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(57) ABSTRACT

Systems and methods construct a 2 dimensional (2D) gas
concentration map (image) from data from one or more laser
based absorption projection paths. Embodiments use a Baye-
sian approach to construct a 2D gas concentration map of a
combustion region cross section plane by modeling the 2D
map as a Gaussian Process (GP). The GP models the global
correlation among all pixels in the 2D map. Data from one or
more projection paths is propagated to all pixels in the map
instead of just local pixels. The correlation among map pixels
is used to propagate projection path data from map pixels

20, 2011. traversed by a projection path to other map pixels.
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BAYESTAN APPROACH FOR GAS
CONCENTRATION RECONSTRUCTION
BASED ON TUNABLE DIODE LASER
ABSORPTION SPECTROSCOPY

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 61/536,704, filed on Sep. 20,2011, the
disclosure which is incorporated herein by reference in its
entirety.

BACKGROUND OF THE INVENTION

[0002] The invention relates generally to 2-dimensional
(2D) gas concentration map construction. More specifically,
the invention relates to a Gaussian Process (GP) that propa-
gates data from individual projection path average measure-
ment values to all pixels in a 2D map and models the global
correlation among all pixels.

[0003] Tunable Diode Laser Absorption Spectroscopy
(TDLAS) is a technique for measuring gas (e.g., O,, CO)
concentrations and temperatures simultaneously for combus-
tion systems such as a boiler. A TDLAS system measures an
average value of a parameter over a predetermined projection
path through a combustion region. One active research area in
TDLAS is to reconstruct a 2D gas concentration map based
on multiple projection path averages. A gas concentration
map is useful in many applications such as combustion moni-
toring, diagnosis and optimization.

[0004] To construct a gas concentration map is a problem of
2D reconstruction from 1-dimensional (1D) projections,
which is similar to the concept of Computed Tomography
(CT) used in medical imaging. However, most widely used
CT algorithms, such as filtered back projection, require many
projections (multiple views and dense projections per view)
to achieve a high resolution. In contrast, only a very small
number of projection paths are typically set up on aboiler. For
example, it is not uncommon that only five to ten projection
paths are used. Additionally, a projection path may not be
through an optimal location or at an optimal direction (view)
because of physical restrictions or mounting difficulties.
These challenges result in a large percentage of pixels in the
map that are unobserved (not traversed) by a single projection
path.

[0005] Since CT image reconstruction uses the Algebraic
Reconstruction Technique (ART), ART would appear to be a
natural fit because it can handle the issue of a small number of
projections. However, for this extremely under-constrained
problem (the number of unknown variables, gas concentra-
tions in a 2D map, is far more than the number of available
equations), ART may not be realizable.

[0006] Smoothness constraints among neighboring pixels
are introduced as prior information to help address this under-
constrained problem. Smoothness can be incorporated using
smooth basis functions or bicubic spline interpolation as a
post-processing step. However, smoothness constraints are
local and cannot capture long range correlation among pixels.
This requirement is difficult to meet due to the above chal-
lenges.

[0007] What is desired is a method and system that con-
structs a gas concentration map from 1D projection path
averages.
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SUMMARY OF THE INVENTION

[0008] The inventor has discovered that it would be desir-
able to have a system and method that construct a 2-dimen-
sional (2D) gas concentration map (image) from data from
one or more laser-based absorption projection paths. Embodi-
ments use a Bayesian approach to construct a 2D gas concen-
tration map of a combustion region cross-section plane by
modeling the 2D map as a Gaussian Process (GP). The GP
models the global correlation among all pixels in the 2D map.
Data from one or more projection paths is propagated to all
pixels in the map instead of just local pixels. The correlation
among map pixels is used to propagate projection path data
from map pixels traversed by a projection path to other map
pixels.

[0009] One aspect of the invention provides a method that
constructs a two dimensional map (image) from one dimen-
sional projection path data. Methods according to this aspect
of the invention include defining a map having MxN pixels
that represents a cross-section plane, identifying boundary
coordinate locations on the map that define one or more
projection paths where i=1, 2, . . . , [ represents the number of
projection paths, identifying the map pixels that are traversed
by the I projection paths, calculating a pixel projection path
length for each map pixel that is traversed by each projection
path i, propagating the pixel projection lengths to other map
pixels, and correlating the pixel projection lengths.

[0010] Another aspect of the invention provides a method
that constructs a two dimensional map (image) from one
dimensional projection path data. Methods according to this
aspect of the invention include defining a map matrix v having
MxN pixels that represents a cross-section plane, identifying
boundary coordinate locations on the map matrix v that define
one or more projection paths wherei=1, 2, .. ., I represents the
number of projection paths, identifying the map matrix v
pixels that are traversed by the I projection paths, calculating
apixel projection path length for each map matrix v pixel that
is traversed by each projection path i, for each projection path
i, representing the map matrix v as a J-dimensional vector,
where J=MxN, for each J-dimensional vector, entering a
value of zero for pixels that are not traversed by its projection
path and entering pixel projection path lengths for pixels
traversed by its projection path, defining a projection matrix
A, where A=IxJ from all of the J-dimensional vectors, nor-
malizing each J-dimensional vector A, (=1, 2, . . ., D),
receiving projection path data for the one or more projection
paths as an I-dimensional vector b, defining a relationship
b=Av, selecting a signal variance parameter f, selecting a
spread parameter r, calculating a cross-covariance matrix

ey —xp) + i —yjz)z]

Cijp= fexp( 2

between pixels for map matrix v, selecting a noise variance
o2, calculating an average of projection path data for each
projection path, from a predetermined number of projection
path data, and if more than one projection paths are employed,
calculating an average based on an average of all individual
projection path data averages, calculating the estimate of map
matrix v as V=CAT(ACAT+c°1)"*(b—Am)+m, and represent-
ing ¥ as map matrix v.

[0011] The details of one or more embodiments of the
invention are set forth in the accompanying drawings and the
description below. Other features, objects, and advantages of
the invention will be apparent from the description and draw-
ings, and from the claims.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1 is an exemplary system framework.
[0013] FIG. 2 is an exemplary method.
[0014] FIG. 3 is an exemplary map matrix v where M=N=2

and two projection paths (I=2) are employed.

[0015] FIGS. 4A-4] are exemplary 2D simulation maps
displayed in a gradient scale between a minimum and a maxi-
mum. FIGS. 4A-4D use a SART algorithm to construct each
map and are compared with a ground truth map, FIG. 4E.
FIGS. 4F-4] use embodiments to construct each map and are
compared with the ground truth map, FIG. 4J.

[0016] FIG. 5 is an exemplary mean squared error plot
comparing an embodiment of the invention with the SART
algorithm when the number of projection paths varies from 5
to 500.

DETAILED DESCRIPTION

[0017] Embodiments of the invention will be described
with reference to the accompanying drawing figures wherein
like numbers represent like elements throughout. Before
embodiments of the invention are explained in detail, it is to
be understood that the invention is not limited in its applica-
tion to the details of the examples set forth in the following
description or illustrated in the figures. The invention is
capable of other embodiments and of being practiced or car-
ried out in a variety of applications and in various ways. Also,
it is to be understood that the phraseology and terminology
used herein is for the purpose of description and should not be
regarded as limiting. The use of “including,” “comprising,” or
“having,” and variations thereof herein is meant to encompass
the items listed thereafter and equivalents thereof as well as
additional items.

[0018] The terms “connected” and “coupled” are used
broadly and encompass both direct and indirect connecting,
and coupling. Further, “connected” and “coupled” are not
restricted to physical or mechanical connections or cou-
plings.

[0019] It should be noted that the invention is not limited to
any particular software language described or that is implied
in the figures. One of ordinary skill in the art will understand
that a variety of alternative software languages may be used
for implementation of the invention. It should also be under-
stood that some of the components and items are illustrated
and described as if they were hardware elements, as is com-
mon practice within the art. However, one of ordinary skill in
the art, and based on a reading of this detailed description,
would understand that, in at least one embodiment, compo-
nents in the method and system may be implemented in
software or hardware.

[0020] Embodiments of the invention provide methods,
system frameworks, and a computer-usable medium storing
computer-readable instructions that employ a Bayesian
approach to construct a 2D gas concentration map (image) of
a combustion region cross-section plane by modeling the 2D
map as a Gaussian Process (GP). The GP models the global
correlation among all pixels in the 2D map. Data from one or
more laser-based projection paths is propagated to all pixels
in the map instead of just local pixels. The correlation among
pixels is used to propagate projection path data from pixels
traversed by a projection path to other pixels. Embodiments
may be deployed as software as an application program tan-
gibly embodied on a non-transitory computer readable pro-
gram storage device. The application code for execution can
reside on a plurality of different types of computer readable
media known to those skilled in the art.
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[0021] FIG. 1 shows an embodiment 101 that constructs a
gas concentration map for output and display using one or
more laser-based projection paths. The projection paths may
be arbitrary with regard to a combustion region cross-section
plane. A TDLAS system 103, or other laser-based absorption
system, is employed and one projection path comprises a
transmitter 105 that emits a laser beam through a combustion
region 107 to areceiver 109. The TDLAS system 103 outputs
an electrical signal representing a projection path parameter
average value such as temperature or oxXygen concentration,
to a system framework 111 that executes the method.

[0022] The system framework 111 stores combustion
region cross-section projection path data acquired from one
ormore projection paths into a data store 113. The framework
111 may be implemented as a computer including a processor
115, memory 117, software and other components. The pro-
cessor 115 is coupled to the TDLAS system 103, an interface
119, 1/O 121, the data store 113 and the memory 117 and
controls the overall operation of the computer by executing
instructions defining the configuration. The instructions may
be stored in the data store 113, for example, an optical disk,
and loaded into the memory 117 when executing the configu-
ration. The invention may be implemented as an application
defined by the computer program instructions stored in the
memory 117 and/or storage 113 and controlled by the pro-
cessor 115 executing the computer program instructions. The
computer includes at least one interface 119 coupled to and
communicating with the TDLAS system 103 to interrogate
and receive TDLAS projection path data. The /O 121 allows
for user interaction with the computer via peripheral devices
such as a display, a keyboard, a pointing device, and others.

[0023] FIG. 1 shows a user-defined, 2D map matrix v that
comprises an MxN (8x8) grid having a predetermined reso-
Iution of 64 pixels, or cells, that represent a cross-section
plane of the combustion region 107 (step 201). In the exem-
plary embodiment, M=N=8. However, M does not have to
equal N. Embodiments estimate a pixel for each of the 64
pixels based on data received from one or more projection
paths where I is the total number of projection paths and i=1,
2,...,L.InFIG. 1,i=1=L

[0024] Although embodiments can handle any projection
path setup, and the locations of a transmitter and correspond-
ing receiver that define a projection path may be placed any-
where to traverse a combustion region, paths are typically
configured more practicable. A projection path is defined by
two end points, a transmitter (x,,y,,) and a receiver (X_,y,,)
which are on the boundary of the map matrix v since a trans-
mitter 105 and receiver 109 cannot be mounted inside of a
combustion region. Additionally, projection path geometry
may traverse from left to right, right to left, top to bottom or
bottom to top. This geometry makes better use of a path than,
for example, a path from left to bottom. The actual location of
a path’s end points may be random.

[0025] The transmitter and receiver boundary locations for
one or more projection paths are identified on map matrix v
(step 203). FIG. 1 shows the projection path enters map
matrix v at (0, 4.8) units and exits at (8, 3) units. The projec-
tion path traverses a straight line, from left to right between
transmitter 105 and receiver 109.

[0026] Pixels that are traversed by a projection path are
identified (step 205). FIG. 1 shows the projection path tra-
versing pixels v, s,V 5, Vs 5, Va5, Vaas Vs 4 Vo,as V7 g a0d Vg 4.
A pixel projection path length is calculated for each pixel
traversed by each projection path i (step 207).
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[0027] For each projection path i, the map matrix v is rep-
resented as a J-dimensional vector for algebraic manipulation
where J=MxN (step 209). There are two ways to identify a
pixel entry in the J-dimensional vector. One is to use its
Cartesian coordinates (x,y). The other is to use its correspond-
ing J matrix index j.

[0028] A projection matrix A is defined from all of the
J-dimensional vectors as A=IxJ (step 211).

[0029] For each J-dimensional vector, a value of zero is
entered for pixels that are not traversed by its projection path
i and pixel projection path lengths are entered for pixels
traversed by its projection path (step 213). In FIG. 1 for
example, the J-dimensional vector for the map matrix v for
projection path i=1 would contain 64 (J=MxN) entries.
Entries sl, 151, 17511, Waol, Wagl, Wagl, agl, Hssl and 1Tl
would be calculated pixel projection path lengths. The
remaining 55 entries Jy 4. Jo.12. 1420, J22.275 J30.350 J37.43
Jis.s15 Js5.50 and I, o, would be zeros.

[0030] Each J-dimensional vectorrow A, (i=1,2,...,D)is
normalized (step 215) to make the projection path an average
so that A, =1.

[0031] FIG. 3 shows an exemplary map matrix v where
M=N=2, with two projection paths (I=2), Path 1 (i=1) and
Path 2 (i=2) traversing it. Path 1 traverses pixels v, ,, V, , and
v, Path 2 traverses pixels v, ;| and v, . Projection path
lengths are calculated for each pixel traversed by projection
Path 1 and Path 2.

[0032] Projection path lengths IEFI, IFGI and IGHI are
calculated for Path 1 pixels v, ,,V, , and v, ;. Projection path
lengths IRS| and IST| are calculated for Path 2 pixels v, ; and
V,,;. Both Path 1 and Path 2 J-dimensional vectors are J=Mx
N=4.

[0033] The map matrix v is represented as
J=V1av12v2.1V22] = [ Fal- (a)
[0034] The projection Path 1 J-dimensional vector is
J,=[0IEF| |GHI |IFGI]. (b)
[0035] The projection Path 2 J-dimensional vector is
J>=[IRSI0ISTI0]. (©
[0036] The normalizing fraction for projection Path 1 is

1 (d
|EF|+|FG| +|GH|’

[0037] The normalizing fraction for Projection Path 2 is
1 (e)
RS|+IST|
[0038] The projection matrix A (A=IxJ) formed from the

two J-dimensional vectors after normalizing is
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[0039] Projection path data is acquired by the framework
111 and is assembled as an I-dimensional vector b, where i=1,
2,...,1, eachb;, is a projection path average value (step 217).
The projection path data may be in samples per second.
[0040] The projection path data vector b and map matrix v
have the following relationship

b=Av (1)

[0041] (step 219). Projection matrix A is assembled for the
user defined map matrix v and remains constant as projection
path data vector b is periodically updated with new projection
path data. Map matrix v is solved for and provides a 2D map.
[0042] The sum of the i-th row and the sum of the j-th
column of projection matrix A are defined by

A =2 1JAzy' and ()]

4,72 llAij' ©)

[0043] Embodiments solve a linear equation (1) with pro-
jection matrix A and projection path data vector b known. If
projection matrix A is an invertible square matrix, where I=J,
then v=A~'b. If I>j and projection matrix A has a full rank,
based on linear least squares, v=(ATA)"*A%b.

[0044] However, if I<<J, the problem is very under-con-
strained. In this case, there are multiple solutions satisfying
(D).

[0045] By way of background, the Simultaneous Algebraic
Reconstruction Technique (SART) algorithm is one of the
most widely used ART algorithms. SART employs the itera-
tive procedure

5
N ®

i
— A
w2,

+.t
i=1

b; — (A

(k+1) (k)
vy =V ij
/ Ai,+

it

[0046] where Vj(k) denotes the current reconstruction map
after a k-th iteration and (Av®), indicates the estimated i-th
projection from the current map.

[0047] In embodiments, A, ,=1 and can be omitted from
(5), but in general it has a non-zero value. (5) can be under-
stood as follows. The residual between a true projection path
b, and its estimated projection (Av'®), indicates in which
direction Vj(k+1) should move from Vj(k) to reduce this residual.
The final direction is determined by the weighted average of
all I projection paths, each with a weight of A, ' normalized by
A, ;. The magnitude of this movement is adjusted by a param-
eter A.

[0048] The SART algorithm is proven to converge to a
solution of (1) if A, =0. However, there is no guarantee
whether the found solution, out of all possible solutions, is
realistic or not. In addition, in embodiments, the path con-
figuration may be arbitrary. It often happens that A, =0 for
some columns so the j-th pixel is unobserved (not traversed).

)

|EF]| |GH| |FG|
ae |EF|+|FG| +|GH| |EF|+|FG| +|GH| |EF|+|FG| +|GH|
[RS] ST
[RS| +1ST] 0 [RS| +1ST] 0
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In such cases, division by zero will occur and (5) will stop.
Embodiments are compared with the SART algorithm in
simulations.

[0049] Embodiments model map matrix v as a multivariate
Gaussian distribution

P(v)= N vim,C), 6

[0050] where m is a J-dimensional mean vector and C is a
JxJ covariance matrix. Since map matrix v is a 2D matrix, its
distribution is referred to as a Gaussian Process (GP).
Embodiments acknowledge that this GP is homogeneous
since a priori knowledge about the differences between dif-
ferent locations is unavailable.

[0051] The cross-covariance C;, ;, between v,, and v, in
map matrix v is defined as

— a2 a2 (7)
Ciip =fexp( (xj1 sz)r:- (Vj1 = yp) ]
[0052] where (lesyjl) are the coordinates for pixel j,, (Xj2s

¥,») are the coordinates for pixel j,, f is a signal variance
parameter (real number) and r is a spread parameter (real
number). The resulting cross-covariance matrix C is very
large (JxJ) (steps 221, 223, 225).

[0053] (7) shows that if pixels j, and j, are close to each
other, their distance is small and thus the corresponding v,
and v;, will have high correlation. Otherwise, if pixels j, and
J- are far apart, their distance is large and v, and v, will have

low correlation. If j,=j,, C,, ;,=f which is the variance of v, .

[0054] To make the projection process probabilistic, a pro-
jection noise model e is introduced

b=Av+e, (8)
[0055] where e is a projection noise vector and has a Gaus-
sian distribution of

Ple= N (elo,0?n, ©
[0056] where o is a noise variance parameter (real num-

ber) and I is an IxI identity matrix (step 227).

[0057] Embodiments fix the signal variance parameter =1
and the noise variance parameter o°=0.001 such that the
variance ratio between signal and noise is large

iz = 1,000.
a-

A factor of 1,000 ensures faithfully reconstructing a 2D map
without much distortion due to noise. At the same time, the
noise variance °=0.001 is also large enough to avoid a sin-
gular matrix before the matrix inverse in (10).

[0058] Ifthe actual signal variance fis much larger than 1,
=1 and 0 may be multiplied using the same factor. This will
not change the result of (12).

[0059] The projection data vector b can be modeled as
another multivariate Gaussian distribution given the 2D map
matrix v

P(olvi= N (blam,o?D, (10)

[0060] where m is an average of b value averages for each
projection path. Once enough projection path data is collected
for the one or more projection paths, an average b from all
averages is calculated. Each element in m,~b in m, where j=1,

Nov. 27,2014

2,...,1, 1s set due to the GP model. An average of projection
path data for each projection path i, from a predetermined
number of projection path data, is calculated. If more than one
projection paths are employed, an average based on an aver-
age of all individual projection path data averages is calcu-
lated (step 229).

[0061] The joint probability P(v,b)=P(v)P(blv) can be writ-

ten as
] (11

o112

[0062] where Cisthe JxJ covariance matrix. Embodiments
infer map matrix v from the projection paths b, or compute the
conditional probability of P(v,b), which is another multivari-
ate Gaussian distribution and is derived from (9).

c caT

AC ACAT + %1

[0063] The mean of P(v,b) is output as a reconstructed 2D
map

P=CAT(ACAT+P ) (b-Am)+m (12)
[0064] (steps 231, 233).
[0065] In practice, the performance of embodiments does

not vary appreciably when r is between 0.5 and 1.5. There-
fore, r=1.0 is fixed. Alternatively, the above parameters may
be learned by cross validation.

[0066] (12) may be rewritten in a simpler linear form as
V=GB+u, 13
[0067] where G equals CAT(ACAZ+0I)™'b, B is a path

projection and u equals -CAT(ACA+0*1) " Am+m. G and u
are computed once offline and remain constant during execu-
tion.

[0068] The calculation of G and u may be problematic.
First, the covariance matrix C has a size of IxJ, where J=Mx
N, M=N and J>>I. Calculation and storage of C require a
complexity of O(N*) if each element of C is calculated only
once.

[0069] Second, after C is calculated, calculating G and u
requires a complexity of O(J*I) or O(N*I). For a medium size
2D map, where M=N=200, this may pose a serious compu-
tational burden.

[0070] Embodiments adopt the following strategies to miti-
gate these issues. First, each element C;; , in C is a function
of Ix;,—x,| and ly;,=y,,| as in (7). There are only N different
values for all possible Ix,—x,| and ly,-y,|. Therefore,
instead of indexing each element in C using j, and j,, embodi-
ments index them using |x;, - ,| and ly,, -y ,|. This indexing
scheme reduces the handling cost for C from O(N*) to O(N?).
[0071] Second, the projection matrix A is a sparse matrix—
each row has only O(N) non-zero entries. Embodiments
reduce the computational complexity for G and u from
O(N*T) to O(N®I). Execution is fast because the complexity is
just O(N?) once G and u are known.

[0072] Embodiments were compared with a ground-truth
map. However, it is difficult to directly measure a gas con-
centration inside of a combustion region. In simulations, the
size of the 2D map was set at M=N=200. The coordinates of
the map were set to be between 0 and 1, meaning all pixel
coordinates satisfy 0=x,y;<1 and each pixel has a size of
0.005%0.005.
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[0073] A ground-truth map was generated by summing L.
2D smooth functions. In particular, the j-th pixel value v, was
produced as follows
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[0074] where (x,,y,)is the corresponding 2D coordinates of
v,. The I-th smooth function is defined by

h,exp(_(xj _ﬂxl)Z:' ;- pp)* ]’
S
where 1=1, 2, . . ., L. There are four parameters for each

function, h,, s, u,; and p,, representing the peak, width and
center locations of the function, respectively. L=10 was fixed
for all simulations.

[0075] To produce a 2D map, each of the =10 smooth
functions were randomly created by selecting h, between 0
and 1, s, between 0.1 and 0.4, and p1,; and p, between O and 1,
respectively. Thenall of the L functions were summed to form
the final ground-truth map vasin (11). The map created in this
way is smooth, multi-peaked and with an irregular shape,
which resembles a realistic gas concentration map. FIGS.
4A-4] show maps created using this approach, with a mini-
mum to a maximum gradient scale. The number of projection
paths I was increased from 1 to 500 for each map.

[0076] Embodiments were executed and the SART algo-
rithm was executed for each path configuration and for each
of the test maps. The reconstructed map ¥ from each is com-
pared with the ground-truth map v using a mean squared error

The MSE scores are averaged from these results.

[0077] FIG. 5 shows the comparison results between
embodiments and the SART algorithm for paths =5, 10, 20,
50, 70, 100, 200 and 500. One standard deviation error bar is
also shown. For the SART algorithm, the parameter A in (4) is
set to 1.0, which produces the lowest overall MSE errors.
[0078] Embodiments outperform the SART algorithm by
producing lower MSE errors for all path settings. Due to
division by zero, SART was unable to produce a recon-
structed map when 1 is very small (5 and 10 (FIG. 4A)). In
contrast, embodiments produce results for all I=1.

[0079] When =0, the embodiments output m, the mean of
the Gaussian Process (GP) because no extra information is
available. FIGS. 4A-4] compare the reconstructed maps from
both SART and embodiments for the test cases. Embodiments
are able to reconstruct the rough structure of the map when
1=10 (FIG. 4F). When =50, the reconstructed results show
much detail (FIG. 4G). However, SART can only produce
reasonably good results when =100 (FIG. 4C). At I=500,
both methods produce results close to the ground-truth map
(FIGS. 4E and 47). At such a large I, there is adequate infor-
mation for reconstruction.
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[0080] One or more embodiments of the present invention
have been described. Nevertheless, it will be understood that
various modifications may be made without departing from
the spirit and scope of the invention. Accordingly, other
embodiments are within the scope of the following claims.
What is claimed is:
1. A method that constructs a two dimensional map (image)
from one dimensional projection path data comprising:
defining a map having MxN pixels that represents a cross-
section plane;
identifying boundary coordinate locations on the map that
define one or more projection paths where i=1, 2, ..., I
represents the number of projection paths;
identifying the map pixels that are traversed by the I pro-
jection paths;
calculating a pixel projection path length for each map
pixel that is traversed by each projection path i;
propagating the pixel projection lengths to other map pix-
els; and
correlating the pixel projection lengths.
2. The method according to claim 1 further comprising
defining the map as a matrix v.
3. The method according to claim 2 wherein propagating
the pixel projection lengths further comprises:
for each projection path i, representing the map matrix v as
a J-dimensional vector, where J=MxN;
for each J-dimensional vector, entering a value of zero for
pixels that are not traversed by its projection path and
entering pixel projection path lengths for pixels tra-
versed by its projection path; and
normalizing each J-dimensional vector A, ,(i=1,2,...,1).
4. The method according to claim 3 wherein correlating the
pixel projection lengths further comprises:
defining a projection matrix A, where A=IxJ from all of the
J-dimensional vectors;
defining a relationship b=Av;
selecting a signal variance parameter f;
selecting a spread parameter r; and
calculating a cross-covariance matrix

ey —xp) + i —yjz)z]

Cijp= fexp( 2

between pixels for map matrix v.

5. The method according to claim 4 further comprising
receiving projection path data for the one or more projection
paths as an I-dimensional vector b.

6. The method according to claim 5 further comprising
calculating an average of projection path data for each pro-
jection path i, from a predetermined number of projection
path data, and if more than one projection paths are employed,
calculating an average based on an average of all individual
projection path data averages.

7. The method according to claim 6 further comprising:

selecting a noise variance o%; and

calculating the estimate of map matrix v as ¥=CAT(ACAT+

o)~ (b—Am)+m.

8. The method according to claim 7 further comprising
representing ¥ as map matrix v.

9. A method that constructs a two dimensional map (image)
from one dimensional projection path data comprising:

defining a map matrix v having MxN pixels that represents

a cross-section plane;
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identifying boundary coordinate locations on the map
matrix v that define one or more projection paths where
i=1, 2, ..., I represents the number of projection paths;

identifying the map matrix v pixels that are traversed by the
1 projection paths;

calculating a pixel projection path length for each map
matrix v pixel that is traversed by each projection path i;

for each projection path i, representing the map matrix v as
a J-dimensional vector, where J=MxN;

for each J-dimensional vector, entering a value of zero for
pixels that are not traversed by its projection path and
entering pixel projection path lengths for pixels tra-
versed by its projection path;

defining a projection matrix A, where A=IxJ from all of the
J-dimensional vectors;

normalizing each J-dimensional vector A, ,(i=1, 2, ..., D);

receiving projection path data for the one or more projec-
tion paths as an I-dimensional vector b;

defining a relationship b=Av;

selecting a signal variance parameter f;

selecting a spread parameter r;

calculating a cross-covariance matrix

(1 —xp) + it —yjz)z]

Cip= fexp( 2

between pixels for map matrix v;

selecting a noise variance ¢

calculating an average of projection path data for each
projection path, from a predetermined number of pro-
jection path data, and if more than one projection paths
are employed, calculating an average based on an aver-
age of all individual projection path data averages;

calculating the estimate of map matrix vas ¥—CAT(ACAT+
o) (b—-Am)+m; and

representing ¥ as map matrix v.

10. A non-transitory computer readable medium having
recorded thereon a computer program comprising code
means for, when executed on a computer, instructing the
computer to control steps in a method that constructs a two
dimensional map (image) from one dimensional projection
path data, the method comprising:

defining a map having MxN pixels that represents a cross-

section plane;

identifying boundary coordinate locations on the map that

define one or more projection paths where i=1, 2, ...,
represents the number of projection paths;

identifying the map pixels that are traversed by the I pro-

jection paths;

calculating a pixel projection path length for each map

pixel that is traversed by each projection path i;
propagating the pixel projection lengths to other map pix-
els; and

correlating the pixel projection lengths.

11. The non-transitory computer readable medium accord-
ing to claim 10 further comprising defining the map as a
matrix v.

12. The non-transitory computer readable medium accord-
ing to claim 11 wherein propagating the pixel projection
lengths further comprises:

for each projection path i, representing the map matrix v as

a J-dimensional vector, where J=MxN;
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for each J-dimensional vector, entering a value of zero for
pixels that are not traversed by its projection path and
entering pixel projection path lengths for pixels tra-
versed by its projection path; and
normalizing each J-dimensional vector A, ,(i=1,2,...,I).
13. The non-transitory computer readable medium accord-
ing to claim 12 wherein correlating the pixel projection
lengths further comprises:
defining a projection matrix A, where A=IxJ from all of the
J-dimensional vectors;
defining a relationship b=Av;
selecting a signal variance parameter f;
selecting a spread parameter r; and
calculating a cross-covariance matrix

(1 —xp) + it —yj2)2]

Cijp= fexp( 3

between pixels for map matrix v.

14. The non-transitory computer readable medium accord-
ing to claim 13 further comprising receiving projection path
data for the one or more projection paths as an [-dimensional
vector b.

15. The non-transitory computer readable medium accord-
ing to claim 14 further comprising calculating an average of
projection path data for each projection path i, from a prede-
termined number of projection path data, and if more than one
projection paths are employed, calculating an average based
on an average of all individual projection path data averages.

16. The non-transitory computer readable medium accord-
ing to claim 15 further comprising:

selecting a noise variance o%; and

calculating the estimate of map matrix v as V=CAT(ACA”+

o) (b—Am)+m.
17. The non-transitory computer readable medium accord-
ing to claim 16 further comprising representing ¥ as map
matrix v.
18. A non-transitory computer readable medium having
recorded thereon a computer program comprising code
means for, when executed on a computer, instructing the
computer to control steps in a method that constructs a two
dimensional map (image) from one dimensional projection
path data, the method comprising:
defining a map matrix v having MxN pixels that represents
a cross-section plane;

identifying boundary coordinate locations on the map
matrix v that define one or more projection paths where
i=1,2, ..., I represents the number of projection paths;

identifying the map matrix v pixels that are traversed by the
1 projection paths;

calculating a pixel projection path length for each map
matrix v pixel that is traversed by each projection path i;

for each projection path i, representing the map matrix v as
a J-dimensional vector, where J=MxN;

for each J-dimensional vector, entering a value of zero for
pixels that are not traversed by its projection path and
entering pixel projection path lengths for pixels tra-
versed by its projection path;

defining a projection matrix A, where A=IxJ from all of the

J-dimensional vectors;
normalizing each J-dimensional vector A, ,(i=1,2, ..., D;
receiving projection path data for the one or more projec-
tion paths as an I-dimensional vector b;
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defining a relationship b=Av;

selecting a signal variance parameter f;
selecting a spread parameter r;
calculating a cross-covariance matrix

(1 —xp) + it —yjz)z]

Cip= fexp( 2

between pixels for map matrix v;

selecting a noise variance ¢

calculating an average of projection path data for each
projection path, from a predetermined number of pro-
jection path data, and if more than one projection paths
are employed, calculating an average based on an aver-
age of all individual projection path data averages;

calculating the estimate of map matrix v as V=CA”
(ACAT+0*T) ! (b-Am)+m; and

representing ¥ as map matrix v.

#* #* #* #* #*
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