
US 20210200867A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0200867 A1

Schmugar et al . (43) Pub . Date : Jul . 1 , 2021

(54) METHODS AND APPARATUS TO DEFEND
AGAINST DLL SIDE - LOADING ATTACKS

(71) Applicant : McAfee , LLC , Santa Clara , CA (US)
(72) Inventors : Craig Schmugar , Beaverton , OR (US) ;

Jyothi Mehandale , Bangalore (IN)

(21) Appl . No .: 16 / 728,990

(52) U.S. Cl .
CPC G06F 21/564 (2013.01) ; G06F 21/566

(2013.01) ; H04L 9/0643 (2013.01) ; G06F
21/126 (2013.01) ; G06F 21/572 (2013.01)

(57) ABSTRACT
Methods , apparatus , systems , and articles of manufacture
are disclosed to defend against dynamic - link library (DLL)
side - loading attacks . An example apparatus includes a fin
gerprint generator to determine a first DLL fingerprint of a
first DLL stored at a first OS path referenced by an operating
system (OS) event generated by a computing device , and , in
response to determining that a second DLL having the same
name as the first DLL is stored at a second OS path
superseding the first OS path , determine a second DLL
fingerprint of the second DLL , a fingerprint comparator to
determine whether at least one of the first or the second DLL
fingerprint satisfies a deviation threshold based on a com
parison of the first and the second DLL fingerprint to a
reference DLL fingerprint , and a security action enforcer to
execute a security action to protect a computing device from
an attack .

(22) Filed : Dec. 27 , 2019

Publication Classification

(51) Int . Cl .
G06F 21/56
G06F 21/57
G06F 21/12
H04L 9/06

(2006.01)
(2006.01)
(2006.01)
(2006.01)

110 106 COMPUTING DEVICES CENTRAL FACILITY 100
140 DLLSC FINGERPRINT (S) 138 NETWORK FINGERPRINT (S) · 142

EXECUTABLES)
108 112

COMPUTING DEVICE 102
OPERATING SYSTEM 132 124 134 DLL SECURITY

CONTROLLER (DLLSC) 136
126 APPLICATION (MALICIOUSAPP.EXE

FLES
MALICIOUSAPP.EXE.LOCAL SIDELOADTARGET.DLL

FINGERPRINT (S)

116
- 128 INSTRUCTIONS

LOADLIBRARY (C : \ COMMONFILESISYSTEMNORMALL.DLL)
LOADLIBRARY (C : \ COMMONFILESISYSTEMNORMAL2.DLL)
LOADLIBRARY (C : ICOMMONFILES \ SYSTEMSIDELOADTARGET.DLL)

DYNAMC - LINK LIBRARY
(DLL) LOADER 118

SXS MANAGER
MANFEST

- 130 120
122 CACHE

FILE NAME PATH NAME
MALICIOUSAPP.EXE.LOCAL C : \ BADACTORIMALICIOUSAPP.EXE.LOCAL
NORMAL1.DLL C : \ COMMONFILESISYSTEM?NORMAL1.DLL
NORMAL2.DLL C : \ COMMONFILESISYSTEM?NORMAL2.DLL
SIDELOAD TARGET.DLL C : BADACTOR SIDELOADTARGET.DLL

DLLS
NORMAL 1.DLL
NORMAL2.DLL

114

110

106

CENTRAL FACILITY

100

104

140

COMPUTING DEVICES DLLSC
FINGERPRINT (S)

FINGERPRINT (S)

138

NETWORK

142

EXECUTABLES)

Patent Application Publication

108

112

takt
COMPUTING DEVICE

102

OPERATING SYSTEM

132

124

134

DLL SECURITY
CONTROLLER (DLLSC)

136

126

APPLICATION (MALICIOUSAPP.EXE) FILES

MALICIOUSAPP.EXE.LOCAL

SIDELOAD TARGET.DLL

FINGERPRINT (S)
116

Jul . 1 , 2021

128

INSTRUCTIONS
LOADLIBRARY (C : \ COMMONFILESISYSTEMNORMAL1.DLL) LOADLIBRARY (C : \ COMMONFILESISYSTEM?NORMAL2.DLL) LOADLIBRARY (C : ICOMMONFILESISYSTEMSIDELOADTARGET.DLL)

DYNAMIC - LINK LIBRARY DLL LOADER

118

SXS MANAGER

Sheet 1 of 10

MANIFEST

130

120

CACHE

122

FILE NAME

PATH NAME MALICIOUSAPP.EXE.LOCAL C : BADACTOR \ MALICIOUSAPP.EXE.LOCAL

NORMAL 1.DLL

C : \ COMMONFILESISYSTEMINORMAL 1.DLL

NORMAL2.DLL

C : \ COMMONFILESISYSTEMINORMAL2DLL SIDELOADTARGET.DLL C : \ BADACTORISIDELOADTARGET.DLL

DLLS NORMAL 1.DLL NORMAL2 DLL

US 2021/0200867 A1

FIG . 1

Patent Application Publication Jul . 1 , 2021 Sheet 2 of 10 US 2021/0200867 A1

102

DYNAMIC - LINK LIBRARY (DLL SECURITY CONTROLLER

210
EVENT MONITOR

220
DLL PATH DETERMINER

230
FINGERPRINT GENERATOR

240
FINGERPRINT COMPARATOR

250
TELEMETRY INTERFACE

260
SECURITY ACTION ENFORCER

270

DATABASE
275

FINGERPRINTIS) .

FIG . 2

Patent Application Publication Jul . 1 , 2021 Sheet 3 of 10 US 2021/0200867 A1

CENTRAL FACILITY

310
NETWORK INTERFACE

320
FINGERPRINT COMPARATOR

330
ALERT GENERATOR

340
EXECUTABLE GENERATOR

350
TELEMETRY AGGREGATOR

360
EXECUTABLE DISTRIBUTOR

DATABASE 370

140
375

FINGERPRINTS) POLICY

142
380

EXECUTABLE (S) TELEMETRY
DATA

wwwuuuu

FIG . 3

Patent Application Publication Jul . 1 , 2021 Sheet 4 of 10 US 2021/0200867 A1

400

FEATURES
410

WEIGHT
1.0

EXECUTABLE FEATURES
FULL PATH NAME
IMPORTED FUNCTIONS LIST
DIGITAL SIGNATURE
HIGH - LEVEL LANGAUGE
COMPILER
FILE VERSION

1.0
2.1
1.8
0.5

420

DLL FEATURES
FULL PATH NAME
EXPORTED FUNCTIONS LIST
DIGITAL SIGNATURE
HIGH - LEVEL LANGUAGE
COMPILER
FLE VERSION

WEIGHT
0.9
0.8
1.2
2.7
2.2

FIG . 4

Patent Application Publication Jul . 1 , 2021 Sheet 5 of 10 US 2021/0200867 A1

500
START

502
NO DYNAMIC - LINK LIBRARY (?LL) INVOKED BY EVENT

OF COMPUTING DEVICE OPERATING SYSTEM ?
YES

504
DETERMINE DLL FINGERPRINT OF THE INVOKED DLL

506
NO

DLL INCLUDED IN LAUNCHED EXECUTABLE ?

YES 508
NO

SUPERSEDED PATH OF DLL EXISTS ?

510
YES

DETERMINE DLL FINGERPRINT OF SUPERSEDED DLL
AT THE SUPERSEDED PATH

512 COMPARE DLL FINGERPRINT (S) TO
REFERENCE FINGERPRINT (S)

514
YES DEVIATION THRESHOLD SATISFIED BASED ON THE

COMPARISON (S) ?
516

TRANSMIT DLL FINGERPRINT (S) TO
CENTRAL FACILITY TO PROCESS

518
NO CENTRAL FACILITY DETERMINED DEVIATION

THRESHOLD SATISFIED ?
YES

520
DETECT MALWARE ATTACK AT THE COMPUTING DEVICE

522 EXECUTE SECURITY ACTION (S) TO PROTECT THE
COMPUTING DEVICE FROM THE MALWARE ATTACK

524
YES

CONTINUE MONITORING COMPUTING DEVICE ?

Ý NO

END FIG . 5

Patent Application Publication Jul . 1 , 2021 Sheet 6 of 10 US 2021/0200867 A1

600

504 , 510

DETERMINE DLL FINGERPRINT

602 EXTRACT EXECUTABLE FEATURE (S) FROM
CALLER OF THE DLL

604 EXECUTE A HASH FUNCTION ON THE EXTRACTED
EXECUTABLE FEATURE (S) TO GENERATE EXECUTABLE

FEATURE HASH VALUE (S)

606
EXTRACT DLL FEATURE (S) FROM THE DLL

608 EXECUTE THE HASH FUNCTION ON THE EXTRACTED DLL
FEATURE (S) TO GENERATE DLL FEATURE HASH VALUE (S)

-610 DETERMINE DLL FINGERPRINT BASED ON AT LEAST ONE
OF THE EXECUTABLE FEATURE HASH VALUE (S) OR THE

DLL FEATURE HASH VALUE (S)

RETURN

FIG . 6

Patent Application Publication Jul . 1 , 2021 Sheet 7 of 10 US 2021/0200867 A1

700
START

702

OBTAINED DLL FINGERPRINT TO PROCESS ?

YES
704

INGERPRINT WITH
REFERENCE FINGERPRINT (S)

706
YES DEVIATION THRESHOLD SATISFIED BASED ON THE

COMPARISON (S) ?
NO

708 IDENTIFY THE DLL FINGERPRINT AS BEING ASSOCIATED
WITH A TRUSTED DLL

710 TRANSMIT ALERT TO REQUESTING COMPUTING DEVICE
THAT DEVIATION THRESHOLD HAS NOT BEEN SATISFIED

712
STORE DLL FINGERPRINT AS REFERENCE FINGERPRINT

714
IDENTIFY THE DLL FINGERPRINT AS BEING ASSOCIATED

WITH A MALICIOUS DLL

716 TRANSMIT ALERT TO REQUESTING COMPUTING DEVICE
THAT DEVIATION THRESHOLD IS SATISFIED

718
UPDATE MALWARE PROTECTION PARAMETER (S)

720
YES CONTINUE MONITORING FOR DLL FINGERPRINT ?

NO

END

FIG . 7

Patent Application Publication Jul . 1 , 2021 Sheet 8 of 10 US 2021/0200867 A1

800

718

UPDATE MALWARE PROTECTION PARAMETER (S)

802 STORE DLL FINGERPRINT ASSOCIATED WITH
MALICIOUS DLL AS REFERENCE FINGERPRINT

804
GENERATE NEW EXECUTABLE ?

YES

806 GENERATE NEW EXECUTABLE INCLUDING THE DLL
FINGERPRINT OF THE MALICIOUS DLL

808 GENERATE DISTRIBUTION POLICY
BASED ON TELEMETRY DATA

DISTRIBUTE NEW EXECUTABLE TO COMPUTING DEVICE (S)
BASED ON THE DISTRIBUTION POLICY

812 CAUSE COMPUTING DEVICE (S) TO IDENTIFY A MALWARE
ATTACK BASED ON THE NEW EXECUTABLE

RETURN

FIG.8

Patent Application Publication Jul . 1 , 2021 Sheet 9 of 10 US 2021/0200867 A1

900

PROCESSOR PLATFORM
928

270 932 MASS STORAGE
DATABASE

275 914 CODED

FINGERPRINT (S) VOLATILE MEMORY INSTRUCTIONS

INSTR 932
922

916
INPUT

DEVICE (S)
NON - VOLATILE
MEMORY 920

INTERFACE 926
- INSTR 932 250 BUS

918
912 NETWORK TELEMETRY

INTERFACE
PROCESSOR

913 924

a
LOCAL MEMORY

OUTPUT
DEVICE (S)

INSTR 932
210

EVENT MONITOR

220
DLL PATH DETERMINER

230
FINGERPRINT GENERATOR

240
FINGERPRINT COMPARATOR

260
SECURITY ACTION ENFORCER

uuuuuuuwwwwwwwwwwwwwwww

FIG.9

Patent Application Publication Jul . 1 , 2021 Sheet 10 of 10 US 2021/0200867 A1

PROCESSOR PLATFORM
MASS STORAGE 370

DATABASE
140

FINGERPRINT (S)
142

EXECUTABLE (S)
1032

375
1014 POLICY 380 CODED

VOLATILE MEMORY TELEMETRY DATA INSTRUCTIONS
+++++++ TELLET

VERKRAR

INSTR 1032 1022

1016 INPUT
DEVICE (S) NON - VOLATILE

MEMORY 1020
310 1026

INSTR 1032 BUS
1018

1012

INTERFACE
NETWORK
INTERFACE

NETWORK

PROCESSOR -1024
1013

OUTPUT
DEVICE (S) LOCAL MEMORY

INSTR 1032
320

FINGERPRINT COMPARATOR

330
ALERT GENERATOR

340
EXECUTABLE GENERATOR

350
TELEMETRY AGGREGATOR

360 EXECUTABLE DISTRIBUTOR
?? ???????

FIG . 10

US 2021/0200867 A1 Jul . 1 , 2021
1

METHODS AND APPARATUS TO DEFEND
AGAINST DLL SIDE - LOADING ATTACKS

FIELD OF THE DISCLOSURE

[0001] This disclosure relates generally to computer secu
rity and , more particularly , to methods and apparatus to
defend against dynamic - link library (DLL) side - loading
attacks .

[0014] Descriptors “ first , ” “ second , ” “ third , ” etc. , are used
herein when identifying multiple elements or components
which may be referred to separately . Unless otherwise
specified or understood based on their context of use , such
descriptors are not intended to impute any meaning of
priority , physical order or arrangement in a list , or ordering
in time but are merely used as labels for referring to multiple
elements or components separately for ease of understand
ing the disclosed examples . In some examples , the descrip
tor “ first ” may be used to refer to an element in the detailed
description , while the same element may be referred to in a
claim with a different descriptor such as “ second ” or “ third . ”
In such instances , it should be understood that such descrip
tors are used merely for ease of referencing multiple ele
ments or components .

BACKGROUND

[0002] Malicious software , known as “ malware , ” can
attack various computing devices via a network , such as the
Internet . Malware may include any program or file that is
intentionally harmful to a computer , such as computer virus
programs , Internet bots , spyware , computer worms and
other standalone malware computer programs that replicate
to spread to other computers , Trojan horse and other non
replicating malware , or any computer program that gathers
information about a computer , its user , or otherwise operates
without permission . Protecting computing devices from
such malware can be a significant challenge .

DETAILED DESCRIPTION

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] FIG . 1 is a schematic illustration of an example
computer security environment including an example
dynamic - link library (DLL) security controller and an
example central facility to identify malware .
[0004] FIG . 2 is a block diagram of the example DLL
security controller of FIG . 1 .
[0005] FIG . 3 is a block diagram of the example central
facility of FIG . 1 .
[0006] FIG . 4 depicts example executable features and
example DLL features that can be used by the example DLL
security controller of FIGS . 1 and / or 2 to identify malware .
[0007] FIG . 5 is a flowchart representative of example
machine readable instructions that may be executed to
implement the example DLL security controller of FIGS . 1
and / or 2 to execute security action (s) in response to identi
fying a malware attack .
[0008] FIG . 6 is a flowchart representative of example
machine readable instructions that may be executed to
implement the example DLL security controller of FIGS . 1
and / or 2 to determine a DLL fingerprint .
[0009] FIG . 7 is a flowchart representative of example
machine readable instructions that may be executed to
implement the example central facility of FIGS . 1 and / or 3
to identify a malware attack .
[0010] FIG . 8 is a flowchart representative of example
machine readable instructions that may be executed to
implement the example central facility of FIGS . 1 and / or 3
to update example malware protection parameter (s) .
[0011] FIG . 9 is a block diagram of an example processing
platform structured to execute the instructions of FIGS . 5
and / or 6 to implement the example DLL security controller
of FIGS . 1 and / or 2 .
[0012] FIG . 10 is a block diagram of an example process
ing platform structured to execute the instructions of FIGS .
7 and / or 8 to implement the example central facility of
FIGS . 1 and / or 3 .
[0013] The figures are not to scale . In general , the same
reference numbers will be used throughout the drawing (s)
and accompanying written description to refer to the same or

[0015] In computing environments , malicious actors aim
to conceal their attacks on computing devices , computing
systems , etc. , by leveraging legitimate or trusted software
applications . A common attack strategy can be abusing or
exploiting trusted executables (e.g. , executable files with an
“ .EXE ” file name extension , computer readable executables ,
etc.) during execution . For example , a malicious actor can
exploit vulnerabilities associated with an executable file
loading additional functions via modules , such as dynamic
link library (DLL) files or DLLs .
[0016] Malicious actors can target vulnerabilities associ
ated with DLLs by executing a DLL side - loading attack or
exploit . A DLL side - loading attack can occur when mali
cious code (e.g. , one or more malicious files , one or more
malicious scripts , etc.) assumes the place of legitimate code
(e.g. , one or more legitimate or trusted files , one or more
legitimate or trusted scripts , etc.) . One type of DLL side
loading attack can occur by exploiting a path hierarchy of an
operating system . For example , an attacker can supersede a
target DLL (e.g. , an intended DLL , a trusted DLL , etc.)
having a first path (e.g. , a first load path , a first operating
system (OS) path , etc.) by placing a malicious DLL in a
second path representative of a local path (e.g. , a path in a
side - by - side (SxS) assembly , a SxS assembly path , a sub
directory of an OS , etc.) . In such examples , the OS can load
the malicious DLL in the local path rather than the target
DLL in the first path .
[0017] Another type of DLL side - loading attack can occur
by compromising an application installation triggered by
loading a trusted executable . The application installation can
be compromised by replacing a target DLL (e.g. , a trusted
DLL) that is to be called by the trusted executable with a
malicious DLL . For example , a user of a computing device
can inadvertently replace the target DLL in memory with the
malicious DLL , where the malicious DLL has the same
name as the target DLL . The user can obtain the malicious
DLL from a compromised peripheral device (e.g. , an exter
nal hard - drive disc , a Universal Serial Bus (USB) thumb
drive , etc.) , a compromised email message or attachment ,
etc. In such examples , in response to loading the trusted
executable that invokes the target DLL , the OS of the
computing device can load the malicious DLL in place of the
target DLL .
[0018] Yet another type of DLL side - loading attack can
occur by compiling and / or distributing a trusted executable
with a malicious DLL . For example , an attacker can re
compile a first executable including a trusted DLL as a like parts .

US 2021/0200867 A1 Jul . 1. 2021
2

or

second executable including a malicious DLL . In such
examples , a computing device can install the malicious DLL
by installing the second executable instead of the intended
first executable .
[0019] By strategically replacing or pre - empting the load
ing of an intended DLL with that which contains malicious
code using the above - described DLL side - loading attacks ,
an attacker can exploit or take advantage of the trust
associated with an executable that invokes the intended
DLL . Some prior techniques for defending against DLL
side - loading attacks include identifying malicious code
within DLLs software vendors hardening their
executables against such attacks . For instance , a software
vendor can add increased specificity to DLL calls or invo
cations of an intended DLL to increase a probability that the
intended DLL is called when launching an executable of the
software vendor . However , in some instances , malicious
attackers can modify malicious code in new ways that prior
machine learning , fingerprinting , and / or signature algo
rithms have not encountered . In some instances , software
vendors refrain from adding increased specificity to DLL
calls to improve interoperability between (1) executables of
the software vendors and (2) different DLL versions of
and / or , more generally , different OS versions executed by
computing devices .
[0020] Examples disclosed herein include an example
DLL security controller to defend against DLL side - loading
attacks . In some disclosed examples , the DLL security
controller calculates , generates , and / or otherwise determines
a fingerprint (e.g. , a DLL fingerprint) of one or more target
DLLs invoked by an executable . For example , the DLL
fingerprint can include , correspond to , and / or otherwise be
representative of a relationship between a caller (e.g. , the
executable) and the called (e.g. , the referenced DLL) . In
such examples , the DLL fingerprint can be based on a list of
imported functions of the executable , a high - level language
(HLL) of the executable and / or the referenced DLL , a
compiler used to generate the executable and / or the refer
enced DLL , etc. , and / or a combination thereof . The example
DLL security controller can compare the target DLL finger
print (s) to reference DLL fingerprint (s) . For example , the
reference DLL fingerprint (s) can be stored on a computing
device , a trusted execution environment (TEE) of the com
puting device , etc.
[0021] In some disclosed examples , the DLL security
controller determines whether a superseded path exists . For
example , the DLL security controller can determine that a
target DLL is included in a local path (e.g. , a path of the
executable , a SxS path , etc.) (e.g. , a local path DLL) of the
computing device . In such examples , the DLL security
controller can identify the local path DLL as a superseded
DLL located at a superseded path . In some disclosed
examples , the DLL security controller can calculate a DLL
fingerprint of the superseded DLL and compare the super
seded DLL fingerprint to the reference DLL fingerprint (s) of
the computing device . In such disclosed examples , the DLL
security controller can determine that the superseded DLL (S)
are malicious DLL (s) based on the comparison . In response
to the determination , the example DLL security controller
can execute one or more security actions or tasks to protect
the computing device from the malicious DLL (s) .
[0022] In some disclosed examples , the DLL security
controller transmits the target DLL fingerprint (s) to an
example central facility (e.g. , one or more computing sys

tems , one or more servers , a cloud computing environment
or platform , etc.) in response to determining that a super
seded path does not exist . In such disclosed examples , the
central facility can compare the target DLL fingerprint (s) to
reference DLL fingerprint (s) stored in the central facility .
For example , the reference DLL fingerprint (s) of the central
facility can be generated by the central facility in response
to the central facility receiving requests from a plurality of
computing devices to analyze target DLLs .
[0023] In some disclosed examples , the DLL security
controller and / or the central facility determines that a thresh
old has been met and / or otherwise satisfied based on a
comparison of a target DLL fingerprint and a reference DLL
fingerprint . For example , the threshold being satisfied can be
indicative of a DLL , and / or , more generally , the executable
associated with the DLL , as being compromised or associ
ated with an attack . In such examples , the DLL security
controller and / or the central facility can identify an attack ,
an exploit , etc. , based on the threshold being satisfied . In
some disclosed examples , in response to determining that
the threshold has been satisfied , the DLL security controller
executes security action (s) to defend against the DLL side
loading attack , such as generating a log , blocking execution
of the executable , replacing the malicious DLL (s) , etc. ,
and / or a combination thereof .
[0024] FIG . 1 is a schematic illustration of an example
environment 100 including example dynamic - link library
(DLL) security controllers (DLLSCs) 102 , 104 and an
example central facility 106 to identify a malware attack
associated with example computing devices 108 , 110 includ
ing a first example computing device 108 and second
example computing devices 110. In FIG . 1 , the environment
is a security environment (e.g. , a computer security envi
ronment) , a malware security or protection environment , etc.
In FIG . 1 , the second computing devices 110 include two or
more computing devices , a plurality of computing devices ,
etc.
[0025] In the illustrated example of FIG . 1 , the computing
devices 108 , 110 of FIG . 1 are personal computers (e.g. ,
desktop computers , laptop computers , etc.) using and / or
otherwise executing an example operating system (OS) 112 .
Alternatively , one or more of the computing devices 108 ,
110 may be a server , a mobile device (e.g. , a smartphone , a
tablet , etc.) , or any other type of computing device .
[0026] In the illustrated example of FIG . 1 , the first
computing device 108 and the second computing devices
110 are in communication with the central facility 106 via an
example network 114. The network 114 of the example of
FIG . 1 is the Internet . However , the network 114 can be
implemented using any suitable wired and / or wireless net
work (s) including , for example , one or more data buses , one
or more Local Area Networks (LANs) , one or more wireless
LANs , one or more cellular networks , one or more private
networks , one or more public networks , etc.
[0027] In the illustrated example of FIG . 1 , the computing
devices 108 , 110 include a respective one of the DLL
security controllers 102 , 104 including a first example DLL
security controller 102 and second example DLL security
controllers 104. In FIG . 1 , the first computing device
includes the first DLL security controller 102 and the second
computing devices 110 include a respective one of the
second DLL security controllers 104. In some examples , the
first DLL security controller 102 is the same as one or more
of the second DLL security controllers 104. For example , a

US 2021/0200867 A1 Jul . 1. 2021
3

first version (e.g. , a first hardware and / or software version)
of the first DLL security controller 102 and a second version
(e.g. , a first hardware and / or software version) of a respec
tive one of one or more of the second DLL security con
trollers 104 can be the same . In some examples , the first
DLL security controller 102 is different from one or more of
the second DLL security controllers 104. For example , the
first version and a respective version of one or more of the
second DLL security controllers 104 can be different . In
some examples , a first one of the second DLL security
controllers 104 can be different from one or more of the
other second DLL security controllers 104. As used herein ,
the description of the first DLL security controller 102 can
be applicable to one or more of the second DLL security
controllers 104. Likewise , the description of the one or more
of the second DLL security controllers 104 can be applicable
to the first DLL security controller 102 .
[0028] In the illustrated example of FIG . 1 , the OS 112
and / or , more generally , the first computing device 108 ,
includes an example DLL loader 116 , an example side - by
side (SxS) manager 118 , example cache 120 , example DLLS
122 , and an example application (maliciousapp.exe) 124. In
FIG . 1 , the application 124 is an executable . For example ,
the application 124 can be a malicious executable applica
tion that , when executed , can implement and / or otherwise
execute a DLL side - loading attack on the OS 112 and / or ,
more generally , the first computing device 108 .
[0029] In the illustrated example of FIG . 1 , the application
124 includes example files (e.g. , executable or application
files) 126 , example instructions (e.g. , executable or appli
cation instructions) 128 , and an example manifest (e.g. , an
executable or application manifest) 130. In FIG . 1 , the files
126 include example computer readable and / or computer
executable files that , when executed , can execute an
intended function . In FIG . 1 , the files 126 include a first
example file (maliciousapp.exe.local) 132 and a second
example file (sideloadtarget.dll) 134 that , when executed by
the OS 112 , can execute and / or otherwise carry out a DLL
side - loading attack , exploit , and / or other malicious action
(s) . For example , the second file 134 can be a malicious
DLL . Additionally or alternatively , the files 126 may include
more files than the first file 132 and the second file 134
depicted in FIG . 1 .
[0030] In the illustrated example of FIG . 1 , the first file
132 is a redirection file . For example , a presence of the first
file 132 in a local folder path of the application 124 can
cause the OS 112 to first check the local folder path when the
OS 112 loads a DLL . In such examples , the OS 112 can first
check the local folder path regardless of the path name
specified to the DLL loader 116. For example , a local path
name of the application 124 can be “ C : \ badactor ” . In such
examples , the presence of the first file 132 in the local path
name can cause the DLL loader 116 to load the second file
134 instead of loading another DLL in the cache 120 that has
the same file name as the second file 134. In other examples ,
when the DLL loader 116 obtains instructions to load the
DLL with the file name “ normal1.DLL , " the DLL loader 116
first determines if the DLL is in the local path name
“ C : \ badactor " and , if the DLL is not located in the local path
name “ C : \ badactor , " loads the DLL “ normal1.DLL " from
the cache 120 .
[0031] In the illustrated example of FIG . 1 , the OS 112
loads the application 124 and identifies data (e.g. , a table of
data , an imports table , an imported functions table , an

imported functions list , etc.) included in the application 124 .
For example , the manifest 130 can include an imported
functions list that includes one or more libraries of functions
that the application 124 imports , such as one or more
functions , classes , variables , resources , etc. , associated with
and / or otherwise included in the “ normal1.dll , " " normal2 .
d11 , ” and “ sideloadtarget.dll " DLLs . In such examples , the
DLL loader 116 can search for the DLL “ normal1.dll ” based
on the imported functions list and import one or more
functions from the “ normal1.dll ” to the application 124 .
[0032] In the illustrated example of FIG . 1 , the second file
134 is a DLL . For example , in response to executing the
application 124 , the OS 112 loads the second file 134 and
identifies data (e.g. , a table of data , an exports table , an
exported functions table , an exported functions list , etc.)
included in the second file 134. In such examples , the second
file 134 can include an exported functions list that includes
name (s) of function (s) that the second file 134 exports to
other executables . For example , the exported functions list
can connect addresses (e.g. , an address in the cache 120 ,
memory , an HDD , etc.) to each of the functions inside the
second file 134. In such examples , the application 124 can
use a first address corresponding to a first function of the
second file 134 when the application 124 intends to call or
execute the first function of the second file 134 .
[0033] In the illustrated example of FIG . 1 , the application
124 includes the instructions 128 that , when executed ,
instruct the DLL loader 116 and / or , more generally , the OS
112 , to install the application 124. For example , the instruc
tions 128 include load library instructions that , when
executed , can invoke the DLL loader 116 to install a first
DLL " normal1.DLL ” and a second DLL " normal2.DLL "
from the cache 120 , and install a third DLL “ sideloadtarget .
DLL ” from a local path folder of the application 124 .
Additionally or alternatively , the instructions 128 may
include more files than the files 126 depicted in FIG . 1 .
[0034] In the illustrated example of FIG . 1 , the application
124 includes the manifest 130 to specify a file name and a
path name for respective one (s) of executable and / or DLL
files associated with an installation of the application 124 .
The manifest 130 of the example of FIG . 1 is an Extensible
Markup Language (XML) file that includes information ,
parameters , settings , etc. , that informs and / or otherwise
causes the OS 112 to facilitate an installation of the appli
cation 124. Alternatively , the manifest 130 may be any other
type of file and / or have any other type of computer readable
format .
[0035] In the illustrated example of FIG . 1 , the manifest
130 includes a first file name “ maliciousapp.exe.local ” and
a first path name " C : \ badactor maliciousapp.exelocal ” for
the executable “ maliciousapp.exe , ” where the file name has
an extension of “ .local . ” By having the extension of “ .local , ”
the DLL loader 116 can identify that the first file name is a
redirection file and ignore the contents of the redirection file .
In FIG . 1 , the manifest 130 includes a file name and a path
name for DLLs referenced by the application 124 (e.g. ,
" normal1.dll , " " normal2.dll , " and " sideloadtarget.dll ") .
[0036] In the illustrated example of FIG . 1 , the OS 112
includes the DLL loader 116 to extract information from the
application 124 and load a referenced DLL based on the
extracted information . In some examples , the DLL loader
116 extracts information from the application 124 , such as
the files 126 and / or the instructions 128. In some examples ,
the DLL loader 116 extracts information from the applica

US 2021/0200867 A1 Jul . 1. 2021
4

tion 124 , such as file name (s) , path name (s) , and / or , more
generally , information included in the manifest 130. In some
examples , the DLL loader 116 loads the second file 134 in
response to an installation of the application 124 .
[0037] In the illustrated example of FIG . 1 , the DLL loader
116 includes the SxS manager 118 to name , bind , version ,
deploy , and / or configure a DLL , such as the DLLs 122 of
FIG . 1. In FIG . 1 , the SxS manager 118 accesses the cache
120 to retrieve and / or otherwise obtain one of the DLLs 122 .
For example , in response to the OS 112 installing the
application 124 , the SxS manager 118 can determine
whether the application 124 has a local copy of one or more
referenced DLLs as described in the manifest 130. For
example , the SxS manager 118 can invoke the DLL loader
116 to load the second file 134 instead of a DLL in the cache
120 based on information in the manifest 130. In other
examples , the SxS manager 118 can invoke the DLL loader
116 to load one of the DLLs 122 , such as " normall.dll , ” in
response to the SxS manager 118 determining that the
application 124 does not have a local copy (e.g. , a copy in
the local path " C : \ badactor ") .
[0038] In the illustrated example of FIG . 1 , the cache 120
is software cache . For example , the cache 120 can store data ,
such as the DLLs 122 , so that future requests for the DLLs
122 can be served faster . In such examples , the cache 120
can include the DLLs 122 that correspond to an earlier
computation or a copy of data stored elsewhere (e.g. , stored
on a hard - disc drive (HDD) , stored in random access
memory (RAM) , etc.) . Additionally or alternatively , the
cache 120 may be hardware , such as an HDD , RAM , etc.
[0039] In the illustrated example of FIG . 1 , the first DLL
security controller 102 monitors for an event generated by
an operating system (OS) of the first computing device 108
to detect a malware attack or exploit being executed on the
first computing device 108. In some examples , the event is
an OS event , such as a process creation event (e.g. , a
program or application being executed by the OS) , a service
creation event (e.g. , a service being executed by the OS) , a
load library event (e.g. , a DLL load event , a loading of a
DLL , etc.) , etc.
[0040] In some examples , the first DLL security controller
102 monitors for the event by subscribing to OS notifica
tions . For example , the first DLL security controller 102 can
provide a callback function to the OS 112. The callback
function enables the first DLL security controller 102 to
subscribe to an OS notification generated by the OS 112 in
response to the creation event . For example , in response to
the OS 112 invoking a DLL (e.g. , invoking a loading of a
DLL) , such as the second file 134 , the OS 112 can generate
an OS notification indicative of and / or otherwise corre
sponding to the invoking of the second file 134. In such
examples , in response to generating the OS notification , the
OS 112 can call or invoke the callback function . The first
DLL security controller 102 can determine that the second
file 134 has been invoked and / or , more generally , determine
that the event has been created , in response to the callback
function being invoked .
[0041] In some examples , the first DLL security controller
102 generates a fingerprint (e.g. , a DLL fingerprint) of the
invoked DLL , such as the second file 134. In some
examples , the DLL fingerprint describes and / or otherwise is
representative of a relationship (e.g. , a list of imported
functions , one or more addresses corresponding to a DLL ,
etc.) between the caller of a DLL (e.g. , the application 124)

and the DLL , properties (e.g. , static properties) of the DLL ,
etc. , and / or a combination thereof . For example , the first
DLL security controller 102 can extract features from the
second file 134 , the application 124 , etc. , and / or a combi
nation thereof . In such examples , the first DLL security
controller 102 can extract DLL features from the second file
134 , such as a path name (e.g. , a full path name) of the
second file 134 , an exported functions list of the second file
134 , etc. In other examples , the first DLL security controller
102 can extract executable features from the application 124 ,
such as a high - level language (HLL) used to generate the
application 124 , a compiler (e.g. , a compiler name , a com
piler type , a compiler identifier , etc.) that compiled the
application 124 , etc.
[0042] In some examples , the first DLL security controller
102 generates the DLL fingerprint based on at least one of
the DLL features or the executable features . For example ,
the first DLL security controller 102 can generate the DLL
fingerprint by executing a hash function on the DLL fea
tures , the executable features , etc. , to generate hash values .
In such examples , the first DLL security controller 102 can
generate the DLL fingerprint by concatenating the hash
values or portion (s) thereof .
[0043] In some examples , the first DLL security controller
102 can compare the DLL fingerprint to first example
reference fingerprint (s) (e.g. , reference DLL fingerprint (s))
136. For example , the first reference fingerprint (s) 136 can
be DLL fingerprints previously generated by the first DLL
security controller 102 of the first computing device 108 ,
one or more of the second computing devices 110 , the
central facility 106 , etc. , and / or a combination thereof . In
FIG . 1 , the second computing devices 110 include second
example reference fingerprint (s) 138. In some examples , the
first reference fingerprint (s) 136 are the same as the second
reference fingerprint (s) 138. In some examples , one or more
of the first reference fingerprint (s) 136 are different from one
or more of the second reference fingerprint (s) 138 .
[0044] In the illustrated example of FIG . 1 , the central
facility 106 can detect a malware attack at a computing
device , such as the first computing device 108 , one or more
of the second computing devices 110 , etc. , and / or a combi
nation thereof . In some examples , the central facility 106
detects the malware attack by comparing a DLL fingerprint
obtained from the first computing device 108 , one or more
of the second computing devices 110 , etc. , to third example
reference fingerprint (s) 140. For example , the central facility
106 can obtain a first DLL fingerprint from the first com
puting device 108 , where the first DLL fingerprint is based
on the second file 134. In such examples , the central facility
106 can detect a malware attack at the first computing device
108 in response to the first DLL fingerprint matching one of
the third reference DLL fingerprint (s) 140 or portion (s)
thereof , where the matching reference DLL fingerprint is
known to be associated with the malware attack . In other
examples , the central facility 106 can detect the malware
attack by determining whether a difference between (1) the
first DLL fingerprint and (2) one of the third reference
fingerprint (s) satisfies a threshold (e.g. , a deviation thresh
old , a DLL deviation threshold , etc.) . For example , the
central facility 106 can determine that the difference satisfies
the deviation threshold in response to the difference being
greater than the deviation threshold . In other examples , the
central facility 106 can determine whether the first DLL
fingerprint has deviated from one (s) of the third reference

US 2021/0200867 A1 Jul . 1 , 2021
5

fingerprint (s) 140 known to be associated with trusted
DLL (s) and / or are DLL fingerprint (s) not known to be
associated with a malware attack .
[0045] In some examples , the central facility 106 gener
ates and transmits an alert based on the comparison of the
first DLL fingerprint and one (s) of the third reference
fingerprint (s) 140. For example , the central facility 106 can
transmit an alert to the first computing device 108 in
response to the central facility 106 determining that the
second file 134 is not a malicious DLL . In other examples ,
the central facility 106 can transmit an alert to the first
computing device 108 in response to the central facility 106
determining that the second file 134 is a malicious DLL
and / or otherwise associated with a malware attack . In some
examples , in response to obtaining the alert indicative of the
malware attack , the first DLL security controller 102 and / or ,
more generally , the first computing device 108 , can execute
one or more security actions to protect the first computing
device 108 from the malware attack .
[0046] In the illustrated example of FIG . 1 , the third
reference fingerprint (s) 140 can be DLL fingerprints previ
ously generated by the first DLL security controller 102 of
the first computing device 108 , one or more of the second
computing devices 110 , the central facility 106 , etc. , and / or
a combination thereof . In such examples , the central facility
106 can obtain one or more of the third reference fingerprint
(s) 140 from the first computing device 108 , one or more of
the second computing devices 110 , etc. In some examples ,
the third reference fingerprint (s) 140 are the same as the first
reference fingerprint (s) 136 and the second reference fin
gerprint (s) 138. In some examples , one or more of the first
reference fingerprint (s) 136 , one or more of the second
reference fingerprint (s) 138 , and / or one or more of the third
reference fingerprint (s) 140 can be different .
[0047] In some examples , the central facility 106 updates
one or more of the DLL security controllers 102 , 104 by
pushing and / or otherwise transmitting example executable
(s) 142 generated and / or stored by the central facility 106 to
one (s) of the computing device (s) 108 , 110. For example , the
first DLL security controller 102 of FIG . 1 can correspond
to a first software version of 1.0 . In such examples , the
central facility 106 can obtain telemetry data from the first
DLL security controller 102 that includes the first software
version . The central facility 106 can determine that the first
DLL security controller 102 is to be upgraded because the
central facility 106 includes one of the executable (s) 142
that corresponds to a second software version of 2.0 that is
newer than the first software version . The central facility 106
can transmit the executable (s) 142 corresponding to the
second software version to the first computing device 108 to
upgrade the first DLL security controller 102 with the newer
version to protect against malware attacks .
[0048] In some examples , the central facility 106 gener
ates the executable (s) 142 based on telemetry data and / or
DLL fingerprint (s) obtained from the first computing device
108 , one or more of the second computing devices 110 , etc.
For example , the central facility 106 can obtain a first DLL
fingerprint from the first computing device 108 and store the
first DLL fingerprint as one of the third reference fingerprint
(s) 140. In such examples , the central facility 106 can
generate the executable (s) 142 to include the third reference
fingerprint (s) 140 .
[0049] In the illustrated example of FIG . 1 , the central
facility 106 can include , correspond to , and / or otherwise be

representative of one or more servers (e.g. , computing
servers) . For example , the central facility 106 can include
one or more cloud - based servers , where ones of the cloud
based servers have different functions . In such examples , the
central facility 106 can include a first cloud - based server that
stores one (s) of the third reference fingerprint (s) 140 , one (s)
of the executable (s) 142 , etc. , while a second cloud - based
server different from the first cloud - based server manages
and / or otherwise controls telemetry aggregation operations
and fingerprint analysis operations .
[0050] In some examples , the central facility 106 facili
tates one or more downloads of the executable (s) 142 to the
first computing device 108 , one or more of the second
computing devices 110 , etc. , from a content delivery or a
content distribution network (CDN) . For example , the cen
tral facility 106 can include , correspond to , and / or otherwise
be representative of a geographically distributed network of
proxy servers and corresponding data centers (e.g. , a data
center including one or more computer servers) to deliver
software , such as the executable (s) 142 to the first comput
ing device 108 , one or more of the second computing
devices 110 , etc. , based on a geographic location of request
ing one (s) of the computing device (s) 108 , 110 , an origin of
respective requests for the executable (s) 142 , telemetry data
obtained from the computing device (s) 108 , 110 , etc.
[0051] FIG . 2 is a block diagram of the first DLL security
controller 102 of FIG . 1. Although the block diagram of FIG .
2 represents a single DLL security controller , multiple
instances of the block diagram of FIG . 2 can be used to
implement multiple DLL security controllers such as the first
DLL security controller 102 , one or more of the second DLL
security controllers 104 , etc. , of FIG . 1. In the illustrated
example of FIG . 2 , the first DLL security controller 102
includes an example event monitor 210 , an example DLL
path determiner 220 , an example fingerprint generator 230 ,
an example fingerprint comparator 240 , an example telem
etry interface 250 , an example security action enforcer 260 ,
an example database 270 , and example reference fingerprint
(s) 275 .
[0052] In the illustrated example of FIG . 2 , the first DLL
security controller 102 includes the event monitor 210 to
monitor for an event generated by the OS 112 of FIG . 1. In
some examples , the event monitor 210 detects an OS event ,
such as a process creation event , a service creation event , a
load library event , etc. For example , the event monitor 210
can detect and / or otherwise determine that a DLL has been
invoked by an event of the OS 112 of the first computing
device 108. In some examples , the event monitor 210 detects
the event by generating and / or providing a callback function
to the OS 112 , where the callback function corresponds to
the event . In such examples , the event monitor 210 can
detect the event in response to the callback function being
called by the OS 112 .
[0053] In the illustrated example of FIG . 2 , the first DLL
security controller 102 includes the DLL path determiner
220 to determine a path name of a referenced or invoked
DLL . In some examples , the DLL path determiner 220
determines whether an invoked DLL is included in a
launched executable (e.g. , the application 124 of FIG . 1) . In
such examples , the DLL path determiner 220 can determine
that the path name of the invoked DLL is a local path of the
launched executable based on the invoked DLL being
included in the launched executable .

US 2021/0200867 A1 Jul . 1. 2021
6

[0054] In some examples , the DLL path determiner 220
determines whether a superseded path of a referenced DLL
exists . For example , in response to the DLL path determiner
220 determining that the invoked DLL is included in the
same directory as an executable file (e.g. , maliciousapp.exe ,
the application 124 , etc.) , the DLL path determiner 220 can
determine whether the invoked DLL is stored at a different
location on the OS 112 and / or , more generally , the first
computing device 108. For example , the DLL path deter
miner 220 can determine that a DLL with the same file name
as the second file 134 of FIG . 1 is not stored in the cache 120
of FIG . 1 , or elsewhere on the OS 112 and / or , more
generally , the first computing device 108. In such examples ,
the DLL path determiner 220 can determine that a super
seded path for the second file 134 does not exist . In other
examples , the DLL path determiner 220 can determine that
a superseded path for the second file 134 exists when the
DLL path determiner 220 detects that a DLL with the same
file name as the second file 134 is stored on the OS 112
and / or , more generally , the first computing device 108 .
[0055] In the illustrated example of FIG . 2 , the first DLL
security controller 102 includes the fingerprint generator 230
to calculate , determine , and / or otherwise generate a DLL
fingerprint based on a DLL (e.g. , a target DLL , a referenced
DLL , the second file 134 , etc.) and / or an executable (e.g. , the
application 124) that calls the DLL . In some examples , the
fingerprint generator 230 extracts DLL features from the
DLL and / or executable features from the executable . In such
examples , the fingerprint generator 230 can generate a DLL
fingerprint based on at least one of the DLL features or the
executable features .
[0056] In some examples , the fingerprint generator 230
extracts DLL features from the DLL such as a full path name
of the DLL , an exported functions list associated with and / or
otherwise included in the DLL , a digital signature (e.g. ,
information including the digital signature , digital signature
information , etc.) of the DLL , an HLL of the DLL , a
compiler that compiled the DLL , a file version of the DLL ,
etc. In some examples , the fingerprint generator 230 extracts
executable features from the executable such as a full path
name of the executable , an imported functions list associated
with and / or otherwise included in the executable , a digital
signature of the executable (e.g. , digital signature data or
information associated with and / or based on the executable) ,
an HLL of the executable , a compiler that compiled the
executable , a file version of the executable , etc.
[0057] In some examples , the fingerprint generator 230
generates a DLL fingerprint of an invoked DLL . For
example , the fingerprint generator 230 can generate a DLL
fingerprint based on the second file 134 in response to the
application 124 invoking or calling the second file 134. In
some examples , the fingerprint generator 230 generates a
DLL of a superseded DLL , or a DLL stored at a local path
of the application 124 , where the superseded DLL has the
same file name as the invoked DLL .
[0058] In some examples , the fingerprint generator 230
generates a DLL fingerprint by executing a hash function on
one or more DLL features , one or more executable features ,
etc. , and / or a combination thereof . For example , the finger
print generator 230 can execute a cyclic redundancy check
(CRC) hash function on a first DLL feature to determine a
first hash value , a second DLL feature to determine a second
hash value , a first executable feature to determine a third
hash value , a second executable feature to determine a fourth

hash value , etc. , and / or a combination thereof . In such
examples , the fingerprint generator 230 can generate the
DLL fingerprint by concatenating one or more of the first
hash value , the second hash value , etc.
[0059] In the illustrated example of FIG . 2 , the first DLL
security controller 102 includes the fingerprint comparator
240 to compare a DLL fingerprint to one or more reference
fingerprints . In some examples , the fingerprint comparator
240 compares a DLL fingerprint of an invoked DLL to
one (s) of the first reference fingerprint (s) 136 of FIG . 1. For
example , the fingerprint comparator 240 can compare a DLL
fingerprint based on the second file 134 to one or more of the
first reference fingerprint (s) 136. In such examples , the
fingerprint comparator 240 can determine whether the DLL
fingerprint matches one or more portions of one (s) of the
first reference fingerprint (s) 136 known to be associated with
a malware attack .
[0060] In some examples , the fingerprint comparator 240
determines whether the DLL fingerprint deviates from any
of the first reference fingerprint (s) 136 known to be associ
ated with trusted DLL (S) (e.g. , a trusted DLL fingerprint) .
For example , the fingerprint comparator 240 can determine
that a difference between the DLL fingerprint (e.g. , one or
more portions of the DLL fingerprint) and a first one of the
first reference fingerprint (s) 136 (e.g. , one or more portions
of the first one of the first reference fingerprint (s) 136)
satisfies a deviation threshold . For example , the fingerprint
comparator 240 can determine that the difference satisfies
the deviation threshold in response to the difference being
greater than the deviation threshold .
[0061] In some examples , the difference can be a Ham
ming distance and / or any other distance (e.g. , a bit distance ,
a string distance , etc.) between strings or sets of bits . In such
examples , the fingerprint comparator 240 can calculate
and / or otherwise determine a Hamming distance between
(1) a first bit string based on the DLL fingerprint and (2) a
second bit string based on one of the first reference finger
print (s) 136. In some examples , the first bit string is one or
more portions of the DLL fingerprint and the second bit
string is one or nore portions of the first one of the first
reference fingerprint (s) 136. For example , the first bit string
can include a first set of bits corresponding to a full path
name of the second file 134 , a second set of bits correspond
ing to an HLL of the second file 134 , etc. In such examples ,
the second bit string can include a first set of bits corre
sponding to a full path name of a DLL associated with the
first one of the first reference fingerprint (s) 136 , a second set
of bits corresponding to a HLL of the DLL associated with
the first one of the first reference fingerprint (s) 136 , etc.
[0062] In some examples , the fingerprint comparator 240
determines whether the difference (e.g. , the Hamming dis
tance) satisfies a deviation threshold representative of and / or
otherwise corresponding to the DLL fingerprint deviating
from trusted DLL fingerprint (s) beyond an acceptable or
expected quantity of deviation . In some examples , in
response to determining that the difference satisfies a devia
tion threshold , the fingerprint comparator 240 determines
and / or otherwise identifies that the DLL fingerprint is asso
ciated with a malicious DLL . For example , the fingerprint
comparator 240 can determine that the DLL (e.g. , the second
file 134) associated with the DLL fingerprint being analyzed
is (e.g. , likely is , probabilistically is , etc.) a malicious file
(e.g. , a malicious DLL) that can be used to execute a
malware attack at the first computing device 108. In some

US 2021/0200867 A1 Jul . 1. 2021
7

examples , the fingerprint comparator 240 can transmit the
DLL fingerprint to the central facility 106 to be stored as one
of the third reference fingerprint (s) 140. In some examples ,
the fingerprint comparator 240 stores an association between
the DLL fingerprint and an identifier (e.g. , a malicious DLL
fingerprint identifier , a malicious file identifier , etc.) , where
the identifier can be indicative of the DLL fingerprint being
associated with a malware attack , a malicious DLL , etc.
[0063] In some examples , in response to determining that
the difference does not satisfy the deviation threshold , the
fingerprint comparator 240 determines and / or otherwise
identifies that the DLL fingerprint is associated with a
trusted DLL . For example , the fingerprint comparator 240
can determine that the DLL (e.g. , the second file 134)
associated with the DLL fingerprint being analyzed is (e.g. ,
likely is , probabilistically is , etc.) a trusted file (e.g. , a trusted
DLL) that can be safely executed by the first computing
device 108 .
[0064] In the illustrated example of FIG . 2 , the first DLL
security controller 102 includes the telemetry interface 250
to transmit telemetry data to the central facility 106. For
example , the telemetry data can include a DLL (e.g. , the
second file 134) , a DLL fingerprint based on the DLL , a
superseded DLL fingerprint associated with the DLL , one or
more features associated with the DLL and / or the executable
that called the DLL , a software version of the first DLL
security controller 102 , etc. , and / or a combination thereof . In
such examples , in response to the DLL path determiner 220
detecting a superseded path associated with the second file
134 , the telemetry interface 250 can transmit the superseded
DLL fingerprint to the central facility 106 to compare the
superseded DLL fingerprint against the third reference fin
gerprint (s) 140 .
[0065] In some examples , the telemetry interface 250
executes requests from the central facility 106 for telemetry
data associated with the computing devices 108 , 110. In
some examples , the central facility 106 transmits a request
to one (s) of the computing device (s) 108 , 110 for telemetry
data . For example , the central facility 106 can request the
first computing device 108 to provide telemetry data asso
ciated with the first DLL security controller 102 , the OS 112 ,
and / or , more generally , the first computing device 108. In
such examples , in response to the request , the telemetry
interface 250 can transmit telemetry data including a soft
ware version of the first DLL security controller 102 , an OS
version and / or a provider of the OS 112 , etc. , and / or a
combination thereof . For example , the central facility 106
can determine a corresponding one of the executable (s) 142
to send to the first computing device 108 based on the
telemetry data . In such examples , the central facility 106 can
send a first one of the executable (s) 142 having a compatible
OS version and / or OS provider as that of the OS 112 based
on the telemetry data obtained from the first computing
device 108 .
[0066] In the illustrated example of FIG . 2 , the first DLL
security controller 102 includes the security action enforcer
260 to detect a malware attack at the first computing device
108 and execute security action (s) to protect the first com
puting device 108 from the malware attack . In some
examples , the security action enforcer 260 detects an attack ,
an exploit , etc. , in response to a deviation threshold being
satisfied . In some examples , the security action enforcer 260
detects an attack , an exploit , etc. , in response to obtaining an
alert from the central facility 106. For example , the telem

etry interface 250 can transmit a DLL fingerprint based on
the second file 134 to the central facility 106. The central
facility 106 can determine that a difference between the DLL
fingerprint and one (s) of the third reference fingerprint (s)
satisfy a deviation threshold . The central facility 106 can
transmit an alert to the telemetry interface 250 , where the
alert can be indicative of the deviation threshold being
satisfied . In response to obtaining the alert , the security
action enforcer 260 can determine that the second file 134 is
associated with a malware attack .
[0067] In some examples , the security action enforcer 260
can execute one or more security actions in response to a
detection of an attack on the OS 112 and / or , more generally ,
the first computing device 108. For example , the security
action enforcer 260 can execute a security action by gener
ating a log that includes data or information corresponding
to an identified malicious DLL (e.g. , the second file 134) ,
one or more events that caused the malicious DLL to be
invoked , an application (e.g. , the application 124) that
invoked the malicious DLL , the DLL fingerprint associated
with the malicious DLL , description (s) of security action (s)
executed by the security action enforcer 260 , etc. In such
examples , the security action enforcer 260 can invoke the
telemetry interface 250 transmit the log and / or correspond
ing information to the central facility 106 .
[0068] In some examples , the security action enforcer 260
executes a security action by preventing a malicious DLL
from loading , unloading the malicious DLL , etc. For
example , the security action enforcer 260 can prevent the
second file 134 from being loaded into memory or halt the
application 124 from executing function (s) included in the
second file 134. In other examples , in response to the second
file 134 being loaded into memory of the first computing
device 108 , the security action enforcer 260 can unload the
second file 134 from the memory .
[0069] In some examples , the security action enforcer 260
executes a security action by suspending and / or terminating
a process associated with the malicious DLL . For example ,
the security action enforcer 260 can pause an execution of
the application 124 and / or cancel the execution of the
application 124 .
[0070] In some examples , the security action enforcer 260
quarantines the malicious DLL and / or an associated execut
able . For example , the security action enforcer 260 can
move the second file 134 , the application 124 , etc. , and / or a
combination thereof to a trusted execution environment
(TEE) , a sandbox , etc. In such examples , the TEE , the
sandbox , etc. , can be in a protected portion of the cache 120
of FIG . 1 or in memory associated with the first DLL
security controller 102 .
[0071] In the illustrated example of FIG . 2 , the first DLL
security controller 102 includes the database 270 to store or
record data including example reference fingerprint (s) 275 .
In some examples , the reference fingerprint (s) 275 can
correspond to the first reference fingerprint (s) 136 of FIG . 1 ,
the second reference fingerprint (s) 138 of FIG . 1 , etc. , and / or
a combination thereof . Additionally or alternatively , the
example database 270 may include executable (s) , telemetry
data , telemetry parameters , etc. The example database 270
can be implemented by a volatile memory (e.g. , a Synchro
nous Dynamic Random Access Memory (SDRAM) ,
Dynamic Random Access Memory (DRAM) , RAIVIBUS
Dynamic Random Access Memory (RDRAM) , etc.) and / or
a non - volatile memory (e.g. , flash memory) . The example

US 2021/0200867 A1 Jul . 1 , 2021
8

database 270 may additionally or alternatively be imple
mented by one or more double data rate (DDR) memories ,
such as DDR , DDR2 , DDR3 , mobile DDR (mDDR) , etc.
The example database 270 may additionally or alternatively
be implemented by one or more mass storage devices such
as hard disk drive (s) , compact disk drive (s) digital versatile
disk drive (s) , etc. While in the illustrated example the
database 270 is illustrated as a single database , the database
270 can be implemented by any number and / or type (s) of
databases . Furthermore , the data stored in the database 270
can be in any data format such as , for example , binary data ,
comma delimited data , tab delimited data , structured query
language (SQL) structures , etc.
[0072] While an example manner of implementing the first
DLL security controller 102 of FIG . 1 is illustrated in FIG .
2 , one or more of the elements , processes , and / or devices
illustrated in FIG . 2 may be combined , divided , re - arranged ,
omitted , eliminated and / or implemented in any other way .
Further , the example event monitor 210 , the example DLL
path determiner 220 , the example fingerprint generator 230 ,
the example fingerprint comparator 240 , the example telem
etry interface 250 , the example security action enforcer 260 ,
the example database 270 , the example reference fingerprint
(s) 275 and / or , more generally , the first example DLL
security controller 102 of FIG . 1 may be implemented by
hardware , software , firmware and / or any combination of
hardware , software and / or firmware . Thus , for example , any
of the example event monitor 210 , the example DLL path
determiner 220 , the example fingerprint generator 230 , the
example fingerprint comparator 240 , the example telemetry
interface 250 , the example security action enforcer 260 , the
example database 270 , the example reference fingerprint (s)
275 and / or , more generally , the first example DLL security
controller 102 could be implemented by one or more analog
or digital circuit (s) , logic circuits , programmable processor
(s) , programmable controller (s) , graphics processing unit (s)
(GPU (S)) , digital signal processor (s) (DSP (s)) , application
specific integrated circuit (s) (ASIC (S)) , programmable logic
device (s) (PLD (s)) and / or field programmable logic device
(s) (FPLD (s)) . When reading any of the apparatus or system
claims of this patent to cover a purely software and / or
firmware implementation , at least one of the example event
monitor 210 , the example DLL path determiner 220 , the
example fingerprint generator 230 , the example fingerprint
comparator 240 , the example telemetry interface 250 , the
example security action enforcer 260 , the example database
270 , and / or the example reference fingerprint (s) 275 is / are
hereby expressly defined to include a non - transitory com
puter readable storage device or storage disk such as a
memory , a digital versatile disk (DVD) , a compact disk
(CD) , a Blu - ray disk , etc. including the software and / or
firmware . Further still , the first example DLL security con
troller 102 of FIG . 1 may include one or more elements ,
processes and / or devices in addition to , or instead of , those
illustrated in FIG . 2 , and / or may include more than one of
any or all of the illustrated elements , processes and devices .
As used herein , the phrase “ in communication , ” including
variations thereof , encompasses direct communication and /
or indirect communication through one or more intermedi
ary components , and does not require direct physical (e.g. ,
wired) communication and / or constant communication , but
rather additionally includes selective communication at peri
odic intervals , scheduled intervals , aperiodic intervals , and /
or one - time events .

[0073] In the illustrated example of FIG . 2 , the first DLL
security controller 102 includes means for determining (e.g. ,
first means for determining) to determine a first DLL fin
gerprint of a first DLL (e.g. , the second file 134) referenced
by an operating system (OS) event , where the OS event can
be generated by one (s) of the computing device (s) 108 , 110
and the first DLL can be stored at a first OS path . In some
examples , in response to determining that a second DLL
(e.g. , a superseded DLL having the same name as the second
file 134) is stored at a second OS path , the means for
determining can determine a second DLL fingerprint of the
second DLL . In such examples , the second DLL can have
the same name as the first DLL and the second OS path can
supersede the first OS path .
[0074] In some examples , the means for determining is to
extract a feature (e.g. , a DLL feature , a feature as described
below in connection with FIG . 4) from the first DLL ,
execute a hash algorithm on the feature to generate a hash
value , and determine the first DLL fingerprint based on the
hash value . In some examples , where the feature is a first
feature and the hash value is a first hash value , the means for
determining is to , in response to determining that an execut
able triggered the OS event , extract a second feature (e.g. , an
executable feature , a feature as described below in connec
tion with FIG . 4) from the executable , execute the hash
algorithm on the second feature to generate a second hash
value , and determine the first DLL fingerprint based on at
least one of the first hash value or the second hash value .
[0075] In the illustrated example of FIG . 2 , the first DLL
security controller 102 includes second means for determin
ing whether the first DLL is included in an executable (e.g. ,
the application 124 of FIG . 1) , and , in response to deter
mining that the first DLL is included in the executable ,
determining whether the second DLL is stored at the second
OS path .
[0076] In these examples , the first means for determining
and / or the second means for determining is / are implemented
by any processor structured to perform the corresponding
operation by executing software or firmware , or hardware
circuit (e.g. , discrete and / or integrated analog and / or digital
circuitry , an FPGA , a PLD , a FPLD , an ASIC , a comparator ,
an operational - amplifier (op - amp) , a logic circuit , etc.)
structured to perform the corresponding operation without
executing software or firmware , but other structures are
likewise appropriate . In some examples , the fingerprint
generator 230 of FIG . 2 can implement the first means for
determining . In some examples , the DLL path determiner
220 of FIG . 2 can implement the second means for deter mining
[0077] In the illustrated example of FIG . 2 , the first DLL
security controller 102 includes means for comparing to
compare the first DLL fingerprint and the second DLL
fingerprint to a reference DLL fingerprint (e.g. , one (s) of the
first reference fingerprint (s) 136) . In some examples , the
means for comparing can determine whether at least one of
the first DLL fingerprint or the second DLL fingerprint
satisfies a deviation threshold based on the comparison .
[0078] In this example , the means for comparing is imple
mented by any processor structured to perform the corre
sponding operation by executing software or firmware , or
hardware circuit (e.g. , discrete and / or integrated analog
and / or digital circuitry , an FPGA , a PLD , a FPLD , an ASIC ,
a comparator , an operational - amplifier (op - amp) , a logic
circuit , etc.) structured to perform the corresponding opera

US 2021/0200867 A1 Jul . 1. 2021
9

110 can

tion without executing software or firmware , but other
structures are likewise appropriate . In some examples , the
fingerprint comparator 240 of FIG . 2 can implement the
means for comparing .
[0079] In the illustrated example of FIG . 2 , the first DLL
security controller 102 includes means for executing a
security action to protect the computing device (e.g. , one (s)
of the computing device (s) 108 , 110) from an attack (e.g. , a
malware attack , a DLL side - loading attack , etc.) in response
to the deviation threshold being satisfied .
[0080] In the illustrated example of FIG . 2 , the first DLL
security controller 102 includes means for transmitting a
first DLL to a server (e.g. , the central facility 106 of FIG . 1) .
In some examples , in response to obtaining an alert from the
server , the means for executing executes the security action ,
the alert indicative of the server determining that the first
DLL satisfied a deviation threshold based on a comparison
of the first DLL to a reference fingerprint (e.g. , one (s) of the
third reference fingerprint (s) 140) , where the reference fin
gerprint can be different from one (s) of the first reference
fingerprint (s) 136 , one (s) of the second reference fingerprint
(s) 138 , etc. , and / or a combination thereof .
[0081] In these examples , the means for executing is
implemented by any processor structured to perform the
corresponding operation by executing software or firmware ,
or hardware circuit (e.g. , discrete and / or integrated analog
and / or digital circuitry , an FPGA , a PLD , a FPLD , an ASIC ,
a comparator , an operational - amplifier (op - amp) , a logic
circuit , etc.) structured to perform the corresponding opera
tion without executing software or firmware , but other
structures are likewise appropriate . In some examples , the
security action enforcer 260 of FIG . 2 can implement the
means for executing .
[0082] In these examples , the means for transmitting is
implemented by any processor structured to perform the
corresponding operation by executing software or firmware ,
or hardware circuit (e.g. , discrete and / or integrated analog
and / or digital circuitry , an FPGA , a PLD , a FPLD , an ASIC ,
a comparator , an operational - amplifier (op - amp) , a logic
circuit , a communication device (e.g. , a transmitter , a
receiver , a transceiver , a modem , a residential gateway , a
wireless access point , a network interface , etc.) structured to
perform the corresponding operation without executing soft
ware or firmware , but other structures are likewise appro
priate . In some examples , the means for transmitting is
implemented by an Ethernet interface , a universal serial bus
(USB) interface , a Bluetooth® interface , an NFC interface ,
and / or a PCI express interface . In some examples , the
telemetry interface 250 of FIG . 2 can implement the means
for transmitting .
[0083] In the illustrated example of FIG . 2 , the first DLL
security controller 102 includes means for storing data (e.g. ,
the first reference fingerprint (s) 136) . In this example , the
means for storing is implemented by a volatile memory , a
non - volatile memory , one or more DDR memories , one or
more mass storage devices , etc. , and / or a combination
thereof . In some examples , the means for storing is imple
mented by any processor structured to perform the corre
sponding operation by executing software or firmware , or
hardware circuit (e.g. , discrete and / or integrated analog
and / or digital circuitry , an FPGA , a PLD , a FPLD , an ASIC ,
a comparator , an operational - amplifier (op - amp) , a logic
circuit , etc.) structured to perform the corresponding opera
tion without executing software or firmware , but other

structures are likewise appropriate . In some examples , the
database 270 of FIG . 2 can implement the means for storing .
[0084] FIG . 3 is a block diagram of the central facility 106
of FIG . 1. In some examples , the central facility 106
compares DLL fingerprint (s) from requesting one (s) of the
computing devices 108 , 110 of FIG . 1 to detect and / or
otherwise identify an attack , an exploit , etc. , to that the
requesting one (s) of the computing device (s) 108 , be
vulnerable against . In FIG . 3 , the central facility 106
includes an example network interface 310 , an example
fingerprint comparator 320 , an example alert generator 330 ,
an example executable generator 340 , an example telemetry
aggregator 350 , an executable distributor 360 , an example
database 370. In FIG . 3 , the database 370 includes the third
reference fingerprint (s) 140 , the executable (s) 142 of FIG . 1 ,
an example policy (e.g. , a distribution policy , an update
policy , etc.) 375 , and example telemetry data 380 .
[0085] In the illustrated example of FIG . 3 , the central
facility 106 includes the network interface 310 to obtain
information from and / or transmit information to the network
114 of FIG . 1. The network interface 310 implements a web
server that receives request (s) , DLL fingerprint (s) , the
telemetry data 380 , etc. , from one (s) of the computing
device (s) 108 , 110. In some examples , the web server of the
network interface 310 transmits alert (s) , one (s) of the
executable (s) 142 , etc. , to the one (s) of the computing
device (s) 108 , 110. The information managed by the net
work interface 310 is formatted as one or more HTTP
messages . However , any other message format and / or pro
tocol may additionally or alternatively be used such as , for
example , a file transfer protocol (FTP) , a simple message
transfer protocol (SMTP) , an HTTP secure (HTTPS) proto
col , etc.
[0086] In the illustrated example of FIG . 3 , the central
facility 106 includes the fingerprint comparator 320 to
compare a DLL fingerprint obtained from one (s) of the
computing device (s) 108 , 110 of FIG . 1 to the third reference
fingerprint (s) 140. For example , the fingerprint comparator
320 can obtain a DLL fingerprint from the first computing
device 108 that is based on the second file 134. In such
examples , the fingerprint comparator 320 can determine
whether the DLL fingerprint matches one or more portions
of one (s) of the third reference fingerprint (s) 140 known to
be associated with a malware attack .
[0087] In some examples , the fingerprint comparator 320
determines whether the DLL fingerprint deviates from one
or more portions of one (s) of the third reference fingerprint
(s) 140 known to be associated with trusted DLL (s) (e.g. , a
trusted DLL fingerprint) . For example , the fingerprint com
parator 320 can determine that a difference between the DLL
fingerprint (e.g. , one or more portions of the DLL finger
print) and a first one of the third reference fingerprint (s) 140
(e.g. , one or more portions of the first one of the third
reference fingerprint (s) 140) satisfies a deviation threshold .
In such examples , the difference can be a Hamming distance
and / or any other distance between strings or sets of bits . In
such examples , the fingerprint comparator 320 can calculate
a Hamming distance between (1) a first bit string based on
the DLL fingerprint obtained from first computing device
108 and (2) a second bit string based on one of the third
reference fingerprint (s) 140. In some examples , the first bit
string is one or more portions of the DLL fingerprint and the
second bit string is one or more portions of the first one of
the third reference fingerprint (s) 140. For example , the first

US 2021/0200867 A1 Jul . 1 , 2021
10

bit string can include a first set of bits corresponding to a full
path name of the second file 134 , a second set of bits
corresponding to an HLL of the second file 134 , etc. In such
examples , the second bit string can include a first set of bits
corresponding to a full path name of a DLL associated with
the first one of the third reference fingerprint (s) 140 , a
second set of bits corresponding to a HLL of the DLL
associated with the first one of the third reference fingerprint
(s) 140 , etc.
[0088] In some examples , the fingerprint comparator 320
determines whether the difference (e.g. , the Hamming dis
tance) satisfies a deviation threshold representative of and / or
otherwise corresponding to the DLL fingerprint deviating
from trusted DLL fingerprint (s) beyond an acceptable or
expected quantity of deviation . In some examples , in
response to determining that the difference satisfies a devia
tion threshold , the fingerprint comparator 320 determines
and / or otherwise identifies that the DLL fingerprint is asso
ciated with a malicious DLL . For example , the fingerprint
comparator 320 can determine that the DLL (e.g. , the second
file 134) associated with the DLL fingerprint being analyzed
is (e.g. , likely is , probabilistically is , etc.) a malicious file
(e.g. , a malicious DLL) that can be used to execute a
malware attack at the first computing device 108. In some
examples , the fingerprint comparator 320 can store the DLL
fingerprint in the database 370 as one of the third reference
fingerprint (s) 140. In some examples , the fingerprint com
parator 320 stores an association between the DLL finger
print and an identifier (e.g. , a malicious DLL fingerprint
identifier , a malicious file identifier , etc.) , where the identi
fier can be indicative of the DLL fingerprint being associated
with a malware attack , a malicious DLL , etc.
[0089] In some examples , in response to determining that
the difference does not satisfy the deviation threshold , the
fingerprint comparator 320 determines and / or otherwise
identifies that the DLL fingerprint is associated with a
trusted DLL . For example , the fingerprint comparator 320
can determine that the DLL (e.g. , the second file 134)
associated with the DLL fingerprint being analyzed is (e.g. ,
likely is , probabilistically is , etc.) a trusted file (e.g. , a trusted
DLL) that can be safely executed by the first computing
device 108 .
[0090] In the illustrated example of FIG . 3 , the central
facility 106 includes the alert generator 330 to generate an
alert based on a comparison between DLL fingerprint (s)
obtained from one (s) of the computing device (s) 108 , 110
and one (s) of the third reference fingerprint (s) 140. In some
examples , the alert generator 330 generates an alert , an
indication , a message , a warning , etc. , in response to a DLL
fingerprint being identified as being associated with a trusted
DLL . In such examples , the alert generator 330 can invoke
the network interface 310 to transmit the alert to the request
ing one (s) of the computing device (s) 108 , 110. In response
to obtaining the alert , the one (s) of the computing device (s)
108 , 110 can determine that the DLL fingerprint transmitted
to the central facility 106 is associated with a trusted DLL .
[0091] In some examples , the alert generator 330 gener
ates an alert , an indication , a message , a warning , etc. , in
response to a DLL fingerprint being identified as being
associated with a malicious DLL . In such examples , the alert
generator 330 can invoke the network interface 310 to
transmit the alert to the requesting one (s) of the computing
device (s) 108 , 110. In response to obtaining the alert , the
one (s) of the computing device (s) 108 , 110 can determine

that the DLL fingerprint transmitted to the central facility
106 is associated with a malicious DLL . In such examples ,
the one (s) of the computing device (s) 108 , 110 can execute
security action (s) to protect the one (s) of the computing
device (s) 108 , 110 from the malicious DLL .
[0092] In the illustrated example of FIG . 3 , the central
facility 106 includes the executable generator 340 to gen
erate the executable (s) 142. In some examples , the execut
able generator 340 generates the executable (s) 142 by updat
ing malware protection parameter (s) including the third
reference fingerprint (s) 140 , one or more weight values as
described below in connection with FIG . 4 , etc. For
example , the executable generator 340 can determine to
generate new , revised , updated , etc. , one (s) of the executable
(s) 142 in response to storing one or more DLL fingerprints
in the database 370 , updating one or more weight values , etc.
In some examples , the executable generator 340 generates
the executable (s) 142 including one (s) of the third reference
fingerprint (s) 140 , updated one (s) of the weight values , etc.
[0093] In the illustrated example of FIG . 3 , the central
facility 106 includes the telemetry aggregator 350 to gen
erate a distribution policy 375 based on the telemetry data
380. For example , the telemetry aggregator 350 can invoke
the network interface 310 to obtain the telemetry data 380
from one (s) of the computing device (s) 108 , 110. In such
examples , the telemetry aggregator 350 can determine
whether one (s) of the computing device (s) 108 , 110 include
an out - of - date version of the DLL security controllers 102 ,
104 based on software version information included in the
obtained portion (s) of the telemetry data 380. The telemetry
aggregator 350 can generate the distribution policy 375
based on one (s) of the computing device (s) 108 , 110 to
receive the executable (s) 142 to update respective one (s) of
the DLL security controller (s) 102 , 104 .
[0094] In the illustrated example of FIG . 3 , the central
facility 106 includes the executable distributor 360 to dis
tribute the executable (s) 142 to one (s) of the computing
device (s) 108 , 110 based on the distribution policy 375. In
some examples , the executable distributor 360 , and / or , more
generally , the central facility 106 , can implement and / or
otherwise correspond to CDN . In some examples , in
response to the executable generator 340 generating the
executable (s) 142 , the executable distributor 360 can invoke
the network interface 310 to transmit the executable (s) 142
to one (s) of the computing device (s) 108 , 110 of FIG . 1. For
example , the executable distributor 360 can identify one (s)
of the computing device (s) 108 , 110 to receive the execut
able (s) 142 based on the one (s) of the computing device (s)
108 , 110 being included and / or otherwise referenced by the
distribution policy 375 .
[0095] In the illustrated example of FIG . 3 , the central
facility 106 includes the database 370 to store or record data
including updated malware protection parameter (s) , the
third reference fingerprint (s) 140 , the executable (s) 142 , the
distribution policy 375 , the telemetry data 380 , etc. In some
examples , the telemetry data 380 includes a DLL (e.g. , the
second file 134) , a DLL fingerprint based on the DLL , a
superseded DLL fingerprint associated with the DLL , one or
more features associated with the DLL and / or the executable
that called the DLL , a software version of the first DLL
security controller 102 , etc. , and / or a combination thereof .
[0096] In some examples , the database 370 can be imple
mented by a volatile memory (e.g. , a SDRAM , DRAM ,
RDRAM , etc.) and / or a non - volatile memory (e.g. , flash

US 2021/0200867 A1 Jul . 1. 2021
11

memory) . The example database 370 may additionally or
alternatively be implemented by one or more DDR memo
ries , such as DDR , DDR2 , DDR3 , mDDR , etc. The example
database 370 may additionally or alternatively be imple
mented by one or more mass storage devices such as hard
disk drive (s) , compact disk drive (s) digital versatile disk
drive (s) , etc. While in the illustrated example the database
370 is illustrated as a single database , the database 370 can
be implemented by any number and / or type (s) of databases .
Furthermore , the data stored in the database 370 can be in
any data format such as , for example , binary data , comma
delimited data , tab delimited data , SQL structures , etc.
[0097] While an example manner of implementing the
central facility 106 of FIG . 1 is illustrated in FIG . 3 , one or
more of the elements , processes and / or devices illustrated in
FIG . 3 may be combined , divided , re - arranged , omitted ,
eliminated and / or implemented in any other way . Further ,
the example network interface 310 , the example fingerprint
comparator 320 , the example alert generator 330 , the
example executable generator 340 , the example telemetry
aggregator 350 , the executable distributor 360 , the example
database 370 , the third example reference fingerprint (s) 140 ,
the example executable (s) 142 , the example distribution
policy 375 , the telemetry data 380 , and / or , more generally ,
the example central facility 106 of FIG . 1 may be imple
mented by hardware , software , firmware and / or any combi
nation of hardware , software and / or firmware . Thus , for
example , any of the example network interface 310 , the
example fingerprint comparator 320 , the example alert gen
erator 330 , the example executable generator 340 , the
example telemetry aggregator 350 , the executable distribu
tor 360 , the example database 370 , the third example refer
ence fingerprint (s) 140 , the example executable (s) 142 , the
example distribution policy 375 , the telemetry data 380
and / or , more generally , the example central facility 106
could be implemented by one or more analog or digital
circuit (s) , logic circuits , programmable processor (s) , pro
grammable controller (s) , GPU (S) , DSP (s) , ASIC (s) , PLD (s) ,
and / or FPLD (s) . When reading any of the apparatus or
system claims of this patent to cover a purely software
and / or firmware implementation , at least one of the example
network interface 310 , the example fingerprint comparator
320 , the example alert generator 330 , the example execut
able generator 340 , the example telemetry aggregator 350 ,
the executable distributor 360 , the example database 370 ,
the third example reference fingerprint (s) 140 , the example
executable (s) 142 , the example distribution policy 375 ,
and / or the telemetry data 380 is / are hereby expressly defined
to include a non - transitory computer readable storage device
or storage disk such as a memory , a DVD , a CD , a Blu - ray
disk , etc. including the software and / or firmware . Further
still , the example central facility 106 of FIG . 1 may include
one or more elements , processes and / or devices in addition
to , or instead of , those illustrated in FIG . 3 , and / or may
include more than one of any or all of the illustrated
elements , processes and devices .
[0098] In the illustrated example of FIG . 3 , the central
facility 106 includes means for obtaining a DLL fingerprint
from one (s) of the computing device (s) 108 , 110 of FIG . 1
and means for transmitting an alert to the one (s) of the
computing device (s) 108 , 110. In this example , the means
for obtaining and / or the means for transmitting is / are imple
mented by any processor structured to perform the corre
sponding operation by executing software or firmware , or

hardware circuit (e.g. , discrete and / or integrated analog
and / or digital circuitry , an FPGA , a PLD , a FPLD , an ASIC ,
a comparator , an operational - amplifier (op - amp) , a logic
circuit , a communication device (e.g. , a transmitter , a
receiver , a transceiver , a modem , a residential gateway , a
wireless access point , a network interface , etc.) structured to
perform the corresponding operation without executing soft
ware or firmware , but other structures are likewise appro
priate . In some examples , the means for obtaining and / or the
means for transmitting is / are implemented by an Ethernet
interface , a universal serial bus (USB) interface , a Blu
etooth® interface , an NFC interface , and / or a PCI express
interface . In some examples , the network interface 310 of
FIG . 3 can implement the means for obtaining and / or the
means for transmitting .
[0099] In the illustrated example of FIG . 3 , the central
facility 106 includes means for comparing DLL fingerprint
(s) (e.g. , DLL fingerprint (s) obtained from one (s) of the
computing device (s) 108 , 110) to reference fingerprint (s)
(e.g. , one (s) of the third reference fingerprint (s) 140) . In this
example , the means for comparing is implemented by any
processor structured to perform the corresponding operation
by executing software or firmware , or hardware circuit (e.g. ,
discrete and / or integrated analog and / or digital circuitry , an
FPGA , a PLD , a FPLD , an ASIC , a comparator , an opera
tional - amplifier (op - amp) , a logic circuit , etc.) structured to
perform the corresponding operation without executing soft
ware or firmware , but other structures are likewise appro
priate . In some examples , the fingerprint comparator 320 of
FIG . 3 can implement the means for comparing .
[0100] In the illustrated example of FIG . 3 , the central
facility 106 includes means for generating (e.g. , first means
for generating) an alert . In this example , the means for
generating is implemented by any processor structured to
perform the corresponding operation by executing software
or firmware , or hardware circuit (e.g. , discrete and / or inte
grated analog and / or digital circuitry , an FPGA , a PLD , a
FPLD , an ASIC , a comparator , an operational - amplifier
(op - amp) , a logic circuit , etc.) structured to perform the
corresponding operation without executing software or firm
ware , but other structures are likewise appropriate . In some
examples , the alert generator 330 of FIG . 3 can implement
the means for generating .
[0101] In the illustrated example of FIG . 3 , the central
facility 106 includes means for generating (e.g. , second
means for generating) executable (s) (e.g. , one (s) of the
executable (s) 142) . In this example , the means for generat
ing (e.g. , the second means for generating) is implemented
by any processor structured to perform the corresponding
operation by executing software or firmware , or hardware
circuit (e.g. , discrete and / or integrated analog and / or digital
circuitry , an FPGA , a PLD , a FPLD , an ASIC , a comparator ,
an operational - amplifier (op - amp) , a logic circuit , etc.)
structured to perform the corresponding operation without
executing software or firmware , but other structures are
likewise appropriate . In some examples , the executable
generator 340 of FIG . 3 can implement the means for
generating (e.g. , the second means for generating) .
[0102] In the illustrated example of FIG . 3 , the central
facility 106 includes means for aggregating telemetry data
(e.g. , the telemetry data 380 of FIG . 3) . In this example , the
means for aggregating is implemented by any processor
structured to perform the corresponding operation by
executing software or firmware , or hardware circuit (e.g. ,

US 2021/0200867 A1 Jul . 1. 2021
12

discrete and / or integrated analog and / or digital circuitry , an
FPGA , a PLD , a FPLD , an ASIC , a comparator , an opera
tional - amplifier (op - amp) , a logic circuit , etc.) structured to
perform the corresponding operation without executing soft
ware or firmware , but other structures are likewise appro
priate . In some examples , the telemetry aggregator 350 of
FIG . 3 can implement the means for aggregating .
[0103] In the illustrated example of FIG . 3 , the central
facility 106 includes means for distributing executable (s)
(e.g. , one (s) of the executable (s) 142) . In this example , the
means for distributing is implemented by any processor
structured to perform the corresponding operation by
executing software or firmware , or hardware circuit (e.g. ,
discrete and / or integrated analog and / or digital circuitry , an
FPGA , a PLD , a FPLD , an ASIC , a comparator , an opera
tional - amplifier (op - amp) , a logic circuit , etc.) structured to
perform the corresponding operation without executing soft
ware or firmware , but other structures are likewise appro
priate . In some examples , the executable distributor 360 of
FIG . 3 can implement the means for distributing .
[0104] In the illustrated example of FIG . 3 , the central
facility 106 includes means for storing data (e.g. , the third
reference fingerprint (s) 140 , the executable (s) 142 , the
policy 375 , the telemetry data 380 , etc.) . In this example , the
means for storing is implemented by a volatile memory , a
non - volatile memory , one or more DDR memories , one or
more mass storage devices , etc. , and / or a combination
thereof . In some examples , the means for storing is imple
mented by any processor structured to perform the corre
sponding operation by executing software or firmware , or
hardware circuit (e.g. , discrete and / or integrated analog
and / or digital circuitry , an FPGA , a PLD , a FPLD , an ASIC ,
a comparator , an operational - amplifier (op - amp) , a logic
circuit , etc.) structured to perform the corresponding opera
tion without executing software or firmware , but other
structures are likewise appropriate . In some examples , the
database 370 of FIG . 3 can implement the means for storing .
[0105] FIG . 4 depicts example executable features 410
and example DLL features 420 that can be used by one (s) of
the DLL security controller (s) 102 , 104 of FIGS . 1 and / or 2
to identify malware . In FIG . 4 , the executable features 410
are representative of and / or otherwise correspond to data or
information associated with an executable , such as the
application 124 of FIG . 1. In FIG . 4 , the executable features
410 and the DLL features 420 have a respective weight
value . The executable features 410 can include fewer or
more executable features than the executable features 410
depicted in FIG . 4. The DLL features 420 can include fewer
or more DLL features than the DLL features 420 depicted in
FIG . 4. The weight values are exemplary and one or more of
the weight values in depicted FIG . 4 can have a different
value than depicted in FIG . 4 .
[0106] In the illustrated example of FIG . 4 , the executable
features 410 include features of an executable (e.g. , features
extracted from the application 124) , such as a full path name ,
an imported functions list , a digital signature , a high - level
language (HLL) , a compiler , and a file version . For example ,
the full path name can correspond to a full path name (e.g. ,
C : \ badactor maliciousapp.exelocal) of the application 124
of FIG . 1. The imported functions list can include one or
more functions included in the manifest 130 and / or , more
generally , the application 124 of FIG . 1. The digital signa
ture can correspond to executing a hash function (e.g. , a
CRC hash function) on the application 124 of FIG . 1 to

generate a hash value (e.g. , a checksum , a CRC hash value ,
etc.) based on the application 124 .
[0107] In some examples , the HLL corresponds to the
HLL used to develop , generate , etc. , the application 124 of
FIG . 1. For example , the HLL can be an instruction lan
guage , a scripting language , a programming language , etc.
In such examples , the HLL can correspond to any of the
following languages : C , C ++ , Java , C # , Perl , Python ,
JavaScript , HTML , SQL , Swift , etc. Alternatively , the HLL
may be any other language .
[0108] In some examples , the compiler corresponds to a
type of a compiler (e.g. , hardware and / or software that can
compile human readable code into machine readable code) ,
a version (e.g. , a hardware version , a software version , etc.)
of the compiler , etc. , and / or a combination thereof that
compiled the application 124 of FIG . 1. In some examples ,
the file version corresponds to a software version , a software
build number , etc. , of the application 124 of FIG . 1 .
[0109] In the illustrated example of FIG . 4 , the DLL
features 420 include features of a DLL (e.g. , features
extracted from the second file 134) , such as a full path name ,
an exported functions list , a digital signature , a high - level
language (HLL) , a compiler , and a file version . For example ,
the full path name can correspond to a full path name (e.g. ,
C : \ badactor sideloadtarget.dll) of the second file 134 of FIG .
1. The exported functions list can include one or more
functions included in the second file 134. The digital sig
nature can correspond to executing a hash function (e.g. , a
CRC hash function on the second file 134 of FIG . 1 to
generate a hash value (e.g. , a checksum , a CRC hash value ,
etc.) based on the second file 134 .
[0110] In some examples , the HLL corresponds to the
HLL used to develop , generate , etc. , the second file 134 of
FIG . 1. For example , the HLL can be an instruction lan
guage , a scripting language , a programming language , etc.
In such examples , the HLL can correspond to any of the
following languages : C , C ++ , Java , C # , Perl , Python ,
JavaScript , HTML , SQL , Swift , etc. Alternatively , the HLL
may be any other language .
[0111] In some examples , the compiler corresponds to a
type of a compiler (e.g. , hardware and / or software that can
compile human readable code into machine readable code) ,
a version (e.g. , a hardware version , a software version , etc.)
of the compiler , etc. , and / or a combination thereof that
compiled the second file 134 of FIG . 1. In some examples ,
the file version corresponds to a software version , a software
build number , etc. , of the second file 134 of FIG . 1 .
[0112] In some examples , the DLL security controllers
102 , 104 of FIG . 1 can detect a malware attack based on
comparing a DLL fingerprint to one (s) of the reference
fingerprint (s) 136 , 138 of FIG . 1 using one (s) of the features
400 of FIG . 4. For example , the fingerprint comparator 240
of FIG . 2 can compare a DLL fingerprint based on the
second file 134 to a first reference fingerprint (e.g. , a first one
of the first reference fingerprint (s) 136) . In such examples ,
the DLL fingerprint and the first reference fingerprint can
each include a concatenation of bit strings . For example , the
DLL fingerprint can include a first bit string based on the full
path name of the application 124 that called the second file
134 , a second bit string based on the HLL of the second file
134 , etc. , where the second bit string follows or is after the
first bit string in a concatenation of the first and second bit
strings . The first reference fingerprint can include a third bit
string based on the full path name of an executable that

US 2021/0200867 A1 Jul . 1. 2021
13

called a DLL associated with the first reference fingerprint ,
a fourth bit string based on the HLL of the DLL , etc. , where
the fourth bit string follows or is after the third bit string in
a concatenation of the third and fourth bit strings .
[0113] In some examples , the fingerprint comparator 240
can determine that (1) the first bit string matches the third bit
string and (2) the second bit string does not match the fourth
bit string . The fingerprint comparator 240 can determine that
the second file 134 is a malicious DLL based on the full path
names matching but the HLLs being different . As the full
path name has a weight of 1.0 and the HLL has a weight of
2.7 , the fingerprint comparator 240 can determine that the
DLL is more likely to be a malicious DLL based on the
HLLs being different rather than the DLL being a trusted
DLL based on the full path names matching .
[0114] In some examples , the executable generator 340 of
FIG . 3 , and / or , more generally , the central facility 106 of
FIGS . 1 and / or 3 can (1) add , replace , and / or remove one of
the features 400 and / or (2) update one (s) of the weight
values . For example , the executable generator 340 can use
artificial intelligence (AI) , including machine learning
(ML) , deep learning (DL) , and / or other artificial machine
driven logic . In such examples , the executable generator 340
can invoke computer (s) , computing system (s) , logic circuit
(s) , etc.) to use model (s) to process input data (e.g. , the third
reference fingerprint (s) 140 , the telemetry data 380 , etc.) to
generate an output (e.g. , one (s) of the features 400 , one (s) of
the weight values , etc. , and / or a combination thereof) based
on patterns and / or associations previously learned by the
model via a training process . For instance , the model can be
trained with data to recognize patterns and / or associations
and follow such patterns and / or associations when process
ing input data such that other input (s) result in output (s)
consistent with the recognized patterns and / or associations .
[0115] Flowcharts representative of example hardware
logic , machine readable instructions , hardware implemented
state machines , and / or any combination thereof for imple
menting the DLL security controller (s) 102 , 104 of FIGS . 1
and / or 2 are shown in FIGS . 5-6 . The machine readable
instructions may be one or more executable programs or
portion (s) of an executable program for execution by a
computer processor such as the processor 912 shown in the
example processor platform 900 discussed below in con
nection with FIG . 9. The program may be embodied in
software stored on a non - transitory computer readable stor
age medium such as a CD - ROM , a floppy disk , a hard drive ,
a DVD , a Blu - ray disk , or a memory associated with the
processor 912 , but the entire program and / or parts thereof
could alternatively be executed by a device other than the
processor 912 and / or embodied in firmware or dedicated
hardware . Further , although the example program is
described with reference to the flowcharts illustrated in
FIGS . 5-6 , many other methods of implementing the
example DLL security controller (s) 102 , 104 may alterna
tively be used . For example , the order of execution of the
blocks may be changed , and / or some of the blocks described
may be changed , eliminated , or combined . Additionally or
alternatively , any or all of the blocks may be implemented
by one or more hardware circuits (e.g. , discrete and / or
integrated analog and / or digital circuitry , an FPGA , an
ASIC , a comparator , an operational - amplifier (op - amp) , a
logic circuit , etc.) structured to perform the corresponding
operation without executing software or firmware .

[0116] Flowcharts representative of example hardware
logic , machine readable instructions , hardware implemented
state machines , and / or any combination thereof for imple
menting the central facility 106 of FIGS . 1 and / or 3 are
shown in FIGS . 7-8 . The machine readable instructions may
be one or more executable programs or portion (s) of an
executable program for execution by a computer processor
such as the processor 1012 shown in the example processor
platform 1000 discussed below in connection with FIG . 10 .
The program may be embodied in software stored on a
non - transitory computer readable storage medium such as a
CD - ROM , a floppy disk , a hard drive , a DVD , a Blu - ray
disk , or a memory associated with the processor 1012 , but
the entire program and / or parts thereof could alternatively be
executed by a device other than the processor 1012 and / or
embodied in firmware or dedicated hardware . Further ,
although the example program is described with reference to
the flowcharts illustrated in FIGS . 7-8 , many other methods
of implementing the example central facility 106 may alter
natively be used . For example , the order of execution of the
blocks may be changed , and / or some of the blocks described
may be changed , eliminated , or combined . Additionally or
alternatively , any or all of the blocks may be implemented
by one or more hardware circuits (e.g. , discrete and / or
integrated analog and / or digital circuitry , an FPGA , an
ASIC , a comparator , an operational - amplifier (op - amp) , a
logic circuit , etc.) structured to perform the corresponding
operation without executing software or firmware .
[0117] The machine readable instructions described herein
may be stored in one or more of a compressed format , an
encrypted format , a fragmented format , a compiled format ,
an executable format , a packaged format , etc. Machine
readable instructions as described herein may be stored as
data (e.g. , portions of instructions , code , representations of
code , etc.) that may be utilized to create , manufacture ,
and / or produce machine executable instructions . For
example , the machine readable instructions may be frag
mented and stored on one or more storage devices and / or
computing devices (e.g. , servers) . The machine readable
instructions may require one or more of installation , modi
fication , adaptation , updating , combining , supplementing ,
configuring , decryption , decompression , unpacking , distri
bution , reassignment , compilation , etc. in order to make
them directly readable , interpretable , and / or executable by a
computing device and / or other machine . For example , the
machine readable instructions may be stored in multiple
parts , which are individually compressed , encrypted , and
stored on separate computing devices , wherein the parts
when decrypted , decompressed , and combined form a set of
executable instructions that implement a program such as
that described herein .
[0118] In another example , the machine readable instruc
tions may be stored in a state in which they may be read by
a computer , but require addition of a library (e.g. , a DLL) ,
a software development kit (SDK) , an application program
ming interface (API) , etc. , in order to execute the instruc
tions on a particular computing device or other device . In
another example , the machine readable instructions may
need to be configured (e.g. , settings stored , data input ,
network addresses recorded , etc.) before the machine read
able instructions and / or the corresponding program (s) can be
executed in whole or in part . Thus , the disclosed machine
readable instructions and / or corresponding program (s) are
intended to encompass such machine readable instructions

US 2021/0200867 A1 Jul . 1. 2021
14

can

and / or program (s) regardless of the particular format or state
of the machine readable instructions and / or program (s)
when stored or otherwise at rest or in transit .
[0119] The machine readable instructions described herein

be represented by any past , present , or future instruction
language , scripting language , programming language , etc.
For example , the machine readable instructions may be
represented using any of the following languages : C , C ++ ,
Java , C # , Perl , Python , JavaScript , HTML , SQL , Swift , etc.
[0120] As mentioned above , the example processes of
FIGS . 5-8 may be implemented using executable instruc
tions (e.g. , computer and / or machine readable instructions)
stored on a non - transitory computer and / or machine read
able medium such as a hard disk drive , a flash memory , a
read - only memory , a compact disk , a digital versatile disk ,
a cache , a random - access memory and / or any other storage
device or storage disk in which information is stored for any
duration (e.g. , for extended time periods , permanently , for
brief instances , for temporarily buffering , and / or for caching
of the information) . As used herein , the term non - transitory
computer readable medium is expressly defined to include
any type of computer readable storage device and / or storage
disk and to exclude propagating signals and to exclude
transmission media .
(0121] " Including " and " comprising " (and all forms and
tenses thereof) are used herein to be open ended terms . Thus ,
whenever a claim employs any form of “ include ” or “ com
prise ” (e.g. , comprises , includes , comprising , including ,
having , etc.) as a preamble or within a claim recitation of
any kind , it is to be understood that additional elements ,
terms , etc. may be present without falling outside the scope
of the corresponding claim or recitation . As used herein ,
when the phrase “ at least " is used as the transition term in ,
for example , a preamble of a claim , it is open - ended in the
same manner as the term “ comprising ” and “ including ” are
open ended . The term “ and / or ” when used , for example , in
a form such as A , B , and / or C refers to any combination or
subset of A , B , C such as (1) A alone , (2) B alone , (3) C
alone , (4) A with B , (5) A with C , (6) B with C , and (7) A
with B and with C. As used herein in the context of
describing structures , components , items , objects and / or
things , the phrase " at least one of A and B ” is intended to
refer to implementations including any of (1) at least one A ,
(2) at least one B , and (3) at least one A and at least one B.
Similarly , as used herein in the context of describing struc
tures , components , items , objects and / or things , the phrase
“ at least one of A or B ” is intended to refer to implemen
tations including any of (1) at least one A , (2) at least one B ,
and (3) at least one A and at least one B. As used herein in
the context of describing the performance or execution of
processes , instructions , actions , activities and / or steps , the
phrase " at least one of A and B ” is intended to refer to
implementations including any of (1) at least one A , (2) at
least one B , and (3) at least one A and at least one B.
Similarly , as used herein in the context of describing the
performance or execution of processes , instructions , actions ,
activities and / or steps , the phrase “ at least one of A or B ” is
intended to refer to implementations including any of (1) at
least one A , (2) at least one B , and (3) at least one A and at
least one B.
[0122] As used herein , singular references (e.g. , " a " , " an ” ,
“ first ” , “ second ” , etc.) do not exclude a plurality . The term
“ a ” or “ an ” entity , as used herein , refers to one or more of
that entity . The terms “ a ” (or " an ") , “ one or more ” , and “ at

least one ” can be used interchangeably herein . Furthermore ,
although individually listed , a plurality of means , elements
or method actions may be implemented by , e.g. , a single unit
or processor . Additionally , although individual features may
be included in different examples or claims , these may
possibly be combined , and the inclusion in different
examples or claims does not imply that a combination of
features is not feasible and / or advantageous .
[0123] FIG . 5 is a flowchart representative of example
machine readable instructions 500 that may be executed to
implement the DLL security controller (s) 102 , 104 of FIGS .
1 and / or 2 to execute security action (s) in response to
identifying a malware attack . The machine readable instruc
tions 500 of FIG . 5 begin at block 502 , at which the DLL
security controller (s) 102 , 104 determine whether a DLL has
been invoked by an event of a computing device operation
system . For example , the event monitor 210 (FIG . 2) can
determine that an OS event has been created in response to
the second file 134 (FIG . 1) being invoked by the application
124 (FIG . 1) , loaded by the DLL loader 116 (FIG . 1) , etc.
[0124] If , at block 502 , the DLL security controller (s) 102 ,
104 determine that a DLL has not been invoked by an event
of the computing device operating system , control waits to
be initiated , triggered , etc. , at block 502 by an event . If , at
block 502 , the DLL security controller (s) 102 , 104 deter
mine that a DLL has been invoked by an event of the
computing device operating system , then , at block 504 , the
DLL security controller (s) 102 , 104 determine a DLL fin
gerprint of the invoked DLL . For example , the fingerprint
generator 230 (FIG . 2) can generate a DLL fingerprint based
on the second file 134. Example instructions that may be
executed to implement block 504 are described below in
connection with FIG . 6 .
[0125] At block 506 , the DLL security controller (s) 102 ,
104 determine whether the DLL is included in a launched
executable . For example , the DLL path determiner 220
(FIG . 2) can determine whether the second file 134 is
included in the application 124 , in a local path of the
application 124 , etc.
[0126] If , at block 506 , the DLL security controller (s) 102 ,
104 determine that the DLL is not included in the launched
executable , control proceeds to block 516 to transmit DLL
fingerprint (s) to the central facility 106 (FIGS . 1 and / or 3) to
process . For example , the DLL path determiner 220 can
determine that a superseded path of the second file 134 does
not exist .
[0127] If , at block 506 , the DLL security controller (s) 102 ,
104 determine that the DLL is included in the launched
executable , then , at block 508 , the DLL security controller
(s) 102 , 104 determine whether a superseded path of the
DLL exists . For example , the DLL path determiner 220 can
determine that a superseded path of the second file 134 may
exist in response to determining that the second file 134 is
included in the application 124 , a local path of the applica
tion 124 , etc.
[0128] If , at block 508 , the DLL security controller (s) 102 ,
104 determine that the superseded path of the DLL does not
exist , control proceeds to block 516 to transmit DLL fin
gerprint (s) to the central facility 106 to process . For
example , the DLL path determiner 220 can determine that a
superseded path of the second file 134 does not exist .
[0129] If , at block 508 , the DLL security controller (s) 102 ,
104 determine that the superseded path of the DLL does
exist , then , at block 510 , the DLL security controller (s) 102 ,

US 2021/0200867 A1 Jul . 1. 2021
15

104 determine a DLL fingerprint of a superseded DLL at the
superseded path . For example , the fingerprint generator 230
can generate a DLL fingerprint (e.g. , a superseded DLL
fingerprint) based on the second file 134 , where the second
file 134 can be stored at the superseded path . Example
instructions that may be executed to implement block 510
are described below in connection with FIG . 6 .
[0130] At block 512 , the DLL security controller (s) 102 ,
104 compare DLL fingerprint (s) to reference fingerprint (s) .
For example , the fingerprint comparator 240 (FIG . 2) can
compare one (s) of the DLL fingerprint , the superseded DLL
fingerprint , etc. , to one (s) of the first reference fingerprint (s)
136 (FIG . 1) . In such examples , the fingerprint comparator
240 can execute the comparison by calculating and / or oth
erwise determining a Hamming distance between (1) the
DLL fingerprint based on the second file 134 and (2) a first
one of the first reference fingerprint (s) 136 .
[0131] At block 514 , the DLL security controller (s) 102 ,
104 determines whether a deviation threshold has been
satisfied based on the comparison (s) . For example , the
fingerprint comparator 240 can determine that the difference
(e.g. , the Hamming distance) between the DLL fingerprint
based on the second file 134 and the first one of the first
reference fingerprint (s) 136 satisfies a deviation threshold .
In such examples , the fingerprint comparator 240 can deter
mine that the difference satisfies the deviation threshold in
response to the difference being greater than the deviation
threshold
[0132] If , at block 514 , the DLL security controller (s) 102 ,
104 determines that the deviation threshold has been satis
fied based on the comparison (s) , control proceeds to block
520 to detect a malware attack at the computing device . For
example , the security action enforcer 260 (FIG . 2) can
determine that the second file 134 , and / or , more generally ,
the application 124 , is associated with a malware attack at
the first computing device 108 based on the deviation
threshold being satisfied .
[0133] If , at block 514 , the DLL security controller (s) 102 ,
104 determines that the deviation threshold has not been
satisfied based on the comparison (s) , then , at block 516 , the
DLL security controller (s) 102 , 104 transmit DLL finger
print (s) to the central facility 106 to process . For example ,
the telemetry interface 250 (FIG . 2) can transmit the DLL
fingerprint , the superseded DLL fingerprint , etc. , to the
central facility 106 for comparison to the third reference
fingerprint (s) 140 (FIGS . 1 and / or 3) .
[0134] At block 518 , the DLL security controller (s) 102 ,
104 determine whether a central facility determined a devia
tion threshold has been satisfied . For example , in response to
transmitting DLL fingerprint (s) to the central facility 106 ,
the telemetry interface 250 can obtain an alert from the
central facility 106 indicative of one of the transmitted DLL
fingerprint (s) either being associated with a malicious DLL
or a trusted DLL . In such examples , the security action
enforcer 260 can determine that the central facility 106
determined that a deviation threshold has been satisfied
based on the alert being indicative of the malicious DLL .
[0135] If , at block 518 , the DLL security controller (s) 102 ,
104 determines that the central facility 106 did not deter
mine a deviation threshold has been satisfied , control pro
ceeds to block 524 to determine whether to continue moni
toring the computing device . If , at block 518 , the DLL
security controller (s) 102 , 104 determines that the central
facility 106 determined that a deviation threshold has been

satisfied , then , at block 520 , the DLL security controller (s)
102 , 104 detect a malware attack at the computing device .
For example , the security action enforcer 260 can determine
that the alert obtained from the central facility 106 indicates
that one or more of the transmitted DLL fingerprint (s) are
associated with a malware attack .
[0136] At block 522 , the DLL security controller (s) 102 ,
104 execute security action (s) to protect the computing
device from the malware attack . For example , the security
action enforcer 260 can unload the second file 134 from
memory , terminate execution of the application 124 , etc. ,
and / or generate a log including information associated with
actions , tasks , etc. , executed by the security action enforcer
260. In some examples , the security action enforcer 260 can
invoke the telemetry interface 250 to transmit the log to the
central facility 106 to improve malware protection by updat
ing the executable (s) 142 (FIG . 1) based on the information
included in the log .
[0137] At block 524 , the DLL security controller (s) 102 ,
104 determine whether to continue monitoring the comput
ing device . For example , the event monitor 210 can deter
mine whether to continue monitoring the OS 112 of the first
computing device 108 for an event (e.g. , a creation event) .
If , at block 524 , the DLL security controller (s) 102 , 104
determine to continue monitoring the computing device ,
control returns to block 502 to determine whether a DLL has
been invoked by an event of the computing device operating
system . If , at block 524 , the DLL security controller (s) 102 ,
104 determine not to continue monitoring the computing
device , the machine readable instructions 500 of FIG . 5
terminate .
[0138] FIG . 6 is a flowchart representative of example
machine readable instructions 600 that may be executed to
implement the DLL security controller (s) 102 , 104 of FIGS .
1 and / or 2 to determine a DLL fingerprint . The example
machine readable instructions 600 of FIG . 6 can be executed
to implement block 504 and / or block 510 of FIG . 5. The
machine readable instructions 600 of FIG . 6 begin at block
602 , at which the DLL security controller (s) 102 , 104 extract
executable feature (s) from a caller of the DLL . For example ,
the fingerprint generator 230 (FIG . 2) can extract one or
more of the executable features 410 (FIG . 4) from the
application 124 (FIG . 1) that called or invoked the second
file 134 (FIG . 1) .
[0139] At block 604 , the DLL security controller (s) 102 ,
104 execute a hash function on the extracted executable
feature (s) to generate executable feature hash value (s) . For
example , the fingerprint generator 230 can execute a CRC
hash function , algorithm , etc. , on one or more of the execut
able features 410 extracted from the application 124 to
generate one or more respective executable feature hash
values .

[0140] At block 606 , the DLL security controller (s) 102 ,
104 extract DLL feature (s) from the DLL . For example , the
fingerprint generator 230 (FIG . 2) can extract one or more of
the DLL features 420 (FIG . 4) from the second file 134 .
[0141] At block 608 , the DLL security controller (s) 102 ,
104 execute a hash function on the extracted DLL feature (s)
to generate DLL feature hash value (s) . For example , the
fingerprint generator 230 can execute a CRC hash function ,
algorithm , etc. , on one or more of the DLL features 420
extracted from the second file 134 to generate one or more
respective DLL feature hash values .

US 2021/0200867 A1 Jul . 1. 2021
16

[0142] At block 610 , the DLL security controller (s) 102 ,
104 determine a DLL fingerprint based on at least one of the
executable feature hash value (s) or the DLL feature hash
value (s) . For example , the fingerprint generator 230 can
generate a DLL fingerprint based on at least one of (1) one
or more of the executable feature hash values or (2) one or
more of the DLL feature hash values . In such examples , the
fingerprint generator 230 can concatenate one or more
portions , one or more bit strings , etc. , corresponding to
respective one (s) of the executable feature hash values , the
DLL feature hash values , etc. , to generate the DLL finger
print . For example , the fingerprint generator 230 can gen
erate the DLL fingerprint to include a first bit string that
includes one or more second bit strings , where each of the
second bit strings corresponds to one of executable feature
hash values or the DLL feature hash values . In response to
determining the DLL fingerprint based on at least one of the
executable feature hash value (s) or the DLL feature hash
value (s) at block 610 , control returns to block 506 or block
512 of the machine readable instructions 500 of FIG . 5 .
[0143] FIG . 7 is a flowchart representative of example
machine readable instructions 700 that may be executed to
implement the central facility 106 of FIGS . 1 and / or 3 to
identify a malware attack . The machine readable instruc
tions 700 of FIG . 7 begin at block 702 , at which the central
facility 106 determines whether the central facility 106
obtained a DLL fingerprint to process . For example , the
network interface 310 (FIG . 3) can determine that a DLL
fingerprint has been obtained from the first computing
device 108 (FIG . 1) .
[0144] If , at block 702 , the central facility 106 determines
that a DLL fingerprint has not been obtained , control waits
at block 702 to be initiated , triggered , etc. , by obtaining a
DLL fingerprint . If , at block 702 , the central facility 106
determines that a DLL fingerprint has been obtained , then ,
at block 704 , the central facility 106 compares the DLL
fingerprint with reference fingerprint (s) . For example , the
fingerprint comparator 320 (FIG . 3) can compare the DLL
fingerprint to one (s) of the third reference fingerprint (s) 140
(FIGS . 1 and / or 3) .
[0145] At block 706 , the central facility 106 determines
whether a deviation threshold has been satisfied based on the
comparison (s) . For example , the fingerprint comparator 320
can determine that difference (s) (e.g. , a Hamming distance)
between the DLL fingerprint based on the second file 134
and one (s) of the third reference fingerprint (s) 140 satisfy a
deviation threshold . In such examples , the fingerprint com
parator 320 can determine that one or more of the difference
(s) satisfy the deviation threshold in response to the one or
more of the difference (s) being greater than the deviation
threshold .
[0146] If , at block 706 , the central facility 106 determines
that the deviation threshold has not been satisfied based on
the comparison (s) , then , at block 708 , the central facility 106
identifies the DLL fingerprint as being associated with a
trusted DLL . For example , the fingerprint comparator 320
can determine that the second file 134 is a trusted DLL in
response to the deviation threshold not being satisfied .
[0147] At block 710 , the central facility 106 transmits an
alert to a requesting computing device that the deviation
threshold has not been satisfied . For example , the alert
generator 330 (FIG . 3) can generate an alert indicative of the
DLL fingerprint being associated with a trusted DLL (e.g. ,
the DLL fingerprint not being associated with a malware

exploit) . In such examples , the alert generator 330 can
invoke the network interface 310 to transmit the alert to the
computing device that transmitted the DLL fingerprint to the
central facility 106 , such as the first computing device 108 .
[0148] At block 712 , the central facility 106 stores the
DLL fingerprint as a reference fingerprint . For example , the
fingerprint comparator 320 can store the DLL fingerprint as
one of the third reference fingerprint (s) 140 in the database
370 (FIG . 3) . In such examples , the fingerprint comparator
320 can store an association in the database 370 between the
DLL fingerprint and an identifier , a machine readable flag ,
etc. , representative of the DLL fingerprint being associated
with a trusted DLL .

[0149] If , at block 706 , the central facility 106 determines
that the deviation threshold has been satisfied based on the
comparison (s) , control proceeds to block 714 to identify the
DLL fingerprint as being associated with a malicious DLL .
For example , the fingerprint comparator 320 can determine
that the DLL fingerprint obtained from the first computing
device 108 is associated with a malware attack
[0150] At block 716 , the central facility 106 transmits an
alert to a requesting computing device that the deviation
threshold has been satisfied . For example , the alert generator
330 can generate an alert indicative of the DLL fingerprint
being associated with a malicious DLL (e.g. , the DLL
fingerprint being associated with a malware exploit) . In such
examples , the alert generator 330 can invoke the network
interface 310 to transmit the alert to the computing device
that transmitted the DLL fingerprint to the central facility
106 , such as the first computing device 108 .
[0151] At block 718 , the central facility 106 can update
malware protection parameter (s) . For example , the execut
able generator 340 (FIG . 3) can generate one (s) of the
executable (s) 142 (FIGS . 1 and / or 3) by including the DLL
fingerprint , updating one or more weight values depicted in
FIG . 4 , etc. Example instructions that may be executed to
implement block 718 are described below in connection
with FIG . 8 .

[0152] At block 720 , the central facility 106 determines
whether to continue monitoring for a DLL fingerprint . For
example , the network interface 310 can determine whether
to continue monitoring a DLL fingerprint from one (s) of the
computing device (s) 108 , 110 (FIG . 1) . If , at block 720 , the
central facility 106 determines to continue monitoring for a
DLL fingerprint , control returns to block 702 to determine
whether another DLL fingerprint has been obtained to pro
cess . If , at block 720 , the central facility 106 determines not
to continue monitoring for a DLL fingerprint , the machine
readable instructions 700 of FIG . 7 terminate .
[0153] FIG . 8 is a flowchart representative of example
machine readable instructions 800 that may be executed to
implement the central facility 106 of FIGS . 1 and / or 3 to
update malware protection parameter (s) . The example
machine readable instructions 800 of FIG . 8 can be executed
to implement block 718 of FIG . 7. The machine readable
instructions 800 of FIG . 8 begin at block 802 , at which the
central facility 106 stores a DLL fingerprint associated with
a malicious DLL as a reference fingerprint . For example , the
fingerprint comparator 320 (FIG . 3) can store the DLL
fingerprint based on the second file 134 (FIG . 1) as one of
the third reference fingerprint (s) 140 (FIGS . 1 and / or 3) . In
such examples , the fingerprint comparator 320 can store an
association in the database 370 between the DLL fingerprint

US 2021/0200867 A1 Jul . 1 , 2021
17

or other type

and an identifier , a machine readable flag , etc. , representa
tive of the DLL fingerprint being associated with a malicious
DLL .
[0154] At block 804 , the central facility 106 determines
whether to generate a new executable . For example , the
executable generator 340 (FIG . 3) can determine to generate
new one (s) of the executable (s) 142 in response to one or
more DLL fingerprints being added to the database 370 , after
a specified time duration (e.g. , a week , a month , a year , etc.)
has elapsed .
[0155] If , at block 804 , the central facility 106 determines
not to generate a new executable , control returns to block
720 of the machine readable instructions 700 of FIG . 7 to
determine whether to continue monitoring for a DLL fin
gerprint . If , at block 804 , the central facility 106 determines
to generate a new executable , then , at block 806 , the central
facility 106 generates a new executable including the DLL
fingerprint of the malicious DLL . For example , the execut
able generator 340 can generate one (s) of the executable (s)
142 by including the DLL fingerprint based on the second
file 134 in the one (s) of the executable (s) 142 .
[0156] At block 808 , the central facility 106 generates a
distribution policy based on telemetry data . For example , the
telemetry aggregator 350 (FIG . 3) can generate the distri
bution policy 375 (FIG . 3) based on the telemetry data 380
obtained from one (s) of the computing device (s) 108 , 110
(FIG . 1) . In such examples , the telemetry aggregator 350 can
generate the distribution policy 375 to include identification
(s) of one (s) of the computing device (s) 108 , 110 to transmit
one (s) of the executable (s) 142 to upgrade respective one (s)
of the DLL security controllers 102 , 104 (FIG . 1) .
[0157] At block 810 , the central facility 106 distributes the
new executable to computing device (s) based on the distri
bution policy . For example , the executable distributor 360
can identify one (s) of the computing device (s) 108 , 110 to
upgrade based on the distribution policy 375. In such
examples , the executable distributor 360 can invoke the
network interface 310 (FIG . 3) to transmit the executable (s)
142 to the identified one (s) of the computing device (s) 108 ,
110 to upgrade the identified one (s) of the computing
device (s) 108 , 110. For example , the DLL security controller
(s) 102 , 104 of the identified one (s) of the computing
device (s) 108 , 110 can be upgraded in response to the
identified one (s) of the computing device (s) 108 , 110 install
ing and / or otherwise invoking the received one (s) of the
executable (s) 142 .
[0158] At block 812 , the central facility 106 causes com
puting device (s) to identify a malware attack based on the
new executable . For example , the executable distributor 360
can cause the upgraded one (s) of the computing device (s)
108 , 110 to identify a malware attack by executing an
upgraded version of the DLL security controllers 102 , 104 .
In such examples , the upgrade DLL security controller (s)
102 , 104 can replace the first reference fingerprint (s) 136 ,
the second reference fingerprint (s) 138 , etc. , with the third
reference fingerprint (s) 140. In response to causing the
computing device (s) to identify a malware attack based on
the new executable at block 812 , control returns to block 720
of the machine readable instructions 700 of FIG . 7 to
determine whether to continue monitoring for a DLL fin
gerprint .
[0159] FIG . 9 is a block diagram of an example processor
platform 900 structured to execute the instructions of FIGS .
5-6 to implement the first DLL security controller 102 and / or

one (s) of the second DLL security controllers 104 of FIGS .
1 and / or 2. The processor platform 900 can be , for example ,
a server , a personal computer , a workstation , a self - learning
machine (e.g. , a neural network) , a mobile device (e.g. , a cell
phone , a smart phone , a tablet such as an iPadTM) , a personal
digital assistant (PDA) , a gaming console , any
of computing device .
[0160] The processor platform 900 of the illustrated
example includes a processor 912. The processor 912 of the
illustrated example is hardware . For example , the processor
912 can be implemented by one or more integrated circuits ,
logic circuits , microprocessors , GPUs , DSPs , or controllers
from any desired family or manufacturer . The hardware
processor may be a semiconductor based (e.g. , silicon
based) device . In this example , the processor 912 imple
ments the example event monitor 210 , the example DLL
path determiner 220 , the example fingerprint generator 230 ,
the example fingerprint comparator 240 , and the example
security action enforcer 260 of FIG . 2 .
[0161] The processor 912 of the illustrated example
includes a local memory 913 (e.g. , a cache) . The processor
912 of the illustrated example is in communication with a
main memory including a volatile memory 914 and a
non - volatile memory 916 via a bus 918. The volatile
memory 914 may be implemented by SDRAM , DRAM ,
RDRAM® , and / or any other type of random access memory
device . The non - volatile memory 916 may be implemented
by flash memory and / or any other desired type of memory
device . Access to the main memory 914,916 is controlled by
a memory controller .
[0162] The processor platform 900 of the illustrated
example also includes an interface circuit 920. The interface
circuit 920 may be implemented by any type of interface
standard , such as an Ethernet interface , a universal serial bus
(USB) , a Bluetooth® interface , a near field communication
(NFC) interface , and / or a PCI express interface . In this
example , the interface circuit 920 implements the example
telemetry interface 250 of FIG . 2 .
[0163] In the illustrated example , one or more input
devices 922 are connected to the interface circuit 920. The
input device (s) 922 permit (s) a user to enter data and / or
commands into the processor 912. The input device (s) 922
can be implemented by , for example , an audio sensor , a
microphone , a camera (still or video) , a keyboard , a button ,
a mouse , a touchscreen , a track - pad , a trackball , an isopoint
device , and / or a voice recognition system .
[0164] One or more output devices 924 are also connected
to the interface circuit 920 of the illustrated example . The
output devices 924 can be implemented , for example , by
display devices (e.g. , a light emitting diode (LED) , an
organic light emitting diode (OLED) , a liquid crystal display
(LCD) , a cathode ray tube (CRT) display , an in - place
switching (IPS) display , a touchscreen , etc.) , a tactile output
device , a printer and / or speaker . The interface circuit 920 of
the illustrated example , thus , typically includes a graphics
driver card , a graphics driver chip and / or a graphics driver
processor .
[0165] The interface circuit 920 of the illustrated example
also includes a communication device such as a transmitter ,
a receiver , a transceiver , a modem , a residential gateway , a
wireless access point , and / or a network interface to facilitate
exchange of data with external machines (e.g. , computing
devices of any kind) via a network 926. The communication
can be via , for example , an Ethernet connection , a digital

US 2021/0200867 A1 Jul . 1. 2021
18

subscriber line (DSL) connection , a telephone line connec
tion , a coaxial cable system , a satellite system , a line - of - site
wireless system , a cellular telephone system , etc.
[0166] The processor platform 900 of the illustrated
example also includes one or more mass storage devices 928
for storing software and / or data . Examples of such mass
storage devices 928 include floppy disk drives , hard drive
disks , compact disk drives , Blu - ray disk drives , redundant
array of independent disks (RAID) systems , and DVD
drives . In this example , the one or more mass storage
devices 928 implements the example database 270 and the
example fingerprint (s) 275 of FIG . 2 .
[0167] The machine executable instructions 932 of FIGS .
5-6 may be stored in the mass storage device 928 , in the
volatile memory 914 , in the non - volatile memory 916 ,
and / or on a removable non - transitory computer readable
storage medium such as a CD or DVD .
[0168] FIG . 10 is a block diagram of an example processor
platform 1000 structured to execute the instructions of
FIGS . 7-8 to implement the central facility 106 of FIGS . 1
and / or 3. The processor platform 1000 can be , for example
a server , a personal computer , a workstation , a self - learning
machine (e.g. , a neural network) , or any other type of
computing device .
[0169] The processor platform 1000 of the illustrated
example includes a processor 1012. The processor 1012 of
the illustrated example is hardware . For example , the pro
cessor 1012 can be implemented by one or more integrated
circuits , logic circuits , microprocessors , GPUs , DSPs , or
controllers from any desired family or manufacturer . The
hardware processor may be a semiconductor based (e.g. ,
silicon based) device . In this example , the processor 1012
implements the example fingerprint comparator 320 , the
example alert generator 330 , the example executable gen
erator 340 , the example telemetry aggregator 350 , and the
example executable distributor 360 of FIG . 3 .
[0170] The processor 1012 of the illustrated example
includes a local memory 1013 (e.g. , a cache) . The processor
1012 of the illustrated example is in communication with a
main memory including a volatile memory 1014 and a
non - volatile memory 1016 via a bus 1018. The volatile
memory 1014 may be implemented by SDRAM , DRAM ,
RDRAM® , and / or any other type of random access memory
device . The non - volatile memory 1016 may be implemented
by flash memory and / or any other desired type of memory
device . Access to the main memory 1014 , 1016 is controlled
by a memory controller .
[0171] The processor platform 1000 of the illustrated
example also includes an interface circuit 1020. The inter
face circuit 1020 may be implemented by any type of
interface standard , such as an Ethernet interface , a USB , a
Bluetooth® interface , an NFC interface , and / or a PCI
express interface . In this example , the interface circuit 1020
implements the example network interface 310 of FIG . 3 .
[0172] In the illustrated example , one or more input
devices 1022 are connected to the interface circuit 1020. The
input device (s) 1022 permit (s) a user to enter data and / or
commands into the processor 1012. The input device (s)
1022 can be implemented by , for example , an audio sensor ,
a microphone , a camera (still or video) , a keyboard , a button ,
a mouse , a touchscreen , a track - pad , a trackball , an isopoint
device , and / or a voice recognition system .
[0173] One or more output devices 1024 are also con
nected to the interface circuit 1020 of the illustrated

example . The output devices 1024 can be implemented , for
example , by display devices (e.g. , an LED , an OLED , an
LCD , a CRT display , an IPS display , a touchscreen , etc.) , a
tactile output device , a printer and / or speaker . The interface
circuit 1020 of the illustrated example , thus , typically
includes a graphics driver card , a graphics driver chip and / or
a graphics driver processor .
[0174] The interface circuit 1020 of the illustrated
example also includes a communication device such as a
transmitter , a receiver , a transceiver , a modem , a residential
gateway , a wireless access point , and / or a network interface
to facilitate exchange of data with external machines (e.g. ,
computing devices of any kind) via a network 1026. The
communication can be via , for example , an Ethernet con
nection , a DSL connection , a telephone line connection , a
coaxial cable system , a satellite system , a line - of - site wire
less system , a cellular telephone system , etc.
[0175] The processor platform 1000 of the illustrated
example also includes one or more mass storage devices
1028 for storing software and / or data . Examples of such
mass storage devices 1028 include floppy disk drives , hard
drive disks , compact disk drives , Blu - ray disk drives , RAID
systems , and DVD drives . In this example , the one or more
mass storage devices 1028 implement the example database
370 , the third example reference fingerprint (s) 140 , the
example executable (s) 142 , the example policy 375 , and the
example telemetry data 380 of FIG . 3 .
[0176] The machine executable instructions 1032 of FIGS .
7-8 may be stored in the mass storage device 1028 , in the
volatile memory 1014 , in the non - volatile memory 1016 ,
and / or on a removable non - transitory computer readable
storage medium such as a CD or DVD .
[0177] From the foregoing , it will be appreciated that
example systems , methods , apparatus , and articles of manu
facture have been disclosed that defend against malware
attacks , such as DLL side - loading attacks . The disclosed
systems , methods , and articles of manufacture generate a
fingerprint associated with an invoked DLL and / or the
executable that calls the invoked DLL . The disclosed sys
tems , methods , and articles of manufacture can detect a DLL
side - loading attack in response to the fingerprint satisfying
a deviation threshold indicative of the invoked DLL being
associated with the DLL side - loading attack or any other
type of computer attack or exploit .
[0178] Advantageously , the disclosed systems , methods ,
and articles of manufacture can transmit the fingerprint to
external computing device (s) (e.g. , one or more computing
servers) to leverage an increased capacity of hardware
and / or software resources of the external computing device
(s) to detect a malware attack by comparing the fingerprint
to a plurality of reference fingerprints obtained by a plurality
of computing devices . Advantageously , the disclosed sys
tems , methods , apparatus , and articles of manufacture
improve the efficiency of using a computing device by
offloading fingerprint comparison (s) to the external comput
ing device (s) . Advantageously , the disclosed systems , meth
ods , apparatus , and articles of manufacture improve avail
ability of a computing device by defending the computing
device from attacks , exploits , etc. , not yet encountered by
the computing device . The disclosed methods , apparatus and
articles of manufacture are accordingly directed to one or
more improvement (s) in the functioning of a computer .
[0179] Further examples and combinations thereof include
the following :

US 2021/0200867 A1 Jul . 1. 2021
19

[0180] Example 1 includes an apparatus to detect an attack
at a computing device , the apparatus comprising a finger
print generator to determine a first dynamic - link library
(DLL) fingerprint of a first DLL referenced by an operating
system (OS) event , the OS event generated by the computing
device , the first DLL stored at a first OS path , and in
response to determining that a second DLL is stored at a
second OS path , determine a second DLL fingerprint of the
second DLL , the second DLL having the same name as the
first DLL , the second OS path superseding the first OS path ,
a fingerprint comparator to determine whether at least one of
the first DLL fingerprint or the second DLL fingerprint
satisfies a deviation threshold based on a comparison of the
first DLL fingerprint and the second DLL fingerprint to a
reference DLL fingerprint , and a security action enforcer to
execute a security action to protect the computing device
from the attack in response to the deviation threshold being
satisfied .
[0181] Example 2 includes the apparatus of example 1 ,
wherein the OS event includes launching an executable by
the computing device , the second OS path is a side - by - side
assembly path , and further including a DLL path determiner
to determine whether the first DLL is included in the
executable , and in response to determining that the first DLL
is included in the executable , determine whether the second
DLL is stored at the second OS path .
[0182] Example 3 includes the apparatus of example 1 ,
wherein the reference DLL fingerprint is a first reference
fingerprint , further including a telemetry interface to trans
mit the first DLL to a server , and in response to obtaining an
alert from the server , the security action enforcer is to
execute the security action , the alert indicative of the server
determining that the first DLL satisfied the deviation thresh
old based on a comparison of the first DLL to a second
reference fingerprint , the second reference fingerprint dif
ferent from the first reference fingerprint .
[0183] Example 4 includes the apparatus of example 1 ,
wherein the security action includes at least one of gener
ating a log , blocking a first execution of at least one of the
first DLL or the second DLL , or preventing a second
execution of an executable that triggered the OS event .
[0184] Example 5 includes the apparatus of example 1 ,
wherein the fingerprint generator is to extract a feature from
the first DLL , execute a hash algorithm on the feature to
generate a hash value , and determine the first DLL finger
print based on the hash value .
[0185] Example 6 includes the apparatus of example 5 ,
wherein the feature is a first feature , the hash value is a first
hash value , and the fingerprint generator is to in response to
determining that an executable triggered the OS event ,
extract a second feature from the executable , execute the
hash algorithm on the second feature to generate a second
hash value , and determine the first DLL fingerprint based on
at least one of the first hash value or the second hash value .
[0186] Example 7 includes the apparatus of example 5 ,
wherein the feature is the first OS path , a list of exported
functions associated with the first DLL , digital signature
information , a high - level language used to generate the first
DLL , a compiler that compiled the first DLL , or a file
version of the first DLL .
[0187] Example 8 includes At least one non - transitory
computer readable storage medium comprising instructions
that , when executed , cause at least one processor to at least
determine a first dynamic - link library (DLL) fingerprint of a

first DLL referenced by an operating system (OS) event , the
OS event generated by a computing device , the first DLL
stored at a first OS path , in response to determining that a
second DLL is stored at a second OS path , determine a
second DLL fingerprint of the second DLL , the second DLL
having the same name as the first DLL , the second OS path
superseding the first OS path , determine whether at least one
of the first DLL fingerprint or the second DLL fingerprint
satisfies a deviation threshold based on a comparison of the
first DLL fingerprint and the second DLL fingerprint to a
reference DLL fingerprint , and execute a security action to
protect the computing device from an attack in response to
the deviation threshold being satisfied .
[0188] Example 9 includes the at least one non - transitory
computer readable storage medium of example 8 , wherein
the OS event includes launching an executable by the
computing device , the second OS path is a side - by - side
assembly path , and the instructions , when executed , cause
the at least one processor to determine whether the first DLL
is included in the executable , and in response to determining
that the first DLL is included in the executable , determining
whether the second DLL is stored at the second OS path .
[0189] Example 10 includes the at least one non - transitory
computer readable storage medium of example 8 , wherein
the reference DLL fingerprint is a first reference fingerprint ,
and the instructions , when executed , cause the at least one
processor to transmit the first DLL to a server , and in
response to obtaining an alert from the server , execute the
security action , the alert indicative of the server determining
that the first DLL satisfied the deviation threshold based on
a comparison of the first DLL to a second reference finger
print , the second reference fingerprint different from the first
reference fingerprint .
[0190] Example 11 includes the at least one non - transitory
computer readable storage medium of example 8 , wherein
the security action includes at least one of generating a log ,
blocking a first execution of at least one of the first DLL or
the second DLL , or preventing a second execution of an
executable that triggered the OS event .
[0191] Example 12 includes the at least one non - transitory
computer readable storage medium of example 8 , wherein
the instructions , when executed , cause the at least one
processor to extract a feature from the first DLL , execute a
hash algorithm on the feature to generate a hash value , and
determine the first DLL fingerprint based on the hash value .
[0192] Example 13 includes the at least one non - transitory
computer readable storage medium of example 12 , wherein
the feature is a first feature , the hash value is a first hash
value , and the instructions , when executed , cause the com
puting device to in response to determining that an execut
able triggered the OS event , extract a second feature from
the executable , execute the hash algorithm on the second
feature to generate a second hash value , and determine the
first DLL fingerprint based on at least one of the first hash
value or the second hash value .
[0193] Example 14 includes the at least one non - transitory
computer readable storage medium of example 12 , wherein
the feature is the first OS path , a list of exported functions
associated with the first DLL , digital signature information ,
a high - level language used to generate the first DLL , a
compiler that compiled the first DLL , or a file version of the
first DLL .
[0194] Example 15 includes an apparatus to detect an
attack at a computing device , the apparatus comprising

US 2021/0200867 A1 Jul 1 , 2021
20

means for determining to determine a first dynamic - link
library (DLL) fingerprint of a first DLL referenced by an
operating system (OS) event , the OS event generated by the
computing device , the first DLL stored at a first OS path , and
in response to determining that a second DLL is stored at a
second OS path , a second DLL fingerprint of the second
DLL , the second DLL having the same name as the first
DLL , the second OS path superseding the first OS path ,
means for comparing to compare the first DLL fingerprint
and the second DLL fingerprint to a reference DLL finger
print , and determine whether at least one of the first DLL
fingerprint or the second DLL fingerprint satisfies a devia
tion threshold based on the comparison , and means for
executing a security action to protect the computing device
from the attack in response to the deviation threshold being
satisfied .
[0195] Example 16 includes the apparatus of example 15 ,
wherein the OS event includes launching an executable by
the computing device , the second OS path is a side - by - side
assembly path , the means for determining is first means for
determining , and further including second means for deter
mining to determine whether the first DLL is included in the
executable , and in response to determining that the first DLL
is included in the executable , determine whether the second
DLL is stored at the second OS path .
[0196] Example 17 includes the apparatus of example 15 ,
wherein the reference DLL fingerprint is a first reference
fingerprint , and further including means for transmitting the
first DLL to a server , wherein the means for executing is to ,
in response to obtaining an alert from the server , execute the
security action , the alert indicative of the server determining
that the first DLL satisfied the deviation threshold based on
a comparison of the first DLL to a second reference finger
print , the second reference fingerprint different from the first
reference fingerprint .
[0197] Example 18 includes the apparatus of example 15 ,
wherein the security action includes at least one of gener
ating a log , blocking a first execution of at least one of the
first DLL or the second DLL , or preventing a second
execution of an executable that triggered the OS event .
[0198] Example 19 includes the apparatus of example 15 ,
wherein the means for determining is to extract a feature
from the first DLL , execute a hash algorithm on the feature
to generate a hash value , and determine the first DLL
fingerprint based on the hash value .
[0199] Example 20 includes the apparatus of example 19 ,
wherein the feature is a first feature , the hash value is a first
hash value , and the means for determining is to in response
to determining that an executable triggered the OS event ,
extract a second feature from the executable , execute the
hash algorithm on the second feature to generate a second
hash value , and determine the first DLL fingerprint based on
at least one of the first hash value or the second hash value .
[0200] Example 21 includes the apparatus of example 19 ,
wherein the feature is the first OS path , a list of exported
functions associated with the first DLL , digital signature
information , a high - level language used to generate the first
DLL , a compiler that compiled the first DLL , or a file
version of the first DLL .
[0201] Example 22 includes a method to detect an attack
at a computing device , the method comprising determining
a first dynamic - link library (DLL) fingerprint of a first DLL
referenced by an operating system (OS) event , the OS event
generated by the computing device , the first DLL stored at

a first OS path , in response to determining that a second DLL
is stored at a second OS path , determining a second DLL
fingerprint of the second DLL , the second DLL having the
same name as the first DLL , the second OS path superseding
the first OS path , determining whether at least one of the first
DLL fingerprint or the second DLL fingerprint satisfies a
deviation threshold based on a comparison of the first DLL
fingerprint and the second DLL fingerprint to a reference
DLL fingerprint , and in response to the deviation threshold
being satisfied , executing a security action to protect the
computing device from the attack .
[0202] Example 23 includes the method of example 22 ,
wherein the OS event includes launching an executable by
the computing device , the second OS path is a side - by - side
assembly path , and further including determining whether
the first DLL is included in the executable , and in response
to determining that the first DLL is included in the execut
able , determining whether the second DLL is stored at the
second OS path .
[0203] Example 24 includes the method of example 22 ,
wherein the reference DLL fingerprint is a first reference
fingerprint , and further including transmitting the first DLL
to a server , and in response to obtaining an alert from the
server , executing the security action , the alert indicative of
the server determining that the first DLL satisfied the devia
tion threshold based on a comparison of the first DLL to a
second reference fingerprint , the second reference finger
print different from the first reference fingerprint .
[0204] Example 25 includes the method of example 22 ,
wherein the security action includes at least one of gener
ating a log , blocking a first execution of at least one of the
first DLL or the second DLL , or preventing a second
execution of an executable that triggered the OS event .
[0205] Example 26 includes the method of example 22 ,
further including extracting a feature from the first DLL ,
executing a hash algorithm on the feature to generate a hash
value , and determine the first DLL fingerprint based on the
hash value .

[0206] Example 27 includes the method of example 26 ,
wherein the feature is a first feature , the hash value is a first
hash value , and further including in response to determining
that an executable triggered the OS event , extracting a
second feature from the executable , executing the hash
algorithm on the second feature to generate a second hash
value , and determining the first DLL fingerprint based on at
least one of the first hash value or the second hash value .
[0207] Example 28 includes the method of example 26 ,
wherein the feature is the first OS path , a list of exported
functions associated with the first DLL , digital signature
information , a high - level language used to generate the first
DLL , a compiler that compiled the first DLL , or a file
version of the first DLL .
[0208] Although certain example systems , methods , appa
ratus and articles of manufacture have been disclosed herein ,
the scope of coverage of this patent is not limited thereto . On
the contrary , this patent covers all systems , methods , appa
ratus and articles of manufacture fairly falling within the
scope of the claims of this patent .
[0209] The following claims are hereby incorporated into
this Detailed Description by this reference , with each claim
standing on its own as a separate embodiment of the present
disclosure .

US 2021/0200867 A1 Jul . 1. 2021
21

??

What is claimed is :
1. An apparatus to detect an attack at a computing device ,

the apparatus comprising :
a fingerprint generator to :

determine a first dynamic - link library (DLL) finger
print of a first DLL referenced by an operating
system (OS) event , the OS event generated by the
computing device , the first DLL stored at a first OS
path ; and

in response to determining that a second DLL is stored
at a second OS path , determine a second DLL
fingerprint of the second DLL , the second DLL
having the same name as the first DLL , the second
OS path superseding the first OS path ;

a fingerprint comparator to determine whether at least one
of the first DLL fingerprint or the second DLL finger
print satisfies a deviation threshold based on a com
parison of the first DLL fingerprint and the second DLL
fingerprint to a reference DLL fingerprint ; and

a security action enforcer to execute a security action to
protect the computing device from the attack in
response to the deviation threshold being satisfied .

2. The apparatus of claim 1 , wherein the OS event
includes launching an executable by the computing device ,
the second OS path is a side - by - side assembly path , and
further including a DLL path determiner to :

determine whether the first DLL is included in the execut
able ; and

in response to determining that the first DLL is included
in the executable , determine whether the second DLL
is stored at the second OS path .

3. The apparatus of claim 1 , wherein the reference DLL
fingerprint is a first reference fingerprint , further including a
telemetry interface to transmit the first DLL to a server , and
in response to obtaining an alert from the server , the security
action enforcer is to execute the security action , the alert
indicative of the server determining that the first DLL
satisfied the deviation threshold based on a comparison of
the first DLL to a second reference fingerprint , the second
reference fingerprint different from the first reference fin
gerprint .

4. The apparatus of claim 1 , wherein the security action
includes at least one of generating a log , blocking a first
execution of at least one of the first DLL or the second DLL ,
or preventing a second execution of an executable that
triggered the OS event .

5. The apparatus of claim 1 , wherein the fingerprint
generator is to :

extract a feature from the first DLL ;
execute a hash algorithm on the feature to generate a hash

value ; and
determine the first DLL fingerprint based on the hash

value .
6. The apparatus of claim 5 , wherein the feature is a first

feature , the hash value is a first hash value , and the finger
print generator is to :

in response to determining that an executable triggered
the OS event , extract a second feature from the execut
able ;

execute the hash algorithm on the second feature to
generate a second hash value ; and

determine the first DLL fingerprint based on at least one
of the first hash value or the second hash value .

7. The apparatus of claim 5 , wherein the feature is the first
OS path , a list of exported functions associated with the first
DLL , digital signature information , a high - level language
used to generate the first DLL , a compiler that compiled the
first DLL , or a file version of the first DLL .

8. At least one non - transitory computer readable storage
medium comprising instructions that , when executed , cause
at least one processor to at least :

determine a first dynamic - link library (DLL) fingerprint
of a first DLL referenced by an operating system (OS)
event , the OS event generated by a computing device ,
the first DLL stored at a first OS path ;

in response to determining that a second DLL is stored at
a second OS path , determine a second DLL fingerprint
of the second DLL , the second DLL having the same
name as the first DLL , the second OS path superseding
the first OS path ;

determine whether at least one of the first DLL fingerprint
or the second DLL fingerprint satisfies a deviation
threshold based on a comparison of the first DLL
fingerprint and the second DLL fingerprint to a refer
ence DLL fingerprint ; and

execute a security action to protect the computing device
from an attack in response to the deviation threshold
being satisfied .

9. The at least one non - transitory computer readable
storage medium of claim 8 , wherein the OS event includes
launching an executable by the computing device , the sec
ond OS path is a side - by - side assembly path , and the
instructions , when executed , cause the at least one processor
to :

determine whether the first DLL is included in the execut
able ; and

in response to determining that the first DLL is included
in the executable , determining whether the second DLL
is stored at the second OS path .

10. The at least one non - transitory computer readable
storage medium of claim 8 , wherein the reference DLL
fingerprint is a first reference fingerprint , and the instruc
tions , when executed , cause the at least one processor to :

transmit the first DLL to a server , and
in response to obtaining an alert from the server , execute

the security action , the alert indicative of the server
determining that the first DLL satisfied the deviation
threshold based on a comparison of the first DLL to a
second reference fingerprint , the second reference fin
gerprint different from the first reference fingerprint .

11. The at least one non - transitory computer readable
storage medium of claim 8 , wherein the security action
includes at least one of generating a log , blocking a first
execution of at least one of the first DLL or the second DLL ,
or preventing a second execution of an executable that
triggered the OS event .

12. The at least one non - transitory computer readable
storage medium of claim 8 , wherein the instructions , when
executed , cause the at least one processor to :

extract a feature from the first DLL ;
execute a hash algorithm on the feature to generate a hash

value ; and
determine the first DLL fingerprint based on the hash

value .
13. The at least one non - transitory computer readable

storage medium of claim 12 , wherein the feature is a first

US 2021/0200867 A1 Jul . 1. 2021
22

feature , the hash value is a first hash value , and the instruc
tions , when executed , cause the computing device to :

in response to determining that an executable triggered
the OS event , extract a second feature from the execut
able ;

execute the hash algorithm on the second feature to
generate a second hash value ; and

determine the first DLL fingerprint based on at least one
of the first hash value or the second hash value .

14. The at least one non - transitory computer readable
storage medium of claim 12 , wherein the feature is the first
OS path , a list of exported functions associated with the first
DLL , digital signature information , a high - level language
used to generate the first DLL , a compiler that compiled the
first DLL , or a file version of the first DLL .

15. An apparatus to detect an attack at a computing
device , the apparatus comprising :
means for determining to determine a first dynamic - link

library (DLL) fingerprint of a first DLL referenced by
an operating system (OS) event , the OS event gener
ated by the computing device , the first DLL stored at a
first OS path , and in response to determining that a
second DLL is stored at a second OS path , a second
DLL fingerprint of the second DLL , the second DLL
having the same name as the first DLL , the second OS
path superseding the first OS path ;

means for comparing to compare the first DLL fingerprint
and the second DLL fingerprint to a reference DLL
fingerprint , and determine whether at least one of the
first DLL fingerprint or the second DLL fingerprint
satisfies a deviation threshold based on the comparison ;
and

means for executing a security action to protect the
computing device from the attack in response to the
deviation threshold being satisfied .

16. The apparatus of claim 15 , wherein the OS event
includes launching an executable by the computing device ,
the second OS path is a side - by - side assembly path , the
means for determining is first means for determining , and
further including second means for determining to :

determine whether the first DLL is included in the execut
able ; and

in response to determining that the first DLL is included
in the executable , determine whether the second DLL
is stored at the second OS path .

17. The apparatus of claim 15 , wherein the reference DLL
fingerprint is a first reference fingerprint , and further includ
ing means for transmitting the first DLL to a server , wherein
the means for executing is to , in response to obtaining an
alert from the server , execute the security action , the alert
indicative of the server determining that the first DLL
satisfied the deviation threshold based on a comparison of
the first DLL to a second reference fingerprint , the second
reference fingerprint different from the first reference fin
gerprint

18. The apparatus of claim 15 , wherein the security action
includes at least one of generating a log , blocking a first
execution of at least one of the first DLL or the second DLL ,
or preventing a second execution of an executable that
triggered the OS event .

19. The apparatus of claim 15 , wherein the means for
determining is to :

extract a feature from the first DLL ;
execute a hash algorithm on the feature to generate a hash

value ; and
determine the first DLL fingerprint based on the hash

value .
20. The apparatus of claim 19 , wherein the feature is a first

feature , the hash value is a first hash value , and the means
for determining is to :

in response to determining that an executable triggered
the OS event , extract a second feature from the execut
able ;

execute the hash algorithm on the second feature to
generate a second hash value ; and

determine the first DLL fingerprint based on at least one
of the first hash value or the second hash value .

21-28 . (canceled)

