reference to the 
computational basis , we get b with probability 1 . 

1 

and think of Wo as an encryption of O using ( 0 , 0 ) as the 
encryption key . The plaintext qubits 0 and 1 are orthogonal . 
To maintain orthogonality of the ciphertext , we set Vi = sin 
( 0/2 ) -ecos ( 8/2 ) to be the encryption of 1 using the same 
key . One may readily verify that wo and , are orthogonal . 
For random ( 0 , 4 ) E [ 0,20 ] ?, the elements Yo and y , consti 

??? tute a random orthonormal basis of 
Now , as mentioned , we want that encryption to support 
some homomorphic operations in a fully - compact non 
interactive IT - secure way . First , we require supporting 
homomorphic NOT gates . We want 4e to be equal ( up to a 
global phase factor ) to NOT41 ( and vice versa ) . A straight 
forward computation shows that this requirement compels 
Q = + T / 2 . Hence , for 

1 

denoted B 0.40 ) 9 

Security Proof of the Random Basis Encryption 
Scheme 

( 0,4 ) € [ 0 , 27 ] x { +5 ) 
the random basis 

[ 0159 ] It is possible to prove that the random basis encryp 
tion scheme is IT - secure using two different ways . First , the 
proposed scheme deals with encrypting and computing over 
classical data , a proof is provided based on standard security 
definitions of classical schemes , by using a variant of a 
standard privacy definition from [ LK14 ] . The second proof 
follows a standard privacy definition from the quantum 
setting derived from [ AMTAW00 ] . 
[ 0160 ] An encryption scheme is composed of three algo 
rithms , Gen , Enc and Dec. M , K and C are the message 
space , key space and ciphertext space of the scheme , respec 
tively . In our case , M = { 0,1 } and 

= B ( 0,1 % ) = { cos ( 6/2 ) isin ( 0/2 ) , sin ( 0/2 ) + icos ( 0/2 ) } 

is NOT - invariant . 

K = [ 0 , 24 ] x { +5 
[ 0148 ] The inability of determining the coordinates of an 
arbitrary qubit , given a realization of it , give rise to the 
following QHE scheme of classical data , which allows a 
user to outsource the storage of confidential information to 
an untrusted server . 
[ 0149 ] Gen ( key generation ) : Output a uniformly random 
pair ( 0 , 0 ) from 

What is C ? On the one hand , C 

TT ? [ 0 , 29 ] { : -51 
[ 0150 ] Enc ( encryption ) : On input message BEM and a 
key k = ( 0 , 0 ) ; 

[ 0151 ] Generate the qubit b . 
[ 0152 ] Let 

?? is the set of possible outputs of Enc , implying that C = 
On the other hand , a ciphertext cannot indicate the encrypted 
information if it is not read . To read information from a 
qubit , one must measure that qubit . The output of such a 
measurement is an element of { 0,1 } , implying that C = { 0 , 
1 } . The first ( classical approach ) proof uses the latter inter 
pretation of C , and the second ( quantum approach ) proof 
uses the former . 
[ 0161 ] We begin with the classical approach . Assume that 
an adversary is holding an encryption q of b generated using 
some key ( 0 , PEK . The adversary wishes to use q to find 
b , or to gain any information that will enable a better guess 
of b . The adversary is only able to measure q in reference to 
any orthonormal basis he chooses . If the measurement is 
performed in reference to any orthonormal basis other than 
B ( 0,0 ) , then each of the outcomes zero or one may be obtained with positive probability . We now rigorously prove 
that , no matter which orthonormal basis B 0.9 ) is used by 
the adversary to measure q , the probability of each of the 
outcomes zero or one is 1/2 , regardless of the actual value of 
b . 

( ) sin ( ) 
K = es since / 2 ) - 05/10/2 ) EM2 ( C ) 

and apply K to b to obtain q = Kb . 
[ 0153 ] Output q . 

[ 0154 ] Dec ( decryption ) : On input ciphertext l ' and a key 
k = ( 0,0 ) : 

[ 0155 ] Let K denote the conjugate transpose of K , 
where K is as in Enc and apply K to y . 
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5 = Seri = f , Vol ( U ) 

12 

[ 0162 ] We now define the security criterion . Since Gen is 
a probabilistic algorithm , given a message meM , the 
probability distribution over K induces a probability dis 
tribution over C. An encryption scheme is perfectly secure 
if all messages mEM induce the same probability distri 
bution over C. Formally ( see [ LK14 , Lemma 2.3 ] ) : 
[ 0163 ] Definition 1. An encryption scheme ( Gen , Enc , 
Dec ) over a message space M , is perfectly secure if for 
every probability distribution over M , every mo , m , EM , 
and every cEC : 

Pr [ C = c \ M = mo ] = Pr [ C = c \ M = m? ] , 

[ 0164 ] where C and M are the random variables denoting 
the value of the ciphertext and the message , respectively . 
[ 0165 ] By Definition 1 , perfect security of the random 
basis encryption scheme follows from Lemma 2. Let ( 0o , 
4. ) E [ 0.2.1 ) ?. One has 

Pr [ M ( 40 , ( 00:00 ) ) = 0 ] Pr [ M ( 41 , B ( , Po ) ) = 0 ] , ( 6 ) 

where 

[ 0166 ] Boq ) is the orthonormal basis used by an adver 
sary to measure an encryption of a bit , 

[ 0167 ] He and W , are as in ( 4 ) , and are encryptions of 
zero and one , obtained using our scheme , 

[ 0168 ] MW , BOC ) is the random variable denoting 
the result obtained when measuring y in reference to 
?. 300,00 ) 

[ 0169 ] the probability is over the choice of ( 0,0 ) from 
[ 0,21 ] 2 and the inherent randomness of quantum mea 
surements . 

[ 0170 ) Proof . We begin with computing the expression on 
the left - hand side Pr [ M ( Wo , Box ) = 0 ] of ( 6 ) . That is , computing the probability of obtaining the outcome zero 
when measuring Yo in reference to Be ( 0o , 00 ) in terms of O and Q. This probability is the square of the absolute value of the 
first coordinate of Wo in the orthonormal basis B ( 0o , 00 ) : 
Denote by v , and v , the elements of Bop ) . As mentioned 
in ( 5 ) , the coordinates of He in B ( 09 ) are given by appro 
priate inner products . Define . , B.EC by Wo = C4 + B.v .. 
One has 

which yields 12. By the law of total probability , the right 
hand side of ( 6 ) is also 1/2 . All in all , we have 

Pr [ M ( 40 , ( 0,4 ) = 0 ] = Pr [ M ( 41 , ( 0.4 . ) = 0 ] = 12,2 
[ 0173 ] This concludes the classical proof . We have shown 
that , no matter which orthonormal basis is chosen by the 
adversary to measure q , the outcome O will be obtained with 
probability 1/2 , regardless of the actual value of b . By the 
laws of quantum mechanics , any operation other than mea 
suring the qubit will yield less information regarding the 
plaintext . Since measuring the qubit gives no information at 
all , the scheme is perfectly secure . We now turn to the 
quantum approach , which interprets the ciphertext space as 
H. We use the density matrix representation of quantum 
states and base our claims on a security definition which 
follows the same line as Definition 3.1 from [ AMTdW00 ] 
( modified for the continuous setting of our scheme ) . 
[ 0174 ] Definition 2. Let SCH be a set of qubits , ? = { U ;: 
iEl } be a set of unitary mappings on H , and po be some 
density matrix . Uniformly at random applying an element of 
e to a given element ses perfectly hides s if and only if for 
all sES we have ?i USSU , Po . 
[ 0175 ] In our case , 

) 

S = { 0 , 1 } , and E = { { cos ( 0/2 ) sin ( 0/2 ) 
eik sin ( 0/2 ) -eil cos ( 0/2 ) ) ( ) ] : 0,99 € K } 

To show that the random basis encryption scheme is per 
fectly secure , we need to show that 

1x K4,00K 1x Kap 11 Kap's ( 8 ) 
where 

??? 
cos ( 0/2 ) sin ( 0/2 ) 

eie sin ( 0/2 ) -eil cos ( 0/2 ) 21 ] 
ao = vol VO = = 

cos ( 00/2 ) cos ( 0/2 ) 
ei o sin ( 0o / 2 ) 

cos ( 0/2 ) cos ( 0/2 ) + @i ( 49–40 ) sin ( 0o / 2 ) sin ( 0/2 ) . 
leverin 2 ) = ) 

[ 0171 ] Multiplying by a , * , and using routine trigonomet 
ric identities , we obtain : 

Routine computation shows that the left and right - hand side 
of ( 8 ) are equal . To conclude , the density matrix that an 
adversary sees after encryption is the same , regardless of the 
input . This shows that the random basis encryption scheme 
is perfectly secure . We note that , since the evaluation 
algorithm is non - interactive , the adversary gains no new 
information executing it , and hence the scheme is secure . 
[ 0176 ] Remark 1. In the key generation algorithm of our 
random basis encryption scheme , the user is required to pick 
a uniformly random element from [ 0,21 ] . Implementing a 
random choices from a continuous domain might be tech 
nically challenging . However , the set of keys may be made 
discrete as follows . Let N a positive integer , and 

( 7 ) laol ? = z [ cos 29 40 = 
@ + 00 0-00 + cos2 + sindsindocos ( 4-40 ) ] 2 

[ 0172 ] Now , and q are chosen uniformly random from 

2?? [ 0 , 27 ] { +5 ) Kv = { mm - : n € { 1 , 2 , ... N } } N 

The mean value of laol over that domain may be computed 
in various ways . One may compute it using the formula 

Instead of picking 0 from [ 0,21 ] , the user may uniformly at 
random pick 0 from K How does that affect the security ? N 
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1 1 
H = 

In the classical security proof above , the mean value of the 
right hand side of ( 7 ) was computed by integrating over 
[ 0,21 ] . Replacing [ 0,27 ] with K we compute the mean 
value of the right hand side of ( 7 ) by summing over all the 
possibilities for 0 divided by N. Now , it is well known that 
for any real continuous function f , 

N. valt N 

H takes the elements of the computational basis to the 
elements of 

2?? Sosa F dx = lim Soon ?? ) r ( ) = 
N N 

B ( 4,0 ) = - ( 1 ) 
When measuring any of the 

[ 0177 ] Hence , by taking large enough N , the mean value 
of the discrete version can be made arbitrarily close to 1/2 . In 
the quantum proof , by similar arguments , we can make the 
left- and right - hand sides of ( 8 ) arbitrarily close to each other 
by taking large enough N. To conclude , taking the discrete 
version of the key space , we make Gen easier to implement 
in the cost of making the scheme statistically secure ( rather 
than perfectly secure ) . Either way , the scheme is IT - secure . 

B ( 4,0 ) 

Quantum Gate Computations 
in reference to the computational basis , the probabilities of 
obtaining zero or one are both 1/2 . What happens when one 
applies H to an element of a random basis Be.q ? Explicitly , 
what are the probabilities of obtaining zero or one when 
measuring an element of H [ B0,0 ] in reference to B 0 , ) ? By 
Equation ( 5 ) in the appendix ) , the probability of obtaining 
zero when measuring Hy , in reference to B ( 0,0 ) is the square 
of the absolute value of the inner product of Hyo and 4o . 
Since 

( ( ) 

0 

[ 0178 ] The possibility of homomorphically applying 
quantum gates to the ciphertext by the distrustful quantum 
server is examined . Obviously , any gate that commutes ( up 
to a global phase factor ) with the family of the encryption 
gates K , may be homomorphically applied to the encrypted 
data . Several unitary operations are typically used in quan 
tum computing . The consequences of applying some of 
these typically - used quantum gates to a random basis B ( 0,0 ) 
encryption of classical data is analyzed . 
[ 0179 ] The NOT gate . The NOT gate is the unitary trans 
formation that interchanges the elements of the computa 
tional basis : b- > 1 - b . The matrix representation of NOT in 
the computational basis is 

1 ( 1 ) 
HUO al Versiyo ) ) * ? 1 1 cos ( 0/2 ) 

1 -1 / \ isin ( 0/2 ) 
1 cos ( 0/2 ) + isin ( 0/2 ) 
v ( cos ( 0/2 ) F isin ( 0/2 ) 

the inner product is 

0 1 x = 0 X = ) cose 
( V0 | H | 40 ) = 

V2 1 

( 0 , 

What happens when one applies an X gate to an element of 
a random basis B 0.00 ) ? A simple calculation shows that , 
applying an X gate to an element of B ( 0,0 ) we get the other 
element of that basis , up to a global phase factor . Since 
eiq = ri , we have 

Taking the square of the result , one finds that the probability 
of obtaining a zero outcome when measuring H? , in refer 
ence to B ( 0,0 ) , is 

cose 
2 

0 1 
XVO - G ) = ( cos ( 0/2 ) 

+ isin ( 0/2 ) 
+ isin ( 2/2 ) 
cos ( 0/2 ) 00 : 2 ) -- ( = 

sin ( 0/2 ) 
Ficos ( 0/2 ) = + 1V1 

Since the probabilities add up to one , when measuring Hyo 
in reference to B ( 0,0 ) the outcome one is obtained with probability [ 0180 ) Similarly , X41 = 740 . To conclude , applying a 

NOT gate to elements of B ( 0,0 ) we get the same effect as 
when applying it to an element of the computational basis . 
Consequently , X gates may be homomorphically applied to 
encrypted data . 

1 + sin e 
2 

The Hadamard Gate 
l Similar computations yield similar results for 1. Explicitly , 

when measuring Hy ' , in reference to Bro.c ) , the probability 
of obtaining the outcome one is 

[ 0181 ] The Hadamard gate is the unitary transformation , 
whose matrix representation in the computational basis is 

1 
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cose 
2 

[ 0187 ] The probabilities of obtaining each of the possible 
outcomes , when measuring DO4 , in reference to { 0,1 } OB 
( 0,0 ) are the squares of the absolute values of the coordinates 
of Doy , in that basis . The elements of { 0,1 } B 0.q are 04o , ( ) 
01 , 14o and 141. The first , Oyo , has been computed in ( 9 ) . 
Now , and the probability of obtaining the outcome zero is 

1 + sin’e 0 
2 0 

| 11 ) : ( ? ) ( ) = ? 
sin ( 0/2 ) 

Ficos ( 0/2 ) sin ( 0/2 ) 
Ficos ( 2/2 ) 

[ 0188 ] By ( 9 ) and ( 10 ) , 

To conclude , applying a Hadamard gate to an element of a 
random basis , the probabilities of the elements of the basis 
in the superposition we get are in general not 1/2 each . 
[ 0182 ] These results are rather unfortunate since they 
imply that the Hadamard gate does not create an equally 
weighted superposition when applied to an element of a 
random basis , and hence cannot be applied to the encrypted 
data homomorphically . There is a quantum gate that takes 
elements of every B ( 0,0 ) basis to an equally weighted super 
position of the elements of that basis in the form of the 
following quantum gate that uses an ancillary O qubit : 

1040 ) + i ] 141 ) 
V2 

cos ( 0/2 ) 
1 Eisin ( 0/2 ) 
V2 isin ( 0/2 ) 

cos ( 0/2 ) 

= D | OVO ) 

1 0 1 0 [ 0189 ] This shows that the coordinates of DOY . in 
{ 0,1 } B . ) are 1 0 1 0 1 

DE 
V20 1 0 -1 

1 0 -1 0 1 

V2 

0,0 and 

+ i 

V2 
a 

[ 0183 ] D is the matrix representation in the computational 
basis ) of the quantum gate used in [ EPR35 ] to create Bell 
states . This gate is the two - qubit quantum circuit established 
by first applying a Hadamard gate to the first qubit , and then 
a CNOT gate to that system of two qubits , where the first 
qubit is the control qubit and the second is the target qubit . 
This circuit is illustrated in FIG . 3 . 
[ 0184 ] By applying a D gate to a tensor product of O and 
an element of a random basis , measuring the second qubit in 
reference to that same random basis , the probabilities of 
obtaining the outcomes zero and one are both 1/2 . Explicitly , 
let Wb an element of a random basis , B ( 0,0 ) , where q = and 
OE [ 0,21 ] . We have 
[ 0185 ] Lemma 1 : D is a quantum gate which takes tensor 
products of the form 04's to a system of two qubits , such that , 
measuring that system in reference to { 0,1 } OB , the ( 0,0 ) 
probability of each of the outcomes zero and one for the 
second qubit is 1/2 . 

Taking the squares of the absolute values of these coordi 
nates one sees that , measuring in reference to { 0,1 } @B ( 0,0 ) ; 
the outcome 00 is obtained with probability 1/2 , as so is 11 . 
The probabilities of obtaining the different outcomes when 
measuring DOY , in reference to { 0,1 } 0B ( 0,0 ) may be found 
by substituting O = -- A ' and q = -q ' . That substitution yields 

b 

041 Filyo 
DOV1 = V2 

Proof of Lemma 1 
[ 0186 ] Proof . Let OE [ 0,21 ] and q = ri . One has : 

cos ( 0/2 ) 
#isin ( 0/2 ) 1 10408 ( el cos ( 0/2 ) + isin ( 0/2 ) 2 DE 

Taking the squares of the absolute values , the desired 
probabilities are obtained . ? 
[ 0190 ] To conclude , the D gate may be homomorphically 
applied to the elements of a random basis , using an ancillary 
O qubit , resulting in the same effect as when applying a 
Hadamard gate to the elements of the computational basis 
creating a superposition of the elements of that basis with 
equal probabilities . The ancillary qubit may be generated by 
the server with no interference of or interaction with the 

0 

0 

1 0 0 cos ( 0/2 ) 
Eisin ( 0/2 ) 1 1 0 

DI040 ) = = 

cos ( 2/2 ) 
1 #isin ( 0/2 ) 
V2 Fisin ( 012 ) 

cos ( 0/2 ) 
0 V20 1 -1 0 user . 

1 0 -1 0 0 [ 0191 ] The CNOT gate . The CNOT gate is a two - qubit 
gate , whose matrix representation in the computational basis 
of H is 02 
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-continued 
1 0 0 0 0 0 
0 1 0 0 0 

= 0 0 0 1 = +1 = ildi , Eisin ( 0/2 ) 
0 0 1 0 162 leya sin ( 0/2 ) 

( 

[ 0192 ] Tensor products of the elements of the computa 
tional basis { 0,1 } of H , give the computational basis 
{ 00,01,10,11 } of H 2. Applying the CNOT gate to the 
elements of the latter basis , we leave 00 and 01 unchanged , 
and interchange 10 and 11. In other words , if the first qubit 
is 0 , then the second qubit is left unchanged , and if the first 
qubit is 1 , then a NOT gate is applied to the second qubit . 
For this reason , this gate is called the controlled - NOT gate . 
The first qubit is the control qubit and the second is the target 
qubit . 
[ 0193 ] What happens if one applies a CNOT gate to the 
elements of a random basis of H O2 ? Namely , let B 0,0 ) 
= { 40 , W2 } and B 0,0 ) = { ' ; } two orthonormal bases of 
H. Tensor products of the elements of B , 0,0 ) and B8.pgive the following orthonormal basis of H 

{ WoW ' o , 404'1 , W140 , W1W'? } . 

and a similar computation shows that CNOT11 ' ; = Filyo . 
Since the last two entries of Owo are zero , applying a CNOT 
gate we leave them unchanged . To conclude , CNOT gates 
may be homomorphically applied to systems of two qubits 
when the control qubit is an element of the computational 
basis and the target qubit is an element of B ( 0,0 ) . 
[ 0197 ] C?NOT gates . For a positive integer n , the C?NOT 
gate is an n +1 qubit gate , whose matrix representation in the 
computational basis of H ® ( n + 1 ) is the matrix obtained from 
the identity matrix of order 2n + l by replacing its bottom right 
block 1001 with the block 0110. Namely , the NOT and 
CNOT gates discussed above are the special cases n = 0 and 
n = 1 , respectively , of C?NOT . Similarly to ( 2 ) , one may 
readily verify that , given a random basis B6,0 ) , ( OS 

12 ( 3 ) = 

C ̂ NOTb1b2 bulb = b1 b2 ... But 1 – bo II , b ; = 1 , 
biba brilib , otherwise 

0 

[ 0198 ] Hence , C'NOT gates may be homomorphically 
applied to systems of qubits when the control qubits are 
el nents of the computational basis and the target qubit is an 
element of B ( 0,0 ) . 

02 
[ 0199 ] It can be seen that the proposed scheme supports 
homomorphic NOT operations , and a modified version of 
the Hadamard gate . It also supports homomorphic CNOT 
gates , where the control qubits are set in clear . 

[ 0194 ] Is the control - target structure kept when applying 
CNOT to the elements of that basis , leaving 4.4 ' . and you'll 
unchanged , and interchanging 4140 and 4141 ? The answer 
turns out to be negative . Applying a CNOT gate to these 
elements , we take each of them to a superposition of the 
others . 

[ 0195 ] It is not possible to find a quantum gate ( using 
ancillary qubits , perhaps ) that keeps the control - target struc 
ture when applied to the elements of a random basis of H 
For example , if such a gate P exists , it must leave Yoyo 
unchanged and take 1141 to 414o , regardless of 0 and q . 
Taking O ' = 1 - O and ' = - Q , we switch between 4o and 419 
implying a contradiction when examining P's operation on 
44o and 4141. For example , consider the following two 
cases . First , if 0 = 0 and p = r , we have 1 ' = 0 and 41 = 1 . 
Second , if o = n and q = 0 , we have yo = 1 and 41 = 0 . In the first 
case , P4.4.EPOO and P4141 = P11 , implying that 00 is 
unchanged by P and 11 is taken to 10. On the other hand , in 
the second case , P4.4 . = P11 and P4141 = P00 , implying that 
11 is unchanged and 00 is taken to 01. By the first case , 00 
is unchanged , but by the second case , it is taken to 01. The 
contradiction shows that such a P cannot exist . Nevertheless , 
by applying a CNOT gate to the elements of a partially 
random basis { 0,1 } OB we do keep the target 
control structure . The elements of such a basis are 

* 

02 ( 0,0 ) of H 

Opo = cos ( 0/2 ) #i sin ( 0/2 ) 00,041 = sin ( 0/2 ) Fi cos ( 0/2 ) 
00,140 = 00cos ( 0/2 ) : i sin ( 0/2 ) , 19 1 = 00sin ( 0/2 ) Fi 
cos ( 0/2 ) . 

Securing Entanglement 
[ 0200 ] Entanglement is an essential resource in quantum 
computation . Once generated , it should be guaranteed that 
only the rightful owners of it may be able to use it . Our 
scheme provides a way of securing that important resource 
in an IT - secure way . One example of a setting in which 
entanglement may be secured using the proposed scheme is 
shown below . 
[ 0201 ] The phrase Quantum Pseudo - Telepathy was first 
introduced in [ BBT03 ] , and refers to the use of quantum 
entanglement to eliminate the need for communication in 
specific multi - party tasks . A comprehensive coverage of the 
ubject may be found in [ BBT05 ] . The simplest example of 
quantum pseudo - telepathy comes from the Mermin - Peres 
magic square game [ Mer90 ] . In that game , two parties , Alice 
and Bob , are presented with a 3x3 table . Each of them is 
required to fill in a part of the table , as follows . Alice is given 
a number i , 1sis3 , and needs to put either 0 or 1 at each entry 
of the i - th row , in such a way that the sum of the three entries 
will be even . 
[ 0202 ] Similarly , Bob is given aj , 1sjs3 , and needs to fill 
in the j - th column with the constraint that the sum be odd . 
The numbers i and j are the inputs of the parties . 
[ 0203 ] Alice and Bob win the game if they place the same 
number in the intersection of the row and the column that 
they fill . The parties do not know i and j ahead of the game , 
and they cannot communicate after being given these values . 

[ 0196 ] Applying a CNOT gate to these elements , we leave 
04b unchanged and interchange 146 and 141 - be up to a 
global phase factor . In fact , 

1 0 0 0 0 ( 2 ) 
0 1 0 0 0 

CNOTIVO = 0 0 0 1 cos ( 0/2 ) 
Eisin ( 0/2 ) 0 0 1 0 



US 2022/0231844 A1 Jul . 21 , 2022 
13 

They are allowed to communicate before the game begins , 
discuss game strategies , and send information to each other . 
It was shown in [ BBT05 ] that there is no classical algorithm 
that lets Alice and Bob win the game with probability greater 
than % , whereas there exists a quantum algorithm that lets 
them win the game with probability 1. This quantum algo 
rithm is based on having each of the parties hold two qubits 
out of an entangled system of four qubits . The system of four 
qubits used in [ Mer90 ] for that purpose is 

W = 1 / 20011-1 / 20110–121001 + 1 / 21100 . 

Entanglement in the System y 

04 
04 we 

[ 0204 ] The system w is a superposition of four of the 
elements of the computational basis of H Measuring that 
system in reference to the computational basis of H 
get one of the elements of that basis that appear in y , each 
with probability 14. Measuring any single qubit from the 
system w in reference to the computational basis of H , each 
of the outcomes zero and one is obtained with probability 1/2 . 
Nevertheless , the result of such a measurement will affect 
the possible outcomes of measurements of other qubits of 
that system . Specifically , assume that the first qubit of the 
system was measured ( in reference to the computational 
basis of H ) and that the outcome b was obtained . Then , 
measuring the third qubit of that system ( in reference to the 
computational basis of H ) we get the outcome 1 - b with 
probability 1. The same holds for measurements of the 
second and fourth qubits . Such a system of qubits , on which 
a measurement of some of the qubits affects the possible 
outcomes of measurements of other qubits , is an entangled 
system . Entanglement is the core element behind the quan 
tum algorithm that wins the magic square game ( and also 
behind many other breakthrough quantum algorithms ) . 
[ 0205 ] Following is a brief description of the main stages 
of the winning algorithm as introduced in [ Mer90 ] . Before 
the game begins , the parties generate a system of four 
entangled qubits ( such as y ) and share it in such a way that 
Alice holds the first two qubits of the system and Bob holds 
the other two . The game begins , and the participants are 
given their inputs . Then , each party applies one of several 
predetermined quantum gates to his / her qubits according to 
the input . ( Explicit matrix representation of these gates may 
be found in [ BBT05 ] . ) Next , the parties measure their qubits 
( in reference to the computational basis of H ) and fill in the 
first two entries of their row / column according to the out 
comes of their measurements . Each of them fills the last 
entry of her / his row / column according to the parity condi 
tion defined above . It was proved in [ Mer90 ] that , by 
following this algorithm , Alice and Bob are guaranteed to 

[ 0207 ] To overcome the possibility that Charlie is untrust 
worthy , Alice and Bob may decide that one of them , say 
Alice , will generate the desired four - qubit entangled state 
and transmit two of the qubits to Bob . This does not solve 
the second concern . A single adversary , Eve , may intercept 
the transmission and use the qubits to engage in the Mermin 
Peres magic square game with Alice instead of Bob ( see 
FIG . 5 ) . 
[ 0208 ] We now show how two distant parties may 
securely generate and share a system of entangled qubits 
using our random basis encryption scheme . The construc 
tions uses here , enabling securing this process against adver 
sarial attacks , are similar to those used above where we 
construct the D gate . The stages are as follows . 

[ 0209 ] Alice uses our random basis encryption scheme 
in order to generate independent encryptions of two 0 
bits and two 1 bits . For ease of presentation , we denote 
that four - qubit system by 4.4.4.41 . Each of the qubits 
is encrypted independently . 

[ 0210 ] Alice generates a pair of ancillary O qubits and 
applies the gate described in FIG . 6 to her system of six 
qubits . 

[ 0211 ] The first two qubits are ancillary qubits , and are not 
used in the next stages of the scheme . Alice keeps the next 
two qubits to herself and transmits the last two to Bob . 

[ 0212 ] Alice and Bob communicate through a secure 
communication channel ( possibly , using our QKD 
scheme , presented below ) and Alice shares with Bob 
the keys she used to generate the encrypted qubits in the 
first stage of this scheme . 

[ 0213 ] Alice and Bob decrypt the qubits they hold and 
obtain a system of four entangled qubits . 

[ 0214 ] Each of the qubits that Alice transmits to Bob in the 
third stage of this scheme is encrypted using a different key , 
and hence , if an adversary intercepts the transmission and 
possesses these qubits , then the adversary cannot use them 
to engage in the game in place of Bob . After decryption , the 
last four output qubits constitute a system of two pairs of 
maximally entangled qubits , which may be used to win the 
magic square game using the same methods as in [ Mer90 ] . 
Observe that , an Hadamard gate is applied to the first and 
second qubits of the system . Then , each of these qubits is 
used as a control qubit in two CNOT gates , where the target 
qubits are the other four qubits . This procedure results in 
obtaining the same four qubit state as the one used in 
[ Mer90 ] . 
[ 0215 ] Two applications of the proposed QHE scheme are 
illustrated below . 

a 

win the game . A Random Basis CNOT Quantum Key Distribution 
( QKD ) Scheme [ 0206 ] It can be seen that entanglement plays a significant 

role in the magic square game wining algorithm . Now , 
assume that Alice and Bob are two distant parties , willing to 
participate in the game . To use the algorithm described 
above , they must share an entangled four - qubit state . Being 
far apart , they may ask a third party , Charlie , to generate 
such a four - qubit entangled state and transmit two qubits to 
each of them . In that case , two concerns may arise . First , 
Charlie might be untrustworthy . Second , two adversaries , 
Eve and Mallory , might intercept Charlie's transmission and 
use the entangled qubits sent by Charlie for a game of their 
own , or any other purpose ( see FIG . 4 ) . 

a 

[ 0216 ] The random basis encryption scheme requires that 
the participants hold a shared key . Nevertheless , it may also 
be used to construct a two - stage ( random basis ) QKD 
scheme , in which one participant sends to another informa 
tion in the form of a string of classical bits . That information 
may be a key , to be used in a symmetric key encryption 
scheme , or simply plain data . Suppose Alice holds a string 
of n classical bits b = b1 ... b , € { 0,1 } " , and wishes to send b ' 
privately to Bob . Alice and Bob may follow the scheme of 
sharing key by random base , as illustrated in FIG . 7 . 
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m 

a 

The Two - stage Random Basis CNOT - QKD Scheme 
[ 0217 ] 1. Let mEN . Bob randomly picks b ' = b1 , ... bnan ' 
from { 0,1 } " + 
[ 0218 ] 2. For 1sisn + m , Bob uses the random basis 
encryption scheme to generate an independent ) encryption 
4b ; of b ' ;, and transmits Yb to Alice . 
[ 0219 ] 3. Alice randomly picks m of the n + m qubits 
received from Bob . She calls Bob over a public channel , 
announces the positions of the m qubits she randomly chose , 
and Bob reveals the keys used for encrypting these qubits . 
[ 0220 ] 4. Alice decrypts the m qubits she chose , using the 
keys obtained at the previous stage , and announces the 
outcomes to Bob , which in turn , checks the correctness of 
the outcomes to detect possible adversarial eavesdropping 
attempts . If the error rate is small enough , they proceed to 
the next stage . 
[ 0221 ] 5. Alice now uses the n qubits that she did not 
measure at the previous stage , and for 1sisn , if b ; = 1 Alice 
applies a NOT gate to the i'th qubit ; otherwise , she leaves it 
unchanged . 
[ 0222 ] 6. Alice sends the n qubits that were not measured 
by her back to Bob , who decrypts them and obtains a string , 
b " . 
[ 0223 ] 7. Denote by ÞE { 0,1 } " the n - bit string obtained 
from b ' after omitting the m bits chosen by Alice at stage 3 . 
Bob computes b " Ob to obtain b . 
[ 0224 ] We now define the key - bit guessing game , which is 
the process of making the proposed QKD scheme IT - secure 
against eavesdropping attempts . The participants in this 
game are Alice , Bob , and Eve . It is assumed that the 
participants can generate qubits in the computational basis , 
apply quantum gates to the qubits , and measure qubits . Alice 
and Bob are connected via a noiseless quantum channel and 
an authenticated classical public channel . Eve has full access 
to the quantum channel and is constantly listening to the 
public channel . Eve is computationally unbounded . 
[ 0225 ] The key - bit guessing game is defined as follows : 
The parties are given positive integer inputs , n , m . Alice and 
Bob engage in a QKD protocol of their choice to obtain a 
key ofæn bits , while at most 2n + 2m qubits can be transmit 
ted between them . It is assumed that 2m qubits are used by 
Alice and Bob for eavesdropping test . In practice , after 
invoking a QKD protocol , Alice and Bob usually use error 
correcting codes and cryptographic hash functions for per 
forming data reconciliation and Privacy Amplification pro 
cedures . However , the necessity of these procedures 
depends on the maximal amount of information that may be 
obtained by an adversary . Reducing the amount of informa 
tion accessible to an adversary increases the capacity of the 
channel and diminishes the need for error - correction and 
hash procedures . Hence , no ( classical ) error - correcting 
codes or hash functions are allowed in the proposed game . 
Having full access to the quantum channel , Eve decides on 
a strategy of her choice and may intercept qubits , measure 
them , replace them with other qubits of her choice , apply 
quantum gates to qubits , etc . , . At the last stage of the game , 
Alice and Bob decide if they want to abort the game . If they 
do , then no one wins . If not , then all parties simultaneously 
announce their output . Alice outputs her key , an n - bit string 
k4 = d1 ... Am , Bob outputs his key , kg = b , bn , and Eve 
outputs either I or a pair ( e , i ) , where i is an integer and e 
is a bit . Eve wins the game if a = b ; = e . This is equivalent to 
Eve correctly guessing a key bit . 

[ 0226 ] The goal of Alice and Bob is to obtain a shared key . 
Therefore , it is required that k4 = kp . However , since Eve has 
full control over the quantum channel , she may prevent 
Alice and Bob from ever obtaining a key ( an exception is the 
case of Alice and Bob using the classical public channel to 
agree on a key using a classical KD scheme like RSA of 
Diffie - Helman , but the security of this key will not be 
information - theoretic . It is assumed that Eve is computa 
tionally unbounded and hence we focus on IT - secure key 
distribution schemes ) . Hence , it is not required that the 
outputs of Alice and Bob coincide . 
[ 0227 ] We now consider the BB84 QKD scheme ( but 
without the privacy amplification and data reconciliation 
phases ) . The scheme ( called BB84 protocol ) is described in 
detail in “ Quantum cryptography : Public key distribution 
and coin tossing ” ( Bennett et al . , IEEE New York , 1984 ) , as 
illustrated in FIG . 8. Alice picks two uniformly random bits 
a and b and generates the qubit HºXbo . Alice transmits the 
qubit to Bob , which picks a uniformly random bit c , applies 
a c - conditioned Hadamard and measures . Alice and Bob 
then announce a and c . If a and c are equal ( which is 
expected with probability 0.5 ) then Bob measures the qubit 
in the computational basis , and the outcome of Bob's 
measurement is guaranteed to be b . Alice and Bob repeat the 
process for 2m + 2n qubits , and then compare m outcomes of 
Bob's measurements ( with a = c ) with the corresponding b’s 
to detect possible eavesdropping . In practice , Alice and Bob 
perform data reconciliation and privacy amplification pro 
cesses . These processes are required since there is a possi 
bility that Eve eavesdropped on the line and gained some 
information regarding the key . These processes reduce the 
bandwidth . It was very useful if there was a way of pre 
venting an eavesdropper from gaining any information from 
the outset . 
[ 0228 ] a WM - based strategy for Eve in the key - bit guess 
ing game . As mentioned at the Introduction , weak measure 
ments consist of two stages . First , we weakly interact the 
subject qubit with an ancillary qubit using a two - qubit gate . 
Then , we ( strongly ) measure the ancillary qubit . The out 
come of the ( strong ) measurement of the ancillary qubit is 
the outcome of the weak measurement of the subject qubit . 
This process enables imprecisely measuring quantum states , 
outsmarting the uncertainty principle . We now demonstrate 
such a procedure . Let e > 0 and denote by W? the following 
two - qubit quantum gate 

VV = V? • i • CNOT + V1- € : 101 , 
where 1 is the identity over a single qubit . One readily 
verifies that Wc is unitary . This unitary can be used by Eve 
to gain information regarding the qubit transmitted from 
Alice to Bob , leaving but slight indications for her presence . 
We begin with some intuition . It is known that qubits in the 
computational basis can be cloned using the CNOT gate and 
an ancillary O qubit . If the qubit designated for cloning is in 
the computational basis , then performing a CNOT with the 
ancillary qubit as the target qubit copies the control qubit to 
the target qubit without disturbing the control qubit . How 
ever , if the control qubit is not in the computational basis , the 
CNOT gate do disturb it ( and it , of course , cannot be cloned , 
due to the no - cloning theorem ) . The W? gate is a linear 
combination of the identity operation on two qubits and the 
CNOT gate . The smaller £ is , the closer W is to the identity 
operation . If a qubit y is in one of the four states 0,1 , + or - , 
we can apply W? to y and an ancillary ( qubit and then 

a = 
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guessing the key bit . In these cases , if Alice and Bob use this 
bit for eavesdropping check they will not detect Eve's 
presence . We conclude that , using the WM - attack described 
above via the W gate , Eve can gain an € 

. | ?? 

measure the ancilla . This way , if y is either 0 or 1 we can 
gain a small amount of information regarding y without 
disturbing it , and if y is either + or then we ( get no 
information but ) only slightly disturb it . We define the 
following strategy for Eve for the key - bit guessing game 
where Alice and Bob use the BB84 protocol . Eve randomly 
picks je { 1 , ... , 2n + 2m } , prepares an ancilla O qubit , applies 
W? to the j'th qubit transmitted from Alice to Bob and the 
ancilla , and sends Alice's qubit to Bob . Eve measures the 
ancilla and obtains an outcome e ( illustrated at FIG . 9 ) . 
[ 0229 ] Next , Eve is listening to the discussion of Alice and 
Bob over the public channel and finds whether Bob mea 
sured the j'th qubit in the right basis ( i.e , if a = c ) . If not , Eve 
outputs 1. Ifa = c , then Eve keeps on listening to find whether 
the j'th qubit was used by Alice and Bob for eavesdrop 
checking or not . If it was , then Eve outputs 1. If not , then 
the outcome of Bob's measurement on the j'th qubit is Bob's 
i'th key - bit , and Eve outputs ( e , i ) . We assume that Alice and 
Bob abort only if they used the bit for eavesdropping - check 
and got different results . Hence , if Eve delivers an output 
( and not 1 ) then Alice and Bob do not abort . 
[ 0230 ] We are only interested in the cases where Alice and 
Bob measured the j'th qubit in the same basis , i.e. , a = c . 
Consider the system of two qubits where the first qubit is the 
qubit transmitted from Alice to Bob and the second qubit is 
the ancillary qubit used by Eve for the WM attack . If a = c = 0 , 
then that system of two qubits is in the state 

( 1-6 ) ( V1- € + V? : i ) 00 + b - V1- € 10 + V? • i • b 11 , 
and if a = c = 1 , then the system of two qubits is in the state 

advantage in guessing a key - bit while reducing the risk of 
getting caught . The fact that our random basis QKD scheme 
can encode both O and 1 as the same qubit makes our scheme 
resilient against such WM - attacks . 
[ 0233 ] The proposed QKD protocol has several advan 
tages over Kak's scheme . The first advantage is that the 
proposed QKD protocol requires only two stages of com 
munication , while Kak’s protocol requires three stages of 
communication , which requires extra 50 % communication 
overhead . Also , in Kak's protocol , each of the parties must 
have the capability of applying arbitrary quantum gates to 
quantum states . In the other hand , the proposed QKD 
protocol requires that only one party will possess this 
capability , while it is sufficient for the other party to be able 
to apply only NOT gates to qubits . Furthermore , in Kak's 
scheme , both parties should agree on an encoding of the bits 
before the execution of the scheme . In the proposed QKD 
protocol no such requirement is necessary . 

a = 
2 

2 

E 1 - E V1- € + ive -00 + ( - 1 ) 
V2 

10 + ( - 1 ) .i . 
V wie 11 . 

[ 0231 ] We use the probabilities of the different possible 
outcomes of measurements of Bob and Eve given by these 
states to compute the total success probability of Eve given 
that a = c ( see FIG . 10 ) . We conclude that if Bob measured 
Alice's qubit in the right basis ( i.e. , a = c ) then 
[ 0232 ] The pairs ( x , y ) in the bottom of the probabilities 
tree indicate the outcomes of the measurements of Bob ( x ) 
and Eve ( y ) . The numbers in the green rectangles indicate 
the probabilities of the cases in which Eve correctly guessed 
the key - bit without causing an erroneous outcome for Bob . 
This happens with probability 

Weak Measurements and Comparison with Other 
Schemes 

[ 0234 ] An adversary may attempt to gain information 
regarding the encrypted data following the framework of the 
weak measurement model , suggested by Aharonov et al . 
[ LXY18 ] ] . Weak measurements enable accumulating infor 
mation regarding the state of the qubit while not collapsing 
the state , but only biasing it a little . Weak measurements 
consist of two stages . First , we weakly interact the subject 
qubit with an ancillary qubit using a two - qubit gate . Then , 
we ( strongly ) measure the ancillary qubit . The outcome of 
the ( strong ) measurement of the ancillary qubit is the 
outcome of the weak measurement of the subject qubit . This 
process enables imprecisely measuring quantum states , out 
smarting the uncertainty principle . Our scheme , based on 
adding extra randomness to the encryption process , has safer 
security implications against weak measurements . 
[ 0235 ] Bennett and Brassard [ BB84 ] presented the first 
QKD scheme . In their scheme , Alice sends Bob random bits 
encoded as qubits in either the computational basis { 0,1 } or 
the diagonal basis { + , - } . The bit 0 is always encoded by 
either 0 or + , and the bit 1 is always encoded by either 1 or 
– . An adversary may intercept the qubits sent from Alice to 
Bob , perform weak measurements over them and accumu 
late some information regarding their state , and send them to 
Alice as if they were never intercepted . Such an attack may 
give the adversary a non - negligible advantage at a reduced 
risk of being caught . The same hindrance of using a different 
set of qubits to encode each classical bit repeats itself in 
many other QKD schemes , and hence , similar attacks can be 
applied there too . In our QKD scheme , 0 and 1 bits may have 
the same encoding , and hence , weak measurement attacks 
give the adversary no advantage . As shown in the security 
proof of our scheme ( Appendix B ) , even if the adversary is 
given all the entries of the density matrix representing the 
encrypted state , it leaks no information regarding the plain 

1 
+ ?? ??? 

The numbers in the red ovals indicate the probabilities of the 
cases in which Eve's attack resulted in Bob measuring an 
erroneous result . This happens with probability 

AL 
) . 

and in these cases , if Alice and Bob use this bit for 
eavesdropping - check then they will detect Eve's presence 
and abort . The purple hexagons indicate the probabilities of 
the cases in which Bob gets the right result and Eve fails in 
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text . Namely , for every p = lEncl ( 0,0 ) ( 0 ) , there exist valid 0 ' , q ' 
such that p = lEncl ( 0,0 ) ( 1 ) . Furthermore , our scheme may be 
used to transmit not only a random key but any binary 
message . Hence , our scheme provides a method for Alice 
and Bob to communicate securely using two rounds of 
interaction via an authenticated quantum channel . 
[ 0236 ] Kak presented in [ Kak06 ] a protocol which sug 
gests a method for Alice and Bob to communicate securely 
using three rounds of interaction via an authenticated quan 
tum channel . In Kak's scheme , before the protocol executes , 
two orthogonal states are set as the encodings of the bits . 
Then , Alice applies a random rotation A to the encoding of 
her message b and sends it to Bob . In turn , Bob applies a 
random rotation B to the bit and sends it back to Alice , which 
now rotates the qubit in the opposite direction by applying 
A to it . Alice now sends the qubit back to Bob , which 
applies B to it and obtains the encoding of Alice's bit . While 
Kak's scheme requires three round of interaction , our 
scheme requires only two rounds . Furthermore , in Kak's 
scheme , Alice and Bob should agree on an encoding of the 
bits before the execution of the scheme . In our scheme , no 
such requirement is presented . 
[ 0237 ] Deng and Long suggested in [ DL04 ) a method for 
secure communication between Alice and Bob . Similarly to 
[ BB84 ] , their scheme use qubits only in the computational 
or diagonal basis , and hence their scheme is vulnerable to 
weak measurement attacks . 

[ 0248 ] P 1 decrypts the received qubit to obtain an 
outcome b ' . Computing bob ' , she obtains the desired 
XOR of the bits of all the participants and sends the 
result to them . 

[ 0249 ] At each stage , the qubit received by a participant 
Pi is an encryption of a random bit . Since our encryption 
scheme is IT - secure , measuring that encryption - qubit , P 
obtains zero and one with equal probabilities , regardless of 
the actual value of the encrypted bit . Hence , using our 
IT - secure random basis encryption scheme , coalitions of 
honest - but - curious participants cannot gain any information 
regarding the bits of the other participants . In fact , allowing 
the participants in that coalition to perform measurements is 
a slight deviation from the definition of being honest - but 
curious . Honest - but - curious participants cannot deviate 
from the protocol , but only attempt to gain further informa 
tion from the data that they receive during the execution of 
the protocol . As mentioned above , our scheme remains 
IT - secure even if we allow that deviation . 
[ 0250 ] In the event that a certain P , does deviate from the 
protocol , and performs a measurement of the qubit , it may 
yield an erroneous result . Repeated executions of the pro 
tocol will reveal that with high probability : If no measure 
ments are performed , the same result will be obtained in all 
the executions . If measurements are performed , they will 
produce a random sequence of results that will most prob 
ably not be constant . 
[ 0251 ] As various embodiments have been described and 
illustrated , it should be understood that variations will be 
apparent to one skilled in the art without departing from the 
principles herein . Accordingly , the invention is not to be 
limited to the specific embodiments described and illustrated 
in the drawings . 
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Coalitions - resilient Secure Multi - party XOR 
Computation 
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[ 0238 ] In the following scenario , each of N honest - but 
curious participants , Pi , lsisN , is holding a bit b? € { 0,1 } . 
The participants are interested in learning the XOR of their 
bits , b , O ... Obn , without revealing their own bits . One 
trivial solution to that problem is as follows ( see FIG . 11 ) . 

[ 0239 ] One of the participants , say P 1 , picks b ' , E { 0,1 } 
uniformly at random . 

[ 0240 ] For 1sisN : Picomputes bi - zob ; and sends the 
result to the next participant . 
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the result to the other participants . 
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1. A computer implemented method for encoding bits by 
qubits to perform information - theoretically secure quantum gate computation , comprising : 

a ) randomly selecting pairs of quantum bits consisting of 
a first qubit as an encoding of “ O ” and a second qubit 
as an encoding of “ 1 ” , such that said first and second 
qubits are orthogonal to each other as quantum states 
and are interchanged by a NOT gate ; 

b ) rotating each qubit to a desired initial direction ; 

9 
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b ) measuring Kly ) 
with reference to the computational basis 

B ( 0 , ) = { cos ( 0/2 ) – isin ( 0/2 ) , sin ( 0/2 ) F icos ( 0/2 ) } ; 

c ) further rotating each rotated qubit to its antipodal 
direction by applying a quantum NOT or CNOT gate to 
said each rotated qubit , without any knowledge about 
said desired direction ; and 

d ) further applying a unitary gate over said qubits , using 
an ancillary 10 ) qubit that creates an equally weighted 
superposition of said qubits . 

2. A computer implemented method for distributing a 
quantum key for performing information - theoretically 
secure quantum gate computation , comprising : 

a ) generating a quantum key k = ( 0,0 ) by uniformly select 
ing a random pair ( 0,0 ) from 

TT [ 0 , 27 ] * { , --5 ) 
b ) setting an element 

vo = cos ( % ) + eff since : 2 ) , ) Vo ) 

as an encryption of “ O ” using the quantum key k = ( 0,0 ) as the 
encryption key ; 

c ) setting an element w , = sin ( 0/2 ) -ecos ( 8/2 ) to be the 
encryption of “ 1 ” using said key , such that Wo and Wi 
are orthogonal , 

d ) constituting a random orthonormal basis B6 , p ) ; and 
e ) allowing Wo to be equal to NOT4 , and vice versa by 

selecting q = / 2 , such that said random orthonormal 
basis is 

1 

- B ( 0,1 % ) = { cos ( @ / 2 ) – isin ( 0/2 ) , sin ( 0/2 ) F icos ( 0/2 ) } . 

and 
c ) outputting the measurement result . 
6. A method according to claim 2 , further comprising 

performing IT - secure quantum gate computations over the 
encrypted data . 

7. A method according to claim 6 , wherein the quantum 
gate is selected from the group of : 
NOT gates ; 
a quantum gate , using an ancillary 10 > qubit , that takes the 

elements of the orthonormal basis to equally weighted 
superpositions of said elements ; 

controlled - NOT ( CNOT ) and C?NOT gates , where the 
control qubits are set as plaintext qubits . 

8. A method according to claim 2 , further comprising 
securing entanglement of pairs of qubits by : 

a ) a first party uses a random basis encryption for gener 
ating independent encryptions of two 0 bits and two 1 
bits using a four - qubit system by 4.4.4141 ; 

b ) independently encrypting each of the qubits ; 
c ) Said first party generates a pair of ancillary O qubits and 

applies the random basis entanglement gate to a system 
of six qubits of said first party ; 

d ) said first party keeps the next two qubits to himself and 
transmits the last two to the second party ; 

e ) said first and second parties communicate through a 
secure communication channel and said first party 
shares with said second party the keys said first party 
used to generate the encrypted qubits ; and 

f ) both parties decrypt the qubits they hold and obtain a 
system of four entangled qubits . 

9. A method according to claim 2 , further comprising 
performing two - stage information - theoretically secure and 
WM attacks resilient Quantum Key Distribution ( QKD ) 
between two parties , by : 

a ) a first party randomly selects bits b ' = b1 , ... bnum ' from 
{ 0,1 } + m , 

b ) for 1sisn + m , said first party generates an independent 
encryption Ub of b'i , using the random basis ; 

c ) said first party transmits said independent encryption 
Wb - di i to a second party ; 

d ) said second party randomly selects m of the n + m qubits 
received from said first party and communicates with 
said first party over a public channel , while announces 
the positions of the selected m qubits ; 

e ) said second party reveals the keys used for encrypting 
said m qubits ; 

f ) said first party decrypts said m qubits using the keys 
obtained at the preceding step , while announcing the 
outcomes to said second party ; 

g ) said second party checks the correctness of the out 
comes to detect possible adversarial eavesdropping 
attempts by measuring the error rate ; if said error rate 
is below a predetermined value , then 

h ) said first party uses the unmeasured n qubits , and for 
1sisn , if b ; = 1 a first party applies a NOT gate to the i'th 
qubit , otherwise said i'th qubit remains unchanged ; 

3. A method according to claim 2 , further comprising 
using elements Yo and 41 for bit - wise encryption of a string 
x of classical bits . 

4. A method according to claim 2 , wherein encryption 
operation on an input message bEM is done using the key 
k = ( 0,0 ) , by : 

a ) generating the qubit ?b ) ; 
b ) applying K to 1b ) to obtain lq ) = Kb ) , where ? 

K = 
cos ( 0/2 ) sin ( 0/2 ) 
eill sin ( 0/2 ) -eil cos ( 2/2 ) EM2 ( C ) ; 

and 
c ) outputting an encrypted message lo ) . 
5. A method according to claim 2 , wherein decryption 

operation on input ciphertext ly ) is done using the key 
k = ( 0,0 ) , by : 

a ) applying K being the conjugate transpose of 

K = 
cos ( 0/2 ) sin ( 0/2 ) 
eil sin ( 0/2 ) -eil cos ( 0/2 ) 1 ) M2 ( C ) 

to 14 ) , to obtain K14 ) ; 
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c ) set an element 91 = sin ( 0/2 ) -elcos ( 0/2 ) to be the 
encryption of “ ” using said key , such that Yo and Y? 
are orthogonal . 

d ) constitute a random orthonormal basis B ( 0,0 ) ; and 
e ) select q = / 2 , such that said random orthonormal basis 

is 

a 

= ?. ( 0 ) : { cos ( 0/2 ) + isin ( 0/2 ) , 

i ) said first party sends said unmeasured n qubits back to 
said second party ; 

j ) said second party decrypts said unmeasured n qubits to 
obtain a string b " ; 

k ) said second party computes b " Ob to obtain the qubit b , 
where ÞE { 0,1 } " represents the n - bit string obtained 
from b ' after omitting said m of the n + m qubits ran 
domly selected by said second party . 

10. A method according to claim 9 , wherein only one 
party has the capability of applying arbitrary quantum gates 
to quantum states , while the first party has only the capa 
bility to apply NOT gates to qubits . 

11. A method according to claim 9 , wherein the parties do 
not agree on an encoding of the bits before performing the 
two - stage QKD operations . 

12. A method according to claim 9 , further comprising 
performing coalitions - resilient secure multi - party XOR 
computation , by : 

a ) a first participant randomly picks bE { 0,1 } uniformly 
and uses the random basis encryption to generate an 
encryption of b ; Wb ; 

for 1sisN : 
b ) if b ; = 1 , then another party Pi applies a NOT gate to the 

received qubit ; 
c ) P ; transmits the qubit to the next participant ; 
d ) Pi decrypts the received qubit to obtain an outcome b ' ; 
and 

e ) computing bb ' , a first participant obtains the desired 
XOR of the bits of all the participants and sends the 
result to said all participants . 

13. A method according to claim 12 , wherein at each 
stage , the qubit received by a participant P , is an encryption 
of a random bit . 

14. A method according to claim 12 , wherein measuring 
the encryption - qubit , Pi obtains zero and one with equal 
probabilities , regardless of the actual value of the encrypted 
bit . 

15. A method according to claim 2 , wherein any gate that 
commutes with the family of unitary matrices K , defined in 
Encl , is applied homomorphically to the encrypted data . 

16. A computer being capable of distributing a quantum 
key for performing information - theoretically secure quan 
tum gate computation , comprising at least one processor 
adapted to : 

a ) generate a quantum key k = ( 0,0 ) by selecting a uni 
formly random pair ( 0,0 ) from 

1 

1 
num 

2 

sin ( 0/2 ) Fi cos ( 0/2 ) } . for setting Wo to be equal to NOTY , 
and vice versa . 

17. A computer according to claim 16 , further adapted to 
perform IT - secure quantum gate computations over the 
encrypted data . 

18. A computer according to claim 16 , wherein the 
quantum gate is selected from the group of : 
NOT gates ; 
a quantum gate , using an ancillary 10 > qubit , that takes the 

elements of the orthonormal basis to equally weighted 
superpositions of said elements ; 

controlled - NOT ( CNOT ) and C?NOT gates , where the 
control qubits are set as plaintext qubits . 

19. A quantum key distribution system adapted to perform 
two - stage information - theoretically secure and WM attacks 
resilient Quantum Key Distribution ( QKD ) between two 
transceivers implementing parties that should share one or 
more quantum keys , comprising : 

a ) a first transceiver implementing a first party randomly 
selects bits bi = b1 , ... bem ' from { 0,1 } num , 

b ) for 1sisn + m , said first party generates an independent 
encryption of b'i , using the random basis ; 

c ) said first party transmits said independent encryption 
4b ; to a second transceiver implementing a second 
party ; 

d ) said second party randomly selects m of the n + m qubits 
received from said first party and communicates with 
said first party over a public channel , while announces 
the positions of the selected m qubits ; 

e ) said second party reveals the keys used for encrypting 
said m qubits ; 

f ) said first party decrypts said m qubits using the keys 
obtained at the preceding step , while announcing the 
outcomes to said second party ; 

g ) said second party checks the correctness of the out 
comes to detect possible adversarial eavesdropping 
attempts by measuring the error rate ; if said error rate 
is below a predetermined value , then 

h ) said first party uses the unmeasured n qubits , and for 
1sisn , if b ; = 1 a first party applies a NOT gate to the i'th 
qubit , otherwise said i'th qubit remains unchanged ; 

i ) said first party sends said unmeasured n qubits back to 
said second party ; 

j ) said second party decrypts said unmeasured n qubits to 
obtain a string b " ; 

k ) said second party computes b " Oh to obtain the qubit b , 
where ÞE { 0,1 } " represents the n - bit string obtained 
from b ' after omitting said m of the n + m qubits ran 
domly selected by said second party . 

20. A method according to claim 2 , wherein a random 
basis QKD encodes both O and 1 as the same qubit . 

a 

TT [ 0 , 27 ] x { 5 ; -5 ) ; 
b ) set an element 

vo = cos ( 6 ) + elf sin ( 0 : 2 ) , = COS + 

as an encryption of “ O ” using the quantum key k = ( 0,0 ) as the 
encryption key ; * 


