US011908040B2

a2 United States Patent (10) Patent No.: US 11,908,040 B2
Liu et al. 45) Date of Patent: Feb. 20, 2024
(54) IMAGE PROCESSING METHOD AND (56) References Cited

COMPUTER SYSTEM
U.S. PATENT DOCUMENTS

(71) Applicant: HUAWEI TECHNOLOGIES CO.,
LTD., Shenzhen (CN) 2011/0050712 Al 3/2011 Ja_ckson
» 2013/0159563 Al 6/2013 Diard
(72) Tnventors: Lingfel Liu, Shanghsi (CN); Lixi 2014/0055470 Al 2/2014 Diard
nventors: Lingfei Liu, Shanghai ; Lixin Continued
Chen, Shanghai (CN); Yang Xiong, (Continued)
Shenzhen (CN) FOREIGN PATENT DOCUMENTS
(73) Assignee: HUAWEI TECHNOLOGIES CO., CN 102446341 A 5/2012
LTD., Shenzhen (CN) CN 108804199 A 11/2018
(*) Notice: Subject. to any disclaimer,. the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 231 days. Yusuke Suzuki et al., GPUvm: GPU Virtualization at the Hypervi-
sor, IEEE Transactions on Computers, IEEE, USA, vol. 65, No. 9,
(21) Appl. No.: 17/487,306 pp. 2752-2766, ISSN: 0018-9340, DOL 10.1109/TC.2015.2506582,
. X P011618572, Sep. 1, 2016.
(22) TFiled: Sep. 28, 2021 P
(65) Prior Publication Data Primary Examiner — Robert J Craddock
US 2022/0012845 A1l Jan. 13, 2022 (74) Attorney, Agent, or Firm — Maier & Maier, PLLC
Related U.S. Application Data
N - (57) ABSTRACT
(63) Continuation of application No.
PCT/CN2020/078827, filed on Mar. 11, 2020. An image processing method and a computer system. The
. L o method may be applied to a cloud-side server in a cloud
(30) Foreign Application Priority Data mobile phone. The server may be a virtualization server, a
host operating system and a guest operating system are
Mar. 30, 2019 (CN) cccoeerieieeeees 201910260921.4 deployed on the server, a user mode graphics driver is
51) Int. CI deployed in the guest operating system, and a kernel mode
(51) Int. CL. graphics driver is deployed in the host operating system. The
GO6T 1/20 (2006.01) d hics dri d the kernel mod. hi
GosT 1/00 (2006.01) user mode graphics driver and the kernel mode graphics
GO6T 900 200 6. ol driver collaborate with each other to implement image
(01) rendering of the server. Then, the server may send a rendered
(52) US. L image to the cloud mobile phone. Accordingly, an instruc-
CPC s GO6T 1/20 (2013.01); GO6T 1/0007 tion translation process is reduced, to reduce overheads of a
(2013.01); GO6T 9/00 (2013.01) processor and improve image processing efficiency.
(58) Field of Classification Search

None
See application file for complete search history. 15 Claims, 8 Drawing Sheets

1ot - 101

Android systen: 0 Andeid systemm |

Graphic
instruction F——
intereeption laye

Graphics
i instruction
linterce ption fuye:

Display

i
Render s
| ! Hostdisplay |
m3 ~N | | system |
NGraphuies instruction layeryl Display API g !

! T i

1

1

1

|

ilmage captur
ogram

1014 1 !
/‘\{U ser mode graphics driveryDisplay driverg

Host operating system

2
phics processing unit GP!

US 11,908,040 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2017/0004808 Al 1/2017 Agashe et al.
2018/0089881 Al 3/2018 Johnson
2018/0308288 Al* 10/2018 Harscoet GO6T 11/00

* cited by examiner

U.S. Patent

Feb. 20, 2024

Sheet 1 of 8

US 11,908,040 B2

1011
/

1011
/

Android system 0

cation

— 1018

1017

Graphics
mstruction

interception layer

_— 1019

___ Android
~tdisplay system

Android system 1

= 1019

ey

Android

Graphics

mnstruction
interce ption layer

1012

Instruction
ranslation laye

Render - ;
: Host display
1013 | system
/\lGraphics instruction layers Display API ¢
|

1014
/\{U ser mode graphics driv

eriDisplay driver;

1015

‘Kernel mode graphics driver:

-~ 1016

Host operating system

101
/

raphics processing unit GP

FIG. 1

U.S. Patent Feb. 20, 2024 Sheet 2 of 8 US 11,908,040 B2

201 201 201 201

User

terminal 1 terminal N

and transmissio

Image distributioni

205 206 e 207 A 208

Computer system 200

FIG. 2

US 11,908,040 B2

¢ D4
007 WI3sas anduwoy
c0T 90¢
Q0v LUl
UOTROIUNTUWIO)

Sheet 3 of 8

Feb. 20, 2024

0 uIa1sAs Sunerado 1sonn

€07 \

Ud1sAS Aejdsi(y

0 wosAs Sunerado sann

€07 \

U.S. Patent

U.S. Patent Feb. 20, 2024 Sheet 4 of 8 US 11,908,040 B2

Kernel
mode
graphics
driver

Graphics |{User mode Graphics
Application|| instruction{| graphics Compositor capture
layer driver program

Image
processing
unit

S401: Initiate a first
API call request .
> S402: Generate a first instruction
based on the tirst API call request, $403: Control,
and send the first instruction based on first
P instruction, a
graphics
processing unit
to perform an
image rendering
operation

L -

Generate a
<— — — — — — — —+ — plurality of
layers

S404: Perform an image
synthesis on the plurality of
layers if the image capture

program is in an enabled state

S$405: Skip performing the
image synthesis operation on
the plurality of layers if the
fmage capture programis in a
disabled state

FIG. 4

U.S. Patent Feb. 20, 2024

VSYNC timer

[

Sheet 5 of 8

US 11,908,040 B2

Compositor

/v HWC_PREPARE

Display system HWC_SET
3
e Memory
Compose FB
Sl = Buffer

FI1G. 5

register

s

Graphics
capture
progrant

U.S. Patent Feb. 20, 2024 Sheet 6 of 8 US 11,908,040 B2

VSYNC timer Compositor

HWC_PREPARE
l 1 2 /

/ HWC_SET

Display system

3
FB
Compose
A 4
/!
Memory
Encoder

Buffer
register

6

Graphics
capture
program

FIG. 6

U.S. Patent

Feb. 20, 2024

Sheet 7 of 8

US 11,908,040 B2

Server

Guest operating system

An image captured by |

Guest operating system

An image captured by |

l

: k

{ animage capture

! program is not i

; encoded by hardware !
3

an image capture
program is not

!
|
encoded by hardware }

v

OVS

Y

10 GE network

interface card

v

10 GE network
interface card

’

Access gateway

A

Step 1:
Access
network

|
|
|
|
|
[
|
|
|
[
NAT |
. . |
gateway | Step 3:
| Transmit a
EIP : video
> |
|
|
Step 2: :
Establish a |
connection \ {
User terminal
| Instruction stream !
Y capture SDK
: Decodea | ~ 7777
i video stream ! T TS
~~~~~~~~~ i Audio SDK '
e e ——




U.S. Patent

Feb. 20, 2024

Sheet 8 of 8

US 11,908,040 B2

Server

Guest operating system

| An image captured by |

|

. !

I animage capture
progrant is not |

i encoded by hardware :

b v e e e e - —

Guest operating system

| An image captured by |

I animage capture |
! program 1is not !
i encoded by hardware :

M e e v e e - —

v

OVS

v

10 GE network

mterface

card

v

10 GE network

interface

card

!

Step 2:
Establish a
connection

ECS server
~~~~~~~ | Step 3:
| Encode | Transmit
""""""" a video
EIP
.

- - —-————- e ————

........ 41 capture SDK :
Decodea

User terminal

: Instruction stream !

Access gateway

A

Step 1:
Access
network

US 11,908,040 B2

1
IMAGE PROCESSING METHOD AND
COMPUTER SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of International Appli-
cation No. PCT/CN2020/078827, filed on Mar. 11, 2020,
which claims priority to Chinese Patent Application No.
201910260921 .4, filed on Mar. 30, 2019. The disclosures of
the aforementioned applications are hereby incorporated by
reference in their entireties.

TECHNICAL FIELD

The embodiments relate to the field of computer tech-
nologies, and in particular, to an image processing method,
a computer system, or the like.

BACKGROUND

A software/hardware system of a mobile phone is simu-
lated on the cloud, so that it is possible to perform a
simulation of the mobile phone, a scale test, collaborative
development of a mobile application, mobile working,
cross-platform trial playing and promotion of a mobile
game, and the like based on a cloud platform. This mode can
be widely applied. In a conventional implementation, one
independent operating system (for example, an Android
system) is run on a mobile phone. To provide the cloud with
a function the same as that of the mobile phone, the
operating system of the mobile phone needs to be able to be
run on a server. The server features high performance
Therefore, a plurality of operating system of the mobile
phone can be concurrently run on one server to efficiently
utilize server resources. FIG. 1 is a schematic architectural
diagram of a server. A host operating system 101 is installed
in the server. A plurality of Android systems 1011 (two
Android systems are used as an example in FIG. 1), an
instruction translation layer 1012, a graphics instruction
layer (graphic API layer) 1013, a user mode graphics driver
1014, a kernel mode graphics driver 1015, an image capture
program 1016, and a graphics processing unit (GPU) 102 are
deployed in the host operating system. An application (app)
1017, a graphics instruction interception layer (graphic API
interception layer) 1018, an Android display system (sur-
faceflinger) 1019, and a compositor (composer) 1010 are
deployed in the Android system 1011. The following
describes how the server performs an image processing task
for each Android system based on the foregoing modules.

1. The application 1017 is configured to generate a
graphics rendering parameter, and initiate a first application
programming interface (API) instruction to the graphics
instruction interception layer 1018. The first API instruction
is used to request to perform graphics rendering based on the
graphics rendering parameter.

2. The graphics instruction interception layer 1018 inter-
cepts the graphics rendering parameter and the first API
instruction, and transfers the graphics rendering parameter
and the first API instruction to the instruction translation
layer 1012 through a communications pipe (PIPE).

3. The instruction translation layer 1012 translates the first
API instruction into a second API instruction that can be
identified by the graphics instruction layer 1013 in the host
operating system.

4. The user mode graphics driver 1014 obtains the graph-
ics rendering parameter and the second API instruction that

10

15

20

25

30

35

40

45

50

55

60

65

2

are delivered by the graphics instruction layer 1013, and
generates, based on the graphics rendering parameter and the
second API instruction, a command that can be identified by
the GPU.

5. The kernel mode graphics driver 1015 controls, based
on the command delivered by the user mode graphics driver
1014, the GPU to perform image rendering.

6. The Android display system 1019 controls the com-
positor 1010 to composite a plurality of layer layers gener-
ated when the GPU performs image rendering. In a com-
position process, the compositor 1010 generates an
instruction, and the instruction is still intercepted by the
graphics instruction capture layer 1018. Then, the instruc-
tion sequentially passes through the instruction translation
layer 1012, the graphics instruction layer 1013, the user
mode graphics driver 1014, and the kernel mode graphics
driver 1015. Finally, the GPU 102 completes a composition
operation. Image data generated through composition is
stored in a double graphics buffer.

7. In cooperation with the graphics instruction layer 1013
and the user mode graphics driver 1014, the image capture
program 1016 captures the image data from the double
graphics buffer, and sends the captured image data to a
remote end for display, for example, to a mobile phone for
display.

Based on the foregoing architecture, the cloud server may
provide an image processing task for the plurality of
Android systems. However, each instruction that is related to
image rendering, composition, display, and the like and that
is generated in the Android system needs to be intercepted
by the graphics instruction interception layer 1018, and
translated by the instruction translation layer 1012. Conse-
quently, CPU overheads of the server are very high.

SUMMARY

The following describes solutions provided in the
embodiments in different aspects. It may be understood that
mutual reference may be made to implementations and
beneficial effects of the different aspects.

Embodiments disclose an image processing method and a
computer system. According to the solutions of the embodi-
ments, overheads of a processor can be reduced, and image
processing efficiency can be improved.

According to a first aspect, an embodiment provides an
image processing method. The method is applied to a
computer system, for example, a server. The server includes
a host operating system and a first guest operating system,
a kernel mode graphics driver is installed in the host
operating system, and an application and a user mode
graphics driver are installed in each of the guest operating
system. The method includes: an application with an image
processing requirement in the first guest operating system
initiates a first application programming interface (API) call
request by using a graphics instruction layer. The first API
call request is used to request to perform an image rendering
operation. The first guest operating system may be any one
of a plurality of guest operating systems deployed on the
server. A user mode graphics driver in the first guest oper-
ating system generates, based on the first API call request, a
first instruction that can be identified by the graphics pro-
cessing unit, and sends the first instruction to the kernel
mode graphics driver. The kernel mode graphics driver
controls, according to the first instruction, the graphics
processing unit to perform image rendering.

US 11,908,040 B2

3

It should be noted that in some virtualized computer
architectures, it may be understood that the guest operating
system is deployed in the host operating system.

According to the foregoing method, the user mode graph-
ics driver is deployed in the guest operating system, and the
kernel mode graphics driver is deployed in the host operat-
ing system other than the guest operating system. A com-
mand generated by the user mode graphics driver may be
directly submitted by the kernel mode graphics driver to the
GPU for execution. Therefore, an instruction translation
layer used to translate a command does not need to be
additionally deployed between the guest operating system
and the host operating system. Therefore, there is no need to
perform an instruction translation operation by the instruc-
tion translation layer. Therefore, overheads of the server are
significantly reduced, an overall image processing (for
example, rendering) process is simplified, and image pro-
cessing efficiency is improved.

Even if a version of the guest operating system of the
server is updated, the command generated by the user mode
graphics driver in the guest operating system may still be
directly identified by the kernel mode graphics driver in the
host operating system. Therefore, in comparison with a
conventional method, updating and maintenance of the
instruction translation layer can be omitted, and overheads
of the server are further reduced. It may be understood that
the reduced overheads may be used to support deployment
of more guest operating systems on the server, to increase a
concurrency amount of the server.

With reference to the first aspect, in a first possible
implementation of the first aspect, each guest operating
system further includes an image compositor (which may
also be referred to as a compositor for short) and an image
capture program. The method further includes: if the image
capture program is in an enabled state, the image compositor
performs an image composition operation on a plurality of
layer layers obtained by the graphics processing unit through
rendering; and the image compositor skips performing the
image composition operation on the plurality of layer layers
if the image capture program is in a disabled state.

It can be understood that, based on the foregoing policy
of performing image composition based on a requirement,
an image composition task is not performed when the image
capture program is in the disabled state, to significantly
reduce overheads of the server, so that the server can apply
more computing capabilities to another Android operating
system with a requirement, and overall performance of a
cloud server is improved.

With reference to the first aspect or the foregoing possible
implementation of the first aspect, in a second possible
implementation of the first aspect, if the image capture
program is in the enabled state, a rate at which the image
compositor performs image composition is the same as a
rate at which the image capture program performs image
capture.

According to this manner, the image composition task is
reduced as much as possible when a requirement of the
image capture program is ensured. Therefore, overheads of
the server are reduced to a maximum extend, so that the
server can apply more computing capabilities to another
Android operating system with a requirement, and overall
performance of a cloud server is improved.

With reference to any one of the first aspect or the
foregoing possible implementations of the first aspect, in a
third possible implementation of the first aspect, if the image
capture program is in the enabled state, the method further
includes: the image capture program captures a composite

10

15

20

25

30

35

40

45

50

55

60

65

4

image obtained by the image compositor through composi-
tion; the image capture program encodes and compresses the
composite image; and the image capture program sends
image data obtained through encoding and compression to a
remote end.

With reference to any one of the first aspect or the
foregoing possible implementations of the first aspect, in a
fourth possible implementation of the first aspect, the server
further includes an image encoder; and if the image capture
program is in the enabled state, the method further includes:
the image encoder performs coding and compression on the
composite image obtained by the image compositor through
composition; the image capture program captures the image
data obtained through encoding and compression; and the
image capture program sends the image data to the remote
end.

With reference to any one of the first aspect or the
foregoing possible implementations of the first aspect, in a
fifth possible implementation of the first aspect, that the
image compositor performs an image composition operation
on a plurality of layer layers obtained by the graphics
processing unit through rendering includes: the image com-
positor reads the plurality of layer layers obtained by the
graphics processing unit through rendering; the image com-
positor sends an image composition instruction to the user
mode graphics driver by using a generic buffer manager,
where the image composition instruction is used to request
to perform the image composition operation on the plurality
of layer layers; the user mode graphics driver generates,
based on the image composition instruction, a second
instruction that can be identified by the graphics processing
unit, and sends the second instruction to the kernel mode
graphics driver; and the kernel mode graphics driver con-
trols, based on the second instruction, the graphics process-
ing unit to perform the image composition operation on the
plurality of layer layers.

According to a second aspect, an embodiment provides an
image processing method. The method is applied to a
computer system, the computer system includes a host
operating system and a first guest operating system, a kernel
mode graphics driver is installed in the host operating
system, and an application and a user mode graphics driver
are deployed in the first guest operating system. The method
includes: initiating a first API call request by using an
application, where the first API call request is used to request
to perform an image rendering operation; the user mode
kernel driver generates, based on the first API call request,
a first instruction that can be identified by the graphics
processing unit, and sends the first instruction to the kernel
mode graphics driver; and the kernel mode graphics driver
performs, according to the first instruction, the graphics
processing unit to perform image rendering.

In the host operating system other than the user operating
system, a command generated by the user mode graphics
driver may be directly submitted by the kernel mode graph-
ics driver to the GPU for execution. Therefore, an instruction
translation layer used to translate a command does not need
to be additionally deployed between the guest operating
system and the host operating system. Therefore, there is no
need to perform an instruction translation operation by the
instruction translation layer. Therefore, overheads of a
server are significantly reduced, an overall image processing
(for example, rendering) process is simplified, and image
processing efficiency is improved.

Even if a version of the guest operating system of the
server is updated, the command generated by the user mode
graphics driver in the guest operating system may still be

US 11,908,040 B2

5

directly identified by the kernel mode graphics driver in the
host operating system. Therefore, in comparison with a
conventional method, updating and maintenance of the
instruction translation layer can be omitted, and overheads
of the server are further reduced. It may be understood that,
the reduced overheads may be used to support deployment
of more guest operating systems on the server, to increase a
concurrency amount of the server.

With reference to the second aspect, in a first possible
implementation of the second aspect, the first guest operat-
ing system further includes an image compositor and an
image capture program, and the method further includes: the
image compositor determines that the image capture pro-
gram is in an enabled state; and the image compositor
performs an image composition operation on a plurality of
layer layers obtained by the graphics processing unit through
rendering.

With reference to the second aspect, in a first possible
implementation of the second aspect, the image compositor
determines that the image capture program is in a disabled
state, and the image compositor skips performing the image
composition operation on the plurality of layers layers.

It can be understood that, based on the foregoing policy
of performing image composition based on a requirement,
an image composition task is not performed when the image
capture program is in the disabled state, to significantly
reduce overheads of the server, so that the server can apply
more computing capabilities to another Android operating
system with a requirement, and overall performance of a
cloud server is improved.

With reference to any one of the second aspect or the
foregoing possible implementations of the second aspect, in
a second possible implementation of the second aspect,
before the image compositor determines a status of the
image capture program, the method further includes: the
image capture program registers state information with the
compositor. The state information is used to represent that
the image capture program is in the enabled state or in the
disabled state.

With reference to any one of the second aspect or the
foregoing possible implementations of the second aspect, in
a third possible implementation of the second aspect, if the
image capture program is in the enabled state, a rate at which
the image compositor performs image composition is the
same as a rate at which the image capture program performs
image capture.

According to this manner, the image composition task is
reduced as much as possible when a requirement of the
image capture program is ensured. Therefore, overheads of
the server are reduced to a maximum extend, so that the
server can apply more computing capabilities to another
Android operating system with a requirement, and overall
performance of a cloud server is improved.

With reference to any one of the second aspect or the
foregoing possible implementations of the second aspect, in
a fourth possible implementation of the second aspect, if the
image capture program is in the enabled state, the method
further includes: the image capture program captures a
composite image obtained by the image compositor through
composition; the image capture program encodes and com-
presses the composite image; and the image capture program
sends image data obtained through encoding and compres-
sion to a remote end.

With reference to any one of the second aspect or the
foregoing possible implementations of the second aspect, in
a fifth possible implementation of the second aspect, the
computer system further includes an image encoder; and if

30

40

45

6

the image capture program is in the enabled state, the
method further includes: the image encoder encodes and
compresses the composite image obtained by the image
compositor through composition; the image capture pro-
gram captures image data obtained through encoding and
compression; and the image capture program sends the
image data to the remote end.

With reference to any one of the second aspect or the
foregoing possible implementations of the second aspect, in
a sixth possible implementation of the second aspect, that
the image compositor performs an image composition
operation on the plurality of layer layers obtained by the
graphics processing unit through rendering includes: the
image compositor reads the plurality of layer layers obtained
by the graphics processing unit through rendering; the image
compositor sends an image composition instruction to the
user mode graphics driver by using a generic buffer man-
ager, where the image composition instruction is used to
request to perform the image composition operation on the
plurality of layer layers; the user mode graphics driver
generates, based on the image composition instruction, a
second instruction that can be identified by the graphics
processing unit, and sends the second instruction to the
kernel mode graphics driver; and the kernel mode graphics
driver controls, based on the second instruction, the graphics
processing unit to perform the image composition operation
on the plurality of layer layers.

According to a third aspect, an embodiment provides a
computer system. A host operating system is deployed in the
computer system, a kernel mode graphics driver and a first
guest operating system are deployed in the host operating
system, and an application and a user mode graphics driver
are deployed in the first guest operating system. The user
mode kernel driver is configured to: receive a first API call
request from the application, where the first API call request
is used to request to perform an image rendering operation;
and generate, based on the first API call request, a first
instruction that can be identified by a graphics processing
unit, and send the first instruction to the kernel mode
graphics driver; and the kernel mode graphics driver is
configured to control, according to the first instruction, the
graphics processing unit to perform the image rendering
operation.

In the foregoing server, the user mode graphics driver is
deployed in the guest operating system, and the kernel mode
graphics driver is deployed in the host operating system
other than the guest operating system. A command generated
by the user mode graphics driver may be directly submitted
by the kernel mode graphics driver to the GPU for execu-
tion. Therefore, an instruction translation layer used to
translate a command does not need to be additionally
deployed between the guest operating system and the host
operating system. Therefore, there is no need to perform an
instruction translation operation by the instruction transla-
tion layer. Therefore, overheads of the server are signifi-
cantly reduced, an overall image processing (for example,
rendering) process is simplified, and image processing effi-
ciency is improved. In addition, even if a version of the guest
operating system of the server is updated, the command
generated by the user mode graphics driver in the guest
operating system can still be directly identified by the kernel
mode graphics driver in the host operating system. There-
fore, in comparison with a conventional method, updating
and maintenance of the instruction translation layer can be
omitted, and overheads of the server are further reduced. It
may be understood that the reduced overheads may support

US 11,908,040 B2

7

deployment of more guest operating systems on the server,
to increase a concurrency amount of the server.

With reference to the third aspect, in a first possible
implementation of the third aspect, the first guest operating
system further includes an image compositor and an image
capture program. The image compositor is configured to
determine a status of the image capture program; the image
compositor is configured to: when the image capture pro-
gram is in an enabled state, perform an image composition
operation on a plurality of layer layers obtained by the
graphics processing unit through rendering; and the image
compositor is configured to skip performing the image
composition operation on the plurality of layer layers if the
image capture program is in a disabled state.

It can be understood that, based on the foregoing policy
of performing image composition based on a requirement,
an image composition task is not performed when the image
capture program is in the disabled state, to significantly
reduce overheads of the server, so that the server can apply
more computing capabilities to another Android operating
system with a requirement, and overall performance of a
cloud server is improved.

With reference to the third aspect or the foregoing pos-
sible implementation of the third aspect, in a second possible
implementation of the third aspect, the image capture pro-
gram is configured to register state information with the
compositor before the image compositor determines the
status of the image capture program. The state information
is used to represent that the image capture program is in the
enabled state or in the disabled state.

With reference to any one of the third aspect or the
foregoing possible implementations of the third aspect, in a
third possible implementation of the third aspect, if the
image capture program is in the enabled state, a rate at which
the image compositor performs image composition is the
same as a rate at which the image capture program performs
image capture.

According to this manner, the image composition task is
reduced as much as possible when a requirement of the
image capture program is ensured. Therefore, overheads of
the server are reduced to a maximum extend, so that the
server can apply more computing capabilities to another
Android operating system with a requirement, and overall
performance of a cloud server is improved.

With reference to any one of the third aspect or the
foregoing possible implementations of the third aspect, in a
fourth possible implementation of the third aspect, the image
capture program is configured to: when the image capture
program is in the enabled state, capture a composite image
obtained by the image compositor through composition; and
encode and compress the composite image, and send image
data obtained through encoding and compression to a remote
end.

With reference to any one of the third aspect or the
foregoing possible implementations of the third aspect, in a
fifth possible implementation of the third aspect, the server
further includes an image encoder. The image encoder is
configured to: when the image capture program is in the
enabled state, encode and compress the composite image
obtained by the image compositor through composition; and
the image capture program is configured to: capture the
image data obtained through encoding and compression, and
send the image data to the remote end.

With reference to any one of the third aspect or the
foregoing possible implementations of the third aspect, in a
sixth possible implementation of the third aspect, that the
image compositor is configured to: when the image capture

10

15

20

25

30

35

40

45

50

55

60

65

8

program is in an enabled state, perform the image compo-
sition operation on the plurality of layer layers obtained by
the graphics processing unit through rendering is as follows:

The image compositor is configured to: when the image
capture program is in the enabled state, read the plurality of
layer layers obtained by the graphics processing unit through
rendering; the image compositor is configured to send an
image composition instruction to the user mode graphics
driver by using a generic buffer manager, where the image
composition instruction is used to request to perform an
image composition operation on the plurality of layer layers;
the user mode graphics driver is configured to generate,
based on the image composition instruction, a second
instruction that can be identified by the graphics processing
unit, and send the second instruction to the kernel mode
graphics driver; and the kernel mode graphics driver is
configured to control, based on the second instruction, the
graphics processing unit to perform the image composition
operation on the plurality of layer layers.

According to a fourth aspect, an embodiment provides a
server. The server includes a first processor, a memory, and
a graphics processing unit, the memory is configured to store
program code and data that are required when a host
operating system is run, and the processor is configured to
run the host operating system, to control the graphics
processing unit to implement the method described in any
one of the first aspect or the possible implementations of the
first aspect.

According to a fifth aspect, an embodiment provides a
computer-readable storage medium. The computer-readable
storage medium is configured to store program code (or
referred to as a computer-readable instruction), and when the
program code is run on one or more processors, the method
described in any one of the foregoing aspects is imple-
mented.

According to a sixth aspect, an embodiment provides a
computer program product (also referred to as a computer
program). The computer program product (or referred to as
a computer program) is configured to store program code
(also referred to as a computer-readable instruction), and
when the program code is run on one or more processors, the
method described in any one of the foregoing aspects is
implemented.

In the embodiments, the user mode graphics driver is
deployed in the guest operating system, and the kernel mode
graphics driver is deployed in the host operating system
other than the guest operating system. The command gen-
erated by the user mode graphics driver may be directly
submitted by the kernel mode graphics driver to the GPU for
execution. Therefore, the instruction translation layer used
to translate a command does not need to be additionally
deployed between the guest operating system and the host
operating system. Therefore, there is no need to perform an
instruction translation operation by the instruction transla-
tion layer. Therefore, overheads of the server are signifi-
cantly reduced, an overall image processing (for example,
rendering) process is simplified, and image processing effi-
ciency is improved. In addition, even if a version of the guest
operating system of the server is updated, the command
generated by the user mode graphics driver in the guest
operating system can still be directly identified by the kernel
mode graphics driver in the host operating system. There-
fore, in comparison with a conventional method, updating
and maintenance of the instruction translation layer can be
omitted, and overheads of the server are further reduced. It
may be understood that the reduced overheads may support

US 11,908,040 B2

9

deployment of more guest operating systems on the server,
to increase a concurrency amount of the server.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a schematic architectural diagram of a server in
the prior art;

FIG. 2 is a schematic diagram of a scenario in which a
cloud server is run according to an embodiment;

FIG. 3 is a schematic architectural diagram of a server
according to an embodiment;

FIG. 4 is a schematic flowchart of an image processing
method according to an embodiment;

FIG. 5 is a schematic flowchart of image composition and
image capture according to an embodiment;

FIG. 6 is another schematic flowchart of image compo-
sition and image capture according to an embodiment;

FIG. 7 is a schematic diagram of an application scenario
of a captured image according to an embodiment; and

FIG. 8 is a schematic diagram of another application
scenario of a captured image according to an embodiment.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

The following describes solutions in embodiments with
reference to accompanying drawings.

FIG. 2 is a schematic diagram of a scenario in which a
computer system is run according to an embodiment. In FIG.
2, a computer system 200 may simultaneously provide a
service for a plurality of user terminals 201. For example, a
host operating system 204 is installed in the computer
system 200, a plurality of guest operating systems 203 are
installed in the host operating system, and an application 202
is installed in each guest operating system. The host oper-
ating system 204 may allocate hardware resources such as a
first processor 205, a memory 206, and a graphics process-
ing unit 207 to each guest operating system 203, so that each
guest operating system 203 is run relatively independently.
This is equivalent to a case in which each guest operating
system 203 is run on a different hardware device. Each guest
operating system 203 in the computer system 200 may
separately provide a service for a different user terminal 201,
and the guest operating system 203 (or another operating
system different from the guest operating system 203) may
or may not be installed on each user terminal 201. The
computer system 200 provides the user terminal 201 with an
interface and a function of the guest operating system 203.
Therefore, from a perspective of a user, the user terminal 201
is a terminal that can implement a function of the guest
operating system. For example, when the guest operating
system 203 is an Android system, from the perspective of the
user, the user terminal 201 is equivalent to a terminal that
can implement a function of an Android mobile phone.
When the terminal is a mobile phone, the terminal may also
be referred to as a cloud mobile phone.

The terminal mentioned in this embodiment may be, but
is not limited to, a laptop computer, a desktop computer, a
mobile phone, a smartphone, a tablet, a multimedia player,
an e-reader, an intelligent vehicle-mounted device, a smart
home appliance, an artificial intelligence device, a wearable
device, an internet of things device, a virtual reality device/
an augmented reality device/a mixed reality device, or the
like.

The computer system 200 may be a server, or may be a
server cluster including a plurality of servers, or may be
another hardware device having a computing capability. The

10

15

20

25

30

35

40

45

50

55

60

65

10

server may be a server of an ARM (Advanced RISC
Machine) architecture or a server of another architecture
type. The following describes the computer system 200 with
reference to FIG. 3. A hardware layer of the computer
system 200 includes the first processor 205, the memory
206, the graphics processing unit 207, and a communica-
tions interface 208. A software layer of the computer system
200 includes the host operating system 204.

The memory 206 includes but is not limited to a random
access memory () a read-only memory (ROM), an erasable
programmable read only memory (EPROM), or a portable
compact disc read-only memory (CD-ROM). The memory
206 is configured to: store a related program instruction and
data for reading by the first processor 205 and/or the
graphics processing unit (GPU) 207, and store (or cache)
data generated by running the first processor 205 and/or the
graphics processing unit; and may also store data from
another source.

The first processor 205 may be one or more central
processing units (CPU). When the first processor 205 is a
CPU, the first processor 205 may be a single-core processor,
or may be a multi-core processor. Further, the first processor
205 may alternatively be another circuit with a computing
capability, or a chip. The first processor 205 can run the host
operating system, and process various tasks (or events)
generated in the host operating system, including processing
a task requested by the guest operating system in the host
operating system, for example, execution of an image-
related processing policy.

There may be one or more graphics processing units 207.
When there is one graphics processing unit 207, the graphics
processing unit 207 may be a single-core processor, or may
be a multi-core processor. The graphics processing unit 207
can process some image processing—related tasks (or
events) generated in the host operating system, including an
image processing task (which may be an image processing
task generated by the application 202) requested by the guest
operating system 203, for example, image rendering, image
composition, and migration of image data obtained through
composition.

It should be noted that the first processor runs the host
operating system, the guest operating system is run in the
host operating system, and the guest operating system may
also be understood as an application in the host operating
system.

The communications interface 208 is configured to
receive data sent by a device other than the computer system
200, for example, receive an instruction for calling the guest
operating system 203 by the user terminal 201. The com-
munications interface 208 is further configured to send data
to the device other than the computer system 200. For
example, after completing image processing, the computer
system 200 sends data obtained after processing to the user
terminal 201. Optionally, the communications interface 208
receives and sends data under control of the first processor
205. A communication manner of the communications inter-
face 208 may be wired communication, or may be wireless
communication (for example, communication performed
through wireless fidelity Wi-Fi, Bluetooth, or the like).

The host operating system 204 may be a Linux system or
another operating system. A kernel mode graphics driver
209 (for example, the kernel mode graphic driver) and the
plurality of guest operating systems 203 are installed in the
host operating system 204. In this embodiment, the guest
operating system may be an Android system, or may be
another type of Linux system, or another operating system.
For ease of understanding, the Android system is used as an

US 11,908,040 B2

11

example for description in subsequent examples. Each guest
operating system 203 is installed with the application 202
(for example, a game application or a video production
application) that has an image processing requirement, a
graphics instruction layer 212 (for example, an Android
graphic API), a user mode graphics driver 213 (for example,
an Android user mode graphic driver), a display system 211
(for example, SurfaceFlinger (Android display system), a
compositor (composition) 214, and an image capture pro-
gram 215 (for example, Image Capture).

It can be understood that different from a conventional
case in which both the user mode graphics driver 213 and the
kernel mode graphics driver 209 are deployed in the guest
operating system 203, or both the user mode graphics driver
213 and the kernel mode graphics driver 209 are deployed
in the host operating system 204, in this embodiment, the
user mode graphics driver 213 is deployed in the guest
operating system 203, and the kernel mode graphics driver
209 is deployed in the host operating system 204. A com-
mand (or referred to as an instruction) generated by the user
mode graphics driver 213 may be directly submitted by the
kernel mode graphics driver 209 to the GPU for execution.
Therefore, an instruction translation layer used to translate a
command does not need to be additionally deployed
between the guest operating system 203 and the host oper-
ating system. Therefore, there is no need to perform an
instruction translation operation by the instruction transla-
tion layer. Therefore, overheads of the first processor in the
computer system 200 are significantly reduced, an overall
image processing (for example, rendering) process is sim-
plified, and image processing efficiency is improved. In
addition, even if a version of the guest operating system 203
in the computer system 200 is updated, the command
generated by the user mode graphics driver 213 in the guest
operating system 203 may still be directly identified by the
kernel mode graphics driver 209 in the host operating
system 204. Therefore, in comparison with a conventional
method, updating and maintenance of the instruction trans-
lation layer can be omitted, and overheads of the first
processor in the computer system 200 are further reduced. It
may be understood that the reduced overheads may support
deployment of more guest operating systems in the com-
puter system 200. In other words, a concurrency amount of
the computer system is improved.

In addition, different from a conventional case in which
the image capture program 215 is deployed in the host
operating system 204. In this embodiment, the image cap-
ture program is deployed in the guest operating system 203.
Therefore, the image capture program 215 may be directly
connected to the compositor 214. In this case, the composi-
tor may perform an image composition operation based on
a requirement and an image data capture capability of the
image capture program 215, to reduce an unnecessary com-
putation operation and reduce image processing pressure of
the graphics processing unit 207.

The foregoing provides an overall description of an
application scenario and an architecture of a computer
system in the embodiments. The following describes, based
on the application scenario and the architecture, how a
computer system performs image processing. For details,
refer to the embodiment shown in FIG. 4. FIG. 4 is a
schematic flowchart of an image method according to an
embodiment. The method includes, but is not limited to, the
following steps.

Step S401: An application in a first guest operating system
initiates a first API call request.

10

40

45

50

65

12

For example, the first guest operating system is any one
of the plurality of guest operating systems. In other words,
any one of the plurality of guest operating systems has a
feature of the first guest operating system herein. The
application is an application that has an image processing
requirement, for example, a game application or a video
production application. The application may generate a
corresponding image rendering parameter for an image
rendering objective that the application wants to achieve,
and initiate the first API call request by using a graphics
instruction layer. The first API call request is used to request
to perform an image rendering operation. The first API call
request may be understood through extension. For example,
it is considered that the first API call request includes the
image rendering parameter.

Step S402: A user mode graphics driver in the first guest
operating system generates, based on the first API call
request, a first instruction that can be identified by the
graphics processing unit, and sends the first instruction to the
kernel mode graphics driver.

For example, the user mode graphics driver may have a
plurality of implementations, for example, an implementa-
tion of an Advanced Micro Devices (AMD), an implemen-
tation of Intel, and an implementation of Nvidia. The user
mode graphics driver is responsible for translating and
packaging data, a state, an instruction (or a command), or the
like into an instruction that can be identified by hardware. In
this embodiment, after obtaining the first API call request
and the image rendering parameter, the user mode graphics
driver generates, based on the first APl and the image
rendering parameter, an instruction that can be identified by
the graphics processing unit, packages the instruction, and
delivers the instruction to the kernel mode graphics driver.

Step S403: The kernel mode graphics driver controls,
based on the first instruction, the graphics processing unit to
perform the image rendering operation.

For example, the first instruction is an instruction that
meets an operation specification of the graphics processing
unit. Therefore, the kernel mode graphics driver may control
the graphics processing unit according to the first instruc-
tion. Correspondingly, the graphics processing unit performs
the image rendering operation under control of the kernel
mode graphics driver, to achieve the image rendering objec-
tive of the foregoing application. It should be noted that the
graphics processing unit obtains a plurality of layer layers
after completing the image rendering operation, and the
plurality of layer layers may be stored (for example, stored
in a buffer) for subsequent call. It may be understood that a
plurality of logical interfaces may be configured for the
kernel mode graphics driver, and are respectively configured
to connect to user mode graphics drivers in different guest
operating systems.

Step S404: If the image capture program is in an enabled
state, the compositor performs an image composition opera-
tion on the plurality of layer layers obtained by the graphics
processing unit through rendering.

For example, the image capture program is registered
with the image compositor in advance. Therefore, the image
compositor may determine, based on registration informa-
tion of the image capture program, whether the image
capture program is in the enabled state. For example, the
image capture program sets a flag bit through an interface
provided by the image compositor. When a value of the flag
bit is set to 1, it indicates that the image capture program is
in the enabled state, and when the value of the flag bit is set
to 0, it indicates that the image capture program is in a
disabled state.

US 11,908,040 B2

13

If the image capture program is in the enabled state, the
image compositor performs the image composition opera-
tion on the plurality of layer layers obtained by the graphics
processing unit through rendering. Two cases are used as
examples for description.

Case 1: As shown in FIG. 5, image composition may
include the following steps.

1. A display system (for example, SurfaceFlinger) trig-
gers, at a specific time based on a frequency of frame
synchronization (vertical synchronization, VSYNC) that the
image capture program wants to obtain, the image composi-
tor (composition) to perform composition on a main screen.
For example, VSYNC is set to 30 frames/second. The image
compositor needs to perform 30 composition operations per
second. Optionally, a rate at which the image compositor
performs image composition is the same as a rate at which
the image capture program performs image capture.

2. The compositor performs preprocessing on the forego-
ing plurality of layer layers (for example, by using a function
module hwc_prepare). In a preprocessing process, layer
layers that need to be composited by the GPU are deter-
mined, and the determined layers are labelled with a “to-
be-composited” marker. In the example, hwe in hwc_pre-
pare is an abbreviation of hardware composer.

3. The compositor composites (for example, by using a
function module hwe_set) the plurality of preprocessed layer
layers into a buffer (framebuffer, FB) by using a GPU, for
example, composites the plurality of preprocessed layers
into a double FB. Further, the layer layers with the “to-be-
composited” marker are composited into the FB. For
example, the image compositor sends an image composition
instruction through an OpenGIL for embedded system
(GLES) interface at the graphics instruction layer (graphic
API), to request to perform the image composition opera-
tion. Correspondingly, the user mode graphics driver trans-
lates the image composition instruction into a second
instruction that can be identified by the graphics processing
unit, the kernel mode graphics driver controls, based on the
second instruction, the graphics processing unit to perform
the image composition operation on the plurality of layer
layers, and the graphics processing unit buffers an image
composition result to a double graphics buffer (FB).

4. The compositor obtains a lock of the buffer buffer, and,
if successfully obtaining the lock, the compositor copies
data of the image composition result in the lock of the
double graphics buffer FB into a buffer buffer of a memory
in a direct memory access (DMA) manner. This process is
actually completed in cooperation with the GPU. In an
embodiment, the process includes the following operations:
the compositor sends a data migration instruction through a
generic buffer manager (gbm) interface at the graphics
instruction layer (graphic API), to request to migrate image
composition data in a video memory of the GPU to the
memory. Correspondingly, the user mode graphics driver
translates the data migration instruction into a third instruc-
tion that can be identified by the GPU, and the kernel mode
graphics driver controls, based on the third instruction, the
graphics processing unit to migrate the image composition
data in the video memory of the graphics processing unit to
the memory.

Correspondingly, after completing image composition
and migrating the image composition data to the memory in
cooperation with the graphics processing unit, the composi-
tor sends a notification event to the image capture program,
to notify that image composition is completed and that the
image composition data is migrated to the memory.

10

15

20

25

30

35

40

45

50

55

60

65

14

5. After receiving the notification event, the image capture
program obtains the lock of the buffer, reads the image
composition data in the buffer (in other words, captures
composite image obtained by the image compositor through
composition), encodes and compresses the image composi-
tion data (namely, the composite image), and then sends
image data obtained through encoding and compression to a
remote end, for example, to the user terminal 201 shown in
FIG. 2. It may be understood that encoding and compression
performed by the image capture program belongs to a
software implementation. Further, the image capture pro-
gram may alternatively not perform an encoding and com-
pression operation, and instead, directly send captured
image composition data to the remote end.

Case 2: As shown in FIG. 6, image composition may
include the following steps.

1. A display system (for example, SurfaceFlinger) trig-
gers, at a specific time based on a frequency of frame
synchronization (vertical synchronization, VSYNC) that the
image capture program wants to obtain, the image composi-
tor (composition) to perform composition on a main screen.
For example, VSYNC is set to 30 frames/second. The image
compositor needs to perform 30 composition operations per
second. Optionally, a rate at which the image compositor
performs image composition is the same as a rate at which
the image capture program performs image capture.

2. The compositor performs preprocessing on the forego-
ing plurality of layer layers (for example, by using a function
module hwc_prepare). In a preprocessing process, layer
layers that need to be composited by the GPU are deter-
mined, and the determined layers are labelled with a “to-
be-composited” marker.

3. The compositor composites (for example, by using a
function module hwe_set) the plurality of preprocessed layer
layers into a double graphics buffer (framebuffer, FB) by
using a GPU. Additionally, layer layers with the “to-be-
composited” marker are composited into the FB. For
example, the image compositor sends an image composition
instruction through a GLES interface at the graphics instruc-
tion layer (graphic API), to request to perform the image
composition operation. Correspondingly, the user mode
graphics driver translates the image composition instruction
into a second instruction that can be identified by the
graphics processing unit, the kernel mode graphics driver
controls, based on the second instruction, the graphics
processing unit to perform the image composition operation
on the plurality of layer layers, and the graphics processing
unit buffers an image composition result to a double graphics
buffer FB.

4. The compositor obtains a lock of the buffer buffer. If
successfully obtaining the lock, the compositor encodes and
compresses data of the image composition result in the lock
of the double graphics buffer FB through an encoder (for
example, an H264 encoder or an H265 encoder).

5. The encoder stores image data obtained through encod-
ing and compression in a buffer of a memory, releases the
lock of the buffer after encoding and compression are
finished, and sends a notification event, to notify that image
data obtained through composition, encoding, and compres-
sion is migrated to the memory.

6. After receiving the notification event, the image capture
program obtains the lock of the buffer buffer, reads the data
obtained through composition, encoding, and compression
in the buffer (in other words, captures composite image
obtained by the image compositor through composition),
and sends captured image data to a remote end, for example,
to the user terminal 201 shown in FIG. 2. To better under-

US 11,908,040 B2

15

stand the solution in this embodiment, the following pro-
vides a possible scenario, and describes a process of sending
the captured image data to the remote user terminal 201. As
shown in FIG. 7, an access gateway is configured to perform
identity authentication and authorization for the user termi-
nal, and identity authentication and authorization are per-
formed for the user terminal in cooperation with the access
gateway by using a software development kit (SDK). After
identity authentication and authorization succeed, the user
terminal establishes a connection to a cloud elastic IP
address (EIP) by using the SDK. The user terminal is further
configured to decode a video stream from a computer system
by using the SDK. In addition, the user terminal is further
configured to: decode an audio stream by using the SDK,
and send an operation instruction (for example, touch con-
trol or mouse movement) to the guest operating system by
using the SDK (Optionally, a guest operating system
deployed in the computer system may be considered as a
cloud mobile phone). In this embodiment, after an image
capture program in the guest operating system in the com-
puter system captures image data, and the image capture
program sends the image data to an internal VPC network by
using an open virtual switch (OVS) and the 10 GE (which
belongs to a physical network interface card). A network
address translation (NAT) gateway in a same VPC network
delivers the image data to the user terminal by using the EIP,
and the user terminal decodes the image data.

For the foregoing step 5, the computer system may not
include the encoder. In this case, the image data sent to the
user terminal 201 in step 6 is image data that is not encoded.
In this case, the following provides a possible scenario, to
describe a process of sending the captured image data to the
remote user terminal 201. As shown in FIG. 8, the access
gateway is configured to perform identity authentication and
authorization for the user terminal, and identity authentica-
tion and authorization are performed for the user terminal in
cooperation with the access gateway by using the SDK.
After identity authentication and authorization succeed, the
user terminal establishes a connection to the, EIP by using
the SDK. The user terminal is further configured to decode
the video stream from the computer system by using the
SDK. In addition, the user terminal is further configured to:
decode an audio stream by using the SDK, and send an
operation instruction (for example, touch control or mouse
movement) to the guest operating system by using the SDK
(Optionally, the guest operating system deployed in the
computer system may be considered as a cloud mobile
phone). In this embodiment, after the image capture program
in the guest operating system in the computer system
captures the image data, and the image capture program
sends the image data to the internal VPC network by using
the OVS and the 10 GE (which belongs to the physical
network interface card). An encoding engine is deployed in
an ECS computer system in a same VPC network, to encode
the image data delivered by the computer system, and
deliver the encoded image data to the user terminal by using
the EIP, so that the user terminal decodes the encoded image
data.

Step S405: If the image capture program is in the disabled
state, the image compositor skips performing the image
composition operation on the plurality of layer layers. For
example, the VYSNC is set by using a default value, and the
steps shown in FIG. 5 and FIG. 7 are not performed.

According to the foregoing policy of performing image
composition based on a requirement, an image composition
task is not performed when the image capture program is in
the disabled state, to significantly reduce overheads of the

10

15

20

25

30

35

40

45

50

55

60

65

16

graphics processing unit and the first processor. Therefore,
the graphics processing unit and the first processor can apply
more computing capabilities to another Android operating
system with a requirement, to improve overall performance
of a cloud computer system.

Table 1 shows a case of a comparison, in an actual test in
a case in which a same application is run in a guest operating
system (an Android system is used as an example), between
a quantity of guest operating systems that may be supported
by the cloud computer system provided in this embodiment
and a quantity of guest operating systems that may be
supported by the cloud computer system in a conventional
solution.

TABLE 1

Conventional solution Solution in this embodiment

“My name is MT 30 More than 60
47 is run in an
Android system 90 More than 120

“Asktao” is run in
the Android system

It can be understood from Table 1 that when an applica-
tion that is run in the Android system is “My name is MT 47,
the cloud computer system in the conventional solution may
support parallel running of 30 Android systems, but in this
embodiment, parallel running of 60 Android systems is
supported. When the application that is run in the Android
system is “Asktao”, the cloud computer system in the
conventional solution may support parallel running of 90
Android systems, but in this embodiment, parallel running
of 120 Android systems is supported.

In the method described in FIG. 4, the user mode graphics
driver is deployed in the guest operating system, and the
kernel mode graphics driver is deployed in the host operat-
ing system other than the guest operating system. A com-
mand generated by the user mode graphics driver may be
directly submitted by the kernel mode graphics driver to the
GPU for execution. Therefore, an instruction translation
layer used to translate a command does not need to be
additionally deployed between the guest operating system
and the host operating system. Therefore, there is no need to
perform an instruction translation operation by the instruc-
tion translation layer. Therefore, overheads of the first pro-
cessor in the computer system are significantly reduced, an
overall image processing (for example, rendering) process is
simplified, and image processing efficiency is improved. In
addition, even if a version of the guest operating system in
the computer system is updated, the command generated by
the user mode graphics driver in the guest operating system
can still be directly identified by the kernel mode graphics
driver in the host operating system. Therefore, in compari-
son with a conventional method, updating and maintenance
of the instruction translation layer can be omitted, and
overheads of the first processor are further reduced. It may
be understood that the reduced overheads may support
deployment of more guest operating systems in the com-
puter system, to increase a concurrency amount of the
computer system.

An embodiment further provides a computer-readable
storage medium. The computer-readable storage medium
stores an instruction, and when the instruction is run on a
first processor, the procedure shown in any of the foregoing
methods is implemented.

US 11,908,040 B2

17

An embodiment further provides a computer program
product. When the computer program product is run on a
first processor, a procedure shown in any of the foregoing
methods is implemented.

A person of ordinary skill in the art may understand that
all or some processes of the methods in the embodiments
may be implemented by a computer program instructing
relevant hardware. The program may be stored in a com-
puter-readable storage medium. When the program is run,
the processes of the methods in the embodiments are per-
formed. The foregoing storage medium includes various
media that can store program code, for example, a ROM, a
RAM, a magnetic disk, or an optical disc.

What is claimed is:

1. An image processing method, wherein the method is
applied to a computer system comprising a host operating
system, wherein a kernel mode graphics driver and a first
guest operating system are installed in the host operating
system, a user mode graphics driver is deployed in the first
guest operating system, the first guest operating system
further comprises an image compositor directly connected to
an image capture program, and the method comprises:

generating, by the user mode kernel driver based on a first

application programming interface (API) call request, a
first instruction that can be identified by a graphics
processing unit;
sending the first instruction to the kernel mode graphics
driver, wherein the first API call request is used to
request to perform an image rendering operation; and

controlling, by the kernel mode graphics driver based on
the first instruction, the graphics processing unit to
perform image rendering.

2. The method according to claim 1, further comprising:

determining, by the image compositor, a status of the

image capture program; and

skipping performing an image composition operation on

a plurality of layers after the image capture program is
in a disabled state.

3. The method according to claim 2, wherein, before
determining, by the image compositor, the status of the
image capture program, the method further comprises:

registering, by the image capture program, state informa-

tion with the compositor, wherein the state information
is used to indicate that the image capture program is in
an enabled state or in the disabled state.

4. The method according to claim 2, wherein if the image
capture program is in the enabled state, a rate at which the
image compositor performs image composition is the same
as a rate at which the image capture program performs image
capture.

5. The method according to claim 2, wherein if the image
capture program is in the enabled state, the method further
comprises:

capturing, by the image capture program, a composite

image obtained by the image compositor through com-
position;

encoding and compressing, by the image capture pro-

gram, the composite image; and

sending, by the image capture program, image data

obtained through encoding and compression to a
remote end.

6. The method according to claim 2, wherein the computer
system further comprises an image encoder, and if the image
capture program is in the enabled state, the method further
comprises:

10

15

20

25

30

35

40

45

50

55

60

65

18

encoding and compressing, by the image encoder, a
composite image obtained by the image compositor
through composition;

capturing, by the image capture program, image data
obtained through encoding and compression; and

sending, by the image capture program, the image data to
a remote end.

7. The method according to claim 2, further comprising:

reading, by the image compositor, a plurality of layers
obtained by the graphics processing unit through ren-
dering;

sending, by the image compositor, an image composition
instruction to the user mode graphics driver by using a
generic buffer manager, wherein the image composition
instruction is used to request to perform the image
composition operation on the plurality of layers;

generating, by the user mode graphics driver based on the
image composition instruction, a second instruction
that can be identified by the graphics processing unit;

sending the second instruction to the kernel mode graph-
ics driver; and

controlling, by the kernel mode graphics driver based on
the second instruction, the graphics processing unit to
perform the image composition operation on the plu-
rality of layers.

8. A computer system, comprising a host operating system
deployed in the computer system, a kernel mode graphics
driver and a first guest operating system deployed in the host
operating system, the first guest operating system further
comprises an image compositor directly connected to an
image capture program, and a user mode graphics driver
deployed in the first guest operating system;

wherein the user mode kernel driver is configured to:

receive a first application programming interface (API)
call request, wherein the first API call request is used to
request to perform an image rendering operation; and

generate, based on the first API call request, a first
instruction that can be identified by the graphics pro-
cessing unit, and send the first instruction to the kernel
mode graphics driver; and

the kernel mode graphics driver is configured to control,
according to the first instruction, the graphics process-
ing unit to perform image rendering.

9. The computer system according to claim 8, wherein the

image compositor is configured to:

determine a status of the image capture program; and

skip performing an image composition operation on the
plurality of layers when the image capture program is
in a disabled state.

10. The computer system according to claim 9, wherein
the image capture program is configured to register state
information with the compositor before the image composi-
tor determines the status of the image capture program,
wherein the state information is used to indicate that the
image capture program is in an enabled state or in the
disabled state.

11. The computer system according to claim 9, wherein if
the image capture program is in the enabled state, a rate at
which the image compositor performs image composition is
the same as a rate at which the image capture program
performs image capture.

12. The computer system according to claim 9, wherein

the image capture program is configured to:

when the image capture program is in the enabled state,

capture a composite image obtained by the image com-
positor through composition,

encode and compress the composite image, and

US 11,908,040 B2

19

send image data obtained through encoding and compres-

sion to a remote end.

13. The computer system according to claim 9, wherein
the computer system further comprises an image encoder,
wherein

the image encoder is configured to:

when the image capture program is in the enabled state,

encode and compress the composite image obtained by

the image compositor through composition; and

the image capture program is configured to:

capture image data obtained through encoding and com-

pression, and

send the image data to a remote end.

14. The computer system according to claim 9, wherein
the image compositor being configured to:

when the image capture program is in the enabled state,

perform the image composition operation on the plu-
rality of layers obtained by the graphics processing unit
through rendering comprises:

the image compositor is configured to:

when the image capture program is in the enabled state,

read the plurality of layers obtained by the graphics
processing unit through rendering;

the image compositor is configured to send an image

composition instruction to the user mode graphics
driver by using a generic buffer manager, wherein the
image composition instruction is used to request to
perform the image composition operation on the plu-
rality of layers;

the user mode graphics driver is configured to:

generate, based on the image composition instruction, a

second instruction that can be identified by the graphics
processing unit, and

15

20

25

30

20

send the second instruction to the kernel mode graphics

driver; and

the kernel mode graphics driver is configured to control,

based on the second instruction, the graphics process-
ing unit to perform the image composition operation on
the plurality of layers.

15. A computer system, wherein the computer system
comprises a first processor, a memory, and a graphics
processing unit, wherein

the memory is configured to store computer-readable

instructions;
the first processor is configured to run the computer-
readable instructions, to implement an image process-
ing method applied to the computer system, the com-
puter system further comprises a host operating system,
a kernel mode graphics driver and a first guest operat-
ing system installed in the host operating system, a user
mode graphics driver deployed in the first guest oper-
ating system, the first guest operating system further
comprises an image compositor directly connected to
an image capture program, and the method comprises:

generating, by the user mode kernel driver based on a first
application programming interface (API) call request, a
first instruction that can be identified by a graphics
processing unit;
sending the first instruction to the kernel mode graphics
driver, wherein the first API call request is used to
request to perform an image rendering operation; and

controlling, by the kernel mode graphics driver based on
the first instruction, the graphics processing unit to
perform image rendering, wherein the graphics pro-
cessing unit is configured to perform image rendering
under control of the first processor.

#* #* #* #* #*

