US 20170257585A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2017/0257585 A1

Desai et al.

43) Pub. Date: Sep. 7, 2017

(54)

(71)
(72)

(73)

@
(22)

(63)

LINE BUFFER UNIT FOR IMAGE
PROCESSOR

Applicant: Google Inc., Mountain View, CA (US)

Inventors: Neeti Desai, Sunnyvale, CA (US);
Albert Meixner, Mountain View, CA
(US); Qiuling Zhu, San Jose, CA (US);
Jason Rupert Redgrave, Mountain
View, CA (US); Ofer Shacham, Palo
Alto, CA (US); Daniel Frederic
Finchelstein, Redwood City, CA (US)

Assignee: Google Inc., Mountain View, CA (US)
Appl. No.: 15/598,027
Filed: May 17, 2017

Related U.S. Application Data

Continuation of application No. 14/694,712, filed on
Apr. 23, 2015.

Publication Classification

(51) Int. CL

HO4N 5/369 (2006.01)

HO4N 5/91 (2006.01)

GOG6T 1/60 (2006.01)
(52) US.CL

CPC oo HO4N 5/3692 (2013.01); GO6T 1/60

(2013.01); HO4N 5/91 (2013.01)

(57) ABSTRACT

An apparatus is described that include a line buffer unit
composed of a plurality of a line buffer interface units. Each
line buffer interface unit is to handle one or more requests by
a respective producer to store a respective line group in a
memory and handle one or more requests by a respective
consumer to fetch and provide the respective line group
from memory. The line buffer unit has programmable stor-
age space whose information establishes line group size so
that different line group sizes for different image sizes are
storable in memory.

T

e

C

Developer ™
w4/

e

Virtual Representation of
Processing Hardware

181

Compiler
402

£

Actual Processing
Hardware
103

US 2017/0257585 Al

Sep. 7,2017 Sheet 1 of 23

Patent Application Publication

1 B4

€01
BAEMpIEH

Buissanodd 1m0y

M

0t
SEHL ity

M

ot
aiempier BUissanyd

S0 uoEIuasasday 1Bnlaa

\\\\\ ,i:s:f/
4 vt ,,v
//f{mmnawm\mma o

Ill:i@.i;l.iuis\\.\\\k

Patent Application Publication Sep. 7,2017 Sheet 2 of 23 US 2017/0257585 A1

Fig. 2a

SN
{ Ng
| m

§ M%
{ i
| o
\\f N,/ij
L3
™~
{ §
i

202

US 2017/0257585 Al

Sep. 7,2017 Sheet 4 of 23

Patent Application Publication

K

4 ﬁlf!
POE

e

fiH o

RERIS

2190y
£0E

£ "84

TH OIS =2y w v o o oo e e T BHOUS =0T
6 7Y AlG =Y & T MG =20y
74 TY OaY =>7Y 79 T Q0¥ =>TY
TOvOT =>TH YO =21y

T T OOV =»Ey 7y 1Y GOV s>y
AOY0T =51 HOYOT =»TH

7d Y 00V =22y 7 1Y 00y => 7Y
T =1y DOy =»14
7T QOY =21y 24 TY 00y =224
POV =14 4 Q0T =T

74 TH Q0¥ =»7Y T4 TY OOv =24
HOY0T =»TY 3 QYT =>TY

74 TY 00V =»7Y TH TY OOV ==Y
DAY =1y O Q0T =>1Y

24 TH Qv =»7y TH T 00V =>EY
4 0v07T =T I YO =21y

74 Ty AUy => Ty &4 TY aay => 7Y
3OO =»{Y 4 QY =>%y

O OY0T =T o e o o o e oo 5 01 =27Y

Fle wousys sseooud i7y peaagy//

M

0%

£/T wouans ssanmad (7Y peasyy//

M

10t

US 2017/0257585 Al

Sep. 7,2017 Sheet 5 of 23

Patent Application Publication

MLy ¥ *dig 7y T 70%
A3S5B30I4 A0S53MAL HOBEBI0
HOUSIG HouLs jouglg
M OEGY ¢ty T E0y
ADIRIBUST AOIRIBUBL HRBIBUBD
JIBUG 18BYSL 1BBUY
3 M M

W IOV
JByng

£

k 2

!

7Y
daling
aul]

ur

T 1or
Bsung

Patent Application Publication Sep. 7,2017 Sheet 6 of 23 US 2017/0257585 A1

.. 503
\ 501

Fig. 5a

502 ~_

Patent Application Publication Sep. 7,2017 Sheet 7 of 23 US 2017/0257585 A1

Fig. Bb

504

Patent Application Publication Sep. 7,2017 Sheet 8 of 23 US 2017/0257585 A1

Fig. B¢

Patent Application Publication Sep. 7,2017 Sheet 9 of 23 US 2017/0257585 A1

Fig. 5d

Patent Application Publication Sep. 7,2017 Sheet 10 of 23 US 2017/0257585 A1l

505

Fig. Be

US 2017/0257585 Al

Sep. 7,2017 Sheet 11 of 23

Patent Application Publication

(09
Jossanosd jpuss

108 nun

uonendwns g1ep

/

GO0 1588 s
{BUDISUSLID-DM]

§

SO0 Arie
BLURE UDLNIEKE

&%
FETTIIoN
yieigosd
ansst
Lo AU [z
& N
’]
% iossanaud
M i2fess
E
78
U)

g ‘814

impisusg
FEETH
wiosfo

g

US 2017/0257585 Al

Sep. 7,2017 Sheet 12 of 23

Patent Application Publication

UL IR STIBDIO0nD Ay U 3

GnouE sul SRIRUIRIDOD Y U 8215 IDUSIS ‘B
a¥eus o Aupe Bupuieouos uoneuuou 8 ‘yum
pauiuesBord § gun JBENg sul SuiIMN-31d

715 T4 U008 SBIBUIIO0T AY U 815 <o
: s o : ‘. PN I A
7 HOUBIS Jo/nur aas dnosd suy Bas 1esE0
adeuy 8o yum paweifold s e

U So3eseusE 1Beus Buinuns-aud

TOL 1un
ABLITHY BT

[o s sy one ot

L0f aupds
vonEnfuuns

£T4 SEIBUIPIOOD 4 Y neyl Buidunads
Agy sdnosd auy sy, sisenbal
Joyeaausd EBaus awnund Suunp

£ 14

E0Z vuny | w \ 707 wun
1o3BIBUBD : Lﬂ _‘M, HISSEI0L
1BaYs W&v U Y A R HOLELE
i
i
§
oty aneds 3
VRN o]
t
§spduion
i
‘ #
! k 3

01/ BAvul ue

LA SBITEA B1RUIRIO0TD
A K 5€ o paiesado ag - BIBMDIEE BUISSE0004
03 gaen $BE5BIIAD 'yl

apos weidosd pnina

"

30 UoIEIUBSSIdaY (BNLIA

o

= .

([sedopreg)

g e

e, e

US 2017/0257585 Al

Sep. 7,2017 Sheet 13 of 23

Patent Application Publication

8 "84
(T
(TATX
(TAs{Z-N)TX) w
. ! 7 0%
(TART-NY T~ i
(LAl NY T~ bocos
105 #8euy

{00}

(1A'

(TAL{T-M)0)

(TA«{NIO)

{Thx{Z-NI0)

US 2017/0257585 Al

Sep. 7,2017 Sheet 14 of 23

Patent Application Publication

26 "B

- \ 2 N P0E %ﬂ
206 - g %
Asoutaipy A » A
. # F] %
WU BUNE 2UT e ; . %
& # *
e y w *
. P EE m >
R P N %
27 %WX m\w . w Bl
; s , %
27 -7 4 L EGS ; % %
o P é & F Poa, K %
e 7, pya £ %, b N
& P - e r 2 % . % 3,
- Py 7 7 %, ef.». Y
e - o % % % “ N& ‘a«. %,
ZEL " ¢ AR
- / m\ ! ﬁ@ K &y
o 7 “
TE3 S Td T My s
W%NH@ s é ...»..x L
¥ KMMM% N
o %\ " .,f Se—
% -
\ f,ﬁ 1773 f\ ,,.M
M s S B
Y F % 2 H
hN A ' \\\
S

US 2017/0257585 Al

{66 nun 46 B
J2ng DU o ; WERE
206 B0E
Aktruiaiyg . BORL
3Lry FBLUNE U % Asouasty 7606 aaeds
S ﬁgm. Aiae uoneIngyos
S /
© o e 17905 un
H Mmm k.h.wmw\.mmw,\mm.u ugnieEues
= PULT A3 Bul sERipoR
-]
7 \
wn
~
e
S
Q
-/, .
oy b
A W &
£
H
g m
p= H
S ;
= 14
- G H -
= Ny06 MED g -
nm U BBLIBI \\. /mm - 4 . ls/
2 1Byng Buly [ey &7 [\ \
3 J e o
2 N) %
S T s soeds
« veneindyuns
~N—
=
=
~N—
=
A

US 2017/0257585 Al

Sep. 7,2017 Sheet 16 of 23

Patent Application Publication

A
//f
BN
€

payeiduics peay

A2NSU0T 1587 pue

ON BIIM JBONPOI 1587 SOA
. \\
/ /

6

o drossy surt ayy s8] eyy {shisenbay
FBUINSUOY pue {5115anbsy JBINDOL 553004

Ti6
dnols aurt sy o BuUUE1Sd UORBULIONI UM
U BOBLIBIUL JBYNY DU pa1sles aundyuoy

f

016
SHUC BOBLIBIU| JBLNG BUIT JO |00 8814 Wl
HUP) BOBLBIU] JBYNY BUIT BJQRIIBAY 108185

36 "8ig

US 2017/0257585 Al

Sep. 7,2017 Sheet 17 of 23

Patent Application Publication

PRIOhE
BELA BY3 2I8UM
F

51 dhnoad 2ug e Ay
T U SERIPDY 38R

ALDWISY Ive

SERUOUY HEVE HA

FaingE
51 chrunal g WA 1Y SU BB
AIUIe JeaMY Ul S5RI00E s5en

SEHRGGY HLYH 44

55

ByIBUD ¥ epou Snedd auy 115
mmw?k@ iy wples g o3 daod
auy ey Agenais oy paydoes ag

O3 SARY UYL 24T 2ENS J0 AR0UINU

SARCH HENTY WO

it taeny:
I YR ATEEYVLILA U pas mmw,mmﬂm;a
s oy sunrnecl apsang yo pufiey

5
wd
o
o
m

FpOuI Gt
2 121 AERLIA UE PRAISISURS
21 0 FUOTIACE JBMOUL 3T WIDIM

ALY BA

YHATL DORLISLLR Ja g S0 Ay
pesszoond Jueg dnodd sug e a0
dnodd auy [y T 30 $M0T 50 IRGHnY

ALY B4

RN BYRLIGLT IRy ST 24 AL
peszand Sweg dnoid suy sy g0
ST ARLIG S 8 h\mmtmtﬁ FEUS

FIEVHT 84

i
R BOEAEU] A5G
w2y dg pessasosd Busg drosd
gy oy 30 smod ged siexd jo ssoung

HAgIM 20

PR

Fagyne augl wig Ag pesreodad
Bugag dnedd sum sy ss00E ik
TEMY ST JSUETISU0N SO SN

THIMNSHOD PINN

By

IR BOULISHE Ja1in]
auyy 21 Ar possarosd Fueg dnosd
WO RAY W SIS ULBYD §0 JRgUInY

STAMNYHD BN

FUR SOTIIRINT JBERG BT S BIAEIS

FIHYNY 971

s T T

ertae =

06
616

g6

L6
49i6
426
(747
€16

7i6
126

Patent Application Publication

A
g = E W
AN & .
o Ao
[fo ooy
Wy N o
sz & (Eak
Slom &8 58S
LS & S By
B oy R g
S U gy e
PR I
@il & oo SR8
R N gl g
¥ia g oain g
LG N8 E
LR e
b 2% b odw
5 e
) I
L3 §§‘l ".«\“-ﬁ 0y
ey 5 - A
A
SEEET

Begister

Sep. 7,2017 Sheet 18 of 23

e th

A

fre of the

dood

b
LS It
Wi e

P
08 Mt
Htd R
RS
R
S R
Bt} TR
R o
el 8
o SR
QS
[a) !
Sal o
Sy W
Bl
L R
wi &
e ‘-'\-,-3

{3

the

IMEHSION

i
7

STEMCIL

O e R A A N ok 5 B A 15 T AR50

US 2017/0257585 Al

Fig. 9s

Patent Application Publication Sep. 7,2017 Sheet 19 of 23 US 2017/0257585 A1l

- e
o0 3 &
g £ =

Fig. 102

ﬁ%’?ﬁ%

Patent Application Publication Sep. 7,2017 Sheet 20 of 23 US 2017/0257585 A1l

. 1003

\ 1001

7 ?5?; 2
LY
“ e

Fig. 10b

!
1004 2

N
SRR

1002

US 2017/0257585 Al

Sep. 7,2017 Sheet 21 of 23

Patent Application Publication

21T "Bt

ppe P deauy

Appe im desuy

POLL

U 208l1alil J8Ling aul

5017
aneds
UONBINERUoD

UHSULL Jppe Rl

0 NS XU W R0 oo

U3SUAY AppE M

voiesuely

901t x\\

SSaIppe

JBUINSUOD WO
SIIRUIBICOD
My o dnosg

BUY 10 UONREI|

Jaanpoid wosy
SBIBUIDIOOD
A udnos3

BUL 40 UOIEO0]

US 2017/0257585 Al

Sep. 7,2017 Sheet 22 of 23

Patent Application Publication

9417 "By

ippe Dl ieauy

JppeTim ieauy

eril

sueds
UOREINELUOD

Aoaca

UISLUIY Jppe

oo on oo A 0m 50

UHSLIL ARpE am

[

LH
FARUGD

A3l

#

L

Mg /

#

7o

AR

AR

T \\\

J3dd im

\

JBLUTISUOD W0
SEIEWPI00D
AY ut degng

BUY 1O UOIBIO]

sonposd wouy
SBIEUIDIO0D
A¥ U dagng
B 3O UOIEYG)

\

ivit

[4 2N}

=
&
i
& TANE
=
S - S R , T 5171
A TG vEReT | T EO7T BOCL L0ZL S0t 5001 [T BABIET
- suFg sz U St L8 B AR asn
8 s
- ETF ¥i7T o
~ s/ as IGO0 GT7Y BELL g
3 ” fiddi
- o/
wn
=
= 1071
S (44 AfAs4 ISR S— - 9771
W ACUBIN A i TEIZT | TTEYIE [1dS
F0 207 | L 2400

LiB15A% s
g S fd3 mmmm{mmm
5 GS7T !
£
=
[~™
5
S Ava N
.W SR— N %M‘Mmm
= ooet dhhgd) .
E
&
[~™

US 2017/0257585 Al

LINE BUFFER UNIT FOR IMAGE
PROCESSOR

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of and claims
priority to U.S. patent application Ser. No. 14/694,712, filed
on Apr. 23, 2015, the entire contents of which are hereby
incorporated by reference.

FIELD OF INVENTION

[0002] The field of invention pertains generally to image
processing, and, more specifically, to a line buffer unit for an
image processor.

BACKGROUND

[0003] Image processing typically involves the processing
of pixel values that are organized into an array. Here, a
spatially organized two dimensional array captures the two
dimensional nature of images (additional dimensions may
include time (e.g., a sequence of two dimensional images)
and data type (e.g., colors). In a typical scenario, the arrayed
pixel values are provided by a camera that has generated a
still image or a sequence of frames to capture images of
motion. Traditional image processors typically fall on either
side of two extremes.

[0004] A first extreme performs image processing tasks as
software programs executing on a general purpose processor
or general purpose-like processor (e.g., a general purpose
processor with vector instruction enhancements). Although
the first extreme typically provides a highly versatile appli-
cation software development platform, its use of finer
grained data structures combined with the associated over-
head (e.g., instruction fetch and decode, handling of on-chip
and off-chip data, speculative execution) ultimately results
in larger amounts of energy being consumed per unit of data
during execution of the program code.

[0005] A second, opposite extreme applies fixed function
hardwired circuitry to much larger blocks of data. The use of
larger (as opposed to finer grained) blocks of data applied
directly to custom designed circuits greatly reduces power
consumption per unit of data. However, the use of custom
designed fixed function circuitry generally results in a
limited set of tasks that the processor is able to perform. As
such, the widely versatile programming environment (that is
associated with the first extreme) is lacking in the second
extreme.

[0006] A technology platform that provides for both
highly versatile application software development opportu-
nities combined with improved power efficiency per unit of
data remains a desirable yet missing solution.

SUMMARY

[0007] An apparatus is described that include a line buffer
unit composed of a plurality of a line buffer interface units.
Each line buffer interface unit is to handle one or more
requests by a respective producer to store a respective line
group in a memory and handle one or more requests by a
respective consumer to fetch and provide the respective line
group from memory. The line buffer unit has programmable
storage space whose information establishes line group size
so that different line group sizes for different image sizes are
storable in memory.

Sep. 7, 2017

LIST OF FIGURES

[0008] The following description and accompanying
drawings are used to illustrate embodiments of the inven-
tion. In the drawings:

[0009] FIG. 1 shows various components of a technology
platform;
[0010] FIG. 2a shows an embodiment of application soft-

ware built with kernels;

[0011] FIG. 25 shows an embodiment of the structure of a
kernel,
[0012] FIG. 3 shows an embodiment of the operation of a
kernel,
[0013] FIG. 4 shows an embodiment of an image proces-

sor hardware architecture;

[0014] FIGS. 5a, 5b, 5¢, 54 and Se depict the parsing of
image data into a line group, the parsing of a line group into
a sheet and the operation performed on a sheet with over-
lapping stencils;

[0015] FIG. 6 shows an embodiment of a stencil proces-
sor;
[0016] FIG. 7 shows an embodiment of the configuration

and programming of an image processor

[0017] FIG. 8 shows an image frame composed of line
groups;
[0018] FIGS. 9a, 96 and 9¢ depict design and operational

embodiments of a line buffer unit;
[0019] FIGS. 9d and 9e depict embodiments of program-
mable register space of an image processor;

[0020] FIGS. 10a and 105 depict a virtually tall mode of
operation;
[0021] FIGS. 11a and 115 show line buffer interface unit
embodiments;
[0022] FIG. 12 shows an embodiment of a computing
system.

DETAILED DESCRIPTION
[0023] 1. Introduction
[0024] The description below describes numerous

embodiments concerning a new image processing technol-
ogy platform that provides a widely versatile application
software development environment that uses larger blocks
of data (e.g., line groups and sheets as described further
below) to provide for improved power efficiency.

1.0 Application Software Development Environment

[0025] a. Application and Structure of Kernels

[0026] FIG. 1 shows a high level view of an image
processor technology platform that includes a virtual image
processing environment 101, the actual image processing
hardware 103 and a compiler 102 for translating higher level
code written for the virtual processing environment 101 to
object code that the actual hardware 103 physically
executes. As described in more detail below, the virtual
processing environment 101 is widely versatile in terms of
the applications that can be developed and is tailored for
easy visualization of an application’s constituent processes.
Upon completion of the program code development effort by
the developer 104, the compiler 102 translates the code that
was written within the virtual processing environment 101
into object code that is targeted for the actual hardware 103.
[0027] FIG. 2a shows an example of the structure and
form that application software written within the virtual
environment may take. As observed in FIG. 24, the program

US 2017/0257585 Al

code may be expected to process one or more frames of
input image data 201 to effect some overall transformation
on the input image data 201. The transformation is realized
with the operation of one or more kernels of program code
202 that operate on the input image data in an orchestrated
sequence articulated by the developer.

[0028] For example, as observed in FIG. 2a, the overall
transformation is effected by first processing each input
image with a first kernel K1. The output images produced by
kernel K1 are then operated on by kernel K2. Each of the
output images produced by kernel K2 are then operated on
by kernel K3_1 or K3_2, The output images produced by
kernel(s) K3_1/K3_2 are then operated on by kernel K4.
Kernels K3_1 and K3_2 may be identical kernels designed
to speed-up the overall processing by imposing parallel
processing at the K3 stage, or, may be different kernels (e.g.,
kernel K3_1 operates on input images of a first specific type
and kernel K3_2 operates on input images of a second,
different type).

[0029] As such, the larger overall image processing
sequence may take the form of a image processing pipeline
or a directed acyclic graph (DAG) and the development
environment may be equipped to actually present the devel-
oper with a representation of the program code being
developed as such. Kernels may be developed by a devel-
oper individually and/or may be provided by an entity that
supplies any underlying technology (such as the actual
signal processor hardware and/or a design thereof) and/or by
a third party (e.g., a vendor of kernel software written for the
development environment). As such, it is expected that a
nominal development environment will include a “library”
of kernels that developers are free to “hook-up” in various
ways to effect the overall flow of their larger development
effort. Some basic kernels that are expected to be part of
such a library may include kernels to provide any one or
more of the following basic image processing tasks: con-
volutions, denoising, color space conversions, edge and
corner detection, sharpening, white balance, gamma correc-
tion, tone mapping, matrix multiply, image registration,
pyramid construction, wavelet transformation, block-wise
discrete cosine and Fourier transformations.

[0030] FIG. 26 shows an exemplary depiction of the
structure of a kernel 203 as may be envisioned by a
developer. As observed in FIG. 25, the kernel 203 can be
viewed as a number of parallel threads of program code
(“threads™) 204 that are each operating on a respective
underlying processor 205 where each processor 205 is
directed to a particular location in an output array 206 (such
as a specific pixel location in the output image that the kernel
is generating). For simplicity only three processors and
corresponding threads are shown in FIG. 26. In various
embodiments, every depicted output array location would
have its own dedicated processor and corresponding thread.
That is, a separate processor and thread can be allocated for
each pixel in the output array.

[0031] As will be described in more detail below, in
various embodiments, in the actual underlying hardware an
array of execution lanes and corresponding threads operate
in unison (e.g., in a Single Instruction Multiple Data(s) like
fashion) to generate output image data for a portion of a
“line group” of the frame currently being processed. A line
group is a contiguous, sizable section of an image frame. In
various embodiments, the developer may be conscious the
hardware operates on line groups, or, the development

Sep. 7, 2017

environment may present an abstraction in which there is a
separate processor and thread for, e.g., every pixel in the
output frame (e.g., every pixel in an output frame generated
by its own dedicated processor and thread). Regardless, in
various embodiment, the developer understands the kernel
to include an individual thread for each output pixel
(whether the output array is visualized is an entire output
frame or a section thereof).

[0032] As will be described in more detail below, in an
embodiment the processors 205 that are presented to the
developer in the virtual environment have an instruction set
architecture (ISA) that, not only supports standard (e.g.,
RISC) opcodes, but also include specially formatted data
access instructions that permit the developer to easily visu-
alize the pixel by pixel processing that is being performed.
The ability to easily define/visualize any input array location
in combination with an entire ISA of traditional mathemati-
cal and program control opcodes allows for an extremely
versatile programming environment that essentially permits
an application program developer to define, ideally, any
desired function to be performed on any sized image surface.
For example, ideally, any mathematical operation can be
readily programmed to be applied to any stencil size.
[0033] With respect to the data access instructions, in an
embodiment the ISA of the virtual processors (“virtual
ISA”) include a special data load instruction and a special
data store instruction. The data load instruction is able to
read from any location within an input array of image data.
The data store instruction is able to write to any location
within the output array of image data. The latter instruction
allows for easily dedicating multiple instances of the same
processor to different output pixel locations (each processor
writes to a different pixel in the output array). As such, for
example, stencil size itself (e.g., expressed as a width of
pixels and a height of pixels) can be made an easily
programmable feature. Visualization of the processing
operations is further simplified with each of the special load
and store instructions having a special instruction format
whereby target array locations are specified simplistically as
X and Y coordinates.

[0034] Regardless, by instantiating a separate processor
for each of multiples locations in the output array, the
processors can execute their respective threads in parallel so
that, e.g., the respective values for all locations in the output
array are produced concurrently. It is noteworthy that many
image processing routines typically perform the same opera-
tions on different pixels of the same output image. As such,
in one embodiment of the development environment, each
processor is presumed to be identical and executes the same
thread program code. Thus, the virtualized environment can
be viewed as a type of two-dimensional (2D), SIMD pro-
cessor composed of a 2D array of, e.g., identical processors
each executing identical code in lock-step.

[0035] FIG. 3 shows a more detailed example of the
processing environment for two virtual processors that are
processing identical code for two different pixel locations in
an output array. FIG. 3 shows an output array 304 that
corresponds to an output image being generated. Here, a first
virtual processor is processing the code of thread 301 to
generate an output value at location X1 of the output array
304 and a second virtual processor is processing the code of
thread 302 to generate an output value at location X2 of the
output array 304. Again, in various embodiments, the devel-
oper would understand there is a separate processor and

US 2017/0257585 Al

thread for each pixel location in the output array 304 (for
simplicity FIG. 3 only shows two of them). However, the
developer in various embodiments need only develop code
for one processor and thread (because of the SIMD like
nature of the machine).

[0036] As is known in the art, an output pixel value is
often determined by processing the pixels of an input array
that include and surround the corresponding output pixel
location. For example, as can be seen from FIG. 3, position
X1 of the output array 304 corresponds to position E of the
input array 303. The stencil of input array 303 pixel values
that would be processed to determine output value X1 would
therefore corresponds to input values ABCDEFGHI. Simi-
larly, the stencil of input array pixels that would be pro-
cessed to determine output value X2 would corresponds to
input values DEFGHIJKL.

[0037] FIG. 3 shows an example of corresponding virtual
environment program code for a pair of threads 301, 302 that
could be used to calculate output values X1 and X2, respec-
tively. In the example of FIG. 3 both pairs of code are
identical and average a stencil of nine input array values to
determine a corresponding output value. The only difference
between the two threads is the variables that are called up
from the input array and the location of the output array that
is written to. Specifically, the thread that writes to output
location X1 operates on stencil ABCDEFGHI and the thread
that writes to output location X2 operates on stencil DEF-
GHIJKL.

[0038] As can be seen from the respective program code
from the pair of threads 301, 302, each virtual processor at
least includes internal registers R1 and R2 and at least
supports the following instructions: 1) a LOAD instruction
from the input array into R1; 2) a LOAD instruction from the
input array into R2; 3) an ADD instruction that adds the
contents of R1 and R2 and places the resultant in R2; 4) a
DIV instruction that divides the value within R2 by imme-
diate operand 9; and, 5) a STORE instruction the stores the
contents of R2 into the output array location that the thread
is dedicated to. Again, although only two output array
locations and only two threads and corresponding processors
are depicted in FIG. 3, conceivably, every location in the
output array could be assigned a virtual processor and
corresponding thread that performs these functions. In vari-
ous embodiments, in keeping with the SIMD-like nature of
the processing environment, the multiple threads execute in
isolation of one another. That is, there is no thread-to-thread
communication between virtual processors (one SIMD
channel is preventing from crossing into another SIMD
channel).

b. Virtual Processor Memory Model

[0039] In various embodiments, a pertinent feature of the
virtual processors is their memory model. As is understood
in the art, a processor reads data from memory, operates on
that data and writes new data back into memory. A memory
model is the perspective or view that a processor has of the
manner in which data is organized in memory. In an embodi-
ment, the memory model of the virtual processors includes
both input and output array regions. Input pixel values for
threads are stored in the input array region and output pixel
values generated by threads are stored in the output array
region.

[0040] In an embodiment, a novel memory addressing
scheme is used to define which particular input values are to
be called in from an input array portion of the virtual

Sep. 7, 2017

processor’s memory model. Specifically, a “position rela-
tive” addressing scheme is used that defines the desired
input data with X, Y coordinates rather than a traditional
linear memory address. As such, the load instruction of the
virtual processors’ ISA includes an instruction format that
identifies a specific memory location within the input array
with an X component and a Y component. As such, a
two-dimensional coordinate system is used to address
memory for input values read from the input array.

[0041] The use of a position relative memory addressing
approach permits the region of an image that a virtual
processor is operating on to be more readily identifiable to
a developer. As mentioned above, the ability to easily
define/visualize any input array location in combination with
an entire ISA of traditional mathematical and program
control opcodes allows for an extremely versatile program-
ming environment that essentially permits an application
program developer to readily define, ideally, any desired
function to be performed on any sized image surface.
Various instruction format embodiments for instructions that
adopt a position relative addressing scheme, as well as
embodiments of other features of the supported ISA, are
described in more detail further below.

[0042] The output array contains the output image data
that the threads are responsible for generating. The output
image data may be final image data such as the actual image
data that is presented on a display that follows the overall
image processing sequence, or, may be intermediate image
data that a subsequent kernel of the overall image processing
sequence uses as its input image data information. Again,
typically virtual processors do not compete for same output
data items because they write to different pixel locations of
the output image data during a same cycle.

[0043] In an embodiment, the position relative addressing
scheme is also used for writes to the output array. As such,
the ISA for each virtual processor includes a store instruc-
tion whose instruction format defines a targeted write loca-
tion in memory as a two-dimensional X, Y coordinate rather
than a traditional random access memory address.

2.0 Hardware Architecture Embodiments

[0044] a. Image Processor Hardware Architecture and
Operation
[0045] FIG. 4 shows an embodiment of an architecture

400 for an image processor implemented in hardware. The
image processor may be targeted, for example, by a compiler
that converts program code written for a virtual processor
within a simulated environment into program code that is
actually executed by the hardware processor. As observed in
FIG. 4, the architecture 400 includes a plurality of line buffer
units 401_1 through 401_M interconnected to a plurality of
stencil processor units 402_1 through 402_N and corre-
sponding sheet generator units 403_1 through 403_N
through a network 404 (e.g., a network on chip (NOC)
including an on chip switch network, an on chip ring
network or other kind of network). In an embodiment, any
line buffer unit may connect to any sheet generator and
corresponding stencil processor through the network 404.

[0046] In an embodiment, program code is compiled and
loaded onto a corresponding stencil processor 402 to per-
form the image processing operations earlier defined by a
software developer (program code may also be loaded onto
the stencil processor’s associated sheet generator 403, e.g.,
depending on design and implementation). In at least some

US 2017/0257585 Al

instances an image processing pipeline may be realized by
loading a first kernel program for a first pipeline stage into
a first stencil processor 402_1, loading a second kernel
program for a second pipeline stage into a second stencil
processor 402_2, etc. where the first kernel performs the
functions of the first stage of the pipeline, the second kernel
performs the functions of the second stage of the pipeline,
etc. and additional control flow methods are installed to pass
output image data from one stage of the pipeline to the next
stage of the pipeline.

[0047] In other configurations, the image processor may
be realized as a parallel machine having two or more stencil
processors 402_1, 402_2 operating the same kernel program
code. For example, a highly dense and high data rate stream
of image data may be processed by spreading frames across
multiple stencil processors each of which perform the same
function.

[0048] In yet other configurations, essentially any DAG of
kernels may be loaded onto the hardware processor by
configuring respective stencil processors with their own
respective kernel of program code and configuring appro-
priate control flow hooks into the hardware to direct output
images from one kernel to the input of a next kernel in the
DAG design.

[0049] As a general flow, frames of image data are
received by a macro I/O unit 405 and passed to one or more
of the line buffer units 401 on a frame by frame basis. A
particular line buffer unit parses its frame of image data into
a smaller region of image data, referred to as a “a line
group”, and then passes the line group through the network
404 to a particular sheet generator. A complete or “full”
singular line group may be composed, for example, with the
data of multiple contiguous complete rows or columns of a
frame (for simplicity the present specification will mainly
refer to contiguous rows). The sheet generator further parses
the line group of image data into a smaller region of image
data, referred to as a “sheet”, and presents the sheet to its
corresponding stencil processor.

[0050] In the case of an image processing pipeline or a
DAG flow having a single input, generally, input frames are
directed to the same line buffer unit 401_1 which parses the
image data into line groups and directs the line groups to the
sheet generator 403_1 whose corresponding stencil proces-
sor 402_1 is executing the code of the first kernel in the
pipeline/DAG. Upon completion of operations by the stencil
processor 402_1 on the line groups it processes, the sheet
generator 403_1 sends output line groups to a “downstream”
line buffer unit 401_2 (in some use cases the output line
group may be sent_back to the same line buffer unit 401_1
that earlier had sent the input line groups).

[0051] One or more “consumer” kernels that represent the
next stage/operation in the pipeline/DAG executing on their
own respective other sheet generator and stencil processor
(e.g., sheet generator 403_2 and stencil processor 402_2)
then receive from the downstream line buffer unit 401_2 the
image data generated by the first stencil processor 402_1. In
this manner, a “producer” kernel operating on a first stencil
processor has its output data forwarded to a “consumer”
kernel operating on a second stencil processor where the
consumer kernel performs the next set of tasks after the
producer kernel consistent with the design of the overall
pipeline or DAG.

[0052] A stencil processor 402 is designed to simultane-
ously operate on multiple overlapping stencils of image

Sep. 7, 2017

data. The multiple overlapping stencils and internal hard-
ware processing capacity of the stencil processor effectively
determines the size of a sheet. Here, within a stencil pro-
cessor 402, arrays of execution lanes operate in unison to
simultaneously process the image data surface area covered
by the multiple overlapping stencils.

[0053] As will be described in more detail below, in
various embodiments, sheets of image data are loaded into
a two-dimensional register array structure within the stencil
processor 402. The use of sheets and the two-dimensional
register array structure is believed to effectively provide for
power consumption improvements by moving a large
amount of data into a large amount of register space as, e.g.,
a single load operation with processing tasks performed
directly on the data immediately thereafter by an execution
lane array. Additionally, the use of an execution lane array
and corresponding register array provide for different stencil
sizes that are easily programmable/configurable.

[0054] FIGS. 5a through 5e illustrate at a high level
embodiments of both the parsing activity of a line buffer unit
401, the finer grained parsing activity of a sheet generator
unit 403 as well as the stencil processing activity of the
stencil processor 402 that is coupled to the sheet generator
unit 403.

[0055] FIG. 5a depicts an embodiment of an input frame
of image data 501. FIG. 5a also depicts an outline of three
overlapping stencils 502 (each having a dimension of 3
pixels x 3 pixels) that a stencil processor is designed to
operate over. The output pixel that each stencil respectively
generates output image data for is highlighted in solid black.
For simplicity, the three overlapping stencils 502 are
depicted as overlapping only in the vertical direction. It is
pertinent to recognize that in actuality a stencil processor
may be designed to have overlapping stencils in both the
vertical and horizontal directions.

[0056] Because of the vertical overlapping stencils 502
within the stencil processor, as observed in FIG. 5a, there
exists a wide band of image data within the frame that a
single stencil processor can operate over. As will be dis-
cussed in more detail below, in an embodiment, the stencil
processors process data within their overlapping stencils in
a left to right fashion across the image data (and then repeat
for the next set of lines, in top to bottom order). Thus, as the
stencil processors continue forward with their operation, the
number of solid black output pixel blocks will grow right-
wise horizontally. As discussed above, a line buffer unit 401
is responsible for parsing a line group of input image data
from an incoming frame that is sufficient for the stencil
processors to operate over for an extended number of
upcoming cycles. An exemplary depiction of a line group is
illustrated as a shaded region 503. In an embodiment, as
described further below, the line buffer unit 401 can com-
prehend different dynamics for sending/receiving a line
group to/from a sheet generator. For example, according to
one mode, referred to as “full group”, the complete full
width lines of image data are passed between a line buffer
unit and a sheet generator. According to a second mode,
referred to as “virtually tall”, a line group is passed initially
with a subset of full width rows. The remaining rows are
then passed sequentially in smaller (less than full width)
pieces.

[0057] With the line group 503 of the input image data
having been defined by the line buffer unit and passed to the
sheet generator unit, the sheet generator unit further parses

US 2017/0257585 Al

the line group into finer sheets that are more precisely fitted
to the hardware limitations of the stencil processor. More
specifically, as will be described in more detail further
below, in an embodiment, each stencil processor consists of
a two dimensional shift register array. The two dimensional
shift register array essentially shifts image data “beneath” an
array of execution lanes where the pattern of the shifting
causes each execution lane to operate on data within its own
respective stencil (that is, each execution lane processes on
its own stencil of information to generate an output for that
stencil). In an embodiment, sheets are surface areas of input
image data that “fill” or are otherwise loaded into the two
dimensional shift register array.

[0058] Thus, as observed in FIG. 55, the sheet generator
parses an initial sheet 504 from the line group 503 and
provides it to the stencil processor (here, the sheet of data
corresponds to the shaded region that is generally identified
by reference number 504). As observed in FIGS. 5¢ and 54,
the stencil processor operates on the sheet of input image
data by effectively moving the overlapping stencils 502 in a
left to right fashion over the sheet. As of FIG. 54, the number
of pixels for which an output value could be calculated from
the data within the sheet is exhausted (no other pixel
positions can have an output value determined from the
information within the sheet). For simplicity the border
regions of the image have been ignored.

[0059] As observed in FIG. 5e the sheet generator then
provides a next sheet 505 for the stencil processor to
continue operations on. Note that the initial positions of the
stencils as they begin operation on the next sheet is the next
progression to the right from the point of exhaustion on the
first sheet (as depicted previously in FIG. 54). With the new
sheet 505, the stencils will simply continue moving to the
right as the stencil processor operates on the new sheet in the
same manner as with the processing of the first sheet.
[0060] Note that there is some overlap between the data of
the first sheet 504 and the data of the second sheet 505 owing
to the border regions of stencils that surround an output pixel
location. The overlap could be handled simply by the sheet
generator re-transmitting the overlapping data twice. In
alternate implementations, to feed a next sheet to the stencil
processor, the sheet generator may proceed to only send new
data to the stencil processor and the stencil processor reuses
the overlapping data from the previous sheet.

b. Stencil Processor Design and Operation

[0061] FIG. 6 shows an embodiment of a stencil processor
architecture 600. As observed in FIG. 6, the stencil processor
includes a data computation unit 601, a scalar processor 602
and associated memory 603 and an I/O unit 604. The data
computation unit 601 includes an array of execution lanes
605, a two-dimensional shift array structure 606 and sepa-
rate random access memories 607 associated with specific
rows or columns of the array.

[0062] The I/O unit 604 is responsible for loading “input”
sheets of data received from the sheet generator into the data
computation unit 601 and storing “output” sheets of data
from the stencil processor into the sheet generator. In an
embodiment the loading of sheet data into the data compu-
tation unit 601 entails parsing a received sheet into rows/
columns of image data and loading the rows/columns of
image data into the two dimensional shift register structure
606 or respective random access memories 607 of the
rows/columns of the execution lane array (described in more
detail below). If the sheet is initially loaded into memories

Sep. 7, 2017

607, the individual execution lanes within the execution lane
array 605 may then load sheet data into the two-dimensional
shift register structure 606 from the random access memo-
ries 607 when appropriate (e.g., as a load instruction just
prior to operation on the sheet’s data). Upon completion of
the loading of a sheet of data into the register structure 606
(whether directly from a sheet generator or from memories
607), the execution lanes of the execution lane array 605
operate on the data and eventually “write back” finished data
as a sheet directly back to the sheet generator, or, into the
random access memories 607. If the later the I/O unit 604
fetches the data from the random access memories 607 to
form an output sheet which is then forwarded to the sheet
generator.

[0063] The scalar processor 602 includes a program con-
troller 609 that reads the instructions of the stencil proces-
sor’s program code from scalar memory 603 and issues the
instructions to the execution lanes in the execution lane
array 605. In an embodiment, a single same instruction is
broadcast to all execution lanes within the array 605 to effect
a SIMD-like behavior from the data computation unit 601.
In an embodiment, the instruction format of the instructions
read from scalar memory 603 and issued to the execution
lanes of the execution lane array 605 includes a very-long-
instruction-word (VLIW) type format that includes more
than one opcode per instruction. In a further embodiment,
the VLIW format includes both an ALLU opcode that directs
a mathematical function performed by each execution lane’s
ALU (which, as described below, in an embodiment may
specify more than one traditional ALU operation) and a
memory opcode (that directs a memory operation for a
specific execution lane or set of execution lanes).

[0064] The term “execution lane” refers to a set of one or
more execution units capable of executing an instruction
(e.g., logic circuitry that can execute an instruction). An
execution lane can, in various embodiments, include more
processor-like functionality beyond just execution units,
however. For example, besides one or more execution units,
an execution lane may also include logic circuitry that
decodes a received instruction, or, in the case of more
MIMD-like designs, logic circuitry that fetches and decodes
an instruction. With respect to MIMD-like approaches,
although a centralized program control approach has largely
been described herein, a more distributed approach may be
implemented in various alternative embodiments (e.g.,
including program code and a program controller within
each execution lane of the array 605).

[0065] The combination of an execution lane array 605,
program controller 609 and two dimensional shift register
structure 606 provides a widely adaptable/configurable
hardware platform for a broad range of programmable
functions. For example, application software developers are
able to program kernels having a wide range of different
functional capability as well as dimension (e.g., stencil size)
given that the individual execution lanes are able to perform
a wide variety of functions and are able to readily access
input image data proximate to any output array location.

[0066] Apart from acting as a data store for image data
being operated on by the execution lane array 605, the
random access memories 607 may also keep one or more
look-up tables. In various embodiments one or more scalar
look-up tables may also be instantiated within the scalar
memory 603.

US 2017/0257585 Al

[0067] A scalar look-up involves passing the same data
value from the same look-up table from the same index to
each of the execution lanes within the execution lane array
605. In various embodiments, the VLIW instruction format
described above is expanded to also include a scalar opcode
that directs a look-up operation performed by the scalar
processor into a scalar look-up table. The index that is
specified for use with the opcode may be an immediate
operand or fetched from some other data storage location.
Regardless, in an embodiment, a look-up from a scalar
look-up table within scalar memory essentially involves
broadcasting the same data value to all execution lanes
within the execution lane array 605 during a the same clock
cycle.

3.0 Line Buffer Unit Embodiments

[0068] a. Line Buffer Unit Overview

[0069] Recall from the discussion above in Section 1.0
that in various embodiments, program code that is written
for the hardware platform is written with a unique virtual
code that includes an instruction set having load and store
instructions whose instruction format identifies input and
output array locations as, e.g., X,Y coordinates. In various
implementations, the X,Y coordinate information may actu-
ally be programmed into the hardware platform and recog-
nized/understood by various ones of its components. This
stands apart from, for example, translating the X,Y coordi-
nation (e.g., within the compiler) into different information.
For example, in the case of the two-dimensional shift
register structure within the stencil processor, the XY
coordinate information is translated into register shift move-
ments. By contrast, other parts of the hardware platform may
specifically receive and comprehend the X,Y coordinate
information originally expressed at the higher, virtual code
level.

[0070] As observed in FIG. 7, as described in Section 1.0,
a program code developer expresses data locations as X,Y
coordinates with the special instruction format at the virtual
code level 710. During the compilation stage, the virtual
code is translated into program code that is actually pro-
cessed by the hardware (object code) and corresponding
configuration information that is loaded into the hardware’s
configuration (e.g., register) space. As observed in FIG. 7, in
an embodiment, the object code for a particular kernel is
loaded into the program space of the stencil processor’s
scalar processor 705.

[0071] As part of the configuration process, configuration
software executing on the scalar processor 705 loads the
appropriate configuration information 711, 712 into both the
sheet generator unit 703 that is coupled to the stencil
processor 702, and, the line buffer unit 701 that will generate
new sheets for the stencil processor 702 to operate on, or,
receive processed sheets generated by the stencil processor
702. Here, generally, sheets can still be contemplated in
terms of X,Y coordinates of an overall image. That is, once
an image or frame is defined (e.g., in terms of number of
pixels per row, number of rows, number of pixels per
column and number of columns), any portion or position of
the image can still be referred to with XY coordinates.
[0072] As such, in various embodiments, either or both of
the sheet generator unit 703 and line buffer unit 701 are
configured with information 711, 712 within their respective
configuration space 706, 707 that establishes an informa-
tional platform from which specific locations and/or regions

Sep. 7, 2017

(e.g., line groups, sheets) of an image or frame are identified
in X,Y coordinates. In various implementations/uses, the
X,Y coordinates may be the same X,Y coordinates
expressed at the virtual code level.

[0073] Examples of such information include, e.g., num-
ber of active line groups in the line buffer unit, image size
for each line group (e.g., as a set of four X, Y coordinates
(one for each corner) or a pair of X, Y coordinates (one for
a lower nearer corner and one for an upper farther corner)),
absolute image width and image height, stencil size (ex-
pressed as X, Y values that define the size of a single stencil
and/or the area of the overlapping stencils of the stencil
processor), sheet and/or line group size (e.g., specified in
same terms as an image size but having smaller dimensions),
etc. Additionally, the line buffer unit 701 at least may be
programmed with additional configuration information such
as the number of producer kernels writing and the number of
consumer kernels reading the line groups that are managed
by the line buffer unit 701. The number of channels and/or
the dimensions associated with the image data are also
typically included as configuration information.

[0074] FIG. 8 depicts the use of X,Y coordinates to define,
as just one example, line groups within an image. Here, N
line groups 801_1, 801_2, . . . 801_N are observable within
an image 801. As can be seen from FIG. 8, each line group
can be readily defined by reference to X, Y coordinates
within the image that define, e.g., one or more of a line
group’s corner points. As such, in various embodiments, a
line group’s name or other data structure used to define a
particular line group may include X, Y coordinate locations
associated with the line group in order to particularly
identify it.

[0075] Referring briefly back to FIG. 7, note that FIG. 7
shows that during runtime, a sheet generator 703 may
request a “next” line group (or portion of a line group) from
the line buffer unit 701 by, e.g., including X, Y coordinate
information that defines the desired data region. FIG. 8
shows nominal “full width” line groups composed only of
complete rows of image data. In an alternative configuration
referred to as “virtually-tall”, described in more detail fur-
ther below, the line buffer unit 701 initially passes only a first
upper portion of a line group as full width rows of image
data. The subsequent lower rows of the line group are then
specifically requested for by the sheet generator in contigu-
ous chunks that are less than a full width row and are
separately requested for. As such, multiple requests are made
by the sheet generator in order to obtain the full line group.
Here, each such request may define a next lower portion by
X, Y coordinates that are attributable to the next lower
portion.

[0076] FIGS. 9a through 9¢ demonstrate various features
of a line buffer unit embodiment 900. As observed in FIG.
9a, a line buffer unit includes memory 902 in which line
groups 903_1 through 903_N are stored (e.g., static or
dynamic random access memory (SRAM or DRAM)). FIG.
9a shows the activity between the various kernels that
produce and consume the line groups 903_1 through 903_N
for a particular image/frame within the memory 902.

[0077] As observed in FIG. 9a, a producer kernel K1
sends new line groups to the memory 902 over separate time
instances P1, P2 through PN. The producer kernel K1
executes on a stencil processor that generates new sheets of
data. The sheet generator that is coupled to the stencil

US 2017/0257585 Al

processor accumulates sheets to form line groups and for-
wards the line groups to the memory 902.

[0078] Also as depicted in FIG. 9a, there are two con-
sumer kernels K2, K3 that operate on the line groups 903_1
through 903_N generated by producer kernel K1. Here,
consumer kernels K2 and K3 receive the first line group
903_1 at times C21 and C31, respectively. Obviously, times
C21 and C31 occur after time P1. Other restrictions may not
exist. For example times C21 and/or C31 may occur before
or after any of times P2 through PN. Here, the respective
sheet generators for kernels K2 and K3 request a next line
group at a time that is appropriate for their respective kernel.
If any of kernels K2, K3 request line group 903_1 before
time P1, the request idles until after line group 903_1 is
actually written into memory 902. In many implementations,
a producer kernel operates on a different stencil processor
than a consumer kernel.

[0079] Conceivably, requests from either or both of ker-
nels K2 and K3 for all of line groups 903_1 through 903_N
may arrive prior to time P1. Thus, line groups may be
requested by consumer kernels at any time. The line groups
are forwarded to the consumer kernels as they request them
subject, however, to the rate at which the producer kernel K1
can produce them. In various embodiments, consumer ker-
nels request line groups in sequence and likewise receive
them in sequence (kernel K2 receives line groups 902_2
through 902_N at times C22 through C2N in sequence). For
simplicity only one producer kernel is depicted for a par-
ticular line group. It is conceivable that various embodi-
ments may be designed to permit different producers to write
to a same line group (e.g., where consumers are not permit-
ted to be serviced until after all producers have written to the
line group).

[0080] In cases where there is no producer kernel (because
the consumer kernel(s) is/are the first kernels in the proces-
sor’s DAG processing flow), frames of image data may be
transferred into memory 902 (e.g., via direct memory access
(DMA) or from a camera) and parsed into line groups. In
cases where there are no consumer kernel(s) (because the
producer kernel is the last kernel in the processor’s overall
program flow), resultant line groups may be combined to
form output frames.

[0081] FIG. 96 shows a more detailed embodiment of an
entire line buffer unit 900. For the sake of discussion, the
activity of FIG. 9a is superimposed on the line buffer unit
900 of FIG. 95. As can be seen in FIG. 95, a line buffer unit
900 includes memory 902 coupled to line buffer unit cir-
cuitry 901. Line buffer unit circuitry 901 may be con-
structed, for example, with dedicated logic circuitry. Within
line buffer unit circuitry 901, a line buffer interface unit
904_1 through 904 _N is reserved for each line group 903_1
through 903_N within memory 902. In various embodi-
ments, there is a fixed number of line buffer interface units
904_1 through 904_N which sets an upper limit on the
number of line groups that a line buffer unit can manage at
any instant of time (if fewer than N line groups are active,
a corresponding smaller number of line buffer unit interfaces
are activated and in use at any time).

[0082] As depicted in FIG. 95, with a total number of N
line buffer interface units 904 within the line buffer unit
circuitry 901, the line buffer unit 900 is handling a maximum
number of line groups. Additionally, with a largest permitted
line group size (where line group size is a configurable
parameter) an approximate size for memory 902 can be

Sep. 7, 2017

determined (of course, to allow for hardware efficiencies a
smaller memory footprint may be instantiated at the cost of
not simultaneously permitting N maximum sized line
groups).

[0083] Each line buffer interface unit 904_1 through
904_N is responsible for handling the producer and con-
sumer requests for a particular line group that it has been
assigned to handle. For example, line buffer interface unit
904_1 handles the request from producer K1 at time P1 to
store line group 903_1 as well as handles the requests from
consumer kernels K2 and K3 for line group 903_1. In
response to the former, line buffer interface unit 904_1
writes line group 903_1 into memory 902. In response to the
latter, line buffer interface unit 904_1 performs respective
reads of line group 903_1 from memory 902 and forwards
line group 903_1 to consumers K2 and K3 at times C21 and
C31, respectively.

[0084] After all consumers of a line group have been
forwarded their copy of the line group, the line buffer
interface unit is “free” to be assigned to another line group.
For example, if line group 903_1 represents the first line
group within a first image frame of a sequence of frames,
after line group 903_1 has been forwarded to consumers K2
and K3 at times C21 and C31, line buffer interface unit
904_1 may next be assigned to handle the first line group
within the next, second image frame of the sequence of
frames. In this manner, the line buffer unit circuitry 901 can
be viewed as having a “pool” of line buffer interface units
904 where each interface unit is assigned a new line group
to manage after its immediately preceding line group was
delivered to its last consumer. Thus, there is a rotation of
interface units as they repeatedly enter and are removed
from a “free pool” of line buffer interface units who have
served their last consumer and are waiting for their next line
group.

[0085] FIG. 9¢ illustrates an embodiment of the rotation in
more detail. As observed in FIG. 9¢, an available line buffer
interface unit is selected from a free pool of line buffer
interface units within the line buffer unit circuitry 910. The
line buffer interface unit is then configured with appropriate
configuration information 911 (e.g., X, Y position informa-
tion of the new line group or a linear memory address
equivalent). Here, note in FIG. 96 that each line buffer
interface unit may include configuration register space 905
where such configuration information is kept.

[0086] The line buffer interface unit then proceeds to
handle producer and consumer requests for its newly
assigned line group 912. After the last producer has written
to the line group (in various embodiments there is only one
producer per line group) and after the last consumer has been
provided with the version of the line group that has been
written to by its producer(s), the line buffer interface unit is
returned to the free pool and the process repeats 910 for a
next line group. The control logic circuitry within the line
buffer unit circuitry 901 that oversees the control flow of
FIG. 9c¢ is not depicted in FIG. 956 for illustrative conve-
nience.

b. Programmable Register Space Embodiments

[0087] With respect to the updated configuration informa-
tion 911 that is provided to a line buffer interface unit as part
of'the assignment of a next line group, in a nominal case, the
line buffer unit 900 itself is handling a static arrangement of,
e.g., only one fixed producer that is feeding a fixed set of one
or more consumers. In this case, primary configuration

US 2017/0257585 Al

information (e.g., line group size, number of consumers,
etc.) is also apt to be static and will not change from line
group to line group. Rather, the new configuration informa-
tion that is provided to a line buffer interface unit mainly
identifies the new line group (e.g., the location of the line
group within memory, etc.). More complicated potential
arrangements/designs are possible, however. Some of these
are described in more detail immediately below.

[0088] FIG. 9d depicts an embodiment of the contents of
a line buffer interface unit’s register space (e.g., the contents
of register space 905_1 of FIG. 96). A description of some
of the register fields immediately follows.

[0089] The L.B_Enable field 921 essentially enables a line
buffer interface unit and is “set” as part of the process of
taking the line buffer interface unit from the free pool. The
Num_Channels field 922 defines the number of channels
within the line group’s image data. In an embodiment, the
Num_Channels field 922 can be used to determine the total
amount of data per line group. For example, a video stream
often includes a frame sequence of red (R) pixels, a frame
sequence of blue (B) pixels and a frame sequence of green
(G) pixels. Thus, for any line group, there are actually three
line groups worth of information (R, G and B).

[0090] The Num_Consumers field 923 describes the num-
ber of consumers that will request the line group. In an
embodiment, the line buffer interface unit will be entered to
the free pool after a line group instance has been delivered
a number of times equal to the value in the Num_Consumers
field 923.

[0091] The Row_Width field 924 defines the width of a
full line group (e.g., in number of pixels). Note that the
Row_Width 924 value can be expressed as an X coordinate
value provided by the compiler. The FB_Rows field 926
defines the height of a full line group (e.g., in number of
pixels). Note that the FB_Rows field 924 can be expressed
as a Y coordinate value provided by the compiler.

[0092] The FB_Base_Address field 930 defines the loca-
tion of the line group in the line buffer unit memory. In a first
operational mode, referred to as “full” line group mode, a
full sized line group is accessed in memory (line groups are
received from producers and delivered to consumers as
containing the full amount of their respective data). In the
full line group mode, the Num_Channels field 922, the
Row_Width field 924 and the FB_Rows field 926 can be
used with the FB_Address field 930 to determine the range
of addresses that are to be applied to memory to completely
access a full line group. Additionally, these same parameters
can be used to “translate” a request from a sheet generator
that has requested the line group in X, Y coordinates into a
linear memory address.

[0093] The VB_Enable, VB_Rows, VB_Cols, Num_Reu-
se_Rows and VB_Base_Address fields 925, 927, 928, 931
are used in another operational mode, referred to as the
“virtually tall” line group mode, which is described in detail
further below.

[0094] Whereas FIG. 94 displayed the configuration reg-
ister space 905 for a single line buffer interface unit, by
contrast, FIG. 9¢ shows an embodiment of the contents of
global configuration register space 907 for the line buffer
unit circuitry 901 as a whole. Whereas the per line buffer
interface unit register space of FIG. 94 is focused on a
specific line group, by contrast, the global register space 907
of FIG. 9¢ is focused on understanding the parsing of
different line groups from a same image as well as other

Sep. 7, 2017

information that is specific to the producer/consumer com-
bination that are associated with the processing of the image.
[0095] As observed in FIG. 9e, an embodiment of the
global register space includes the number of channels 932
and the number of consumers 933 for a particular image. For
simplicity, the register space of FIG. 9¢ only contemplates
one image with one set of producers and consumers (e.g.,
only a single video stream and a single point in a DAG).
Conceivably, multiple instances of the register space of FIG.
9e could be allocated to permit the line buffer unit circuitry
to effectively multi-task.

[0096] A first form of multi-tasking is within a DAG or
software pipeline that is implemented on the image proces-
sor. Here, the same line buffer unit could be configured to
handle the line grouping for two different nodes within the
DAG or for two different stages of the pipeline (that is, a
single line buffer unit could support more than one stencil
processor). The different nodes/stages could easily have
different numbers of consumers but in many cases are likely
to have the same image and stencil size characteristics. A
second form of multi-tasking is across multiple different
DAGs and/or multiple different pipelines that are imple-
mented on the same image processor hardware. For
example, an image processor having four stencil processors
could concurrently execute two completely different two-
stage pipelines that respectively process completely differ-
ent image sizes with completely different stencil dimen-
sions.

[0097] Returning to the particular embodiment of FIG. 9e,
note that any particular node in a DAG or between pipeline
stages can be characterized at a high level by the number of
channels in the image, the image size, the dimensions of the
applicable stencil and the number of consumers of the line
groups (FIG. 9¢ again assumes one producer per line group
but conceivably more than one producer could write to a
single line group in which case the global register space of
FIG. 9¢ would also include a field for the number of
producers). The Num_Channels and Num_Consumers fields
932, 933 are essentially the same as the corresponding fields
922, 923 of FIG. 9¢.

[0098] The Image_Size and Stencil_Dimension fields 934,
935 essentially describe the dimensions of the image to be
processed and the dimensions of the stencil that will operate
on the line groups that are to be carved from the image
respectively. Note that both fields 934, 935 can be expressed
in terms of X, Y coordinate values and can be provided from
the compiler. Additionally, in an embodiment, control logic
circuitry within the line buffer circuitry unit (not shown in
FIG. 9b) uses the Image_Size and Stencil_Dimension fields
934, 935 to determine the Row_Width 924, FB_Rows 926
and FB_Base_Address values 930 that are loaded into a line
buffer interface unit’s register space when the line buffer
interface unit is assigned to handle line groups from the
producer/consumer set that the global information pertains
to. In an alternate or further embodiment, image size is
expressed as two separate values, image_width and image_
height, which may have their own separately addressable
register space. Likewise, stencil size may be expressed as
two separate values, stencil_width and stencil_height, which
may have their own separately addressable register space.
[0099] Row_Width 924 is directly obtainable from the
Image_Size 934 information. For example, if Image_Size is
expressed as the X, Y coordinate pair at the farthest pixel
from the image origin (the upper right hand corner if the

US 2017/0257585 Al

origin is at the lower left hand corner), Row_Width can be
determined as the X coordinate value.

[0100] The FB_Rows and FB_Base_Address fields 926,
930 can be determined from the Image_Size and Stencil_
Dimension fields 934, 935. Here, specifically, the height of
each line group (FB_Rows 926) can be calculated from the
height of the image (Y coordinate value of Image_Size 934)
and the stencil height (Y coordinate value of Stencil_
Dimension 935). Once the height of the line groups is
known, the number of line groups that are to be parsed from
the image and the starting linear address for each such line
group in memory (FB_Base_Address 930) can also be
determined.

[0101] Thus, in an embodiment, when a line buffer unit is
assigned to handle a line group for a particular producer/
consumer combination whose global register space is char-
acterized by the register fields of FIG. 9e, the above
described determinations are calculated on the fly and each
of FB_Width 924, FB_Rows 926, Base_Address 934 are
loaded into the line buffer interface unit’s specific register
space along with Num_Channels 922 and Num_Consumers
923 which copy over directly. Logic circuitry and data paths
may therefore exist between the global register space and
each instance of line buffer interface unit register space to
perform these determinations and data transfers.

[0102] In an alternate embodiment, the compiler performs
each of these calculations thereby eliminating much if not all
of'the global register space altogether. Here, for instance, the
compiler can determine the Base_Address value for each
line group and load the values in a look-up table within the
line buffer circuitry unit. The values are called from the
look-up table and loaded into a line buffer interface unit’s
register space as their corresponding line groups are con-
figured for. Different combinations between these two
extremes (hardware on-the-fly vs. static compiler deter-
mined) may also be implemented.

[0103] Although embodiments above emphasized the
keeping of configuration information in register circuitry
(“register space”), in other or combined embodiments, con-
figuration information may be kept in memory (such as
buffer unit memory) or other memory or information keep-
ing circuitry.

c. Line Buffer Unit Embodiments & Full Line Group Mode
vs. Virtually Tall Mode

[0104] The discussions above have largely been directed
to “full line group” mode in which line groups are referred
to and passed between the sheet generators and line buffer
unit as complete, entire line groups. In another mode,
referred to as “virtually tall”, line groups are referred to and
passed between the sheet generators as a full width upper
portion and a lower portion that is completed in separate,
discrete segments.

[0105] FIGS. 10a and 105 show a depiction of an exem-
plary virtually tall mode sequence. As observed in FIG. 10a,
a line group is initially formed as an upper portion 1003 of
full width rows and a first lower portion 1004_1 having only
a first, shorter segment of width. The initial formation of a
line group may be provided to a line buffer unit by a
producing sheet generator, or, may be provided by a line
buffer unit to a consuming sheet generator.

[0106] In the case of a producer, the line group is formed
after the stencils 1002 have processed over the lower portion
1004_1 (the approximate stencil positioning is observed in
FIG. 104). After the producer stencil processor has pro-

Sep. 7, 2017

cessed over the lower portion 1004_1 the stencils continue
forward horizontally to the right. Eventually they will pro-
cess over a next lower portion 1004_2. Upon completion of
the next lower portion 1004_2, the next lower portion
1004 _2 is sent from the sheet generator to the line buffer unit
which stores it in memory in the correct location, e.g., “next
to” first lower portion 1004_1. The process continues until
the line group is fully written into line buffer unit memory.
[0107] In the case of consumers, the line group is initially
delivered to the sheet generator as observed in FIG. 10a. The
stencil processor operates over the first portion 1004_1 of
the line group. Upon nearing the completion of the process-
ing of the first portion 1004_1 the sheet generator will
request the next lower portion 1004_2 which is fetched from
memory and delivered by the line buffer unit. The process
continues until the line group is completely processed.
[0108] Note that for both producers and consumers, lower
portions are specifically identified by the sheet generator.
That is, in both the producer case and the consumer case,
lower portion 1004_2 is specifically identified by the sheet
generator and the line buffer unit specifically accesses
memory to store/fetch lower portion 1004_2. In an embodi-
ment, the sheet generator identifies lower portion 1004_2
through X, Y coordinate values that are contemplated based
on information provided by the compiler (for example, any
corner of lower portion 1004_2, all four corners of lower
portion 1004_2, just an X coordinate value, etc.).

[0109] FIG. 11a shows a first (more simplistic) embodi-
ment of the circuitry within a line buffer interface unit 1104.
As observed in FIG. 1la, the line buffer interface unit
includes address translation circuitry 1106 to convert the
identity of a line group or portion thereof (such as lower
portion 1004_2 of FIG. 104) that is identified by one or more
X, Y coordinate values into a linear address for accessing
line buffer unit memory. That is, line groups can be deemed
to be “mapped” into line buffer unit memory. The translation
circuitry 1106 essentially comprehends this mapping in X,Y
terms and can convert the same to specific linear memory
addresses.

[0110] The ability to comprehend the mapping is based on
information within configuration register space 1105, an
embodiment of which was provided above in FIG. 94. Here,
with knowledge of Row_Width 924, FB_Rows 926 and
FB_Base_Address 931 the translation unit can “compre-
hend” the size and location of the full line group in memory.
As such, for example, in the virtually tall mode, a request for
a lower portion based on any X coordinate value (e.g., if the
lower portion is referenced relative to the line group) or X, Y
coordinate location (e.g., if the lower portion is referenced
relative to the image frame) is sufficient to identify what
portion is being referred to by the sheet generator. Addi-
tionally, Vb_Rows 927 and Vb_Cols 928 essentially define
the dimensions of the lower portions. With knowledge of the
dimensions of the upper and lower portions the amount of
data to be accessed to/from buffer memory is also readily
determinable. These same concepts may also to apply to full
width line groups. For example, any full width line group
may be identified by its X,Y location within an image.
Additionally, in some embodiments, a full width line group
may be passed through the network via a sequence of atomic
requests/responses that reference smaller chunks of a full
width line group by way of X and/or Y coordinate values.
[0111] The translation circuitry 1106 could also be used in
an abstract addressing mode in which the Base_Address_

US 2017/0257585 Al

Field 931 is not populated and the sheet generators refer to
line groups as X,Y coordinates within an image frame. In
this case, if the translation circuitry 1006 is coupled to or
otherwise apprised of some of the information in the global
register space of FIG. 9¢ (e.g., Image_Size, Stencil_Size),
the translation circuitry 1106 could calculate all pertinent
information for the line group (its dimensions and location
within the frame) and convert the same to linear addresses
used for accessing line buffer unit memory. In another
embodiment, the translation circuitry 1106 determines the
Base_Address_Field value 931 outright (based on global
type information and one or more X, Y coordinates describ-
ing the line group) and loads it into its own register space
1105.

[0112] The line buffer interface unit embodiment of FIG.
11a also supports a linear addressing mode in which X,Y
coordinate values are not used to refer to a line group (rather,
traditional linear addresses are used). For the linear address-
ing mode, bypass paths 1140 circumvent the address trans-
lation circuitry 1106. In an embodiment, regardless of which
addressing mode is used at the line buffer interface unit
input, the line buffer interface unit provides standard linear
memory addresses for addressing line buffer unit memory.
Referring briefly back to FIG. 94, the linear addresses are
provided to an arbiter. Memory interface 908 resolves col-
liding memory access requests and accesses line buffer unit
memory 902.

[0113] As discussed at length above, a sheet generator
may refer to a line group with one or more X, Y coordinate
values. In another embodiment, rather than the sheet gen-
erators identifying a next line group in full line group mode
or a next lower portion in virtually tall mode, the sheet
generators simply issue a request akin to “next” (e.g., the
request only indicates a “next” full line group or “next”
lower portion or “next” image data within the same full/
virtually tall line group is being referred to without any
coordinates).

[0114] To support this avenue of communication, the line
buffer unit and/or line buffer unit interface includes state
register space to comprehend what the next line group/
portion is. FIG. 115 shows an enhanced embodiment of a
line buffer interface unit that keeps pointer state information
so that the sheet generators can simply refer to a “next”
lower portion of a line group in virtually tall mode rather
than having to specify its location with X,Y coordinates.
Here, a write pointer 1141 is maintained by pointer control
logic circuitry 1143 that keeps track of the lower portions
that have been provided by the producing sheet generator.
Essentially the write pointer 1141 stores the location of the
“next” portion that the producer is scheduled to deliver. In
addition, the pointer state information permits sheet genera-
tors to refer only to a “next” full width line group (in full
width mode) without having to specify any X,Y coordinates
(because the line buffer interface unit can determine where
the next full width line group for the image is).

[0115] In an embodiment, the pointer is articulated as one
or more X, Y coordinates and the translation circuitry
converts the same into a linear address. When the next
portion is received, the pointer 1141 is updated by pointer
control logic circuitry 1143 to point to the portion that will
follow the portion that has just been received. Read pointers
1142 operate similarly but a separate read pointer is kept for
each consumer (again, only one producer is assumed for
convenience).

Sep. 7, 2017

[0116] In the case of full line group mode, the location of
the “next” full width line group is determinable from the
global register information and a similar arrangement of
pointers that are kept at a global level.

d. Implementation Embodiments

[0117] It is pertinent to point out that the various image
processor architecture features described above are not
necessarily limited to image processing in the traditional
sense and therefore may be applied to other applications that
may (or may not) cause the image processor to be re-
characterized. For example, if any of the various image
processor architecture features described above were to be
used in the creation and/or generation and/or rendering of
animation as opposed to the processing of actual camera
images, the image processor may be characterized as a
graphics processing unit. Additionally, the image processor
architectural features described above may be applied to
other technical applications such as video processing, vision
processing, image recognition and/or machine learning.
Applied in this manner, the image processor may be inte-
grated with (e.g., as a co-processor to) a more general
purpose processor (e.g., that is or is part of a CPU of
computing system), or, may be a stand alone processor
within a computing system.

[0118] The hardware design embodiments discussed
above may be embodied within a semiconductor chip and/or
as a description of a circuit design for eventual targeting
toward a semiconductor manufacturing process. In the case
of the latter, such circuit descriptions may take the form of
higher/behavioral level circuit descriptions (e.g., a VHDL
description) or lower level circuit description (e.g., a register
transfer level (RTL) description, transistor level description
or mask description) or various combinations thereof. Cir-
cuit descriptions are typically embodied on a computer
readable storage medium (such as a CD-ROM or other type
of storage technology).

[0119] From the preceding sections is pertinent to recog-
nize that an image processor as described above may be
embodied in hardware on a computer system (e.g., as part of
a handheld device’s System on Chip (SOC) that processes
data from the handheld device’s camera). In cases where the
image processor is embodied as a hardware circuit, note that
the image data that is processed by the image processor may
be received directly from a camera. Here, the image pro-
cessor may be part of a discrete camera, or, part of a
computing system having an integrated camera. In the case
of the later the image data may be received directly from the
camera or from the computing system’s system memory
(e.g., the camera sends its image data to system memory
rather than the image processor). Note also that many of the
features described in the preceding sections may be appli-
cable to a graphics processor unit (which renders animation).
[0120] FIG. 12 provides an exemplary depiction of a
computing system. Many of the components of the comput-
ing system described below are applicable to a computing
system having an integrated camera and associated image
processor (e.g., a handheld device such as a smartphone or
tablet computer). Those of ordinary skill will be able to
easily delineate between the two.

[0121] As observed in FIG. 12, the basic computing
system may include a central processing unit 1201 (which
may include, e.g., a plurality of general purpose processing
cores 1215_1 through 1215_N and a main memory control-
ler 1217 disposed on a multi-core processor or applications

US 2017/0257585 Al

processor), system memory 1202, a display 1203 (e.g.,
touchscreen, flat-panel), a local wired point-to-point link
(e.g., USB) interface 1204, various network I/O functions
1205 (such as an Ethernet interface and/or cellular modem
subsystem), a wireless local area network (e.g., WiF1i) inter-
face 1206, a wireless point-to-point link (e.g., Bluetooth)
interface 1207 and a Global Positioning System interface
1208, various sensors 1209_1 through 1209_N;, one or more
cameras 1210, a battery 1211, a power management control
unit 1212, a speaker and microphone 1213 and an audio
coder/decoder 1214.

[0122] An applications processor or multi-core processor
1250 may include one or more general purpose processing
cores 1215 within its CPU 1201, one or more graphical
processing units 1216, a memory management function
1217 (e.g., a memory controller), an I/O control function
1218 and an image processing unit 1219. The general
purpose processing cores 1215 typically execute the oper-
ating system and application software of the computing
system. The graphics processing units 1216 typically
execute graphics intensive functions to, e.g., generate graph-
ics information that is presented on the display 1203. The
memory control function 1217 interfaces with the system
memory 1202 to write/read data to/from system memory
1202. The power management control unit 1212 generally
controls the power consumption of the system 1200.
[0123] The image processing unit 1219 may be imple-
mented according to any of the image processing unit
embodiments described at length above in the preceding
sections. Alternatively or in combination, the IPU 1219 may
be coupled to either or both of the GPU 1216 and CPU 1201
as a co-processor thereof. Additionally, in various embodi-
ments, the GPU 1216 may be implemented with any of the
image processor features described at length above.

[0124] Each of the touchscreen display 1203, the commu-
nication interfaces 1204-1207, the GPS interface 1208, the
sensors 1209, the camera 1210, and the speaker/microphone
codec 1213, 1214 all can be viewed as various forms of I/O
(input and/or output) relative to the overall computing
system including, where appropriate, an integrated periph-
eral device as well (e.g., the one or more cameras 1210).
Depending on implementation, various ones of these 1/O
components may be integrated on the applications proces-
sor/multi-core processor 1250 or may be located off the die
or outside the package of the applications processor/multi-
core processor 1250.

[0125] In an embodiment one or more cameras 1210
includes a depth camera capable of measuring depth
between the camera and an object in its field of view.
Application software, operating system software, device
driver software and/or firmware executing on a general
purpose CPU core (or other functional block having an
instruction execution pipeline to execute program code) of
an applications processor or other processor may perform
any of the functions described above.

[0126] Embodiments of the invention may include various
processes as set forth above. The processes may be embod-
ied in machine-executable instructions. The instructions can
be used to cause a general-purpose or special-purpose pro-
cessor to perform certain processes. Alternatively, these
processes may be performed by specific hardware compo-
nents that contain hardwired logic for performing the pro-
cesses, or by any combination of programmed computer
components and custom hardware components.

Sep. 7, 2017

[0127] Elements of the present invention may also be
provided as a machine-readable medium for storing the
machine-executable instructions. The machine-readable
medium may include, but is not limited to, floppy diskettes,
optical disks, CD-ROMs, and magneto-optical disks,
FLASH memory, ROMs, RAMs, EPROMs, EEPROMs,
magnetic or optical cards, propagation media or other type
of media/machine-readable medium suitable for storing
electronic instructions. For example, the present invention
may be downloaded as a computer program which may be
transferred from a remote computer (e.g., a server) to a
requesting computer (e.g., a client) by way of data signals
embodied in a carrier wave or other propagation medium via
a communication link (e.g., a modem or network connec-
tion).

[0128] In the foregoing specification, the invention has
been described with reference to specific exemplary embodi-
ments thereof. It will, however, be evident that various
modifications and changes may be made thereto without
departing from the broader spirit and scope of the invention
as set forth in the appended claims. The specification and
drawings are, accordingly, to be regarded in an illustrative
rather than a restrictive sense.

1. A device comprising:

a plurality of line buffer interface units; and

a memory unit configured to store image data partitioned

into a plurality of line groups,

wherein the device is configured to assign each line buffer

interface unit to manage read and write requests for a
respective line group of the plurality of line groups,
wherein each line buffer interface unit is configured to

receive a write request from a producer component, to
identify a write location within the memory unit cor-
responding to the write request, and to store data at the
write location within the memory unit according to the
write request,

wherein each line buffer interface unit is configured to

receive a read request from one or more consumer
components, to identify a read location within the
memory unit corresponding to the read request, and to
provide data stored at the read location within the
memory unit according to the read request.

2. The device of claim 1, wherein, upon a line buffer
interface unit completing all outstanding read requests from
one or more consumers components for a particular line
group, the device is configured to reassign the line buffer
interface unit to manage read and write requests for a
different line group.

3. The device of claim 2, wherein each line buffer
interface unit has a dedicated programmable unit configu-
ration space that is configured to store data representing
properties of a line group to which the line buffer interface
unit is assigned, and

wherein upon a line buffer interface unit being reassigned

from a first line group to a second line group, the device
is configured to update the data in the programmable
unit configuration space of the line buffer interface unit
to represent properties of the second line group.

4. The device of claim 3, wherein the data in the pro-
grammable unit configuration space represents a maximum
number of consumer components that the line buffer inter-
face unit can service simultaneously, a row width of the line
group, or a base linear address in the memory unit of the line

group.

US 2017/0257585 Al

5. The device of claim 3, wherein the device has a
programmable global configuration space that is configured
to store data representing a total size of an image having
image data stored in the memory unit.

6. The device of claim 5, wherein the programmable
global configuration space is configured to store data rep-
resenting a number of active line buffer interface units.

7. The device of claim 3, wherein the device is configured
to dynamically compute one or more data values in the
programmable unit configuration space from one or more
data values in a programmable global configuration space of
the device.

8. The device of claim 7, wherein the device is configured
to compute a number of full line group rows or a line group
base address in the programmable unit configuration space
from image size and stencil dimension elements of the
programmable global configuration space.

9. The device of claim 1, wherein each line buffer
interface unit has translation circuitry that is configured to
convert a pair of values into a linear address within the
memory unit.

10. The device of claim 1, wherein each line buffer
interface unit is configured to maintain a pointer to a current
or next segment of a line group to be provided on a next read
request.

11. A method comprising:

assigning, by a device having a plurality of line buffer

interface units and a memory unit storing image data
partitioned into a plurality of line groups, each line
buffer interface unit to manage read and write requests
for a respective line group of the plurality of line
groups,

receiving, by a particular line buffer interface unit of the

plurality of line buffer interface units, a write request
from a producer component of the device;

identify, by the particular line buffer interface unit, a write

location within the memory unit corresponding to the
write request;

storing, by the particular line buffer interface unit, data at

the write location within the memory unit according to
the write request;

receiving, by the particular line buffer interface unit, a

read request from one or more consumer components
of the device;

identifying, by the particular line buffer interface unit, a

read location within the memory unit corresponding to
the read request; and

providing, by the particular line buffer interface unit, data

stored at the read location within the memory unit
according to the read request.

Sep. 7, 2017

12. The method of claim 11, further comprising:
receiving, by the device, an indication that a line buffer
interface unit has completed all outstanding read
requests from one or more consumers components for
a particular line group; and

in response, reassigning, by the device, the line buffer
interface unit to manage read and write requests for a
different line group.

13. The method of claim 12, wherein each line buffer
interface unit has a dedicated programmable unit configu-
ration space that is configured to store data representing
properties of a line group to which the line buffer interface
unit is assigned, and

wherein reassigning the line buffer interface unit com-

prises updating, by the device, the data in the program-
mable unit configuration space of the line buffer inter-
face unit to represent properties of the different line
group.

14. The method of claim 13, wherein the data in the
programmable unit configuration space represents a maxi-
mum number of consumer components that the line buffer
interface unit can service simultaneously, a row width of the
line group, or a base linear address in the memory unit of the
line group.

15. The method of claim 13, wherein the device has a
programmable global configuration space that is configured
to store data representing a total size of an image having
image data stored in the memory unit.

16. The method of claim 15, wherein the programmable
global configuration space is configured to store data rep-
resenting a number of active line buffer interface units.

17. The method of claim 13, further comprising dynami-
cally computing, by the device, one or more data values in
the programmable unit configuration space from one or
more data values in a programmable global configuration
space of the device.

18. The method of claim 17, further comprising comput-
ing, by the device, a number of full line group rows or a line
group base address in the programmable unit configuration
space from image size and stencil dimension elements of the
programmable global configuration space.

19. The method of claim 11, wherein each line buffer
interface unit has translation circuitry, and further compris-
ing: converting, by translation circuitry of the particular line
buffer interface unit, a pair of values into a linear address
within the memory unit.

20. The method of claim 11, further comprising main-
taining, by the particular line buffer interface unit, a pointer
to a current or next segment of a line group to be provided
on a next read request.

#* #* #* #* #*

