US 20240086168A1

a2y Patent Application Publication o) Pub. No.: US 2024/0086168 A1

a9y United States

Douglas et al.

43) Pub. Date: Mar. 14, 2024

(54) AUTOMATIC GENERATION OF
CONTAINER IMAGES

(71)
(72)

Applicant: Red Hat, Inc., Raleigh, NC (US)

Stuart Douglas, Canberra (AU); Marek
Goldman, Warsaw (PL)

Inventors:

(21) Appl. No.: 17/944,605

(22) Filed: Sep. 14, 2022

Publication Classification

Int. CL.
GO6F 8/61

(51)
(2006.01)

CONTROL PLANE 215

CONTAINER HOST MODULE 21

HOST OS 21

PROCESSING

MEMORY 12 DEVICE 115

COMPUTING DEVICE 110

(52) US.CL
[SR

(57) ABSTRACT

Systems and methods for generating container images are
described. An image tag comprising a set of code names is
received at a virtual image server, wherein the virtual image
server comprises a mapping of each code name of the set of
code names to a corresponding image file. For each of the set
of code names, a corresponding image file is retrieved from
an image registry and an image manifest is generated by the
virtual image server using the corresponding image file of
each of the set of code names. The image manifest may
reference the corresponding image file of each of the set of
code names as a separate image layer. The virtual image
server may provide the image manifest to a container host,
which may build a container image based on the image
manifest.

GO6F 8/63 (2013.01)

100
. n| [
‘ 223C] } 223D]
‘ 223E]] 223F]
IMAGE REGISTRY 150

NETWORK 140

2227 2228
MVN3.8 MVN3.8 ---> 223A version tag
GRD7.0 GRD7.0 > 223B version tag
JDK11.0 JDK11.0 -->223C version tag

VIRTUAL IMAGE SERVER 160

US 2024/0086168 A1

Mar. 14, 2024 Sheet 1 of 9

Patent Application Publication

40tT 3DIA3C ONILNGWOD

a1¢el
I0ON LNdINGD

0tT 3DIN3T ONILNDINOD

ITZ SO 1SOH

724
FINCOW LSOH YINIVINOD

Viel 300N 31LNdINQD

Vi

001

0ST AYLSIOFY FOVIAI

J O
- S

P — N

I 'OId

ASOMLIN

TT 3DIA30 ONLLADINOD

STT 30IA3a
ONISSI0Ud

]

<1 AJONZIN

1¢ SO LSOH

T2 LSOH YINIVINOD

ST INV1d TOYLINOD

Patent Application Publication = Mar. 14, 2024 Sheet 2 of 9 US 2024/0086168 A1

IN-MEMORY LAYER 203
BASE LAYER 202
BASE LAYER 201

FIG. 2

200

US 2024/0086168 A1

Mar. 14, 2024 Sheet 3 of 9

Patent Application Publication

V€ "Old

9T Y3AYIS IDVIAL TVNLYIN

81 UOISIBA DEZT < O TDIAl
B3 UOISIDA §EZZ < O'LAY¥D
ge) UOISIBA YEZT <~ B ENAN
qzéc

o TIIaf

0°LGYD

8" ENAIN
VT

05T AYLSIOFY IDVINI
Ef¥4d Ef¥dd
aee JETC
gece VETT

OPT MHOMLIN

00T

1T 33IA3d ONILNdNOD

STT IDIAIC
DNISSIO0Hd

T AJOWIN

17 SO 1SOH

1< ITNAOW LSOH HINIVLINQD

T< AINV1d TOHLNOD

Patent Application Publication = Mar. 14, 2024 Sheet 4 of 9 US 2024/0086168 A1

[oa} o [o
o ol Pt
R > 5 g
= o4 ﬁ >
z 7 N E
2 & =
< U wl B le T 1SIHAINVIA DINVNAQ z Wt
a1 g 18 27 = g
~ o~ N2 Q s
_ = | o
» < ~N <
-VECC SA4 IDVIAI Z ﬁl >
Q =
=
o
S
—
\ w‘
W
/ o
=9
;:‘ L
4y
3=
< e X
3 g8
o~ 5‘ P
g S
=
2 e &
= o) %
Z I =
I o« =
i
. s 2
=
o 8
i
>
o
O
=
i
=

US 2024/0086168 A1

Mar. 14, 2024 Sheet S of 9

Patent Application Publication

09T Y3AHIS IOVINITVNLYIA

Held N 444

YTT LSHINYIN
JIAYNAG

STT LSHINYN

INVYNAQ
A
Q
= _
Z 3
Gl (&
< m
Z B
=
m Nt
- (6]
o >
N (@]
(V4]
A

TGT AY1SI93Y IDVINI

o4 Efrdd

acee (S

gcee VEZT

J€ ‘Ol

001 &

11 IDIA3A ONINDINOD

STT 32130
ONISSID0OHd

1T AHOWIIN

/ PT¢ IMNAOW LSOH dINIVINOD

.

CC IOVINTYINIVINGD

TZZ IDVING HINIVINOD

US 2024/0086168 A1

Mar. 14, 2024 Sheet 6 of 9

Patent Application Publication

ae ‘old

(43QIA0Yd ONITOOL
/ADVOVd INOYH) veze |

SINYN 3A0D 40 135 JAEDIN

¢ 1ohe| < DETT

H3IALIS JOVINE TVNLYIA

09t

Viie

744

1SFHNVIN DINVNAG

7 49hAe] <--- Q€7T
T 12Ae] <--- VETT
gzee

»
>

J-VEZZ S3TId IDVINIL

0ST AYLSIOIY FOVINI
E{ 44 E[¥44
agce JECC
gecc VETT

00T x\\\\»

11 30IA30 ONILNdINGD

STT 30IA3C T AHOWIN
ONISSI30Hd

1CC ADVINT HANIVINGD

Patent Application Publication = Mar. 14, 2024 Sheet 7 of 9 US 2024/0086168 A1

400 \v
RECEIVING, AT A VIRTUAL IMAGE SERVER,

AN IMAGE TAG COMPRISING A SET OF
CODE NAMES, WHEREIN THE VIRTUAL
IMAGE SERVER COMPRISES A MAPPING OF
EACH CODE NAME OF THE SET OF CODE
NAMES TO A CORRESPONDING IMAGE FILE

\ 4

FOR EACH OF THE SET OF CODE NAMES,
RETRIEVING, BY A PROCESSING DEVICE,
THE CORRESPONDING IMAGE FILE FROM
AN IMAGE REGISTRY

T~ 410

Y

GENERATING, BY THE VIRTUAL IMAGE
SERVER, AN IMAGE MANIFEST USING THE
CORRESPONDING IMAGE FILE OF EACH OF
THE SET OF CODE NAMES, WHEREIN THE

IMAGE MANIFEST REFERENCES THE
CORRESPONDING IMAGE FILE OF EACH OF
THE SET OF CODE NAMES AS A SEPARATE

IMAGE LAYER

A 4

PROVIDING THE IMAGE MANIFESTTO A
CONTAINER HOST

\ 4

BUILDING, BY THE CONTAINER HOST, A
CONTAINER IMAGE BASED ON THE IMAGE ————_ 425
MANIFEST

FiIG. 4A

Patent Application Publication = Mar. 14, 2024 Sheet 8 of 9

450 \

RECEIVING, AT THE VIRTUAL IMAGE
SERVER, A SECOND IMAGE TAG
COMPRISING A SECOND SET OF CODE
NAMES

A 4

GENERATING A SECOND IMAGE MANIFEST
USING A CORRESPONDING IMAGE FILE OF
EACH OF THE SECOND SET OF CODE
NAMES, WHEREIN THE SECOND IMAGE
MANIFEST REFERENCES AN IDENTIFIER OF
THE CORRESPONDING IMAGE FILE OF
EACH OF THE SECOND SET OF CODE
NAMES AS A SEPARATE IMAGE LAYER

A 4

PROVIDING THE SECOND IMAGE MANIFEST
TO THE CONTAINER HOST

) 4

FOR THE CORRESPONDING IMAGE FILE OF
EACH OF THE SECOND SET OF CODE
NAMES, RETRIEVING BINARY CONTENT
ASSOCIATED WITH THE CORRESPONDING

US 2024/0086168 A1

— ~— 460

T~ 465

IMAGE FILE IF AN IDENTIFIEROFTHE | — 470

CORRESPONDING IMAGE FILE DOES NOT
MATCH AN IDENTIFIER OF AN IMAGE FILE
OF ANY OF THE SET OF CODE NAMES

FiIG. 4B

Patent Application Publication

soo\‘

PROCESSING DEVICE 502

CONTAINER IMAGE

INSTRUCTIONS
225

MAIN MEMGORY 504

GENERATION
INSTRUCTIONS
325

STATIC MEMORY

Mar. 14, 2024 Sheet 9 of 9

GENERATION ¢ A

VIDEO DISPLAY
210

CONTAINER IMAGE -

ALPHA-NUMERIC INPUT
DEVICE
212

- BUS 530

206

NETWORK INTERFACE DEVICE

CURSOR CONTROL DEVICE
214

208

NETWORK
520

SIGNAL GENERATION DEVICE
215

DATA STORAGE DEVICE 518

MACHINE-READABLE STORAGE
MEDIUM 528

CONTAINER IMAGE
GENERATION
INSTRUCTIONS
525

FIG. 5

US 2024/0086168 A1

US 2024/0086168 Al

AUTOMATIC GENERATION OF
CONTAINER IMAGES

TECHNICAL FIELD

[0001] Aspects of the present disclosure relate to container
image generation, and more particularly, to generating con-
tainer images using layers that can be reshared.

BACKGROUND

[0002] A container orchestration engine (such as the Red-
hat™ OpenShift™ platform) may be a platform for devel-
oping and running containerized applications and may allow
applications and the data centers that support them to expand
from just a few machines and applications to thousands of
machines that serve millions of clients. Container orches-
tration engines comprise a control plane and a cluster of
compute nodes on which pods may be scheduled. A pod may
refer to one or more containers deployed together on a single
host, and is the smallest compute unit that can be defined,
deployed, and managed by the control plane. The control
plane may include a scheduler that is responsible for sched-
uling new pods onto compute nodes within the cluster.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The described embodiments and the advantages
thereof may best be understood by reference to the following
description taken in conjunction with the accompanying
drawings. These drawings in no way limit any changes in
form and detail that may be made to the described embodi-
ments by one skilled in the art without departing from the
spirit and scope of the described embodiments.

[0004] FIG. 1 is a block diagram that illustrates an
example system, in accordance with some embodiments of
the present disclosure.

[0005] FIG. 2 is a block diagram that illustrates the layers
of a container, in accordance with some embodiments of the
present disclosure.

[0006] FIG. 3A is a block diagram that illustrates an
example system for dynamically generating container
images, in accordance with some embodiments of the pres-
ent disclosure.

[0007] FIG. 3B is a block diagram that illustrates an
example system for dynamically generating container
images, in accordance with some embodiments of the pres-
ent disclosure.

[0008] FIG. 3C is a block diagram that illustrates an
example system for dynamically generating container
images, in accordance with some embodiments of the pres-
ent disclosure.

[0009] FIG. 3D is a block diagram that illustrates an
example system for dynamically generating container
images, in accordance with some embodiments of the pres-
ent disclosure.

[0010] FIG. 4A is a flow diagram of a method for dynami-
cally generating container images, in accordance with some
embodiments of the present disclosure.

[0011] FIG. 4B is a flow diagram of a method for dynami-
cally generating container images, in accordance with some
embodiments of the present disclosure.

[0012] FIG. 5 is a block diagram of an example computing
device that may perform one or more of the operations
described herein, in accordance with some embodiments of
the present disclosure.

Mar. 14, 2024

DETAILED DESCRIPTION

[0013] Building software in a container-based environ-
ment often requires specific sets of packages/tools, and
while it is possible to have a single large image file that
contains all necessary sets of packages, this approach has
significant drawbacks. In addition, having multiple con-
tainer images each with specific packages also has draw-
backs including a large number of container images that
must be maintained. Lot of ceremony involved in building
images, pushing them to registry, making sure they are up to
date.

[0014] Container images are built layer by layer, so if
multiple packages are installed (each package being a layer
of the container image) into a container image, it will result
in the creation of a new layer each time, and these individual
layers cannot be shared with other images. Only the content
from a single container image may be reused, and this is
because each layer will have its own unique hash and thus
the whole container image must be copied around each time
even if the contents are the same.

[0015] The present disclosure addresses the above-noted
and other deficiencies by providing a virtual image server
that behaves as a smart container registry that builds con-
tainer images on the fly using existing image files, instead of
building a container image and pushing it to the image
registry. The smart container registry may generate image
manifests on the fly for a container image based on image
tags that define the image files/packages that the container
image needs. A package/tooling provider may provide a set
of image files, each of the set of image files corresponding
to a particular package, and may define a code name
corresponding to each of the set of image files. The package/
tooling provider may provide the code names to the virtual
image server, which may maintain a mapping of code names
to corresponding image files stored in an image registry.
Multiple code names may be aggregated into an image tag
defining all the component image flus/packages that a con-
tainer image must have. When an image tag is received by
the virtual image server, the virtual image server may parse
the tag and pull the image file corresponding to each code
name in the image tag from the image registry. The virtual
image server may generate a manifest referencing each of
these existing image files as a separate layer having its own
isolated file path, and upload the manifest to the image
registry as well as provide the manifest to a user. Because the
manifest references existing layers, when a subsequent
manifest referencing one or more of the same layers is
received, the identifiers of those one or more same layers
will be the same. This in turn means that generation of a new
layer is not required and the system does not have to spend
the resources transferring binary content corresponding to
those one or more same layers over the network. This also
ensures that a user will always get the most up to date
version of an image file.

[0016] FIG. 1 is a block diagram that illustrates an
example system 100. As illustrated in FIG. 1, the system 100
includes a computing device 110, and a plurality of com-
puting devices 130. The computing devices 110 and 130
may be coupled to each other (e.g., may be operatively
coupled, communicatively coupled, may communicate data/
messages with each other) via network 140. Network 140
may be a public network (e.g., the internet), a private
network (e.g., a local area network (LAN) or wide area
network (WAN)), or a combination thereof. In one embodi-

US 2024/0086168 Al

ment, network 140 may include a wired or a wireless
infrastructure, which may be provided by one or more
wireless communications systems, such as a WiFi’m hotspot
connected with the network 140 and/or a wireless carrier
system that can be implemented using various data process-
ing equipment, communication towers (e.g. cell towers), etc.
In some embodiments, the network 140 may be an [3
network. The network 140 may carry communications (e.g.,
data, message, packets, frames, etc.) between computing
device 110, image registry 150, and computing devices 130.
Each computing device may include hardware such as
processing device 115 (e.g., processors, central processing
units (CPUs), memory 120 (e.g., random access memory
120 (e.g., RAM), storage devices (e.g., hard-disk drive
(HDD), solid-state drive (SSD), etc.), and other hardware
devices (e.g., sound card, video card, etc.). In some embodi-
ments, memory 120 may be a persistent storage that is
capable of storing data. A persistent storage may be a local
storage unit or a remote storage unit. Persistent storage may
be a magnetic storage unit, optical storage unit, solid state
storage unit, electronic storage units (main memory), or
similar storage unit. Persistent storage may also be a mono-
lithic/single device or a distributed set of devices. Memory
120 may be configured for long-term storage of data and
may retain data between power on/off cycles of the com-
puting device 110.

[0017] Each computing device may comprise any suitable
type of computing device or machine that has a program-
mable processor including, for example, server computers,
desktop computers, laptop computers, tablet computers,
smartphones, set-top boxes, etc. In some examples, each of
the computing devices 110 and 130 may comprise a single
machine or may include multiple interconnected machines
(e.g., multiple servers configured in a cluster). The comput-
ing devices 110 and 130 may be implemented by a common
entity/organization or may be implemented by different
entities/organizations. For example, computing device 110
may be operated by a first company/corporation and one or
more computing devices 130 may be operated by a second
company/corporation. Each of computing device 110 and
computing devices 130 may execute or include an operating
system (OS) such as host OS 210 and host OS 211 of
computing device 110 and 130A respectively, as discussed in
more detail below. The host OS of a computing device 110
and 130 may manage the execution of other components
(e.g., software, applications, etc.) and/or may manage access
to the hardware (e.g., processors, memory, storage devices
etc.) of the computing device. In some embodiments, com-
puting device 110 may implement a control plane (e.g., as
part of a container orchestration engine) while computing
devices 130 may each implement a compute node (e.g., as
part of the container orchestration engine).

[0018] In some embodiments, a container orchestration
engine 214 (referred to herein as container host 214), such
as the Redhat™ OpenShift™ module, may execute on the
host OS 210 of computing device 110 and the host OS 211
of computing device 130A, as discussed in further detail
herein. The container host 214 may be a platform for
developing and running containerized applications and may
allow applications and the data centers that support them to
expand from just a few machines and applications to thou-
sands of machines that serve millions of clients. Container
host 214 may provide an image-based deployment module
for creating containers and may store one or more image

Mar. 14, 2024

files for creating container instances. Many application
instances can be running in containers on a single host
without visibility into each other’s processes, files, network,
and so on. In some embodiments, each container may
provide a single function (often called a “micro-service”) or
component of an application, such as a web server or a
database, though containers can be used for arbitrary work-
loads. In this way, the container host 214 provides a func-
tion-based architecture of smaller, decoupled units that work
together.

[0019] In some embodiments, the container host 214 may
allow different containers to share the host OS 210 (includ-
ing, e.g., the OS kernel as well as packages including any
associated libraries, binary and/or source files etc.) of the
computing device 110. For example, the container host 214
may multiplex the packages of the host OS 210 between
multiple containers. The container host 214 may also facili-
tate interactions between a container (not shown) and the
resources of the computing device 110. For example, the
container host 214 may manage requests from the container
to access a memory (e.g., a RAM) of the computing device
110. In another example, the container host 214 may manage
requests from the container to access certain packages of the
host OS 210. The container host 214 may also create,
remove, and manage containers. In one embodiment, the
container host 214 may be a component of the host OS 210
(e.g., Red Hat™ Enterprise Linux). In another embodiment,
container host 214 may run on top of the host OS 210, or
may run directly on host hardware without the use of the
host OS 210. In yet other embodiments, container host 214
may be a component of a network virtualization platform
(not shown), such as the RedHat™ OpenStack™ platform
for example, that runs on host OS 210. Container host 214
may include software or logic to build a container using a
container image such as a docker file.

[0020] A typical deployment of the container host 214
may include a control plane 215 and a cluster of compute
nodes 131, including compute nodes 131A and 131B (also
referred to as compute machines). The compute nodes 131
may run the aspects of the container host 214 that are needed
to launch and manage containers, pods, and other objects.
For example, a worker node may be a physical server that
provides the processing capabilities required for running
containers in the environment. A worker node may also be
implemented as a virtual server, logical container, or GPU,
for example.

[0021] Container host 214 may include a storage driver
(not shown), such as OverlayFS, to manage the contents of
a container image including the read only and writable
layers of the container image. The storage driver may be a
type of union file system which allows a developer to
overlay one file system on top of another. Changes may be
recorded in the upper file system, while the lower file system
(base image) remains unmodified. In this way, multiple
containers may share a container image where the base
image is read-only media.

[0022] Container images may be stored within the image
registry 150. The image registry 150 may be e.g., a registry
server that may store container images (e.g., docker images),
as discussed in further detail herein. FIG. 2 illustrates an
example container image 200 that a container may be
generated from using the overlay FS. The container image
200 may include base layers 201 and 202, each of which
may correspond to an image file themselves. Container

US 2024/0086168 Al

image 200 may be shared by multiple containers. When the
container host 214 (via Overlay FS) creates a new container,
it may schedule the container to a compute node 131 which
may retrieve the container image 200 for the container (or
any base layers required to complete the container image
200) e.g., from the image registry 150. The container host
214 may add a new writable (e.g., in-memory) layer on top
of'the underlying base layers 201 and 202. This new writable
layer is illustrated as the in-memory layer 203 in FIG. 2.
When the container is deleted, the in-memory layer 203 is
also deleted. However, the underlying container image 200
remains unchanged. Although illustrated as having two base
layers for simplicity, container image 200 may include any
suitable number of base layers (image files). Base layers
may define the runtime environment as well as the packages
necessary for a containerized application to run. Any
changes (e.g., data to be written by the application running
on the container) may be implemented in subsequent (upper)
layers such as the in-memory layer. Changes made in the
in-memory layer may be saved by creating a new layered
image.

[0023] However, as discussed hereinabove, building soft-
ware in a container-based environment often requires spe-
cific sets of packages/tools, and while it is possible to have
a single large image file that contains all necessary sets of
packages, this approach has significant drawbacks. In addi-
tion, having multiple container images each with specific
packages also has drawbacks including a large number of
container images that must be maintained.

[0024] FIG. 3A illustrates the system 100 in accordance
with some embodiments of the present disclosure. As
shown, image registry 150 may include a plurality of image
files 223, each of which may correspond to a particular
package and may be maintained in isolation. More specifi-
cally, each of the image files 223 may correspond to a binary
blob, resulting in a plurality of binary blobs. Each binary
blob may represent the actual image contents/binary con-
tents of the corresponding image file 223. Each binary blob
may include files inside a specific isolated directory that the
corresponding image file 223 owns. The image registry may
store each of the image files 223 along with an identifier that
can be used to reference the image file 223. The identifier of
each image file 223 may comprise any appropriate type of
reference e.g., a hash referencing the image file 223 or a
name of the image file 223.

[0025] In the example of FIG. 3A, the image file 223A
may correspond to version 3.8 of the Maven package
(MVN3.8), the image file 223B may correspond to version
7.0 of the Gradle package (GRD7.0), and the image file
223C may correspond to version 11.0 of the Java develop-
ment kit (JDK) package (JDK11.0). The system 100 may
further include a virtual image server 160. The virtual image
server 160 may be implemented on a computing device
similar to computing device 110 or computing device 130
and may act as a smart container registry that builds con-
tainer images on the fly using existing image files, instead of
building a container image and pushing it to the image
registry. The smart container registry may generate image
manifests on the fly for a container image based on image
tags that define the image files/packages that the container
image needs. A package/tooling provider (not shown) may
define a set of code names 222A, each code name defining/

Mar. 14, 2024

corresponding to a particular image file 223 (package), and
may upload the set of code names 222A to the virtual image
server 160.

[0026] In some embodiments, the code name for each
image file 223 may comprise an identifier of the correspond-
ing package and a version number. In the example of FIG.
3A, the identifier for each image file 223 may comprise an
abbreviation of the corresponding package name and the
version number may comprise the letter V followed by the
version number (in some embodiments, only the version
number may follow the abbreviation). Thus, as shown in
FIG. 3A, image file 223 A may correspond to version 3.8 of
the Maven package and be assigned a code name of MVN3.
8, image file 223B may correspond to version 7.0 of the
Gradle package and be assigned a code name of GRD7.0,
and image file 223C may correspond to version 11.0 of the
JDK package and may be assigned a code name of JDK11.0.

[0027] The code name for each of the image files 223 may
be uploaded by the package/tooling provider to the virtual
image server 160 (see FIG. 3D), which may store the set of
code names 222A along with a mapping 222B of each code
name to a version tag of the corresponding image file 223.
A version tag may be a tool for container image builders to
communicate to container image consumers which layers
are best to consume and are often used to designate versions
of software within in the container image. The version tag of
each image file 223 may refer to the latest version of the
package the image file 223 corresponds to and may be
updated whenever the package the image file 223 corre-
sponds to is updated. In this way, the virtual image server
160 may ensure that it is always pulling the latest version of
an image file 223.

[0028] When a user wishes to obtain a container image
comprising a combination of different image files 223, they
can aggregate the code name of each image file 223 they
require into an image tag. The image tag may have any
appropriate format, with individual code names separated by
any appropriate character. In the example of FIG. 3B, the
image tag includes each code name separated by a dash.
Referring to FIG. 3B, the user may provide an image tag of
JDK11.0-MVN3.8-GRD7.0 to the container host 214, which
may send this image tag to the virtual image server 160.

[0029] When a container image defined by JDK11.0-
MVN3.8-GRD7.0 is requested, the virtual image server 160
may parse the code name of each requested image file 223
from the image tag and use the parsed code names and the
mapping 222B to pull from image registry 150, each of the
image files 223A-C (which correspond to the requested
packages i.e., MVN3.8, and GRD7.0, and JDK11.0 respec-
tively). Once the image registry 150 has served the image
files 223A-C, the virtual image server 160 may then dynami-
cally generate an image manifest 224 corresponding to
JDK11.0-MVN3.8-GRD7.0. As part of this process, the
virtual image server 160 may extract a manifest from each
of the image files 223 A-C and may use the pulled manifests
for each of the image files 223A-C to generate the image
manifest 224 which references the requested image files
223A-C. More specifically, the image manifest 224 may
reference the identifier of the specific version of each of the
image files 223A-C that were retrieved from the image
registry 150. As used herein, dynamically generating an
image manifest may refer to generating the image manifest
“on the fly,” or in an ad-hoc manner.

US 2024/0086168 Al

[0030] When the container host 214 builds a container
image in the traditional manner, it may layer each compo-
nent image file (base layer) on top of each other in a
particular order as specified by an image manifest of the
container image. The image manifest may provide the
configuration and necessary set of component image files for
the container image. Each of the component image files may
correspond to a binary blob that contains the actual image
contents. Hach binary blob may comprise e.g., a TAR
archive or any appropriate file in which the actual image
contents may be stored. The image manifest of the container
image may reference the component image files in order, and
the component image files may be combined in the specified
order resulting in a container image (and thus, a single
binary blob). As a result, if a base layer/component image
file of the container image is changed, all subsequent higher
layers must be changed, resulting in a whole new container
image build. This means that if a user builds a container
image for both image tags JDK11.0-MVN3.8-GRD7.0 and
JDK11.0-MVN3.7-GRD7.0 in the traditional manner, the
container image for JDK11.0-MVN3.8-GRD7.0 would have
a first identifier (e.g., hash) and the container image for
JDK11.0-MVN3.7-GRD7.0 would have a second identifier.
Therefore, the binary content corresponding to the JDK11.0
and GRD7.0 components would need to be downloaded
twice (once for each image tag), even though they are the
same component and version number.

[0031] However, assembly of a container image in accor-
dance with embodiments of the present disclosure does not
result in the creation of a whole new binary blob that must
be downloaded in its entirety each time. Instead, image files
223A-C (and their corresponding binary content) can be
requested and served on an individual basis as discussed in
further detail herein.

[0032] As discussed hereinabove, each image file 223 is
stored in an isolated directory, with an individual identifier.
The image manifest 224 may reference the identifier for
each image file 223A-C as a separate image layer (as
opposed to referencing the image files 223 A-C together in a
particular order as a single layer), where each image file
223A-C has its own isolated directory. Because each of the
image files 223 may correspond to a binary blob, the image
manifest 224 may effectively reference the binary blob
corresponding to each of the image files 223A-C as a
separate layer that only includes files inside a specific
directory that the image file 223 owns. In this way, when the
container host 214 is building a container image for JDK11.
0-MVN3.8-GRD7.0 using the image manifest 224, the
image manifest 224 may prevent binary blobs corresponding
to image files 223 A-C from interfering with each other as the
binary blob for every requested image file 223 A-C will be in
a path that is unique and distinct, and will not overlap with
the path of a binary blob for another requested image file
223A-C. Indeed, because the image manifest 224 is refer-
encing existing image files 223 having binary content stored
in isolated directories, the identifier for each image file 223
will be the same every time a container image including the
image file 223 is requested, thus eliminating the requirement
to transfer the binary content of an image file 223 that has
already been downloaded (i.e., an image file for which there
is already a reference).

[0033] This allows for image files 223A-C to be shared
and reused, while providing the end user with any amount of
flexibility in terms of image files 223 that they wish to

Mar. 14, 2024

request. In addition, because each image file 223A-C only
includes files inside a specific directory that the image file
223 owns, the order in which the image files 223A-C are
layered when building a container using the image manifest
224 does not matter and the image manifest 224 does not
specify (or need to specify) an order.

[0034] The image manifest 224 may look and behave like
an actual container image even though it is dynamically
generated. Thus, the use of the virtual image server 160 may
be transparent to the user and the user does not know
whether they have connected to the virtual image server 160
where content is generated on the fly, or to the image registry
150 (which is a traditional image registry). The virtual image
server 160 may push the image manifest 224 to the image
registry 150, so that the image manifest 224 can be refer-
enced (e.g., by its identifier) later as it is stored in the image
registry 150. The virtual image server 160 may also provide
the image manifest 224 to the container host 214.

[0035] In this way, if a user wishes to pull a container
image for both image tags JDK11.0-MVN3.8-GRD7.0 and
JDK11.0-MVN3.7-GRD7.0, the virtual image server 160
may generate the image manifest 224, push the image
manifest 224 to the image registry 150, and provide the
image manifest 224 to the client (i.e., container host 214).
The container host 214 may use the image manifest 224 to
obtain the corresponding binary content for image files
223A-C an individual layers as discussed herein. In some
embodiments, the corresponding binary content may be
redirected or proxied through the virtual image server 160
from the image registry 150. The container host 214 may
then build a container image 221 for JDK11.0-MVN3.8-
GRD7.0 using the obtained binary content. Referring to
FIG. 3C, the virtual image server 160 may then dynamically
generate an image manifest 225 for JDK11.0-MVN3.7-
GRD7.0 in the same manner as image manifest 224 dis-
cussed above with respect to FIG. 3B, push the image
manifest 225 to the image registry 150, and provide the
image manifest 225 to the client (i.e., container host 214).
When building the container image for JDK11.0-MVN3.7-
GRD7.0, the logic of the container host 214 for building
container images may recognize that the image manifest 225
generated for JDK11.0-MVN3.7-GRD7.0 as well as the
image manifest 224 (generated for JDKI11.0-MVN3.8-
GRD7.0) each include a reference to the same identifier
(e.g., hash) for the JDK11.0 and GRD7.0 image files (223B
and 223C). As a result, the container host 214 will only
download the binary content corresponding to image file
223A (MVN3.7) when building a container image for the
JDK11.0-MVN3.7-GRD7.0 image tag.

[0036] In some embodiments, specific directories for each
package are not required. For example, in scenarios where
each package is a single file, they may share a directory since
uniqueness could be achieved on the file level. In another
example, two or more directories may be provided, with
some packages in e.g., the “/opt/featurel/*” directory and
some packages in e.g., the “/lib/feature1/*” directory. Essen-
tially, there is some form of naming scheme that guarantees
uniqueness (e.g. a unique prefix) for each package.

[0037] FIG. 4A is a flow diagram of a method 400 for
building container images, in accordance with some
embodiments of the present disclosure. The method 400 may
be performed by processing logic that may comprise hard-
ware (e.g., circuitry, dedicated logic, programmable logic, a
processor, a processing device, a central processing unit

US 2024/0086168 Al

(CPU), a system-on-chip (SoC), etc.), software (e.g.,
instructions running/executing on a processing device),
firmware (e.g., microcode), or a combination thereof. In
some embodiments, the method 400 may be performed by a
computing device (e.g., computing device 110 and virtual
image server 160 illustrated in FIGS. 3A-3C).

[0038] Referring simultaneously to FIGS. 3A-3C, the vir-
tual image server 160 may receive a code name for each of
the image files 223 from a package/tooling provider (not
shown). The virtual image server 160 may store the set of
code names 222A along with a mapping 222B of each code
name to a version tag of the corresponding image file 223.
A version tag may be a tool for container image builders to
communicate to container image consumers which layers
are best to consume and are often used to designate versions
of software within in the container image. The version tag of
each image file 223 may refer to the latest version of the
package the image file 223 corresponds to and may be
updated whenever the package the image file 223 corre-
sponds to is updated. In this way, the virtual image server
160 may ensure that it is always pulling the latest version of
an image file 223.

[0039] When a user wishes to obtain a container image
comprising a combination of different image files 223, they
can aggregate the code name of each image file 223 they
require into an image tag. The image tag may have any
appropriate format, with individual code names separated by
any appropriate character. In the example of FIG. 3B, the
image tag includes each code name separated by a dash.
[0040] Referring to FIG. 3B, at block 405, the virtual
image server 160 may receive an image tag of JDK11.0-
MVN3.8-GRD7.0 from the container host 214. When a
container image defined by JDK11.0-MVN3.8-GRD7.0 is
requested, at block 410 the virtual image server 160 may
parse the code name of each requested image file 223 from
the image tag and use the parsed code names and the
mapping 222B to pull from image registry 150, each of the
image files 223A-C (which correspond to the requested
packages i.e., MVN3.8, and GRD7.0, and JDK11.0 respec-
tively). Once the image registry 150 has served the image
files 223 A-C, at block 415 the virtual image server 160 may
then generate an image manifest 224 corresponding to
JDK11.0-MVN3.8-GRD7.0. As part of this process, the
virtual image server 160 may extract a manifest from each
of the image files 223A-C and may use the pulled manifests
for each of the image files 223A-C to generate the image
manifest 224 which references the requested image files
223A-C. More specifically, the image manifest 224 may
reference the identifier of the specific version of each of the
image files 223A-C that were retrieved from the image
registry 150.

[0041] As discussed hereinabove, each image file 223 is
stored in an isolated directory, with an individual identifier.
The image manifest 224 may reference the identifier for
each image file 223A-C as a separate image layer (as
opposed to referencing the image files 223 A-C together in a
particular order as a single layer), where each image file
223A-C has its own isolated directory. Because each of the
image files 223 may correspond to a binary blob, the image
manifest 224 may effectively reference the binary blob
corresponding to each of the image files 223A-C as a
separate layer that only includes files inside a specific
directory that the image file 223 owns. In this way, when the
container host 214 is building a container image for JDK11.

Mar. 14, 2024

0-MVN3.8-GRD7.0 using the image manifest 224, the
image manifest 224 may prevent binary blobs corresponding
to image files 223 A-C from interfering with each other as the
binary blob for every requested image file 223 A-C will be in
a path that is unique and distinct, and will not overlap with
the path of a binary blob for another requested image file
223A-C. Indeed, because the image manifest 224 is refer-
encing existing image files 223 having binary content stored
in isolated directories, the identifier for each image file 223
will be the same every time a container image including the
image file 223 is requested, thus eliminating the requirement
to transfer the binary content of an image tile 223 that has
already been downloaded (i.e., an image file for which there
is already a reference).

[0042] This allows for image files 223A-C to be shared
and reused, while providing the end user with any amount of
flexibility in terms of image files 223 that they wish to
request. In addition, because each image file 223A-C only
includes files inside a specific directory that the image file
223 owns, the order in which the image files 223A-C are
layered when building a container using the image manifest
224 does not matter and the image manifest 224 does not
specify (or need to specify) an order.

[0043] The image manifest 224 may look and behave like
an actual container image even though it is dynamically
generated. Thus, the use of the virtual image server 160 may
be transparent to the user and the user does not know
whether they have connected to the virtual image server 160
where content is generated on the fly, or to the image registry
150 (which is a traditional image registry). The virtual image
server 160 may push the image manifest 224 to the image
registry 150, so that the image manifest 224 can be refer-
enced (e.g., by its identifier) later as it is stored in the image
registry 150. At block 420, the virtual image server 160 may
also provide the image manifest 224 to the container host
214. The container host 214 may use the image manifest 224
to obtain the corresponding binary content for image files
223A-C an individual layers as discussed herein. In some
embodiments, the corresponding binary content may be
redirected or proxied through the virtual image server 160
from the image registry 150. At block 425, the container host
214 may then build a container image 221 for JDK11.0-
MVN3.8-GRD7.0 using the obtained binary content.
[0044] FIG. 4B is a flow diagram of a method 450 for
building container images, in accordance with some
embodiments of the present disclosure. The method 450 may
be performed by processing logic that may comprise hard-
ware (e.g., circuitry, dedicated logic, programmable logic, a
processor, a processing device, a central processing unit
(CPU), a system-on-chip (SoC), etc.), software (e.g.,
instructions running/executing on a processing device),
firmware (e.g., microcode), or a combination thereof. In
some embodiments, the method 450 may be performed by a
computing device (e.g., computing device 110 and virtual
image server 160 illustrated in FIGS. 3A-3C).

[0045] At block 455, the virtual image server 160 may
receive an image tag of JDK11.0-MVN3.7-GRD7.0 from
the container host 214. At block 460, the virtual image server
160 may then generate an image manifest 225 for JDK11.
0-MVN3.7-GRD7.0 in the same manner as image manifest
224 discussed above with respect to FIG. 3B. At block 465,
the virtual image server 160 may push the image manifest
225 to the image registry 150, and provide the image
manifest 225 to the client (i.e., container host 214). At block

US 2024/0086168 Al

470, the container host 214 may examine the image manifest
225, and in particular examine the identifier for each of the
image files referenced by the image manifest 225, and only
download the binary content corresponding to image files
whose identifier does not have a matching identifier refer-
enced by image manifest 224. For example, when building
the container image for JDK11.0-MVN3.7-GRD7.0, the
logic of the container host 214 for building container images
may recognize that the image manifest 225 generated for
JDK11.0-MVN3.7-GRD7.0 as well as the image manifest
224 (generated for JDKI11.0-MVN3.8-GRD7.0) each
include a reference to the same identifier (e.g., hash) for the
JDK11.0 and GRD7.0 image files (223B and 223C). As a
result, the container host 214 will only download the binary
content corresponding to image file 223A (MVN3.7) when
building a container image for the JDK11.0-MVN3.7-
GRD7.0 image tag.

[0046] FIG. 5 illustrates a diagrammatic representation of
a machine in the example form of a computer system 500
within which a set of instructions, for causing the machine
to perform any one or more of the methodologies discussed
herein for generating container images.

[0047] In alternative embodiments, the machine may be
connected (e.g., networked) to other machines in a local area
network (LAN), an intranet, an extranet, or the Internet. The
machine may operate in the capacity of a server or a client
machine in a client-server network environment, or as a peer
machine in a peer-to-peer (or distributed) network environ-
ment. The machine may be a personal computer (PC), a
tablet PC, a set-top box (STB), a Personal Digital Assistant
(PDA), a cellular telephone, a web appliance, a server, a
network router, a switch or bridge, a hub, an access point, a
network access control device, or any machine capable of
executing a set of instructions (sequential or otherwise) that
specify actions to be taken by that machine. Further, while
only a single machine is illustrated, the term “machine” shall
also be taken to include any collection of machines that
individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methodolo-
gies discussed herein. In one embodiment, computer system
500 may be representative of a server.

[0048] The exemplary computer system 500 includes a
processing device 502, a main memory 504 (e.g., read-only
memory (ROM), flash memory, dynamic random access
memory (DRAM), a static memory 506 (e.g., flash memory,
static random access memory (SRAM), etc.), and a data
storage device 518 which communicate with each other via
a bus 530. Any of the signals provided over various buses
described herein may be time multiplexed with other signals
and provided over one or more common buses. Additionally,
the interconnection between circuit components or blocks
may be shown as buses or as single signal lines. Each of the
buses may alternatively be one or more single signal lines
and each of the single signal lines may alternatively be
buses.

[0049] Computing device 500 may further include a net-
work interface device 508 which may communicate with a
network 520. The computing device 500 also may include a
video display unit 510 (e.g., a liquid crystal display (LCD)
or a cathode ray tube (CRT)), an alphanumeric input device
512 (e.g., a keyboard), a cursor control device 514 (e.g., a
mouse) and an acoustic signal generation device 516 (e.g.,
a speaker). In one embodiment, video display unit 510,

Mar. 14, 2024

alphanumeric input device 512, and cursor control device
514 may be combined into a single component or device
(e.g., an LCD touch screen).

[0050] Processing device 502 represents one or more
general-purpose processing devices such as a microproces-
sor, central processing unit, or the like. More particularly,
the processing device may be complex instruction set com-
puting (CISC) microprocessor, reduced instruction set com-
puter (RISC) microprocessor, very long instruction word
(VLIW) microprocessor, or processor implementing other
instruction sets, or processors implementing a combination
of instruction sets. Processing device 502 may also be one
or more special-purpose processing devices such as an
application specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. The processing device
502 is configured to execute container image generation
instructions 525, for performing the operations and steps
discussed herein.

[0051] The data storage device 518 may include a
machine-readable storage medium 528, on which is stored
one or more sets of container image generation instructions
525 (e.g., software) embodying any one or more of the
methodologies of functions described herein. The container
image generation instructions 525 may also reside, com-
pletely or at least partially, within the main memory 504 or
within the processing device 502 during execution thereof
by the computer system 500; the main memory 504 and the
processing device 502 also constituting machine-readable
storage media. The container image generation instructions
525 may further be transmitted or received over a network
520 via the network interface device 508.

[0052] The machine-readable storage medium 528 may
also be used to store instructions to perform a method for
intelligently scheduling containers, as described herein.
While the machine-readable storage medium 528 is shown
in an exemplary embodiment to be a single medium, the
term “machine-readable storage medium” should be taken to
include a single medium or multiple media (e.g., a central-
ized or distributed database, or associated caches and serv-
ers) that store the one or more sets of instructions. A
machine-readable medium includes any mechanism for stor-
ing information in a form (e.g., software, processing appli-
cation) readable by a machine (e.g., a computer). The
machine-readable medium may include, but is not limited to,
magnetic storage medium (e.g., floppy diskette); optical
storage medium (e.g., CD-ROM); magneto-optical storage
medium; read-only memory (ROM); random-access
memory (RAM); erasable programmable memory (e.g.,
EPROM and EEPROM); flash memory; or another type of
medium suitable for storing electronic instructions.

[0053] Example 1 is a method comprising: receiving, at a
virtual image server, an image tag comprising a set of code
names, wherein the virtual image server comprises a map-
ping of each code name of the set of code names to a
corresponding image file; for each of the set of code names,
retrieving, by a processing device, the corresponding image
file from an image registry; generating, by the virtual image
server, an image manifest using the corresponding image file
of'each of the set of code names, wherein the image manifest
references the corresponding image file of each of the set of
code names as a separate image layer; providing the image
manifest to a container host; and building, by the container
host, a container image based on the image manifest.

US 2024/0086168 Al

[0054] Example 2 is the method of example 1, further
comprising: retrieving, using the image manifest, binary
content associated with the corresponding image file of each
of'the set of code names from the image registry, wherein the
image registry stores the binary content associated with the
corresponding image file of each of the set of code names
inside a specific isolated directory that the corresponding
image file owns, and wherein the container image is built
using the binary content associated with the corresponding
image file of each of the set of code names.

[0055] Example 3 is the method of example 1, wherein the
image manifest references an identifier of the corresponding
image file of each of the set of code names.

[0056] Example 4 is the method of example 2, further
comprising: receiving, at the virtual image server, a second
image tag comprising a second set of code names; generat-
ing a second image manifest using a corresponding image
file of each of the second set of code names, wherein the
second image manifest references an identifier of the cor-
responding image file of each of the second set of code
names as a separate image layer; providing the second image
manifest to the container host; for the corresponding image
file of each of the second set of code names, retrieving
binary content associated with the corresponding image file
if an identifier of the corresponding image file does not
match an identifier of an image file of any of the set of code
names.

[0057] Example 5 is the method of example 3, wherein the
identifier of the corresponding image file of each of the set
of code names comprises a hash.

[0058] Example 6 is the method of example 1, wherein the
image manifest does not reference the corresponding image
file of each of the set of code names in an order.

[0059] Example 7 is the method of example 2, wherein
retrieving the binary content associated with the correspond-
ing image file of each of the set of code names comprises:
redirecting the binary content associated with the corre-
sponding image file of each of the set of code names through
the virtual image server to the container host.

[0060] Example is a system comprising: a memory; and a
processing device operatively coupled to the memory, the
processing device to: receive, at a virtual image server, a
plurality of code names, wherein each of the plurality of
code names corresponds to an image file associated with a
package; receive, at the virtual image server, an image tag
comprising one or more code names from the plurality of
code names; for each of the one or more code names,
retrieve the corresponding image file from an image registry;
generate, by the virtual image server, an image manifest
using the corresponding image file of each of the one or
more code names, wherein the image manifest references the
corresponding image file of each of the one or more code
names as a separate image layer; and build a container image
based on the image manifest.

[0061] Example 9 is the system of example 8, wherein the
virtual image server comprises a mapping of each code
name of the plurality of code names to a version tag of the
corresponding image file.

[0062] Example 10 is the system of example 9, wherein
the processing device uses the mapping of each code name
of the plurality of code names to a version tag of the
corresponding image file to retrieve the corresponding
image file from the image registry.

Mar. 14, 2024

[0063] Example 11 is the system of example 8, wherein
the processing device is further to: provide the image
manifest to a container host; and retrieve, using the image
manifest, binary content associated with the corresponding
image file of each of the set of code names from the image
registry, wherein the image registry stores the binary content
associated with the corresponding image file of each of the
set of code names inside a specific isolated directory that the
corresponding image file owns.

[0064] Example 12 is the system of example 11, wherein
the processing device builds the container image using the
binary content associated with the corresponding image file
of each of the set of code names.

[0065] Example 13 is the system of example 8, wherein
the image manifest references an identifier of the corre-
sponding image file of each of the set of code names.

[0066] Example 14 is the system of example 13, wherein
the identifier of the corresponding image file of each of the
set of code names comprises a hash.

[0067] Example 15 is a non-transitory computer-readable
medium having instructions stored thereon which, when
executed by a processing device, cause the processing
device to: receive, at a virtual image server, an image tag
comprising a set of code names, wherein the virtual image
server comprises a mapping of each code name of the set of
code names to a corresponding image file; for each of the set
of code names, retrieve, by the processing device, the
corresponding image file from an image registry; generate,
by the virtual image server, an image manifest using the
corresponding image file of each of the set of code names,
wherein the image manifest references the corresponding
image file of each of the set of code names as a separate
image layer; provide the image manifest to a container host;
and build, by the container host, a container image based on
the image manifest.

[0068] Example 16 is the non-transitory computer-read-
able medium of example 15, wherein the processing device
is further to: retrieve, using the image manifest, binary
content associated with the corresponding image file of each
of'the set of code names from the image registry, wherein the
image registry stores the binary content associated with the
corresponding image file of each of the set of code names
inside a specific isolated directory that the corresponding
image file owns, and wherein processing device builds the
container image using the binary content associated with the
corresponding image file of each of the set of code names.

[0069] Example 17 is the non-transitory computer-read-
able medium of example 15, wherein the image manifest
references an identifier of the corresponding image file of
each of the set of code names.

[0070] Example 18 is the non-transitory computer-read-
able medium of example 16, wherein the processing device
is further to: receive, at the virtual image server, a second
image tag comprising a second set of code names; generate
a second image manifest using a corresponding image file of
each of the second set of code names, wherein the second
image manifest references an identifier of the corresponding
image file of each of the second set of code names as a
separate image layer; provide the second image manifest to
the container host; for the corresponding image file of each
of the second set of code names, retrieve binary content
associated with the corresponding image file if an identifier

US 2024/0086168 Al

of the corresponding image file does not match an identifier
of a corresponding image file of any of the set of code
names.

[0071] Example 19 is the non-transitory computer-read-
able medium of example 17, wherein the identifier of the
corresponding image file of each of the set of code names
comprises a hash.

[0072] Example 20 is the non-transitory computer-read-
able medium of example 15, wherein the image manifest
does not reference the corresponding image file of each of
the set of code names in an order.

[0073] Example 21 is the non-transitory computer-read-
able medium of example 16, wherein to retrieve the binary
content associated with the corresponding image file of each
of'the set of code names, the processing device is to: redirect
the binary content associated with the corresponding image
file of each of the set of code names through the virtual
image server to the container host.

[0074] Example 22 is a system comprising: a memory; and
a processing device operatively coupled to the memory, the
processing device to: receive, at a virtual image server, an
image tag comprising a set of code names, wherein the
virtual image server comprises a mapping of each code
name of the set of code names to a corresponding image file;
for each of the set of code names, retrieve, the corresponding
image file from an image registry; generate, by the virtual
image server, an image manifest using the corresponding
image file of each of the set of code names, wherein the
image manifest references the corresponding image file of
each of the set of code names as a separate image layer;
provide the image manifest to a container host; and build, by
the container host, a container image based on the image
manifest.

[0075] Example 23 is the system of example 22, wherein
the processing device is further to: retrieve, using the image
manifest, binary content associated with the corresponding
image file of each of the set of code names from the image
registry, wherein the image registry stores the binary content
associated with the corresponding image file of each of the
set of code names inside a specific isolated directory that the
corresponding image file owns, and wherein processing
device builds the container image using the binary content
associated with the corresponding image file of each of the
set of code names.

[0076] Example 24 is the system of example 22, wherein
the image manifest references an identifier of the corre-
sponding image file of each of the set of code names.
[0077] Example 25 is the system of example 23, wherein
the processing device is further to: receive, at the virtual
image server, a second image tag comprising a second set of
code names; generate a second image manifest using a
corresponding image file of each of the second set of code
names, wherein the second image manifest references an
identifier of the corresponding image file of each of the
second set of code names as a separate image layer; provide
the second image manifest to the container host; for the
corresponding image file of each of the second set of code
names, retrieve binary content associated with the corre-
sponding image file if an identifier of the corresponding
image file does not match an identifier of a corresponding
image file of any of the set of code names.

[0078] Example 26 is the system of example 24, wherein
the identifier of the corresponding image file of each of the
set of code names comprises a hash.

Mar. 14, 2024

[0079] Example 27 is the system of example 22, wherein
the image manifest does not reference the corresponding
image file of each of the set of code names in an order.
[0080] Example 28 is the system of example 23, wherein
to retrieve the binary content associated with the corre-
sponding image file of each of the set of code names, the
processing device is to: redirect the binary content associ-
ated with the corresponding image file of each of the set of
code names through the virtual image server to the container
host.

[0081] Example 29 is a method comprising: receiving, at
a virtual image server, a plurality of code names, wherein
each of the plurality of code names corresponds to an image
file associated with a package; receiving, at the virtual image
server, an image tag comprising one or more code names
from the plurality of code names; for each of the one or more
code names, retrieving the corresponding image file from an
image registry; generating, by the virtual image server, an
image manifest using the corresponding image file of each
of the one or more code names, wherein the image manifest
references the corresponding image file of each of the one or
more code names as a separate image layer; and building a
container image based on the image manifest.

[0082] Example 30 is the method of example 29, wherein
the virtual image server comprises a mapping of each code
name of the plurality of code names to a version tag of the
corresponding image file.

[0083] Example 31 is the method of example 30, wherein
the processing device uses the mapping of each code name
of the plurality of code names to a version tag of the
corresponding image file to retrieve the corresponding
image file from the image registry.

[0084] Example 32 is the method of example 29, further
comprising: providing the image manifest to a container
host; and retrieving, using the image manifest, binary con-
tent associated with the corresponding image file of each of
the set of code names from the image registry, wherein the
image registry stores the binary content associated with the
corresponding image file of each of the set of code names
inside a specific isolated directory that the corresponding
image file owns.

[0085] Example 33 is the method of example 32, wherein
the processing device builds the container image using the
binary content associated with the corresponding image file
of each of the set of code names.

[0086] Example 34 is the method of example 29, wherein
the image manifest references an identifier of the corre-
sponding image file of each of the set of code names.
[0087] Example 35 is the method of example 34, wherein
the identifier of the corresponding image file of each of the
set of code names comprises a hash.

[0088] Example 36 is an apparatus comprising: means for
receiving, at a virtual image server, an image tag comprising
a set of code names, wherein the virtual image server
comprises a mapping of each code name of the set of code
names to a corresponding image file; means for retrieving,
by a processing device, the corresponding image file for
each of' the set of code names from an image registry; means
for generating, by the virtual image server, an image mani-
fest using the corresponding image file of each of the set of
code names, wherein the image manifest references the
corresponding image file of each of the set of code names as
a separate image layer; means for providing the image

US 2024/0086168 Al

manifest to a container host; and means for building, by the
container host, a container image based on the image mani-
fest.

[0089] Example 37 is the apparatus of example 36, further
comprising: means for retrieving, using the image manifest,
binary content associated with the corresponding image file
of each of the set of code names from the image registry,
wherein the image registry stores the binary content asso-
ciated with the corresponding image file of each of the set of
code names inside a specific isolated directory that the
corresponding image file owns, and wherein the container
image is built using the binary content associated with the
corresponding image file of each of the set of code names.

[0090] Example 38 is the apparatus of example 36,
wherein the image manifest references an identifier of the
corresponding image file of each of the set of code names.

[0091] Example 39 is the apparatus of example 37, further
comprising: means for receiving, at the virtual image server,
a second image tag comprising a second set of code names;
means for generating a second image manifest using a
corresponding image file of each of the second set of code
names, wherein the second image manifest references an
identifier of the corresponding image file of each of the
second set of code names as a separate image layer; means
for providing the second image manifest to the container
host; and for the corresponding image file of each of the
second set of code names, means for retrieving binary
content associated with the corresponding image file if an
identifier of the corresponding image file does not match an
identifier of a corresponding image file of any of the set of
code names.

[0092] Example 40 is the apparatus of example 38,
wherein the identifier of the corresponding image file of
each of the set of code names comprises a hash.

[0093] Unless specifically stated otherwise, terms such as
“receiving,” “routing,” “updating,” “providing,” or the like,
refer to actions and processes performed or implemented by
computing devices that manipulates and transforms data
represented as physical (electronic) quantities within the
computing device’s registers and memories into other data
similarly represented as physical quantities within the com-
puting device memories or registers or other such informa-
tion storage, transmission or display devices. Also, the terms
“first,” “second,” “third,” “fourth,” etc., as used herein are
meant as labels to distinguish among different elements and
may not necessarily have an ordinal meaning according to
their numerical designation.

[0094] Examples described herein also relate to an appa-
ratus for performing the operations described herein. This
apparatus may be specially constructed for the required
purposes, or it may comprise a general purpose computing
device selectively programmed by a computer program
stored in the computing device. Such a computer program
may be stored in a computer-readable non-transitory storage
medium.

[0095] The methods and illustrative examples described
herein are not inherently related to any particular computer
or other apparatus. Various general purpose systems may be
used in accordance with the teachings described herein, or it
may prove convenient to construct more specialized appa-
ratus to perform the required method steps. The required
structure for a variety of these systems will appear as set
forth in the description above.

Mar. 14, 2024

[0096] The above description is intended to be illustrative,
and not restrictive. Although the present disclosure has been
described with references to specific illustrative examples, it
will be recognized that the present disclosure is not limited
to the examples described. The scope of the disclosure
should be determined with reference to the following claims,
along with the full scope of equivalents to which the claims
are entitled.

[0097] As used herein, the singular forms “a”, “an” and
“the” are intended to include the plural forms as well, unless
the context clearly indicates otherwise. It will be further
understood that the terms “comprises”, “comprising”,
“includes”, and/or “including”, when used herein, specify
the presence of stated features, integers, steps, operations,
elements, and/or components, but do not preclude the pres-
ence or addition of one or more other features, integers,
steps, operations, elements, components, and/or groups
thereof. Therefore, the terminology used herein is for the
purpose of describing particular embodiments only and is
not intended to be limiting.

[0098] It should also be noted that in some alternative
implementations, the functions/acts noted may occur out of
the order noted in the figures. For example, two figures
shown in succession may in fact be executed substantially
concurrently or may sometimes be executed in the reverse
order, depending upon the functionality/acts involved.
[0099] Although the method operations were described in
a specific order, it should be understood that other operations
may be performed in between described operations,
described operations may be adjusted so that they occur at
slightly different times or the described operations may be
distributed in a system which allows the occurrence of the
processing operations at various intervals associated with
the processing.

[0100] Various units, circuits, or other components may be
described or claimed as “configured to” or “configurable to”
perform a task or tasks. In such contexts, the phrase “con-
figured to” or “configurable to” is used to connote structure
by indicating that the units/circuits/components include
structure (e.g., circuitry) that performs the task or tasks
during operation. As such, the unit/circuit/component can be
said to be configured to perform the task, or configurable to
perform the task, even when the specified unit/circuit/com-
ponent is not currently operational (e.g., is not on). The
units/circuits/components used with the “configured to” or
“configurable to” language include hardware—for example,
circuits, memory storing program instructions executable to
implement the operation, etc. Reciting that a unit/circuit/
component is “configured to” perform one or more tasks, or
is “configurable to” perform one or more tasks, is expressly
intended not to invoke 35 U.S.C. 112, sixth paragraph, for
that unit/circuit/component. Additionally, “configured to” or
“configurable to” can include generic structure (e.g., generic
circuitry) that is manipulated by software and/or firmware
(e.g., an FPGA or a general-purpose processor executing
software) to operate in manner that is capable of performing
the task(s) at issue. “Configured to” may also include
adapting a manufacturing process (e.g., a semiconductor
fabrication facility) to fabricate devices (e.g., integrated
circuits) that are adapted to implement or perform one or
more tasks. “Configurable to” is expressly intended not to
apply to blank media, an unprogrammed processor or unpro-
grammed generic computer, or an unprogrammed program-
mable logic device, programmable gate array, or other

US 2024/0086168 Al

unprogrammed device, unless accompanied by programmed
media that confers the ability to the unprogrammed device
to be configured to perform the disclosed function(s).
[0101] The foregoing description, for the purpose of
explanation, has been described with reference to specific
embodiments. However, the illustrative discussions above
are not intended to be exhaustive or to limit the invention to
the precise forms disclosed. Many modifications and varia-
tions are possible in view of the above teachings. The
embodiments were chosen and described in order to best
explain the principles of the embodiments and its practical
applications, to thereby enable others skilled in the art to
best utilize the embodiments and various modifications as
may be suited to the particular use contemplated. Accord-
ingly, the present embodiments are to be considered as
illustrative and not restrictive, and the invention is not to be
limited to the details given herein, but may be modified
within the scope and equivalents of the appended claims.

What is claimed is:

1. A method comprising:

receiving, at a virtual image server, an image tag com-
prising a set of code names, wherein the virtual image
server comprises a mapping of each code name of the
set of code names to a corresponding image file;

for each of the set of code names, retrieving, by a
processing device, the corresponding image file from
an image registry;

generating, by the virtual image server, an image manifest
using the corresponding image file of each of the set of
code names, wherein the image manifest references the
corresponding image file of each of the set of code
names as a separate image layer;

providing the image manifest to a container host; and

building, by the container host, a container image based

on the image manifest.

2. The method of claim 1, further comprising:

retrieving, using the image manifest, binary content asso-

ciated with the corresponding image file of each of the
set of code names from the image registry, wherein the
image registry stores the binary content associated with
the corresponding image file of each of the set of code
names inside a specific isolated directory that the
corresponding image file owns, and wherein the con-
tainer image is built using the binary content associated
with the corresponding image file of each of the set of
code names.

3. The method of claim 1, wherein the image manifest
references an identifier of the corresponding image file of
each of the set of code names.

4. The method of claim 2, further comprising:

receiving, at the virtual image server, a second image tag

comprising a second set of code names;
generating a second image manifest using a correspond-
ing image file of each of the second set of code names,
wherein the second image manifest references an iden-
tifier of the corresponding image file of each of the
second set of code names as a separate image layer;

providing the second image manifest to the container
host; and

for the corresponding image file of each of the second set

of code names, retrieving binary content associated
with the corresponding image file if an identifier of the

Mar. 14, 2024

corresponding image file does not match an identifier of
a corresponding image file of any of the set of code
names.

5. The method of claim 3, wherein the identifier of the
corresponding image file of each of the set of code names
comprises a hash.

6. The method of claim 1, wherein the image manifest
does not reference the corresponding image file of each of
the set of code names in an order.

7. The method of claim 2, wherein retrieving the binary
content associated with the corresponding image file of each
of the set of code names comprises:

redirecting the binary content associated with the corre-

sponding image file of each of the set of code names
through the virtual image server to the container host.

8. A system comprising:

a memory; and

a processing device operatively coupled to the memory,

the processing device to:

receive, at a virtual image server, a plurality of code
names, wherein each of the plurality of code names
corresponds to an image file associated with a pack-
age;

receive, at the virtual image server, an image tag
comprising one or more code names from the plu-
rality of code names;

for each of the one or more code names, retrieve the
corresponding image file from an image registry;

generate, by the virtual image server, an image manifest
using the corresponding image file of each of the one
or more code names, wherein the image manifest
references the corresponding image file of each of
the one or more code names as a separate image
layer; and

build a container image based on the image manifest.

9. The system of claim 8, wherein the virtual image server
comprises a mapping of each code name of the plurality of
code names to a version tag of the corresponding image file.

10. The system of claim 9, wherein the processing device
uses the mapping of each code name of the plurality of code
names to a version tag of the corresponding image file to
retrieve the corresponding image file from the image regis-
try.

11. The system of claim 8, wherein the processing device
is further to:

provide the image manifest to a container host; and

retrieve, using the image manifest, binary content asso-

ciated with the corresponding image file of each of the
set of code names from the image registry, wherein the
image registry stores the binary content associated with
the corresponding image file of each of the set of code
names inside a specific isolated directory that the
corresponding image file owns.

12. The system of claim 11, wherein the processing device
builds the container image using the binary content associ-
ated with the corresponding image file of each of the set of
code names.

13. The system of claim 8, wherein the image manifest
references an identifier of the corresponding image file of
each of the set of code names.

14. The system of claim 13, wherein the identifier of the
corresponding image file of each of the set of code names
comprises a hash.

US 2024/0086168 Al

15. A non-transitory computer-readable medium, having
instructions stored thereon which, when executed by a
processing device, cause the processing device to:

receive, at a virtual image server, an image tag comprising

a set of code names, wherein the virtual image server
comprises a mapping of each code name of the set of
code names to a corresponding image file;

for each of the set of code names, retrieve, by the

processing device, the corresponding image file from
an image registry;

generate, by the virtual image server, an image manifest

using the corresponding image file of each of the set of
code names, wherein the image manifest references the
corresponding image file of each of the set of code
names as a separate image layer;

provide the image manifest to a container host; and

build, by the container host, a container image based on

the image manifest.

16. The non-transitory computer-readable medium of
claim 15, wherein the processing device is further to:

retrieve, using the image manifest, binary content asso-

ciated with the corresponding image file of each of the
set of code names from the image registry, wherein the
image registry stores the binary content associated with
the corresponding image file of each of the set of code
names inside a specific isolated directory that the
corresponding image file owns, and wherein processing
device builds the container image using the binary
content associated with the corresponding image file of
each of the set of code names.

Mar. 14, 2024

17. The non-transitory computer-readable medium of
claim 15, wherein the image manifest references an identi-
fier of the corresponding image file of each of the set of code
names.

18. The non-transitory computer-readable medium of
claim 16, wherein the processing device is further to:

receive, at the virtual image server, a second image tag

comprising a second set of code names;
generate a second image manifest using a corresponding
image file of each of the second set of code names,
wherein the second image manifest references an iden-
tifier of the corresponding image file of each of the
second set of code names as a separate image layer;

provide the second image manifest to the container host;
and

for the corresponding image file of each of the second set

of code names, retrieve binary content associated with
the corresponding image file if an identifier of the
corresponding image file does not match an identifier of
a corresponding image file of any of the set of code
names.

19. The non-transitory computer-readable medium of
claim 17, wherein the identifier of the corresponding image
file of each of the set of code names comprises a hash.

20. The non-transitory computer-readable medium of
claim 15, wherein the image manifest does not reference the
corresponding image file of each of the set of code names in
an order.

