a2 United States Patent
Goto

US011966450B2

US 11,966,450 B2
Apr. 23, 2024

(10) Patent No.:
45) Date of Patent:

(54) CALCULATION DEVICE, CALCULATION
METHOD, AND COMPUTER PROGRAM
PRODUCT

(71) Applicant: KABUSHIKI KAISHA TOSHIBA,
Tokyo (JP)

(72) Inventor: Hayato Goto, Kawasaki Kanagawa (JP)
(73) Assignee: Kabushiki Kaisha Toshiba, Tokyo (JP)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 147 days.

(21) Appl. No.: 17/185,748

(22) Filed: Feb. 25, 2021
(65) Prior Publication Data
US 2022/0083315 Al Mar. 17, 2022
(30) Foreign Application Priority Data
Sep. 15,2020 (JP) weoververcieeecinenee JP2020-154794
(51) Imt.CL
GO6F 17/11 (2006.01)
(52) US. CL
CPC .. GO6F 17/11 (2013.01)
(58) Field of Classification Search
CPC GO6F 17/10; GO6F 17/11; GO6F 17/13;

GOG6F 17/18; GO6F 7/02-026; GOSN
10/00-80; GO6N 10/60
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2019/0266212 Al 8/2019 Goto et al.

FOREIGN PATENT DOCUMENTS

JP 2017-73106 A 4/2017
JP 2019-145010 A 8/2019
JP 2021-43667 A 3/2021

OTHER PUBLICATIONS

Goto et al. “Supplementary Materials for Combinatorial optimiza-
tion by simulating adiabatic bifurcations in nonlinear Hamiltonian
systems” https://www.science.org/doi/10.1126/sciadv.aav2372?_ga=
2.178000805.127732808.1663616893-1950832234.1663444792&
(Year: 2019).*

(Continued)

Primary Examiner — Andrew Caldwell

Assistant Examiner — Carlo Waje

(74) Attorney, Agent, or Firm — Finnegan, Henderson,
Farabow, Garrett & Dunner, LLP

(57) ABSTRACT

According to an embodiment, a calculation device includes
a memory and one or more processors configured to update,
for elements each associated with first and second variables,
the first and second variables for each unit time, sequentially
for the unit times and alternately between the first and
second variables. In a calculation process for each unit time,
the one or more processors are configured to: for each of the
elements, update the first variable based on the second
variable; update the second variable based on the first
variables of the elements; when the first variable is smaller
than a first value, change the first variable to a value of the
first value or more and a threshold value or less; and when
the first variable is greater than a second value, change the
first variable to a value of the threshold value or more and
the second value or less.

22 Claims, 26 Drawing Sheets

<70 69
UPDATING CIRCUIT
it q90
CONTROL CIRCUIT AVERAGING
x{t) CIRCUIT
l it 68 ¢82 gGG
. sl
ACTION ASET x| XCON- xty)
72 B STRAINT jomeid] X MEMORY Ho
couPuTING g b4 CIRCUIT
H MEMORY DAt 86 en
lh’ §91
g g4 yit) DETERMI-
o | NATION
JMEMORY | | FUNCTION je-"m CIRCUIT
CIRCUIT
i hat) =
73 AN ¢85 93 67
75 83 84
MATRIX (‘\5 z{t) R\ Vi) | BEFORE- Y CON-_ {yi{ta)
compuTING —>(} D ONSTRAINT}—» STRAINT -—3ly MEMORY
CIRCUIT y Y MEMORY CIRCUIT
yit)
<80
4it) e —
FUNCTION] . D
CIREUIT [&—

US 11,966,450 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Yu Zou and Mingjie Lin on “Massively Simulating Adiabatic
Bifurcations with FPGA to Solve Combinatorial Optimization” in
Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA °20). https://doi.org/10.
1145/3373087.3375298 (Year: 2020).*

Hennessy et al., “Computer Organization and Design: The Hardware/
Software Interface”, Fifth Edition, Chapters 1-2 pp. 1-174, 2014.
Retrieved from <https://ict.iitk.ac.in/wp-content/uploads/CS422-
Computer-Architecture-
ComputerOrganizationAndDesign5thEdition2014.pdf> (Year: 2014).*
Goto, H., Endo, K., Suzuki, M., Sakai, Y., Kanao, T., Hamakawa, Y.,
Hidaka, R., Yamasaki, M., & Tatsumura, K. (2021). High-
performance combinatorial optimization based on classical mechan-
ics. Science Advances, 7. (Year: 2021).*

A. Lucas, “Ising formulations of many NP problems,” Frontiers in
Physics, vol. 2, Article 5, 15 pages (2014).

M.W. Johnson et al., “Quantum annealing with manufactured spins,”
Nature, vol. 473, pp. 194-198 (2011).

T. Inagaki et al. “A coherent Ising machine for 2000-node optimi-
zation problems,” Science, vol. 354, No. 6312, pp. 603-606 (2016).
H. Goto, “Bifurcation-based adiabatic quantum computation with a
nonlinear oscillator network,” Sci. Rep., vol. 6:21686, 8 pages
(2016).

M. Yamaoka et al., “A 20k-Spin Ising Chip to Solve Combinatorial
Optimization Problems With CMOS Annealing,” IEEE J. Solid-
State Circuits, vol. 51, No. 1, pp. 303-309 (2016).

S. Tsukamoto et al., “An Accelerator Architecture for Combinatorial
Optimization Problems,” Fujitsu Sci. Tech. J., vol. 53, No. 5, pp.
8-13 (2017).

Hayato Goto, et al., “Combinatorial optimization by simulating
adiabatic bifurcations in nonlinear Hamiltonian systems,” Science
Advances, vol. 5, eaav2372, 8 pages (2019).

Egor S. Tiunov, et al., “Annealing by simulating the coherent Ising
machine,” Optics Express, vol. 27, No. 7, pp. 10288-10295 (2019).

* cited by examiner

U.S. Patent Apr. 23,2024 Sheet 1 of 26 US 11,966,450 B2

3 (3a)

CALCULATION |4 (4a) ¢5
SERVER ¢

(INFORMATION

PROCESSING
DEVICE)

c3 (3b)

E CALCULATION |4 (4b)
! SERVER

; 1 (INFORMATION
: S 2 PROCESSING
! DEVICE)

MANAGEMENT
SERVER ¢3 (3¢)

CALCULATION |4 (4c)
SERVER
(INFORMATION
PROCESSING
DEVICE)

U.S. Patent Apr. 23,2024 Sheet 2 of 26 US 11,966,450 B2

¢18 c19
OPERATING DISPLAY
DEVICE DEVICE
g’l
MANAGEMENT SERVER 16 7
INPUT OUTPUT
CIRCUIT CIRCUIT
10 | |
PROCESSOR 15)
g1 COMMUNICA- (
MANAGEMENT TION CIRCUIT)
MODULE
¢12 14
CONVERSION
MODULE
STORAGE
g1) UNIT
CONTROL
MODULE 20

U.S. Patent Apr. 23,2024 Sheet 3 of 26 US 11,966,450 B2

FIG.3

g14

STORAGE UNIT
¢ 14A

PROBLEM DATA

¢14B

CALCULATION
DATA

g14C

MANAGEMENT
PROGRAM

¢ 14D

CONVERSION
PROGRAM

c14E

CONTROL
PROGRAM

\.:_ﬁ

U.S. Patent Apr. 23,2024 Sheet 4 of 26 US 11,966,450 B2
gSa
CALCULATION SERVER (INFORMATION PROCESSING DEVICE)
2 g31 g34 g35
COMMUNI-
§ CATION STORAGE O PTOR
CIRCUIT
g32
SHARED MEMORY
50 51
§ c33A 33B 33C || 33D |
i | PRrOC- PROC- PROC- | ii| PROC- |1
i | ESSOR ESSOR ESSOR |ii| ESSOR |!
| {{ ACTION §
; ! COMPUTING |
{UPDATINGUNIT __ HUNIT ;
g34
STORAGE

CALCULATION DATA 1 34A

CALCULATION |
PROGRAM 348
CONTROL L a4

PROGRAM

U.S. Patent

CUT VALUE

CUT VALUE

Apr. 23,2024 Sheet 5 of 26 US 11,966,450 B2

FIG.6A

MEAN VALUE IN 1000 TIMES

13400

13350

13300

13250

13200

13150

13100

[] / /

13050

[1] / /

13000
10

100 1000 10000 100000
NUMBER OF TIME STEPS

FIG.6B

MAXIMUM VALUE IN 1000 TIMES

13400

13350

13300

13250

13200

13150

13100

13050

13000
10

100 1000 10000 100000

NUMBER OF TIME STEPS

U.S. Patent Apr. 23,2024 Sheet 6 of 26 US 11,966,450 B2

FIG.7

U.S. Patent Apr. 23,2024 Sheet 7 of 26 US 11,966,450 B2

FIG.8

H
A
< » Xi
15 10 05 00 +05 +10 +1.5
BIFUR-
CATION
IF xi<-1, RETURN TO RANGE H IF xi>1, RETURN TO RANGE
OF -1 OR MORE AND 0 OR A OF 0 OR MORE AND 1 OR
LESS LESS
< » Xi

-1.5-1.0] -05 05 [+1.0+1.5

U.S. Patent

CUT VALUE

CUT VALUE

13400
13350
13300
13250
13200
13150
13100
13050
13000

10 100

13400
13350
13300
13250
13200
13150
13100
13050
13000

10 100

Apr. 23,2024 Sheet 8 of 26

FIG.9A

MEAN VALUE IN 1000 TIMES

1000 10000

NUMBER OF TIME STEPS

FIG.9B

MAXIMUM VALUE IN 1000 TIMES

i, \:\
\\n\
\\\
[———T
SS

¥ [

[1)

[1 /
1 L L

1000 10000

NUMBER OF TIME STEPS

US 11,966,450 B2

100000

100000

U.S. Patent

CUT VALUE

CUT VALUE

Apr. 23,2024 Sheet 9 of 26 US 11,966,450 B2

FIG.10A

MEAN VALUE IN 1000 TIMES

13400 C
max
13300 [/
13250 ," ' PR 7
ﬁ / I’ II
13200 7 7 I ¥
7 1 /
13150 ; 7 7
I‘ II I’ Il
13100 1 7 7 7
1 1 1)
13050 ; K ! H
[} 1 1 1
13000 ‘ . : .
10 100 1000 10000 100000
NUMBER OF TIME STEPS
MAXIMUM VALUE IN 1000 TIMES
13400 C
13350 / / /
13300 /, 7 p)
1) 7’
13250] 7 7 H
! ll /I’ /l,
13200 A 1 / I
[, : 4 J
13150 d
! /| / /
13100 7 p
! ;]]
13050 ,{ N N ,7
1 1 I
13000 ‘ : t
10 100 1000 10000 100000

NUMBER OF TIME STEPS

U.S. Patent Apr. 23, 2024 Sheet 10 of 26 US 11,966,450 B2

FIG.11A

MEAN VALUE IN 1000 TIMES

13400

I I R M 2. S
13350 /_ /
13300
" /] [
3 13250 ,' P L7
<) / I’ ,I ,I
> 13200 7 7 7 7
|:_) ﬁ— / I/ II ,1
QO 131 50 [} I" I" 1
l’ II II II
13100 /] q 7 7
]
13050 /," K] }
] 1 1 !
13000 ; t t t
10 100 1000 10000 100000
NUMBER OF TIME STEPS
MAXIMUM VALUE IN 1000 TIMES
13400
13350 /
13300 y / il P K
L £ /, ’ 3
S 13250 A- - ra /
- I /
< ! / / /
> 13200 M 1 7 7
- ! /) / /
] /) .
) 13150 i K i ;
" 4 ! ’
13100 T 7]
1 I, Il I’
13050 H N K
A ll l’ ll
13000
10 100 1000 10000 100000

NUMBER OF TIME STEPS

U.S. Patent Apr. 23,2024 Sheet 11 of 26 US 11,966,450 B2

FIG.12A

MEAN VALUE IN 1000 TIMES

13400
13350

13300 _ ‘ / /

w
3 13250 ,’ P ,°
< / / / I’ / 1’ / /'
> 13200 7 7 7 K
= [[[
5 13150 / 7 / 7 / s / Y

I 1 1 1

'l 1 1 1

13100 7 7 7
[[!
e

13000
10 100 1000 10000 100000

NUMBER OF TIME STEPS

FIG.12B

MAXIMUM VALUE IN 1000 TIMES

13400
13350

| R = =
[} [/ [/

13200 ' ; 7 ;
[/ [[/ |/

) / !/ ’

13150 / ! /' !
13100 / T /,,’ // //
1 ' /

13050 - ’ ’
Vi /! 4

13000
10 100 1000 10000 100000

CUT VALUE

NUMBER OF TIME STEPS

U.S. Patent Apr. 23,2024 Sheet 12 of 26 US 11,966,450 B2

FIG.13A

MEAN VALUE IN 1000 TIMES

13400

S (N (S N o S
13350
13300 /_ // //
g 13250 /,," / 7 / P
i 13200 /’,' If’ I/’ l,/
3 13150 / ,,"/ "I g
13100 l;’ 7 7 I 7
] ! !
13050 { + + I ;
’I 'l 'l
13000
10 100 1000 10000 100000
NUMBER OF TIME STEPS
FIG.13B
MAXIMUM VALUE IN 1000 TIMES
13400 c
1330 G BE— P
13300 ' / - /
1 O 7
S 13250 + l, 7 7
] I 20 I I 0 4
8 13150 l ,"l ,] ,I
I[II II
13100 'i /1 I I’l / I’I I
13050 'il i I i I 7 I
13000 ‘ ‘ : ‘
10 100 1000 10000 100000

NUMBER OF TIME STEPS

US 11,966,450 B2

Sheet 13 of 26

Apr. 23,2024

U.S. Patent

1Z pue 1Z pue
1A("18)‘1x 1A("18)‘1x
a)e|nojes a)e|nojes
AN AN
W ¥0SSI00Yd W ¥OSSIV0Nd
A A

IS JO IX

AHOWEIN d3HVHS

¢# AAdON NOILVINDTVO

paJols ale
Evﬂ pue \

A jo ued(z)

s Jo X(})

s N r N
Jwisued)

AHOWEIN d3HVHS

l# 3AON NOILVINOTVO

paJols ale
wl PUe 4
S 10 X A Jo'yed(z)

Nwsuely s o x(})

s Jox
Jjwisuel)

MNIT d33dS-HOIH

1°Old

US 11,966,450 B2

Sheet 14 of 26

Apr. 23,2024

U.S. Patent

FIG.15A

(11)
&c1

(9)
&c1

e e e e

-93000
-93200 MN

(9) (11 (13)

(8)

7z

iz

| | | |
22 &WNNW,§\A§ mN&

L

7

Yz

N

L

7

g—\\\\\\\\\

A

7%

7%

Z

;\\\\\j Y /A

\\\\\k\\%\\ﬂ\\,\\\\g—g

7

/L

Z

Qrizzrz

7/

Z

/L

LLLLTLLLTLL L LT Zr 7707 7

7

-93400 MR
-93600
-93800
-94000
-94200
-94400
-94600
-94800
-95000

ADH3INT ONISI

FIG.15B

mv

7 777 7 7
—\\\\\\\\\\..\\\\\\\\\ v
7777 7777 2777 7777 HvY

7

PZZ7ZZ27Z7Z7ZZ2222222272 7272222272722,
w\\\\\\\\\..\\\\\\\\\ V
_NW

| VAN, A/ SIS SIS,

| | | | |
U] (@] Vo) (@] w0 O

o o NN AN ~ ~ Vo] O

[s] FINIL NOILVINDIVD

9 11 13 9 11
© (an (13 8(‘0)1 %‘01)

(8)

US 11,966,450 B2

Sheet 15 of 26

Apr. 23,2024

U.S. Patent

1z pue 1z pue
1A("18)1X 1A("18)1X
aje|nojeo aje|nojeo
AN AN
W 3409 W 3409
A A

IS JO IX
Jwsuel |

AJOW3IN d3HVHS

B 90T | sl 99y

AJOW3IN d3HVHS

C#NdO L#NdO
paJols ale paJols ale
wl" pue / wl" pue /
A Jo yed(z) S 10 X A jo ped(z) S O X
sJ0x(}) Nwsuely sJ0x(}) Nwsuely
4 4

MNIT d33dS-HOIH

91 Ol4

Sheet 16 of 26 US 11,966,450 B2
(9) (11) (13)

FIG.17A

Apr. 23,2024

I I
i/ %

7777777777277 VWzzzzzzzzz222

\\\\§1§ %

72222222222 Wz pzzzzzziz24

V2772222

FIG.17B

7 V7722222222222

— " N

U.S. Patent

70 B

J&&&ﬁ&k_\\ a&&&&ﬁVx&v

n o O o U o
N M NN N @~ @« W O

N

— Y~ Y =

-93000
-93200
-93400
-93600
-93800
-94000
-94200
-94400
-94600
-94800
-95000

[s] FNIL NOILVIND VYD
ADHIANT ONISI

(13)

(11)

U.S. Patent Apr. 23,2024 Sheet 17 of 26 US 11,966,450 B2

FIG.18 =
I SET (J,h,D,c, At T,p(h), & (1)) I’\/ S101
l INITIALIZE (1,%:{0) TO xn(0),y:1(0) TO yn(0)) l*\, S102
t<T 5103
l CALCULATE Xaye I*\, S104
l i=1 TON .’\~ S105

UPDATE x (x;(t + At) = x;(t) + Dy;(t)At)

c
NO GENERATE r
c $109

CONSTRAIN x
¢ S110
CONSTRAIN y

.

\ 4

l i=1 TON }\,3111
l i=1 TON .\,3112

N
ACTION COMPUTATION (2t +4t) = —ha(t + A1) —Zif.;x; (t+40)) S113
j=1
ICOEFFICIENT MULTIPLICATION (f;(t + At) = —cz;(t + At))h S114
UPDATE y (vt + at) = y,(0) + [{-D + p(t + A)bx (¢ + At) + f;(t + At)]A¢) S115

| i=1 TON "'\-*8116
| t=t+ At I’\’S117

t<T 5118

END

U.S. Patent Apr. 23, 2024 Sheet 18 of 26 US 11,966,450 B2

FIg19 C=ZED
I SET (J,h,D,c, At T plt), a (1) I\/5101
l INITIALIZE (t,x(0) TO xn(0),y+{0) TO yn(0)) I\/ S102
t<T S103
l CALCULATE Xape I_/ 3104
| i=1 TON "\/ S121

N
ACTION COMPUTATION (z(®) = ~ha(t) —Z]i,jxj ©) 5122
j=1

| COEFFICIENT MULTIPLICATION (f(t) = —cz;(t)) r\/s123
UPDATE y (% (t + At) = y;(t) + [{-D + p(D)}x; (1) + f;(D)]AL) S124
| i=1 TON '-\/ S125
[i=1 TON r\/ S126

UPDATE x (x;(t + At) = x;(t) + Dy;(t + At)At) $127

S
NO GENERATE r
c 5109

CONSTRAIN x
¢ 5128
CONSTRAIN y

U.S. Patent Apr. 23, 2024 Sheet 19 of 26 US 11,966,450 B2

FIG20 I
| SET (J,h,D.c, At,T p), ¢ (1) I'\z S101
| INITIALIZE (1,x,(0) TO xy(0),y1(0) TO yn(0)) I-\/ $102
t<T $103
I CALCULATE Xgye I\, S104
l i=1 TON ._, $105

UPDATE x (x:(t + At) = x;(t) + Dy, (£)At)

c
NO | GENERATEr |
c$109

CONSTRAIN x
¢ S110

CONSTRAIN y

A

A

| i=1 TON '\/ S111
| CALCULATE s;(t + At) = sng[(x;(t + At)] [\-« S201
| i=1 TON '\, S112

ACTION COMPUTATION (=G +a0 = —ma(tmc)—zfi,,s, (t+20)) 5202
| COEFFICIENT MULTIPLICATION (fi(t + At) = —cz;(t + At)) I\z 8114
UPDATE y (yi{t +40) = 3:(0) + [{=D + p(t + 8)}x, (£ + AL + fi(e + AD)JAr) S115

l i=1 TON r\«sna
| t=t+ At r\fsm
| <At PSMB

END

U.S. Patent Apr. 23, 2024 Sheet 20 of 26 US 11,966,450 B2

FIG21 C=ED
| SET (J,h,D,c, At T p(t), & (1) '\, S101
| INITIALIZE (t,x1(0) TO xx(0),y4(0) TO yn(0)) }\, S102
t<T $103
| CALCULATE xave I-\, S104
| CALCULATE s;(£) = sng[(x; ()] [\» S211
[i=1 TON '\, $121

N
ACTION COMPUTATION (z® = —hia@)—zf,,sj ®) S212

=1
| COEFFICIENT MULTIPLICATION (/i (®) = —cz;(t)) }\, S123
UPDATE y (¥:(t + At) = y,(6) + [{-D + p(O)}x;(t) + fi(D)]Ar) S124

l i=1 TON ' ~ $125
i=F1 TON S$126

UPDATE x (x;(t + At) = x;(t) + Dy; (¢t + At)At)

cS108

NO GENERATE r
¢ 5109

CONSTRAIN x
c S128
CONSTRAIN y

U.S. Patent Apr. 23,2024 Sheet 21 of 26 US 11,966,450 B2

FIG22 ZED
I SET (J,h,D,c, AT, pt), & (1) I\/S101
I INITIALIZE (1,x:(0) TO xn(0),y+(0) TO yn(0)) I\./ S102
t<T 5103
l CALCULATE Xaye I—\, S104
l i=1 TON I'\/ S105

UPDATE x (x;(t + At) = x;(t) + Dy, (t)At)

S
NO GENERATE r
¢ $109

CONSTRAIN x
¢ S110
CONSTRAIN y

A
al
y

A

l i=1 TON }\/5111
| i=1 TON '\/3112

N
ACTION COMPUTATION (z(t +20) = ~ha(t + At) — Zluxj (c+n0)) S113
j=1

COEFFICIENT MULTIPLICATION (/i (t + At) = —g(t + At)sgn[z;(t + AD)]) S301

UPDATE y (»(+40) = y (&) + [{=D + p(t + A)}x, (£ + AL) + filt + AD)]AL) S115

l i=1 TON '\’8116
| t=t+ At I\/s117

<T S118

END

U.S. Patent Apr. 23,2024 Sheet 22 of 26 US 11,966,450 B2

FIG23 C=ZEo
I SET (J,h,D,c, At T plt), a (1) I\/5101
l INITIALIZE (t,x(0) TO xn(0),y+{0) TO yn(0)) I\/ S102
t<T S103
l CALCULATE Xape I_/ 3104
| i=1 TON "\/ S121

N
ACTION COMPUTATION (z(®) = —hia(t) —ng,,xj ®©) S122

j=1
[COEFFICIENT MULTIPLICATION (fi(t) = —g(t)sgn[z,(t)]) r\/3311
UPDATE y (y:(t + At) = y;(t) + [{=D + p()}x;(t) + f;(£)]At) S124

I i=1 TON l ~ 5125
i=1 TON S$126

UPDATE x (x;(t + At) = x;(t) + Dy;(t + At)At) s127

S
NO GENERATE r
c 5109

CONSTRAIN x
¢ 5128
CONSTRAIN y

U.S. Patent Apr. 23, 2024 Sheet 23 of 26 US 11,966,450 B2

FIG.24

g64

SETTING
CIRCUIT

g62 l g6’| g63

> INPUT »| COMPUTING » OUTPUT >
CIRCUIT CIRCUIT CIRCUIT

US 11,966,450 B2

Sheet 24 of 26

Apr. 23,2024

U.S. Patent

m —] Linoup
m a | NOLLONN4
_ —
“)
0g-
m ('k
m 1INDYID AYOWIN A A
AHOWIN Al€—— 1INIVHLS INIVHISNOOfe—{)«
(@Al -NOD A -34043g | (DA
3 ST 3 ve> €8
19 m €6 G8 -
N3
LINoYID
" NOILVYN |
m -INy¥313a QI
TS X
m N3 }
| o8 va
LINDYIO) 4
AHOWII X |« INIVAELS D
m "NOOX ()% 55K
99° L zeo 4
m LINDYIO ()%
| oNIOVHIAY
i 06
e e At
69-

()X w
A_\”_.vQ.TQ: 19 m AJV._X
m m ‘ "
“ ¥ 1 “
. : 1nodn | !
«— “ Pe—oniLndnoo| |
79 6. w (w'z w g \..w/: X_uw._._.<s_ w
M M AJ.VB:._: MN:—; w
TInodio
" | —>{NOILONN | | Aowamr| |
H H 0 i
m p 5 4 B
h m 'y '
AHOWIIN H
m m LINOYIO |
“ " 275 ONILNDNOD
| m NOILOV |
w 89> «;
PR LINDYID TOYLNOD
N
LINDHIO ONILYAdN |
_ 02)
e GZ9Old

US 11,966,450 B2

Sheet 25 of 26

Apr. 23,2024

U.S. Patent

p— Ve Te)
a NOILONNA
\w n
08>
(A
LINDHID AHOWAN A \:/
AHOWIN A INIVHLS [« INIVHLSNOD [e—(«
“NOD A -340439 e.\ww 3
19 c6o 4 g
N3
A
1INoYID @A
NOILYN |«
-INY313a
_‘mv) 4
N3 wa
v 08
1IN2¥HID
& AMOWIAW X INIVYLS
-NOD X | (@)X
/8
99 26
LINDYIO (")'x
ONIDOVHINAY
06
..........
69-

[1noun
» SNIJOONI
96
s
... :
I
Lnodin | |
< De—{oniLndnos|
o) 5K XMLV |
.w;r m
() »'y- Q..___ﬂ "
LIND¥ID m
NOILONN4 | | Avowaw el
o) '
yio 4 122 m
r m
AHOWIN H
LINDHID |
23 ONILNdNOD |
NOILOV |

1INOHID ONILYAdN

1INOYHID TOHLINOD

ST =

US 11,966,450 B2

Sheet 26 of 26

Apr. 23,2024

U.S. Patent

() m
“ — 3] 1nodID ;
" a NOILONNA | :
m ..|:V d (‘pd+a- " | ()
m 08> v
| () m
m 1IND¥I0 AHOWIN A) 4 4 m
AYOWIN A l€—— INIVALS [¢—{LNIVISNOOf—(e SRS e
1(G)A]l -NOD A -340439 [(A vy Loz
19 | €6 58 W 96 m
- |
“ @k (‘nb : LIN2¥I0
“ 1No4Io v | ONILNdINOD
m NOILYN |e : NOILOV
! -lWy3L3a m
“ T v LINo¥ID “
: 16 ————> NOILONNS |¢—— :
' N3 ¢! 0 a :
! 98 ivd '
m v 162 m
m 1INo¥ID) 4 ;
AHOWIN X |« INIVMLS W :
H@)X] -NOOX |(A)X o SK m
99 i oze0 } 890 yf
| wunowio (D%
i | ONIOVHIAY : LiNo¥Io
m €1 JOYINOD
i 062 P
LINOYIO ONILYAdN |
[—— e
69- 0L

US 11,966,450 B2

1

CALCULATION DEVICE, CALCULATION
METHOD, AND COMPUTER PROGRAM
PRODUCT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is based upon and claims the benefit of
priority from Japanese Patent Application No. 2020-154794,
filed on Sep. 15, 2020; the entire contents of which are
incorporated herein by reference.

FIELD

Embodiments described herein relate to a calculation
device, a calculation method, and a computer program
product.

BACKGROUND

Combinatorial optimization problems are problems of
selecting a combination most suitable for a purpose from
among a plurality of combinations. Combinatorial optimi-
zation problems are mathematically reduced to problems of
maximizing a function, called an “objective function”, hav-
ing a plurality of discrete variables, or problems of mini-
mizing the function. While combinatorial optimization prob-
lems are universal problems in various fields such as finance,
logistics, transportation, designing, manufacturing, and life
science, optimal solutions are not always found because of
“combinatorial explosion” in which the number of combi-
nations increases exponentially with the problem size.
Moreover, it is often difficult to obtain even an approximate
solution close to the optimal solution.

Technologies for calculating a solution to a combinatorial
optimization problem in a practical time frame have been
exploited in order to solve problems in various fields and
promote social innovation and progress in science technolo-
gies.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram illustrating a configuration example of
an information processing system;

FIG. 2 is a block diagram illustrating a configuration
example of a management server;

FIG. 3 is a diagram illustrating an example of data stored
in a storage unit of the management server;

FIG. 4 is a block diagram illustrating a configuration
example of a calculation server;

FIG. 5 is a diagram illustrating an example of data stored
in a storage of the calculation server;

FIG. 6A is a diagram illustrating a mean value of the cut
value when the algorithm in Equation (8) is used;

FIG. 6B is a diagram illustrating a maximum value of the
cut value when the algorithm in Equation (8) is used;

FIG. 7 is a diagram illustrating an example of bifurcation
in an algorithm in which the absolute value of x, exceeds 1;

FIG. 8 is a diagram illustrating an example of bifurcation
in an algorithm in which the absolute value of x; does not
exceed 1;

FIG. 9A is a diagram illustrating a mean value of the cut
value when a first algorithm was used;

FIG. 9B is a diagram illustrating a maximum value of the
cut value when the first algorithm was used;

FIG. 10A is a diagram illustrating a mean value of the cut
value when a second algorithm was used;

20

25

40

45

50

65

2

FIG. 10B is a diagram illustrating a maximum value of the
cut value when the second algorithm was used;

FIG. 11A is a diagram illustrating a mean value of the cut
value when a third algorithm was used;

FIG. 11B is a diagram illustrating a maximum value of the
cut value when the third algorithm was used;

FIG. 12A is a diagram illustrating a mean value of the cut
value when the first algorithm using c¢1 was used;

FIG. 12B is a diagram illustrating a maximum value of the
cut value when the first algorithm using c1 was used;

FIG. 13Ais a diagram illustrating a mean value of the cut
value when the second algorithm using c¢1 was used;

FIG. 13B is a diagram illustrating a maximum value of the
cut value when the second algorithm using c1 was used;

FIG. 14 is a diagram schematically illustrating an
example of a multiprocessor configuration;

FIG. 15A is a diagram illustrating a mean value of energy
when a problem was solved with a PC cluster;

FIG. 15B is a diagram illustrating a mean value of
calculation time when a problem was solved with a PC
cluster;

FIG. 16 is a diagram schematically illustrating an
example of a configuration using GPUs;

FIG. 17A is a diagram illustrating a mean value of energy
when a problem was solved with GPUs;

FIG. 17B is a diagram illustrating a mean value of
calculation time when a problem was solved with GPUs;

FIG. 18 is a flowchart illustrating a first example of a
process when the first algorithm is executed;

FIG. 19 is a flowchart illustrating a second example of a
process when the first algorithm is executed;

FIG. 20 is a flowchart illustrating a first example of a
process when the second algorithm is executed;

FIG. 21 is a flowchart illustrating a second example of a
process when the second algorithm is executed;

FIG. 22 is a flowchart illustrating a first example of a
process when the third algorithm is executed;

FIG. 23 is a flowchart illustrating a second example of a
process when the third algorithm is executed;

FIG. 24 is a diagram illustrating a configuration of a
computing device;

FIG. 25 is a block configuration diagram of a computing
circuit that executes the first algorithm;

FIG. 26 is a block configuration diagram of a computing
circuit that executes the second algorithm; and

FIG. 27 is a block configuration diagram of a computing
circuit that executes the third algorithm.

DETAILED DESCRIPTION

According to an embodiment, a calculation device con-
figured to solve a combinatorial optimization problem
includes a memory and one or more processors coupled to
the memory. The one or more processors are configured to:
update, for a plurality of elements each associated with a
first variable and a second variable, the first variable and the
second variable for each of unit times from an initial time to
an end time, sequentially for the unit times and alternately
between the first variable and the second variable; and
output a solution to the combinatorial optimization problem
based on the first variables of the plurality of elements at the
end time. The plurality of elements correspond to a plurality
of discrete variables representing the combinatorial optimi-
zation problem. The first variables and the second variables
are represented by a real number. In a calculation process for
each of the unit times, the one or more processors are
configured to, for each of the plurality of elements: update

US 11,966,450 B2

3

the first variable based on the second variable; update the
second variable based on the first variables of the plurality
of elements; when the first variable is smaller than a pre-
determined first value, change the first variable to a value
equal to or greater than the first value and equal to or smaller
than a predetermined threshold value; and when the first
variable is greater than a predetermined second value,
change the first variable to a value equal to or greater than
the threshold value and equal to or smaller than the second
value. The second value is greater than the first value, and
the threshold value is greater than the first value and smaller
than the second value.

Embodiments will be described below with reference to
the accompanying drawings. In the drawings, the same
constituent elements are denoted by the same numbers and
a description thereof is omitted as appropriate.

System Configuration

FIG. 1 is a block diagram illustrating a configuration
example of an information processing system 100. The
information processing system 100 in FIG. 1 includes a
management server 1, a network 2, a plurality of calculation
servers (information processing devices) 3 (3a to 3¢), a
plurality of cables 4 (4a to 4¢), and a switch 5. FIG. 1 also
illustrates an information terminal 6 capable of communi-
cating with the information processing system 100. The
management server 1, a plurality of calculation servers 3 (3a
to 3c¢), and the information terminal 6 can perform data
communication with each other through the network 2. The
network 2 is, for example, the Internet in which a plurality
of computer networks are connected to each other. The
network 2 may be a communication medium either wired or
wireless or a combination thercof. An example of the
communication protocol used in the network 2 is TCP/IP,
but the kind of communication protocol is not limited.

The calculation servers 3 (3a to 3¢) are connected to the
switch 5 through the cables 4 (4a to 4¢). The cables 4 (4a to
4c¢) and the switch 5 form an interconnection between the
calculation servers. The calculation servers 3 (3a to 3¢) can
perform data communication with each other through the
interconnect. The switch 5 is, for example, an InfiniBand
switch, and the cables 4a to 4c¢ are, for example, InfiniBand
cables. However, instead of InfiniBand switch/cables, wired
LAN switch/cables may be used. Any communication stan-
dards and communication protocol may be used for the
cables 4a to 4¢ and the switch 5. Examples of the informa-
tion terminal 6 include a notebook PC, a desktop PC, a
smartphone, a tablet, and a vehicle-mounted terminal.

In solving a combinatorial optimization problem, parallel
processing and/or distribution of processes can be per-
formed. The calculation servers 3 (3a to 3c¢) and/or the
processors of the calculation servers 3 (3a to 3¢) therefore
may share and execute some of the steps of some calculation
processes or may perform similar calculation processes for
different variables in parallel. The management server 1, for
example, converts a combinatorial optimization problem
input by a user into a format that can be processed by the
calculation servers 3 and controls the calculation servers 3.
The management server 1 then acquires the calculation
results from the calculation servers 3 and converts the
consolidated calculation results into a solution to the com-
binatorial optimization problem. The user thus can obtain
the solution to the combinatorial optimization problem. It is
assumed that the solution to the combinatorial optimization
problem includes an optimal solution and an approximate
solution close to the optimal solution.

Although FIG. 1 illustrates three calculation servers 3 (3a
to 3¢), it is not intended to limit the number of calculation

10

15

20

25

30

35

40

45

50

55

60

65

4

servers 3 included in the information processing system 100.
The number of calculation servers 3 used for solving a
combinatorial optimization problem is not limited. For
example, the number of calculation servers 3 included in the
information processing system 100 may be one. Among the
calculation servers 3 included in the information processing
system 100, one calculation server 3 may be used to solve
a combinatorial optimization problem. Hundreds or more of
calculation servers 3 may be included in the information
processing system 100. The calculation server 3 may be a
server installed in a datacenter or may be a desktop PC
installed in an office. The calculation server 3 may be
computers of different kinds installed at different locations.
Any kinds of information processing devices may be used as
the calculation servers 3. For example, the calculation server
3 may be a general-purpose computer or may be a dedicated
electronic circuit or a combination thereof.

FIG. 2 is a block diagram illustrating a configuration
example of the management server 1. The management
server 1 in FIG. 2 is, for example, a computer including a
central processing unit (CPU) and a memory. The manage-
ment server 1 includes a processor 10, a storage unit 14, a
communication circuit 15, an input circuit 16, and an output
circuit 17. The processor 10, the storage unit 14, the com-
munication circuit 15, the input circuit 16, and the output
circuit 17 are connected to each other through a bus 20. The
processor 10 includes, as an internal functional configura-
tion, a management module 11, a conversion module 12, and
a control module 13.

The processor 10 is an electronic circuit that executes
computation and controls the management server 1. As the
processor 10, for example, a CPU, a microprocessor, an
ASIC, an FPGA, a PLD, or a combination thereof can be
used. The management module 11 provides an interface for
operating the management server 1 through the user’s infor-
mation terminal 6. Examples of the interface provided by the
management module 11 include an API, a CLIL and a
webpage. For example, the user can input information on a
combinatorial optimization problem or view and/or down-
load the calculated combinatorial optimization problem
solution through the management module 11. The conver-
sion module 12 inputs parameters for a combinatorial opti-
mization problem and converts the input parameters into a
form that can be processed by the calculation servers 3. The
control module 13 transmits a control command to each
calculation server 3. After the control module 13 acquires a
calculation result from each calculation server 3, the con-
version module 12 consolidates a plurality of calculation
results, converts the consolidated calculation results into a
solution to the combinatorial optimization problem, and
outputs the solution to the combinatorial optimization prob-
lem.

The storage unit 14 stores a computer program for the
management server 1 and a variety of data including data
necessary for running the computer program and data gen-
erated by the computer program. As used herein the com-
puter program includes both an OS and an application. The
storage unit 14 may be a volatile memory, a nonvolatile
memory, or a combination thereof. Examples of the volatile
memory include a DRAM and an SRAM. Examples of the
nonvolatile memory include a NAND flash memory, an
NOR flash memory, a ReRAM, and an MRAM. Alterna-
tively, a hard disk, an optical disk, a magnetic tape, or an
external storage device may be used as the storage unit 14.

The communication circuit 15 transmits/receives data
to/from devices connected to the network 2. The commu-
nication circuit 15 is, for example, a network interface card

US 11,966,450 B2

5

(NIC) for a wired LAN. However, the communication
circuit 15 may be a communication circuit of any other
kinds, such as a wireless LAN. The input circuit 16 imple-
ments data input to the management server 1. It is assumed
that the input circuit 16 includes, for example, USB or
PCI-Express as an external port. In the example in FIG. 2,
an operating device 18 is connected to the input circuit 16.
The operating device 18 is a device for inputting information
to the management server 1. The operating device 18 is, for
example, but not limited to, a keyboard, a mouse, a touch
panel, or a voice recognition device. The output circuit 17
implements data output from the management server 1. It is
assumed that the output circuit 17 includes HDMI (regis-
tered trademark), DisplayPort, or the like, as an external
port. In the example in FIG. 2, a display device 19 is
connected to the output circuit 17. Examples of the display
device 19 include, but not limited to, a liquid crystal display
(LCD), an organic electroluminescent (EL) display, and a
projector.

An administrator of the management server 1 can perform
maintenance of the management server 1, using the operat-
ing device 18 and the display device 19. The operating
device 18 and the display device 19 may be built in the
management server 1. The operating device 18 and the
display device 19 are not necessarily connected to the
management server 1. For example, the administrator may
perform maintenance of the management server 1, using an
information terminal capable of communicating with the
network 2.

FIG. 3 illustrates an example of data stored in the storage
unit 14 of the management server 1. The storage unit 14 in
FIG. 3 stores problem data 14A, calculation data 14B, a
management program 14C, a conversion program 14D, and
a control program 14E. For example, the problem data 14A
includes data of a combinatorial optimization problem. For
example, the calculation data 14B includes a calculation
result collected from each calculation server 3. For example,
the management program 14C is a computer program that
implements the function of the above-noted management
module 11. For example, the conversion program 14D is a
computer program that implements the function of the
above-noted conversion module 12. For example, the con-
trol program 14FE is a computer program that implements the
function of the above-noted control module 13.

FIG. 4 is a block diagram illustrating a configuration
example of the calculation server 3a. FIG. 4 illustrates a
configuration of the calculation server 3a by way of
example. The other calculation servers 3 may have a con-
figuration similar to that of the calculation server 3a or may
have a configuration different from that of the calculation
server 3a. The calculation server 3a is, for example, an
information processing device that singly executes calcula-
tion of a first vector, a second vector, and a third vector, or
shares and executes the calculation with the other calcula-
tion servers 3. The calculation server 3a may calculate a
fourth vector in which elements of the first vector are
converted by the signum function. The values of elements of
the third vector are obtained, for example, by an equation
derived from an energy equation of the Ising model.

For example, the elements of the third vector can be
calculated based on a formula (called basic formula) in the
form of a partial derivative of the energy equation of the
Ising model with respect to variables included in all terms.

Here, the first vector is a vector with a variable
x,(i1,2,...,N)asanclement. The second vector is a vector
with a variable y, (i=1, 2, . . ., N) as an element. The third
vector is a vector with a variable z; (i=1, 2, . . ., N) as an

10

15

20

25

30

35

40

45

50

55

60

65

6

element. The fourth vector is a vector in which the elements
of'the first vectors are converted by a first function that takes
either one of a first value or a second value greater than the
first value. The above-noted signum function is an example
of the first function. The detail of the variables x,, y;, and z,
will be described later.

The calculation server 3a includes, for example, a com-
munication circuit 31, a shared memory 32, processors 33A
to 33D, a storage 34, and a host bus adaptor 35. It is assumed
that the communication circuit 31, the shared memory 32,
the processors 33 A to 33D, the storage 34, and the host bus
adaptor 35 are connected to each other through a bus 36.

The communication circuit 31 transmits/receives data
to/from devices connected to the network 2. The commu-
nication circuit 31 is, for example, a network interface card
(NIC) for a wired LAN. However, the communication
circuit 31 may be a communication circuit of any other
kinds, such as a wireless LAN. The shared memory 32 is a
memory accessible by the processors 33A to 33D. Examples
of the shared memory 32 include a volatile memory such as
a DRAM and an SRAM. However, a memory of any other
kinds such as a nonvolatile memory may be used as the
shared memory 32. The processors 33A to 33D can share
data through the shared memory 32. Not all of the memory
of the calculation server 3a are configured as a shared
memory. For example, a part of the memory of the calcu-
lation servers 3a may be configured as a local memory
accessible only by any one of the processors.

The processors 33A to 33D are electronic circuits that
execute a calculation process. Each processor may be, for
example, any one of a central processing unit (CPU), a
graphics processing unit (GPU), a field-programmable gate
array (FPGA), and an application specific integrated circuit
(ASIC), or may be combination thereof. The processor may
be a CPU core or a CPU thread. When the processor is a
CPU, the number of sockets included in the calculation
server 3a is not limited. The processor may be connected to
any other components of the calculation server 3a through a
bus such as PCI express.

In the example in FIG. 4, the calculation server 3a
includes four processors. However, the number of proces-
sors included in one calculation server 3a may be different
therefrom. For example, the number and/or the kind of
processors mounted on the calculation server 3a¢ may be
different.

An action computing unit 51 is configured to update the
elements of the third vector, based on the basic formula in
the form of a partial derivative of the objective function of
a combinatorial optimization problem to be solved, with
respect to variables included in all the terms. Here, the
variables of the basic formula are the elements of the first
vector or the elements of the fourth vector in which the
elements of the first vector are converted by the first function
that takes either one of a first value or a second value greater
than the first value. An updating unit 50 is configured to, for
example, update an element of the first vector by adding a
corresponding element of the second vector or a weighted
value of a corresponding element of the second vector to the
element of the first vector, change an element of the first
vector having a value smaller than a first value to any value
equal to or greater than the first value and equal to or smaller
than a threshold value, change an element of the first vector
having a value greater than a second value to a value equal
to or greater than the threshold value and equal to or smaller
than the second value, and update an element of the second
vector by adding a weighted value of the product of a first
coefficient monotonously increasing or monotonously

US 11,966,450 B2

7

decreasing with the number of times of updating and a
corresponding element of the first vector, and a weighted
value of a corresponding element of the third vector, to the
element of the second vector. The threshold value is a value
between the first value and the second value. For example,
the energy equation of the Ising model can be used as the
objective function. Here, the Ising model may be the one
having a multibody interaction. Furthermore, —1 can be used
as the first value, +1 can be used as the second value, and 0
can be used as the threshold value. However, the threshold
value, the first value, and/or the second value may be any
other values.

In the example in FIG. 4, the processors 33A to 33C
correspond to the updating unit 50, and the processor 33D
corresponds to the action computing unit 51. However, the
correspondence between the updating unit 50/the action
computing unit 51 and the processors illustrated in FIG. 4 is
only by way of example. The correspondence between the
updating unit 50/the action computing unit 51 and the
processors may be different from this. The number of
processors allocated to the updating unit 50/the action
computing unit 51 is not limited. As described later, the
same processor may have the functions of both of the
updating unit 50 and the action computing unit 51. When
different kinds of processors (for example, CPU, GPU, and
FPGA) are mounted on the calculation server 3a, the dif-
ferent kinds of processors may be allocated to the updating
unit 50 and the action computing unit 51.

The storage 34 stores a computer program for the calcu-
lation server 3a and a variety of data including data neces-
sary for running the computer program and data generated
by the computer program. As used herein the computer
program includes both an OS and an application. The
storage 34 may be a volatile memory, a nonvolatile memory,
or a combination thereof. Examples of the volatile memory
include a DRAM and an SRAM. Examples of the nonvola-
tile memory include a NAND flash memory, an NOR flash
memory, a ReRAM, and an MRAM. A hard disk, an optical
disk, a magnetic tape, or an external storage device may be
used as the storage 34.

The host bus adaptor 35 implements data communication
between the calculation servers 3. The host bus adaptor 35
is connected to the switch 5 through the cable 4a. The host
bus adaptor 35 is, for example, a host channel adaptor
(HCA). The host bus adaptor 35, the cable 4a, and the switch
5 form an interconnect that can achieve a high throughput
and thereby can improve the speed of parallel calculation
processing.

FIG. 5 illustrates an example of data stored in the storage
of the calculation server 3. The storage 34 of FIG. 5 stores
calculation data 34A, a calculation program 34B, and a
control program 34C. The calculation data 34A includes data
in progress of calculation and a calculation result of the
calculation server 3a. At least part of the calculation data
34A may be stored in a different storage level, such as the
shared memory 32, a cache of a processor, or a register of a
processor. The calculation program 34B is a program that
implements a calculation process in each processor and a
storage process of data into the shared memory 32 and the
storage 34, based on a prescribed algorithm. The control
program 34C is a program that controls the calculation
server 3a based on a command transmitted from the control
module 13 of the management server 1 and transmits the
calculation result of the calculation server 3a to the man-
agement server 1.

Combinatorial Optimization Problem Technologies
related to solving a combinatorial optimization problem will

25

30

35

40

45

50

55

60

65

8

now be described. An example of the information processing
device used for solving a combinatorial optimization prob-
lem is an Ising machine. The Ising machine refers to an
information processing device that calculates energy of the
ground state of the Ising model. So far, the Ising model has
often been used mainly as a model of ferromagnetic or phase
transition phenomena. However, in recent years, the Ising
model has increasingly been used as a model for solving a
combinatorial optimization problem. Equation (1) below
shows the energy of the Ising model.

M

N 1
Efsing = Zh,vs,v + EZZ‘]’F/S"SJ
=1

i=1 j=1

Here, s;, s; are spins. The spin is a binary variable that
takes a value of either +1 or —1. N is the number of spins.
h; is a local magnetic field acting on each spin. J is a matrix
of a coupling coefficient between spins. The matrix J is a real
symmetric matrix in which diagonal components are zero.
Therefore, J; denotes an element at the i row and j* column
of the matrix J. Although the Ising model in Equation (1) is
a quadratic equation for spins, an expanded Ising model
including a term of degree 3 or more for spins (an Ising
model having a multibody interaction) may be used. The
Ising model having a multibody interaction will be described
later.

When the Ising model in Equation (1) is used, energy
E4,,. 15 set as an objective function, and a solution that can
minimize the energy E,,,,, can be calculated. The solution to
the Ising model can be written in the form of spin vector (s,,
S, . - . » Sy). In particular, the vector (s;, S,, . . . , Sp) that
yields the minimum value of the energy E,,, is called
optimal solution. However, the calculated solution of the
Ising model need not be a strict optimal solution. The
problem of finding an approximate solution that minimizes
the energy E,,,,, (that is, the approximate solution in which
the value of the objective function is as close to the optimal
value as possible) is hereinafter called the Ising problem.

In Equation (1), s; is a binary variable representing a spin
and therefore the expression (1+s,)/2 can be used to facilitate
conversion to a discrete variable (bit) used in a combinato-
rial optimization problem. Therefore, the solution to a com-
binatorial optimization problem can be found by converting
a combinatorial optimization problem into the Ising problem
and allowing an I[sing machine to perform calculation. The
problem of finding a solution that minimizes a quadratic
objective function whose variable is a discrete variable (bit)
that takes a value of either O or 1 is called a quadratic
unconstrained binary optimization (QUBO) problem. It can
be said that the Ising problem given by Equation (1) is
equivalent to the QUBO problem.

For example, quantum annealers, coherent Ising
machines, and quantum bifurcation machines have been
developed as hardware implementations of Ising machines.
The quantum annealer implements quantum annealing using
a superconducting circuit. The coherent [sing machine uses
an oscillation phenomenon of a network formed in an optical
parametric oscillator. The quantum bifurcation machine uses
a quantum-mechanical bifurcation phenomenon in a net-
work of a parametric oscillator having Kerr effect. While
these hardware implementations can significantly reduce
computation time, scale increase and stable operation are
difficult.

Alternatively, widespread digital computers can be used
to solve the Ising problem. Digital computers are easily

US 11,966,450 B2

9

increased in scale and stably run, compared with the hard-
ware implementations using physical phenomena described
above. An example of algorithms for solving the Ising
problem using a digital computer is simulated annealing
(SA). Technologies for performing simulated annealing
faster have been developed. However, since common simu-
lated annealing is a sequentially updating algorithm in which
individual variables are sequentially updated, it is difficult to
accelerate a calculation process by parallelization.

Simulated Bifurcation Algorithm

In view of the technical problems described above, a
simulated bifurcation algorithm has been developed that can
solve a large-scale combinatorial optimization problem fast
by parallel calculation in a digital computer (for example,
Hayato Goto, Kosuke Tatsumura, Alexander R. Dixon,
“Combinatorial optimization by simulating adiabatic bifur-
cations in nonlinear Hamiltonian systems”, Science
Advances, Vol. 5, No. 4, eaav2372, 19 Apr. 2019). Herein-
after an information processing device and electronic cir-
cuits for solving a combinatorial optimization problem using
the simulated bifurcation algorithm will be described.

An overview of the simulated bifurcation algorithm is first
described. In the simulated bifurcation algorithm, two vari-
ables x; and y, each corresponding to N elements are used.
The variable x, may be called first variable, and the variable
y; may be called second variable. Here, in the simulated
bifurcation algorithm, each of N elements represents a
virtual particle. N elements correspond to N spins in the
Ising model representing an optimization problem. The first
variable x; denotes the position of the i particle of N
particles. The second variable y, denotes the momentum of
the i particle. N denotes the number of spins included in the
Ising model and is an integer equal to or greater than 2, and
i denotes any integer equal to or greater than 1 and equal to
or smaller than N and denotes an index that identifies a spin.
In the simulated bifurcation algorithm, for N variables x; and
N variables y, (i=1, 2, . . . , N), simultaneous ordinary
differential equations in Equation (2) below are numerically
solved. Both variables x; and y, are continuous variables
represented by real numbers.

dy OH b @
dt By, i

dy, oH

Pl {-D+ p®) - Kxtlx; + f;

Here, H is the Hamiltonian in Equation (3) below. The
coefficient D is a predetermined constant and corresponds to
detuning. The coefficient p(t) corresponds to pumping
amplitude and its value monotonously increases according
to the number of times of updating in calculation of the
simulated bifurcation algorithm. The variable t represents
time. The initial value of the coefficient p(t) may be set to 0.
The coefficient p(t) corresponds to the first coefficient. The
coefficient K corresponds to positive Kerr coefficient. The
external force f; is given by Equation (4) below. In Equation
(4), z; is given by a partial derivative of the inside of the
parentheses of the term corresponding to the energy E in
Equation (3) with respect to the variable x,.

Ising

pw , K u @
-5 24 Zx:‘ + c[h wo) + 3 Z:Ji,jxixj]l

20

25

30

35

40

45

50

55

60

65

10

-continued
G}

fi=—cz

N
7 = ha(t) + ZJ,; %

=

Here, a constant coefficient can be used as the coefficient
c. In this case, the value of the coefficient ¢ need to be
determined before calculation by the simulated bifurcation
algorithm is executed. For example, in order to obtain
accuracy of calculation, the coefficient ¢ can be set to a value
close to a reciprocal of the maximum eigenvalue of J©
matrix. For example, a value c=0.5DV(N/2n) can be used.
Here, n is the number of edges of a graph for a combinatorial
optimization problem. Furthermore, a(t) is a coefficient
increasing with p(t). For example, \(p(t)) can be used as
alt).

By using the simulated bifurcation algorithm, a combi-
natorial optimization problem having an objective function
of degree 3 or more can be solved. The problem of finding
a combination of variables that minimizes an objective
function of degree 3 or more with a binary variable as a
variable is called a higher order binary optimization
(HOBO) problem. When a HOBO problem is treated, Equa-
tion (5) below can be used as an energy equation in the Ising
model expanded to a higher order.

®

N N N
EHOBO_ZJ()S, —ZZ] i Sis;+ %ZZZJ]](S,S]S](‘F

i=1 j=1 i1 j=1k=1

Here, J* is an n"-rank tensor and is generalization of the
local magnetic field h; and the matrix J of the coupling
coefficient in Equation (1). For example, the tensor JV
corresponds to a vector of the local magnetic field h;
(referred to as sixth vector). In the n”*-rank tensor], when
a plurality of subscripts have the same value, the value of an
element is 0. In Equation (5), the terms up to degree 3 are
shown, a higher-order term can be defined similarly to
Equation (5). Equation (5) corresponds to the energy of the
Ising model including a multibody interaction.

It can be said that both of QUBO and HOBO are a kind
of polynomial unconstrained binary optimization (PUBO).
That is, among PUBOs, a combinatorial optimization prob-
lem having a quadratic objective function is QUBO. Among
PUBOs, a combinatorial optimization problem having an
objective function of degree 3 or more is HOBO.

When a HOBO problem is solved using the simulated
bifurcation algorithm, the Hamiltonian H in Equation (3)
above can be replaced by Equation (6) below, and the
external force f; in Equation (4) above can be replaced by
Equation (7) below.

Ll > o, K ©
H= Z[g(xz +y2) - ”Tx,z s

[“Z ORI

= J=1i=1

N N
1
1 2
Higng = § JV%a@) + 5 § Ixix; +
i=1 = J=1k=1

US 11,966,450 B2

11

-continued
fi=—cz

_ OHuing @

N N N
1 2 3
Zj= —— = Ji()oz(t) + ZJ,{j)ijZJéj?kxjxk +...

X
4 j=1 j=lk=1

For example, the second equation z; in (7) can be used to
calculate the elements of the third vector. This equation is in
the form of a partial derivative of the second equation in (6)
with respect to the variable x; included in all the terms. The
elements of the first vector are variables. In this way, the
Hamiltonian may include the term of multibody interaction
(third- or higher-rank tensor). As the Hamiltonian, the one
not including the term of multibody interaction (third- or
higher-rank tensor) may be used. The second equation z, in
(7) is an example of the basic formula derived from the
terms corresponding to the Ising model’s energy in the
Hamiltonian. That is, the first value may be —1, the second
value may be 1, and the objective function may include a
term corresponding to the energy equation of the Ising
model. In this case, the objective function may include a
term of multibody interaction.

In the simulated bifurcation algorithm, the value of spin
s, can be obtained, based on the sign of the variable x, after
the value of p(t) is increased from an initial value (for
example, 0) to a prescribed value. For example, the signum
function in which when x,>0, sgn(x;,)=1, and when x;<0,
sgn(x;)=—1 can be used to obtain the value of spin s; by
converting the variable x; by the signum function when the
value of p(t) increases to a prescribed value. As the signum
function, for example, a function in which when x; #0, sgn
(x,)=x,/1x;| and when x,=0, sgn(x,;)=1 or —1 can be used. That
is, the updating unit 50 may be configured to find a solution
to a combinatorial optimization problem by converting an
element of the first vector having a value smaller than a third
value between the first value and the second value into the
first value and converting an element of the first vector
having a value greater than the third value into the second
value. For example, the updating unit 50 may be configured
to find a solution to a combinatorial optimization problem by
converting an element of the first vector having a positive
value into +1 and converting the first vector having a
negative value into —1. The updating unit 50 may find a
solution (for example, spin s, of the Ising model) to a
combinatorial optimization problem at any timing. For
example, the updating unit 50 may be configured to find a
solution to a combinatorial optimization problem when the
number of times of updating of the first vector, the second
vector, and the third vector, or the value of the first coeffi-
cient p is greater than a threshold value. When the Ising
problem is solved, the solution to the combinatorial optimi-
zation problem corresponds to spins s; of the Ising model.

Computation of Simulated Bifurcation Algorithm

For example, a differential equation given by Equations
(2), (3), (4) or Equations (2), (6), (7) can be solved using the
symplectic Euler method. As shown by Equation (8) below,
when the symplectic Euler method is used, the differential
equation can be written into a discrete recurrence relation.

x;(t + Aty = x;(8) + Dy, (DAL ®)
Vit + AD = yi(0) + [(~D + pt + A — Kxf (¢ + AD)x;(t + AD + £t + An]Ar

filt+ A = —czi(t + A

20

25

30

35

40

45

50

55

60

65

12

-continued
z;(t+ A =

N N N
IV + An + ZJ,{?xj(z FAD+ ZZJ,{?W(: AN+ AD + ...
=1 F=lk=1

Here, t is time, and At is time step (unit time, time step
size). The nonlinear term Kx?(t+At) in Equation (8) pre-
vents divergence of the variable x; during calculation.

In the calculation server 3, N variables x; and N variables
y, (i=1, 2, . . ., N) may be updated based on the algorithm
in Equation (8). That is, the data updated by the calculation
server 3 may include the first vector (X, X5, . . . , X,) with
the variable x; (i=1, 2, . . ., N) as an element, the second
vector (¥, ¥, - - - » Ya) With the variable y; (i=1, 2, . . ., N)
as an element, and the third vector (z,, Z,, . . . , Z,;) With the
variable 7z, (i=1, 2, . . ., N) as an element. The calculation
server 3 can update the elements z; (i=1, 2, . . ., N) of the
third vector, the elements x, (i=1, 2, . . . , N) of the first
vector, and the elements y, (i=1, 2, . . ., N) of the second
vector, based on the algorithm in Equation (8).

Referring to Equation (8), it can be understood that only
one kind of subscript (i) appears, except for the product-sum
operation of matrix or tensor included in the external force
term f,. Therefore, the computation of the portions in which
only one kind of subscript (i) appears in Equation (8) can be
parallelized, thereby reducing the calculation time.

In Equation (8), time t and time step At are used in order
to indicate the correspondence with the differential equation.
However, when the symplectic Euler method is actually
implemented in software or hardware, time t and time step
At are not necessarily included as explicit parameters. For
example, if time step At is 1, time step At can be removed
from the algorithm in implementation. When time t is not
included as an explicit parameter in implementation of the
algorithm, x,(t+At) can be interpreted as the updated value of
x/t) in Equation (8). That is, “t” in Equation (8) above and
the subsequent equations denotes the value of the variable
before updating, and “t+At” denotes the value of the variable
after updating.

The results of solving a combinatorial optimization prob-
lem when the simulated bifurcation algorithm is imple-
mented in a digital computer by the symplectic Euler
method will now be described. In the following, the mean
value and the maximum value of the cut value are shown in
a case where G22 in a bench mark set (G-set) of the
maximum cut problem was solved 1000 times. The maxi-
mum cut problem is a problem of dividing the nodes of a
weighted graph into two groups such that the total value of
weights of the edges cut by the division is maximized. The
maximum cut problem is a kind of combinatorial optimiza-
tion problems.

FIG. 6A and FIG. 6B illustrate the result when the
algorithm in Equation (8) above was used. The calculation
is performed with time step At=0.5, and the total number of
time steps is 100, 1000, 10000, and 100000. For coefficients,
D=K=1, c=0.5DV(N/2n) were used. The number of edges in
the graph of G22, 19990, is substituted into n. With increase
in the number of time steps, the value of the coefficient p
(first coefficient) was linearly increased from O to 1. For the
initial value of the variable x;, 0 was set, and for the initial
value of the variable y,, a pseudo-random number in the
range of [-0.1, 0.1] was set.

FIG. 6A illustrates the mean value of the cut value. On the
other hand, FIG. 6B illustrates the maximum value of the cut
value. In the graphs of FIG. 6A and FIG. 6B, the vertical axis

US 11,966,450 B2

13

corresponds to the cut value, and the horizontal axis corre-
sponds to the number of time steps. The broken line Cmax
in the horizontal direction in the graphs of FIG. 6A and FIG.
6B indicates the maximum cut value 13359 known in G22.
It can be said that the closer to the broken line Cmax the cut
value is, the closer result to the optimal solution is obtained.
Referring to FIG. 6A and FIG. 6B, even when the total
number of time steps increases, the maximum cut value is
not reached.

Improvement of Algorithm

FIG. 7 is a diagram illustrating a bifurcation phenomenon
of the algorithm in Equation (8). When the simulated
bifurcation algorithm is solved by the symplectic Euler
method, a single stable motion state bifurcates into multiple
stable states as the parameters of the system change. In the
bifurcation phenomenon in the algorithm in Equation (8),
the variable x; extends from a region greater than 1 to a
region smaller than —1.

FIG. 8 is a diagram depicting a bifurcation phenomenon
of an improved algorithm. The algorithm in Equation (8)
was improved as follows. Specifically, as illustrated in FIG.
8, when the absolute value of the variable x, becomes greater
than 1, the absolute value of the variable x, is changed to a
value equal to or greater than 0 and equal to or smaller than
1 without changing its sign. For example, when x,>1 as a
result of updating, the value of the variable x; is set to w.
Here, w is a value equal to or greater than O and equal to or
smaller than 1. When x,<—1 as a result of updating, the value
of the variable x; is set to —w. In this way, the variable x; can
always be kept in the range equal to or greater than —1 and
equal to or smaller than 1 while the sign of the variable x;
is kept.

For example, w may be a predetermined value equal to or
greater than 0 and equal to or smaller than 1. Alternatively,
w may be a value in accordance with a random number that
occurs with a uniform probability in a specific interval [w,,
w,] within a range equal to or greater than 0 and equal to or
smaller than 1, where w, is equal to or greater than 0 and
equal to or smaller than w,, and w, is equal to or greater than
w, and equal to or smaller than 1.

Furthermore, w may be an index value representing the
average of magnitudes of N variables x,. The index value
representing the average of magnitudes of N variables x, is,
for example, the root mean square or the average absolute
value of the previous N variables x;. For example, w may be
a value, determined by a random number, equal to or greater
than the index value representing the average of magnitudes
of N variables x; and equal to or smaller than 1.

For example, w may be an increasing coefficient that
increases with time from the initial time to the end time,
from O to equal to or smaller than 1. The increasing
coefficient may be, for example, a linear function that is 0 at
the initial time and 1 at the end time, where time is a
variable, or the square root of the linear function. For
example, w may be a value, determined by a random
number, equal to or greater than the increasing coefficient
and equal to or smaller than 1.

When x,>1 as a result of updating, the variable y, corre-
sponding to the variable x; may be multiplied by a coefficient
r. That is, the updating unit 50 may be configured to update
an element of the second vector corresponding to an element
of the first vector having a value smaller than the first value
or an element of the second vector corresponding to an
element of the first vector greater than the second value to
a value obtained by multiplying the original element of the
second vector by a second coefficient. For example, the
updating unit 50 may be configured to update an element of

20

25

30

35

40

45

50

55

60

65

14

the second vector corresponding to an element of the first
vector having a value smaller than —1 or an element of the
second vector corresponding to an element of the first vector
having a value greater than 1 to a value obtained by
multiplying the original element of the second vector by the
second coefficient. Here, the second coefficient corresponds
to the above-noted coefficient r.

When the absolute value of the variable x, becomes
greater than 1 as a result of updating, the variable y; may be
changed to O or a predetermined value. When x,>1 as a result
of updating, the value of the variable y, corresponding to the
variable x; may be set to a pseudo-random number. For
example, a random number in the range of [-0.1, 0.1] can be
used. That is, the updating unit 50 may be configured to set
the value of an element of the second vector corresponding
to an element of the first vector having a value smaller than
the first value or an element of the second vector corre-
sponding to an element of the first vector having a value
greater than the second value to a pseudo-random number.

First Algorithm

As described above, when updating is performed such
that Ix;| does not become greater than 1, the value of x; does
not diverge even when the nonlinear term Kx?(t+At) in
Equation (8) is removed. Therefore, a first algorithm in
Equation (9) below can be used instead of the algorithm in
Equation (8).

xi(t +AD = x;(t) + Dy, (DAL €))

yilt + AD = i) + (=D + p(t + AD}xit + At) + fi(t + AD)]AL
filt + At = —czi(t + A

z;(t+ A =

N N N
IV + An + ZJ,{?xj(z FAD+ ZZJ,{?W(: + AN+ AD + ...
=1 =lk=1

In the case of a QUBO problem, z,(t+At) in Equation (9)
can be given by Equation (10) below.

N (10
Zi(t+ AD) = —ha(t + Ar) — Zji,jxj(z +AD
=

In the first algorithm in Equation (9) above, a pseudo-
random number is not necessarily used. The first algorithm
in Equation (9) is to solve the Hamiltonian equation similar
to Equation (8), and the variable y; corresponds to the
momentum. Therefore, the solution can be found stably
using the symplectic Euler method, even without using a
small value as the time step At. In the first algorithm in
Equation (9), a combinatorial optimization problem having
an objective function of degree 3 or more can be solved.

FIG. 9A and FIG. 9B illustrate the result when G22 in
G-set was solved 1000 times using the first algorithm in
Equation (9). In FIG. 9A and FIG. 9B, the first algorithm in
Equation (9) is used. The value of the second coefficient r is
set to 0, and the time step is set to At=1. w is a uniform
random number in the interval [x,,,,, 1]. X,,,, is the root mean
square of N variables x,. The other calculation conditions are
similar to those in FIG. 6A and FIG. 6B. In Equation (9),
there is no nonlinear term and therefore the time step At can
be set to twice that of FIG. 6A and FIG. 6B.

US 11,966,450 B2

15

FIG. 9A illustrates the mean value of the cut value. On the
other hand, FIG. 9B illustrates the maximum value of the cut
value. The correspondence of the axes and the definition of
the broken line Cmax in the horizontal direction in the
graphs are similar to those of FIG. 6A and FIG. 6B. Data
depicted by the solid lines in the graphs in FIG. 9A and FIG.
9B corresponds to the result when the first algorithm in
Equation (9) was applied. On the other hand, data depicted
by the broken lines in the graphs of FIG. 9A and FIG. 9B
corresponds to the result when the algorithm in Equation (8)
was used.

Referring to FIG. 9A and FIG. 9B, it can be understood
that both of the mean value of the cut value and the
maximum value of the cut value approach the optimal
solution, compared with FIG. 6A and FIG. 6B. However,
even in the results in FIG. 9A and FIG. 9B, there is still a
difference between the calculated value and the optimal
solution. This error may be attributable to that the continu-
ous variable X, is used rather than spin s, as a variable, in the
basic formula that defines the value z; of an element of the
third vector. Specifically, as high-order terms increase, the
product computation of variables x in z, may cause increase
of the error. For example, when a variable greater than 1 is
multiplied multiple times, the value becomes significantly
greater than 1.

Second Algorithm

In order to reduce the error, the first algorithm in Equation
(9) was further improved. Specifically, as shown in Equation
(11) below, a value sgn(x,) obtained by converting the
continuous variable x; by the signum function was substi-
tuted into z,, instead of the continuous variable x,. The value
sgn(x;) obtained by converting the continuous variable x; by
the signum function corresponds to spin s,.

xi(t + A = x:(8) + Dy, (DAL (11)

yi(t+ A = yi() + (=D + pt + Adx;(t + At + fi(t + AD)] At
filt+ A = —cz;(t + A

zi(t+ A =

N N N
JVa@ + Ay + Zj,g)sj(z +AD+ ZZJ,@},(S}(: FADXE+HAD + ...
J=l =1 k=1

In the case of a QUBO problem, z,(t+At) in Equation (11)
is given by Equation (12) below.

N (12)
2.t + AD = —ha(t + Af) — Zji,jsj(z +AD
=

In Equation (11), the coefficient & in the term including
the first-rank tensor in z, may be set to a constant (for
example, a=1). The second algorithm in Equation (11) is not
the one that solves the Hamiltonian equation, unlike Equa-
tions (8) and (9). Equation (11) can be considered as a
dynamical system controlled by an external field. In the
second algorithm in Equation (11), when a HOMO having a
high-order objective function is handled, the product of any
spins in z, takes a value of either —1 or 1, and therefore
occurrence of an error due to product computation can be
prevented.

As shown in the second algorithm in Equation (11) above,
data calculated by the calculation server 3 may further

20

25

30

35

40

45

50

55

60

65

16
include a fourth vector (s;, s, . . ., sy} with s; (i=
1,2,...,N)as an element. The fourth vector can be obtained

by converting the elements of the first vector by the signum
function. That is, the action computing unit 51 may be
configured to update the values of the elements of the third
vector, using the basic formmla in the form of a partial
derivative of the energy equation of the Ising model with
respect to variables included in all the terms. Here, the
elements of the first vector or the elements of the fourth
vector obtained by converting the elements of the first vector
by the signum function can be used as the variables of the
basic formula.

FIG. 10A and FIG. 10B illustrate the result when G22 in
G-set was solved 1000 times using the second algorithm in
Equation (11). Except for the difference of the algorithms
used, the calculation conditions (for example, time step At,
the coefficients, w defined for keeping x, between —1 to 1) in
FIG. 10A and FIG. 10B are similar to those of FIG. 9A and
FIG. 9B. FIG. 10A illustrates the mean value of the cut
value. On the other hand, FIG. 10B illustrates the maximum
value of the cut value. The correspondence of the axes and
the definition of the broken line Cmax in the horizontal
direction in the graphs are similar to those of FIG. 6A and
FIG. 6B and FIG. 9A and FIG. 9B. Data depicted by the
solid lines in the graphs of FIG. 10A and FIG. 10B corre-
sponds to the result when the second algorithm in Equation
(11) was applied. On the other hand, data depicted by the
broken lines in the graphs of FIG. 10A and FIG. 10B
corresponds to the result when the algorithm in Equation (8)
was used.

Referring to FIG. 10A and FIG. 10B, it can be understood
that both of the mean value of the cut value and the
maximum value of the cut value are values closer to the
optimal solution, compared with FIG. 9A and FIG. 9B.
Referring to FIG. 10B, it can be understood that the maxi-
mum value 13359 of the cut value can be obtained by using
the second algorithm in Equation (11).

Third Algorithm

The first algorithm in Equation (9) may be transformed
into Equation (13) below.

xi(t +AD = x;(t) + Dy, (DAL (13)

yilt + AD = i) + (=D + p(t + AD}xit + At) + fi(t + AD)]AL
Jilt + A1) = —g(Osgnlz(+ An)]

zi(t+ A =

N N N
IV + An + ZJ,{?xj(z FAD+ ZZJ,{?W(: + AN+ AD + ...
=1 =lk=1

In the case of a QUBO problem, z(t+At) in Equation (13)
is given by Equation (14) below.

N 14)
Zi(t+ AD) = —ha(t + Ar) — Zji,jxj(z +AD
i=1

The third algorithm in Equation (13) differs from the
examples described above in calculation method of the term
f; corresponding to the external force. The value z, calculated
using the fourth equation of (13) is converted by the signum
function and normalized by 1. That is, the action computing
unit 51 may be configured to update the elements of the third
vector based on the value obtained by converting the value

US 11,966,450 B2

17

(z;) of the basic formula calculated with an element of the
first vector as a variable, by a first function. For example, the
signum function can be used as the first function. However,
as will be described later, any other functions may be used
as the first function.

In Equation (13), the function g(t) is used instead of the
coefficient c. In general, the degree of contribution of the
value z; of an element of the third vector to the calculation
result varies with problems. However, in Equation (13),
since the value z; of an element of the third vector is
normalized by 1, there is no need for determining the value
of the coefficient ¢ for each problem. For example, Equation
(15) below can be used as the function g(t).

§O=(D-p(O PO (15)

The function in Equation (15) monotonously increases
and then monotonously decreases, with the number of times
of updating. However, Equation (15) above is only by way
of example, and a function different from this, with p(t) as
a parameter, may be used as g(t). That is, the action
computing unit 51 may be configured to update the elements
of the third vector by multiplying a second function with the
first coefficient p as a parameter.

FIG. 11A and FIG. 11B illustrate the result when G22 in
G-set was solved 1000 times using the third algorithm in
Equation (13). Except for the difference of the algorithms
used, the calculation conditions (for example, time step At,
the coefficients used, w defined for keeping x, between —1 to
1) in FIG. 11A and FIG. 11B are similar to those of FIG. 9A
and FIG. 9B. FIG. 11A illustrates the mean value of the cut
value. On the other hand, FIG. 11B illustrates the maximum
value of the cut value. The correspondence of the axes and
the definition of the broken line Cmax in the horizontal
direction in the graphs are similar to those of FIG. 6A and
FIG. 6B and FIG. 9A and FIG. 9B. Data depicted by the
solid lines in the graphs of FIG. 11A and FIG. 11B corre-
sponds to the result when the third algorithm in Equation
(13) was applied. On the other hand, data depicted by the
broken lines in the graphs of FIG. 11A and FIG. 11B
corresponds to the result when the algorithm in Equation (8)
was used.

Referring to FIG. 11A and FIG. 11B, it can be understood
that both of the mean value of the cut value and the
maximum value of the cut value are values closer to the
optimal solution, compared with the algorithm in Equation
(8). Referring to FIG. 11B, it can be understood that the
maximum value 13359 can be obtained by using the third
algorithm in Equation (13).

Modifications

In the algorithms in Equation (9), Equation (11), and
Equation (13), calculation may be performed using the
coefficient & in the term including the first-rank tensor in the
basic formula (the equation of z,) as a constant coefficient
(for example, a=1). In the algorithms in Equation (9),
Equation (11), and Equation (13), a coefficient that monoto-
nously decreases or monotonously increases with the num-
ber of times of updating may be used as the coefficient & in
the term including the first-rank tensor in the basic formula
(the equation of z,). In this case, the term including the
first-rank tensor in the basic formula monotonously
decreases or monotonously increases with the number of
times of updating.

The first algorithm in Equation (9) and the second algo-
rithm in Equation (11) described above include the coeffi-
cient c. When it is desired that the coefficient c is set to a
value close to the reciprocal of the maximum eigenvalue of
the J® matrix, it is necessary to calculate the maximum

20

25

30

35

40

45

50

55

60

65

18

eigenvalue of the J® matrix or to estimate the maximum
eigenvalue of the J® matrix. The calculation of the maxi-
mum eigenvalue requires a large amount of calculation. On
the other hand, the estimation of the maximum eigenvalue
does not ensure value accuracy. Then, a function whose
value varies with the number of times of updating can be
used as given by Equation (15) above, instead of the
coefficient c. Instead of the coefficient ¢, an approximate
value c1 may be used, which is calculated based on the first
vector (X,, Xy, . . . , X) and the third vector (z,, Z, . . ., Zy)
as given by Equation (16) below.

2 (16)

X3+ X X

|21 PR R

Referring to Equation (16), both of the denominator and
the numerator are the norms of the vectors. As given by
Equation (16), L2 norm, which is the root sum square of the
elements of the vector, can be used as the norm of the vector.
However, a norm by any other definition, such as L.1 norm,
which is the sum of absolute values of elements of the
vector, may be used.

That is, the updating unit 50 may be configured to update
an element of the second vector by calculating a third
coefficient c1 by dividing the norm of the first vector by the
norm of the third vector, and adding a weighted value of the
product of the first coefficient p(t+At) and the corresponding
element of the updated first vector, and a weighted value of
the corresponding element of the third vector with the third
coefficient cl, to the element of the second vector.

Furthermore, instead of the coefficient ¢, an approximate
value c'l defined by an inner product as given by Equation
(17) below may be used.

, x%+x§+..4+x%\, an

= =
(x, 2] X121 + X222 + ... + xwzwl

That is, the updating unit 50 may be configured to update
an element of the second vector by calculating a third
coefficient c'l by dividing the inner product of the first
vectors by the absolute value of the inner product of the first
vector and the third vector, and adding a weighted value of
the product of the first coefficient p(t+At) and the corre-
sponding element of the updated first vector, and a weighted
value of the corresponding element of the third vector with
the third coefficient c'l, to the element of the second vector.

The approximate values cl and c'l are not constants,
unlike the coefficient c, but are coefficients dynamically
controlled, because they are calculated based on the values
of the first vector (X,, X,, . . . , X») and the third vector (z,,
Z,, . . ., Zy) in each calculation timing. Since for the first
vector (X, X,, - - . , X5 and the third vector (z,, z,, . . . , Z),
those calculated in the variable updating process can be
used, calculating the approximate values c1 and c'l does not
significantly increase the amount of calculation. In the Ising
problem with no local magnetic field, when (X;, X5, . . ., Xp)
is an eigenvector corresponding to the maximum eigenvalue
of I, the approximate values cl and c'l are equal to the
reciprocal of the maximum eigenvalue of J®. When
(X1, Xp, . . . , Xy) deviates from the eigenvector, the
approximate values cl and c'l become values greater than
the reciprocal of the maximum eigenvalue of J®, and
convergence to a solution is accelerated.

US 11,966,450 B2

19

FIG. 12A and FIG. 12B illustrate the result when G22 in
G-set was solved 1000 times using the approximate value c1
instead of the coefficient c in the first algorithm in Equation
(9). FIG. 13A and FIG. 13B illustrate the result when G22
in G-set was solved 1000 times using the approximate value
cl instead of the coefficient ¢ in the second algorithm in
Equation (11).

FIG. 12A and FIG. 13A illustrate the mean value of the
cut value. On the other hand, FIG. 12B and FIG. 13B
illustrate the maximum value of the cut value. The corre-
spondence of the axes and the definition of the broken line
Cmax in the horizontal direction in the graphs are similar to
those of the graphs described above. Data depicted by the
broken lines in FIG. 12A, FIG. 12B, FIG. 13A, and FIG.
13B shows the result when the algorithm in Equation (8) was
used.

Referring to FIG. 12A, FIG. 12B, FIG. 13A, and FIG.
13B, it can be understood that both of the mean value of the
cut value and the maximum value of the cut value are values
closer to the optimal solution, compared with the algorithm
in Equation (8). In particular, it can be understood that in the
second algorithm in Equation (11), the maximum value
13359 of the cut value is obtained.

In the first algorithm in Equation (9) and the second
algorithm in Equation (11), an approximate value c2 or c2
defined by Equation (18) below may be used instead of the
approximate values cl and c'l.

s ST+ s5 4.tk NG (18
c2=— = =
N e N - R
, (s, 8) s%+s§+..4+s,z\, N
Cy = = =
(s, 2| |s1z1 + 8222 + ... +syzyl |1z +s222 4 . szl

That is, the updating unit 50 may be configured to update
an element of the second vector by calculating a third
coefficient ¢2 by dividing the norm of the fourth vector
obtained by converting the elements of the first vector by the
signum function, by the norm of the third vector, and adding
a weighted value of the product of the first coefficient
p(t+At) and the corresponding element of the updated first
vector, and a weighted value of the corresponding element
of the third vector with the third coefficient c2, to the
element of the second vector.

Furthermore, the updating unit 50 may be configured to
update an element of the second vector by calculating a third
coefficient ¢2 by dividing the inner product of the fourth
vectors obtained by converting the elements of the first
vector by the signum function, by the absolute value of the
inner product of the fourth vector and the third vector, and
adding a weighted value of the product of the first coefficient
p(t+At) and the corresponding element of the updated first
vector, and a weighted value of the corresponding element
of the third vector with the third coefficient c'2, to the
element of the second vector.

Since for the third vector (z;, Z,, . . ., Zy) in Equation (18),
the one calculated by the algorithm can be used, finding the
approximate values c2 and c'2 does not significantly increase
the amount of calculation.

When the approximate values cl, c'l, c¢2, ¢'2 are calcu-
lated using the values of the vectors during execution of the
algorithms, the values may vary heavily with the calculation
timings. In order to suppress variation of the approximate
values cl, c'l, c2, c2, values obtained by converting the
approximate values cl, c'l, c2, ¢'2 based on a prescribed rule

20

25

30

35

40

45

50

55

60

65

20

may be used instead of the approximate values cl, c'l, c2,
c2. For example, Equation (19) below can be used as the
prescribed rule.

A(HAD=d(DHy[—d(D+c(HAD] At (19)

Here, a value smaller than 1 may be set for y. For example,
the approximate value calculated by Equations (16) to (18)
above is substituted into c(t+At) of Equation (19). Assuming
that c(t+At) is a value obtained by sampling a signal includ-
ing an oscillating component in each calculation timing, it
can be said that d(t+At) corresponds to a value after c(t+At)
passes through a lowpass filter of a certain bandwidth.

That is, the updating unit 50 may be configured to update
an element of the second vector by calculating a fourth
coefficient that is the value after the third coefficient (one of
the approximate values cl, c'l, c2, c'2) passes through a
lowpass filter, and using the fourth coefficient instead of the
third coefficient.

Examples of finding a solution to the Ising model using
the simmlated bifurcation algorithm have been described
above. However, combinatorial optimization problems that
can be solved by the simulated bifurcation algorithm are not
limited to the Ising problem. Common combinatorial opti-
mization problems with binary variables can be solved using
the simulated bifurcation algorithm. For example, the algo-
rithms described above can be applied to a combinatorial
optimization problem in which a variable of the objective
function is a binary variable that takes either of a (first value)
and b (second value) greater than a. When a solution to the
objective function is found after a certain number of times
of updating, the function f(x,) whose range is binary, a or b,
may be used instead of the signum function. The value of
this function f(x,) is determined based on the result of
comparison of the value of the variable x; with a threshold
value v (a<v<b). For example, if x,<v, f(x,)=a. If v<x,,
f(x;)=b. For example, when x,=v, f(x;)=a or f(x,)=b. Here,
for example, (a+b)/2 can be used as a value of the threshold
value v. The function f(x;) above may be used as the first
function that converts an element of the first vector into an
element of the fourth vector.

For example, in a case where the first algorithm in
Equation (9), the second algorithm in Equation (11), and the
third algorithm in Equation (13) described above are used,
the value of the variable x; is changed to {v—w_} when the
variable x; becomes smaller than a as a result of updating,
where w_ is a real number equal to or greater than 0 and
equal to or smaller than (v—a). When the variable x, becomes
greater than b as a result of updating, the value of the
variable x, is changed to{v+w_}, where w__is a real number
equal to or greater than 0 and equal to or smaller than (b—v).

For example, w_ may be a predetermined value equal to
or greater than 0 and equal to or smaller than (v—a), and w,,
may be a predetermined value equal to or greater than 0 and
equal to or smaller than (b—v).

Furthermore, w_ may be a value in accordance with a
random number that occurs with a uniform probability in a
prescribed interval within a range equal to or greater than 0
and equal to or smaller than (v—a). Furthermore, w, may be
a value in accordance with a random number that occurs
with a uniform probability in a prescribed interval within a
range equal to or greater than 0 and equal to or smaller than
(b—v).

Furthermore, w_ and w, may be an index value (x,,.)
representing the average for the magnitudes of deviations of
a plurality of first variables (x;) from the threshold value (v).
For example, the index value (x,,.) is the root mean square

ave.

US 11,966,450 B2

21

or the average absolute value of deviations of first variables
(x,) of a plurality of elements from the threshold value (v).

Furthermore, w_ may be a value determined by a random
number equal to or greater than the index value (x,,,) and
equal to or smaller than (v-a). Furthermore, w, may be a
value determined by a random number equal to or greater
than the index value (x,,.) and equal to or smaller than
(b-v). When the index value (x,,,) exceeds (v-a), w_ is
(v-a). When the index value exceeds (b-v), w, is (b-v).

Furthermore, w_ and w, may be increasing coefficients.
The increasing coefficient is O at the initial time of the
updating process and increases with time from the initial
time to the end time. w_ may be a value determined by a
random number equal to or greater than the increasing
coeflicient and equal to or smaller than (v-a).

Furthermore, w, may be a value determined by a random
number equal to or greater than the increasing coefficient
and equal to or smaller than (b—v). When the increasing
coeflicient exceeds (v-a), w_ is (v—a). When the increasing
coefficient exceeds (b—v), w, is (b-v).

Based on the foregoing, when the first algorithm in
Equation (9), the second algorithm in Equation (11), and the
third algorithm in Equation (13) described above are applied
to a combinatorial optimization problem in which a variable
of the objective function is a discrete variable that takes one
of the first value (a) and the second value (b), the updating
unit 50 performs the following process in the updating
process of the first variable x, and the second variable y,.

That is, when the first variable (x,) is smaller than the first
value (a), the updating unit 50 changes the first variable (x;)
to a value equal to or greater than the first value (a) and equal
to or smaller than the threshold value (v). Furthermore,
when the first variable (x,) is greater than the second value
(b), the updating unit 50 changes the first variable (x,) to a
value equal to or greater than a predetermined threshold
value (v) and equal to or smaller than the second value (b).

More specifically, for example, when the first variable (x,)
is smaller than the first value (a), the updating unit 50 may
change the first variable (x,) to a predetermined value equal
to or greater than the first value (a) and equal to or smaller
than the threshold value (v), or a value in accordance with
a random number that occurs with a uniform probability in
a prescribed interval within a range equal to or greater than
the first value (a) and equal to or smaller than the threshold
value (v). Furthermore, when the first variable (x,) is greater
than the second value (b), the updating unit 50 may change
the first variable (x;) to a predetermined value equal to or
greater than the threshold value (v) and equal to or smaller
than the second value (b), or a value in accordance with a
random number that occurs with a uniform probability in a
prescribed interval within a range equal to or greater than the
threshold value (v) and equal to or smaller than the second
value (b).

For example, when the first variable (x,) is smaller than
the first value (a), the updating unit 50 may change the first
variable (x,) to a value obtained by subtracting the index
value from the threshold value (v). When the first variable
(x,) is greater than the second value (b), the updating unit 50
may change the first variable (x,) to a value obtained by
adding the index value to the threshold value (v). In this
case, the index value represents the average for the magni-
tudes of deviations of the first variables (x,) of the elements
from the threshold value (v). For example, the index value
is the root mean square or the average absolute value of
deviations of the first variables (x,) of the elements from the
threshold value (v).

40

45

22

For example, when the first variable (x,) is smaller than
the first value (a), the updating unit 50 may change the first
variable (x,) to a value, determined by a random number,
equal to or greater than the first value (a) and equal to or
greater than a value obtained by subtracting the index value
from the threshold value (v). Furthermore, when the first
variable (x,) is greater than the second value (b), the updat-
ing unit 50 may change the first variable (x,) to a value,
determined by a random number, equal to or greater than a
value obtained by adding the index value to the threshold
value (v) and equal to or smaller than the second value (b).

When the first variable (x,) is smaller than the first value
(a), the updating unit 50 may change the first variable (x,) to
a value obtained by subtracting the increasing coeflicient
from the threshold value (v). When the first variable (x,) is
greater than the second value (b), the updating unit 50 may
change the first variable (x,) to a value obtained by adding
the increasing coeflicient to the threshold value (v). In this
case, the increasing coefficient is O at the initial time and
increases with time from the initial time to the end time.

When the first variable (x,) is smaller than the first value
(a), the updating unit 50 may change the first variable (x,) to
a value, determined by a random number, equal to or greater
than the first value (a) and equal to or smaller than a value
obtained by adding the increasing coefficient to the threshold
value (v). Furthermore, when the first variable (x,) is greater
than the second value (b), the updating unit 50 may change
the first variable (x,) to a value, determined by a random
number, equal to or greater than a value obtained by adding
the increasing coefficient to the threshold value (v) and equal
to or smaller than the second value (b).

Examples of the simulated bifurcation algorithms imple-
mented by the symplectic Euler method and the results of
calculating a combinatorial optimization problem using the
individual algorithms have been described above. Imple-
mentation examples of the algorithms described above will
be described below.

Implementation Example to PC Cluster

First of all, an example of implementation of the algo-
rithms described above to a PC cluster will be described. The
PC cluster refers to a system in which a plurality of
computers are connected to implement calculation perfor-
mance unachievable by one computer. For example, the
information processing system 100 illustrated in FIG. 1
includes the calculation servers 3 and processors and can be
used as a PC cluster. For example, in the PC cluster, parallel
calculation can be executed using a message passing inter-
face (MPI), even in a configuration such as the information
processing system 100 in which memory is distributed over
the calculation servers 3. For example, the control program
14E of the management server 1 and the calculation program
34B and the control program 34C of each calculation server
3 can be implemented using an MPI.

When the number of processors used in the PC cluster is
Q, each processor can calculate L. variables among the
variables x; included in the first vector (X, X5, . . . , Xp)-
Similarly, each processor can calculate [variables among
the variables y, included in the second vector (¥, ¥, - - - »
va). That is, a processor #j (j=1, 2, . . . , Q) calculates the
variables {x,,Im=(j-1)L+1, j-1)L+2, . ..,jL} and {y, Im=
G-DL+1, G=DL+2, . . ., jL}. It is assumed that the tensor
1@ given by Equation (20) below necessary for calculation
of {y, lm=(G-1)L+1, G=-1)L+2, . . ., jL} by the processor #
is stored in a storage area (for example, a register, a cache,
or a memory) accessible by the processor #j.

US 11,966,450 B2

23

(P m=G-DL+1, .. 0L @0

IR |m=G-DL+1, . L j=1,.. N}

{ J®

O |m=G-DL+1, il j=1,.. Nik=1,..N}, ...

The case where each processor calculates a given number
of variables of the first vector and the second vector has been
described here. However, the number of variables of the first
vector and the second vector to be calculated may vary
among the processors. For example, when there is a perfor-
mance difference among the processors mounted on the
calculation server 3, the number of variables to be calculated
can be determined in accordance with the performance of
the processors.

That is, the information processing device (for example,
the calculation server 3) may include a plurality of proces-
sors. The updating unit 50 includes a plurality of processors,
and each of the processors in the updating unit 50 may be
configured to update the values of some elements of the first
vector and the values of some elements of the second vector.

To update the value of the variable y;, the values of all the
components of the first vector (x,, X,, . . ., X») or the fourth
vector (s;, S,, . . . , Sy) obtained by converting the elements
of the first vector to binary variables are necessary. The
conversion into binary variables can be performed using, for
example, the signum function sgn(). Then, the Allgather
function can be used to allow Q processors to share the
values of all the components of the first vector (x,,
X, - . ., Xp) Of the fourth vector (s;, s,, . . . , S5). Although
the values of the first vector (X;, X,, . . . , X») or the fourth
vector (S;, Sp, . . . , Sy) need to be shared among the
processors, the sharing of the values among the processors
is not essential for the second vector (y,, ¥, . . . , y5) and
the tensor J. The sharing of data among the processors can
be implemented, for example, by using communication
between processors or by storing data in a shared memory.

The processor #j calculates the value of the variable
{z,,lm=G—-1LA+1, —1)L+2, ..., jL}. Then, the processor #j
updates the variable {y, Im=(G-1)L+1, G-1)L+2, .. ., jL},
based on the calculated value of {z,,Im=(-1)L+1,
G-DL42, ..., jL}.

As given by the equations above, in calculation of the
vector (z,, Z,, - - - » Zy), the product-sum operation including
calculation of the product of the tensor J® and the vector
(Xy5 X9y « - - 5 Xy) OF (84, Sy, . . ., Sy) is necessary. The
product-sum operation is a process involving the largest
amount of calculation in the algorithms described above and
may be a bottleneck in improvement in calculation speed.
Then, in implementation of the PC cluster, the product-sum
operation is distributed over Q=N/L processors and executed
in parallel, thereby reducing the calculation time.

That is, the information processing device (for example,
the calculation server 3) may include a plurality of proces-
sors. The action computing unit 51 may include a plurality
of processors, and each of the processors in the action
computing unit 51 may be configured to update some
elements of the third vector. The updating unit 50 may
include a plurality of processors, and each of the processors
in the updating unit 50 may be configured to update some
elements of the first vector and some elements of the second
vector.

FIG. 14 schematically illustrates an example of a multi-
processor configuration. A plurality of calculation nodes in
FIG. 14 correspond to, for example, the calculation servers

20

25

30

35

40

45

50

55

60

65

24

3 of the information processing system 100. A high-speed
link in FIG. 14 corresponds to, for example, the intercon-
nection between the calculation servers 3 that is formed with
the cables 4a to 4¢ and the switch 5 of the information
processing system 100. A shared memory in FIG. 14 corre-
sponds to, for example, the shared memory 32. The proces-
sors in FIG. 14 correspond to, for example, the processors
33A to 33D of each calculation server 3. Although FIG. 14
illustrates a plurality of calculation nodes, a configuration of
a single calculation node may be used.

FIG. 14 illustrates data arranged at the constituent ele-
ments and data transferred between the constituent elements.
In each processor, the values of the variables x;, (s;), y,, and
z, are calculated. The variable x; or s; is transferred between
the processor and the shared memory. In the shared memory
of each calculation node, for example, the first vector
(Xy, X5, . . ., Xu), L variables of the second vector
(Y15 Y20 - - - » Yu)» and part of the tensor J™ are stored. When
the algorithm in Equation (11) is executed, the fourth vector
(815 S2s - - - » S) may be stored in the shared memory of each
calculation node, instead of the first vector (X, X, . . . , Xp)-
In the high-speed link connecting the calculation nodes, for
example, the first vector (X, X, . . . , X} is transferred. This
is because when the Allgather function is used, all the
elements of the first vector (x;, X,, . . . , Xy) are necessary
to update the variables y, and z, in each processor. When the
variable z, is updated according to the algorithm in Equation
(11), each processor need to access all the elements of the
fourth vector (s;, S,, . . . , Sy). In the high-speed link,
therefore, the fourth vector (s;, s,, . . . , S5) may be
transferred.

However, the arrangement and transfer of data illustrated
in FIG. 14 is only by way of example. For example, if the
processors execute calculation of {z, |m=(j—1)L+1, (j—1)L+
2,...,jL} including the product-sum operation in parallel,
the value of the variable z; may be transferred between each
processor and the shared memory and between calculation
nodes, and the value of the variable y; may be calculated by
referring to the shared vector (z,, z,, . . . , Zy). In this way,
the data arrangement method, the transfer method, and the
parallelization implementation method in the PC cluster are
not limited.

That is, the information processing device (for example,
the calculation server 3) may include a shared memory
accessible by a plurality of processors. In this case, the
updating unit 50 can store the elements of the updated first
vector or the fourth vector obtained by converting the
elements of the updated first vector into binary variables, in
the shared memory.

The result obtained when the PC cluster executes the
algorithms described above will now be described. FIG. 15A
and FIG. 15B illustrate the result of solving a fully con-
nected Ising problem of N=3600 (no local magnetic field)
using the PC cluster. In the fully connected Ising problem in
FIG. 15A and FIG. 15B, the value of each element of the
matrix J of the coupling coefficients was set to a uniform
random number in the range of [-1, 1]. The total number of
time steps was set to 10000. FIG. 15A illustrates the mean
value of the energy E,;, . when the fully connected Ising
problem was solved 10 times using each algorithm. FIG.
15B illustrates the mean value of calculation time in seconds
when the fully connected Ising problem was solved 10 times
using each algorithm.

US 11,966,450 B2

25

The bar charts in FIG. 15A and FIG. 15B illustrate the
results in the following six cases from left to right:

(1) the algorithm in Equation (8) was used;

(ii) the first algorithm in Equation (9) was used;

(iii) the second algorithm in Equation (11) was used;

(iv) the third algorithm in Equation (13) was used;

(v) the approximate value cl was used instead of the

coeflicient ¢ in the first algorithm in Equation (9); and

(vi) the approximate value cl was used instead of the

coeflicient ¢ in the second algorithm in Equation (11).

The bar charts in FIG. 15A and FIG. 15B also illustrate
the results when the number of processors Q is 1 and 36 from
left to right for each of the cases. In the case where the
algorithm in Equation (8) was used, in the case where the
first algorithm in Equation (9) was used, and in the case
where the second algorithm in Equation (11) was used, a
constant 0.5DV(3/N) was used as the coefficient c.

Referring to the bar chart in FIG. 15A, it can be under-
stood that in the cases (ii) to (vi), compared with the case (i),
the mean value of the energy B, is low and a solution
closer to the optimal solution is likely to be obtained.
Referring to the bar chart in FIG. 15B, it can be understood
that the parallel calculation with a multiprocessor configu-
ration significantly reduces the calculation time.

Implementation Example to GPUs

The calculation of the algorithms described above may be
performed using a graphics processing unit (GPU). FIG. 16
schematically illustrates an example of a configuration using
GPUs. FIG. 16 illustrates a plurality of GPUs connected to
each other through a high-speed link. Each GPU is equipped
with a plurality of cores that can access a shared memory. In
the configuration example in FIG. 16, the GPUs are con-
nected through a high-speed link to form a GPU cluster. For
example, when a GPU is mounted on each calculation server
3 in FIG. 1, the high-speed link corresponds to the inter-
connection between the calculation servers 3 that is formed
with the cables 4 (4a to 4¢) and the switch 5. In the
configuration example in FIG. 16, a plurality of GPUs are
used, but parallel calculation can be executed even with a
single GPU. That is, each GPU in FIG. 16 can execute the
calculation corresponding to a calculation node in FIG. 14.
That is, the processor in the information processing device
(calculation server 3) may be a core of a graphic processing
unit (GPU).

In the GPU, the variables x, and y,, and the tensor J* can
be defined as device variables. The GPU can concurrently
calculate the product of the tensor J* and the first vector (x,,
Xs, - - . 5 Xp) Or the fourth vector (s, s,, . . ., s5) necessary
for updating the variable y, by the matrix-vector product
function. The product of tensor and vector can be obtained
by repeatedly executing product computation of matrix and
vector. For the calculation of the first vector (X, X,, . . . , Xy)
and the part other than the product-sum operation of the
second vector (Y, Va, - - - ,), €ach thread executes the
updating process for the i element (x,, y,), thereby achiev-
ing parallelization of the process.

FIG. 17A and FIG. 17B illustrate the result of solving the
fully connected Ising problem of N=3600 using a GPU. The
bar chart in FIG. 17 A illustrates the mean value of the energy
B/ging When the fully connected Ising problem was solved 10
times using each algorithm. The bar chart in FIG. 17B
illustrates the mean value of calculation time in seconds
when the fully connected Ising problem was solved 10 times
using each algorithm.

The bar charts in FIG. 17A and FIG. 17B illustrate the
following four cases from left to right: a case where the
algorithm in Equation (8) was used; a case where the first

10

15

20

25

30

35

40

45

55

60

65

26

algorithm in Equation (9) was used; a case where the second
algorithm in Equation (11) was used; and a case where the
third algorithm in Equation (13) was used. In the case where
the algorithm in Equation (8) was used, in the case where the
first algorithm in Equation (9) was used, and in the case
where the second algorithm in Equation (11) was used, a
constant 0.5DV(3/N) was used as the coefficient c. In all of
the results, the total number of time steps is 10000. For each
algorithm, the left side shows the result with a PC cluster
with one calculation node, and the right side shows the result
of using one GPU.

Referring to the bar chart in FIG. 17A, it can be under-
stood that when the algorithms in Equation (9), Equation
(11), and Equation (13) were used, compared with when the
algorithm in Equation (8) was used, the mean value of the
energy B, is low and a solution closer to the optimal
solution is likely to be obtained. Referring to the bar chart
in FIG. 17B, it can be understood that parallel calculation by
a GPU can significantly reduce the calculation time, com-
pared with the PC cluster with one calculation node. This is
because the degree of parallelism of calculation with a GPU
is higher than that of a common CPU.

First Example of Process Flow of First Algorithm

FIG. 18 illustrates a first example of a process flow of the
information processing system 100 when the first algorithm
is executed. When an optimization problem is solved using
the first algorithm given by Equation (9) and Equation (10),
the information processing system 100 executes a process,
for example, through the flow illustrated in FIG. 18.

First of all, at S101, the updating unit 50 sets parameters.
Specifically, the updating unit 50 sets J, which is a matrix
including NxN coupling coefficients, and h, which is an
array including local magnetic field coefficients representing
N local magnetic fields. When a HOBO problem is to be
solved, the updating unit 50 sets J*”, which is an n™ rank
tensor including N” action coefficients, instead of J and h. In
this case, n denotes the order of a variable of the objective
function of the HOBO problem. The updating unit 50 further
sets the coefficient D, the coeflicient ¢, At denoting the unit
time, T denoting the end time, the function p(t), and the
function a(t), where p(t) and a(t) are the increasing function
that is O at t=initial time (for example, 0) and 1 at t=end time
(T). The updating unit 50 sets J and h in accordance with
information received from a user. The updating unit 50 may
set D, ¢, At, T, p(t), and a(t) in accordance with parameters
received from a user or may set parameters that are deter-
mined in advance and cannot be changed.

Subsequently, at S102, the updating unit 50 initializes
variables. Specifically, the updating unit 50 initializes t that
is a variable denoting time to the initial time (for example,
0). Furthermore, the updating unit 50 substitutes an initial
value received from the user, a predetermined fixed value, or
a random number into each of N first variables (x,(t) to
X,(1)) and N second variables (y; to yu).

Subsequently, the updating unit 50 repeats the loop pro-
cess between S103 and S118 until t becomes greater than T.
In one loop process, the updating unit 50 calculates N first
variables (X, (t+At) to x,{t+At)) at target time (t+At), based
on N second variables (v, (t) to y,(t)) at the previous time (t).
In one loop process, the updating unit 50 calculates N
second variables (v, (t+At) to y,{t+At)) at target time (t+At),
based on N first variables (x,(t) to x,(t)) at the previous time
).

The previous time (t) is the time a unit time (At) before the
target time (t+At). That is, the updating unit 50 repeats the
loop process between S103 and S118 to sequentially update

US 11,966,450 B2

27

N first variables (x,(t) to x,(t)) and N second variables (y, (t)
to y,(t)) for each unit time (At) from the initial time (t=0) to
the end time (t=T).

At §104, the updating unit 50 calculates the index value
(X..) representing the average of magnitudes of N first
variables (x,(t) to x,(t)) at the previous time (t). For
example, the index value (x,,,) is the root mean square or
the average absolute value of N first variables (x,(t) to X,(t))
at the previous time. For example, when the root mean
square is calculated, the updating unit 50 executes compu-
tation given by Equation (21-1). For example, when the
average absolute value is calculated, the updating unit 50
executes computation given by Equation (21-2). If the index
value (x,,.) is not used at S109 described later, the updating
unit 50 does not execute the process at S104.

1 N
2
Xave = | = E x°(0);
N£&

1 N
Fave = Fgmzm

(21-1)

(21-2)

Subsequently, the updating unit 50 repeats the loop pro-
cess between S105 and S111 while incrementing i by one
from i=1 to i=N, where i is an integer of 1 to N and an index
representing the process target of N elements. Each of N
elements is associated with the first variable (x,(t)) and the
second variable (y/(t)). In the loop process between S105
and S111, the updating unit 50 executes the process for the
i element of N elements as a target element.

At S106, the updating unit 50 calculates the first variable
(x,(t+At)) of a target element at the target time (t+At) by
adding a value obtained by multiplying the second variable
(y{t)) of the target element at the previous time (t) by the
predetermined constant (D) and the unit time (At), to the first
variable (x,(t)) of the target element at the previous time (t).
Specifically, the updating unit 50 calculates Equation (22).

X {HAD=(O+DY DAL (22)

Subsequently, at S107, the updating unit 50 determines
whether the absolute value (Ix,(t+At)!) of the first variable of
the target element at the target time (t+At) is greater than a
predetermined second value (+1). In the present example,
the second value is +1. The second value is the unit amount
of the first variable (x,(t)) that is a continuous quantity. The
updating unit 50 proceeds to S111 if the absolute value
(Ix(t+At)l) of the first variable of the target element at the
target time (t+At) is equal to or smaller than the second value
(No at S107). The updating unit 50 proceeds to S108 if the
absolute value (Ix(t+At)!) of the first variable of the target
element at the target time (t+At) is greater than the second
value.

Subsequently, at S108, the updating unit 50 generates a
random number (r) that occurs with a uniform probability in
a prescribed interval within a range equal to or greater than
0 and equal to or smaller than the second value (for example,
+1). When a random number (r) is not used at S109
described later, the updating unit 50 does not execute the
process at S108.

Subsequently, at S109, the updating unit 50 performs a
constraining process for the first variable (x,(t+At)) of the
target element at the target time (t+At). Specifically, the

20

25

30

35

40

45

50

55

60

65

28

updating unit 50 changes the first variable (x,(t+At)) of the
target element at the target time (t+At) to a value whose
absolute value is equal to or greater than O and equal to or
smaller than the second value, without changing its sign. In
the present example, when the first variable (x(t+At)) of the
target element at the target time (t+At) is smaller than —1 that
is the first value (a), the updating unit 50 changes the first
variable (x,(t+At)) to a value equal to or greater than —1 and
equal to or smaller than O that is a threshold value (v).
Furthermore, when the first variable (x,(t+At)) is greater than
+1 that is the second value (b), the updating unit 50 changes
the first variable (x,(t+At)) to a value equal to or greater than
0 and equal to or smaller than +1.

For example, when the first variable (x,(t+At)) is smaller
than —1, the updating unit 50 may change the first variable
(x(t+At)) to a predetermined value equal to or greater than
—1 and equal to or smaller than 0 or to the random number
(r) generated at S108. Furthermore, when the first variable
(x,(t+At)) is greater than +1, the updating unit 50 may
change the first variable (x,(t+At)) to a predetermined value
equal to or greater than 0 and equal to or smaller than +1 or
to a value obtained by subtracting the random number (r)
generated at S108 from 0.

For example, when the first variable (x,(t+At)) is smaller
than —1, the updating unit 50 may change the first variable
(x(t+At)) to a value obtained by subtracting the index value
(X, calculated at S104 from 0. Furthermore, when the first
variable (x,(t+At)) is greater than +1, the updating unit 50
may change the first variable (x(t+At)) to a value obtained
by adding the index value (x,,,) to 0.

For example, when the first variable (x,(t+At)) is smaller
than —1, the updating unit 50 may change the first variable
(x(t+At)) to a value, determined by the random number (r)
calculated at S108, equal to or greater than —1 and equal to
or greater than a value obtained by subtracting the index
value (x,,.) from 0. Furthermore, when the first variable
(x,(t+At)) is greater than +1, the updating unit 50 may
change the first variable (x(t+At)) to a value, determined by
the random number (r) calculated at S108, equal to or greater
than a value obtained by adding the index value (x,,.) to 0
and equal to or smaller than +1. In this case, the updating
module calculates, for example, Equation (23).

KA{HAD=(rx 4 H1—r)sgn{x(tH+AD} (23)

When the first variable (x,(t+At)) is smaller than —1, the
updating unit 50 may change the first variable (x,(t+At)) to
a value obtained by subtracting the increasing coefficient
from 0. The increasing function may be changed to the
increasing coefficient that increases from 0 to +1 or smaller
with time from the initial time (t=0) to the end time (t=T).
In this case, the updating unit 50 calculates the increasing
coefficient by a linear function that is O at the initial time
(t=0) and is the second value (for example, +1) at the end
time (t=T), where time (t) is a variable, or the square root of
the linear function. Furthermore, when the first variable
(x(t+At)) is greater than +1, the updating unit 50 may
change the first variable (x,(t+At)) to a value obtained by
adding the increasing coefficient to 0.

When the first variable (x,(t+At)) is smaller than —1, the
updating unit 50 may change the first variable (x,(t+At)) to
a value, determined by the random number (r) generated at
S$108, equal to or greater than —1 and equal to or smaller than
a value obtained by adding the increasing coefficient to 0.
Furthermore, when the first variable (x,(t+At)) is greater than
+1, the updating unit 50 may change the first variable
(x,(t+At)) to a value, determined by the random number (r)
generated at S108, equal to or greater than a value obtained

US 11,966,450 B2

29

by adding the increasing coefficient to 0 and equal to or
smaller than +1. In this case, the updating unit 50 calculates
the first variable (x;(t+At)) of the target element at the target
time (t+At), by an equation obtained by replacing the index
value (X,,.) included in Equation (23) with the increasing
coefficient.

Subsequently, at S110, the updating unit 50 performs a
constraining process for the second variable (y(t)) of the
target element at the previous time (t). Specifically, the
updating unit 50 changes the second variable (y,(t)) of the
target element at the previous time (t) to 0, a predetermined
value, or a value in accordance with a random number.
When the updating unit 50 changes to a value in accordance
with a random number, for example, the updating unit 50
changes the second variable (y,(t)) of the target element at
the previous time (t) to a random number that occurs with a
uniform probability within a predetermined range (for
example, equal to or greater than —0.1 and equal to or
smaller than +0.1). When S110 is finished, the updating unit
50 proceeds to S111.

The updating unit 50 executes the following process by
executing the loop process between S105 and S111 as
described above N times. That is, for each of N elements, the
updating unit 50 updates the first variable (x,(t+At)) of the
target element at the target time (t+At), based on the second
variable (yt)) of the target element at the previous time (t).
Furthermore, for each of N elements, when the absolute
value (Ix,(t+At)!) of the first variable of the target element at
the target time (t+At) is greater than the second value, the
updating unit 50 changes the absolute value of the first
variable (x,(t+At)) of the target element at the target time
(t+At) to equal to or greater than 0 and equal to or smaller
than the second value, without changing its sign. Further-
more, for each of N elements, when the absolute value
(Ix(t+At)l) of the first variable of the target element at the
target time (t+At) is greater than the second value, the
updating unit 50 changes the second variable (y,(t)) of the
target element at the previous time (t) to 0, a predetermined
value, or a value in accordance with a random number.

When the loop process between S105 and S111 is
executed N times, the updating unit 50 proceeds to S112.

Subsequently, the updating unit 50 repeats the loop pro-
cess between S112 and S116 while incrementing i by one
from i=1 to i=N. In the loop process between S112 and S116,
the updating unit 50 executes the process for the i element
of N elements as a target element.

At S113, the updating unit 50 calculates an update value
(z,(t+At)), based on the first variables (X, (t+At) to X, (t+At))
of N elements at the target time (t+At) and a predetermined
action coefficient for each of sets of a target element and N
elements. In the case of a QUBO problem, the action
coefficient is the coupling coefficient included in J and the
local magnetic field coefficient included in h. In the case of
a HOBO problem, the action coefficient is included in J*.

In the case of a QUBO problem, the updating unit 50
calculates Equation (24).

N 24)
Zi(e + AD) = —ha(t + Af) — Zj,v,jx,v(z +AD
=

In the case of a HOBO problem, the updating unit 50
calculates Equation (25).

20

35

40

45

55

60

65

30

(25)
z;(t+ A =

N N N
IOt + A0 + ZJ,{?xj(z +AD+ ZZJ,@?W(: FAD(E+AD ...

1 J=li=1

Subsequently, at S114, the updating unit 50 calculates
external force (f(t+At)) by multiplying the update value
(z(t+At)) at the target time (t+At) by the coefficient (c).
Specifically, the updating unit 50 calculates Equation (26).

FtHAD=cCz,(t+A1) (26)

Subsequently, at S115, the updating unit 50 calculates the
second variable (y,(t+At)) of the target element at the target
time (t+At) by adding a value obtained by multiplying a
value based on the external force (f(t+At)) and the first
variable (x,(t+At)) of the target element at the target time
(t+At) by the unit time (At), to the second variable (y,(t)) of
the target element at the previous time (t). Specifically, the
updating unit 50 calculates Equation (27).

Vi{tHAD=y (DA {=D+p(t+AD) Yo, (tHADH(HAD] At 27

The updating unit 50 executes the following process by
executing the loop process between S112 and S116 as
described above N times. That is, for each of N elements, the
updating unit 50 updates the second variable (y(t+At)) at the
target time (t+At), based on the first variables (x,(t+At) to
x{(t+At)) of N elements at the target time (t+At).

When the loop process between S112 and S116 is
executed N times, the updating unit 50 proceeds to S117. At
S117, the updating unit 50 updates the target time (t+At) by
adding the unit time (At) to the previous time (t). At S118,
the updating unit 50 repeats the process from S104 to S117
until t exceeds the end time (T). When t becomes greater
than the end time (T), the updating unit 50 terminates this
flow.

Then, for each of N elements, the updating unit 50
calculates the value of the corresponding spin, in accordance
with the sign of the first variable (x,(T)) at the end time
(t=T). For example, when the first variable (x,(T)) at the end
time (t=T) has a negative sign, the updating unit 50 sets the
corresponding spin to —1, and when positive, sets the
corresponding spin to +1. Then, the updating unit 50 outputs
the calculated values of a plurality of spins as a solution to
the combinatorial optimization problem.

By executing the process in accordance with the flowchart
illustrated in FIG. 18, the updating unit 50 updates, for each
of N elements, the first variable (x(t+At)) and the second
variable (y,(t+At)) for each unit time (At) from the initial
time (t=0) to the end time (t=T), sequentially for each unit
time and alternately between the first variable (x (t+At)) and
the second variable (y,(t+At)). By executing the process in
accordance with the flowchart in FIG. 18, the updating unit
50 calculates the first variable (x,(t+At)) at the target time
(t+At) and thereafter calculates the second variable (y,(t+At))
at the target time (t+At), for each unit time. Thus, the
updating unit 50 can calculate N first variables (x,(t) to
x,(t)) and N second variables (y,(t) to y,(t)) at the end time
(t=T) by executing computation in accordance with the first
algorithm using the symplectic Euler method.

Second Example of Process Flow of First Algorithm

FIG. 19 illustrates a second example of a process flow of
the information processing system 100 when the first algo-
rithm is executed. In the flowchart in FIG. 19, the step of the
same process as the process in the flowchart illustrated in
FIG. 18 is denoted by the same step number.

When an optimization problem is solved using the first
algorithm given by Equation (9) and Equation (10), the

US 11,966,450 B2

3

information processing system 100 may execute a process,
for example, through the flow illustrated in FIG. 19.

First of all, at S101 and S102, the updating unit 50
executes a process similar to that in the first example
illustrated in FIG. 18. Subsequently, the updating unit 50
executes the loop process between S103 and S118, similarly
to the first example illustrated in FIG. 18.

At S104, the updating unit 50 executes a process similar
to that in the first example illustrated in FIG. 18. The
updating unit 50 may execute the process at S104 immedi-
ately before S126.

Subsequently, the updating unit 50 repeats the loop pro-
cess between S121 and S125 while incrementing i by one
from i=1 to i=N. In the loop process between S121 and
$125, the updating unit 50 executes the process for the i
element of N elements as a target element.

At S122, the updating unit 50 calculates the update value
(z(t)), based on the first variables (x,(t) to X,(t)) of N
elements at the previous time (t) and a predetermined action
coefficient for each of sets of a target element and N
elements.

In the case of a QUBO problem, the updating unit 50
calculates Equation (28).

N (28)
20 = —he®) =) i

J=l

In the case of a HOBO problem, the updating unit 50
calculates Equation (29).

N N N @29
20 = TV + ZJ,{?xj(z)+ZZJ,{§ka LOBD T .
=1

J=1 k=1

Subsequently, at S123, the updating unit 50 calculates the
external force (f,(t)) at the previous time (t) by multiplying
the update value (z(t)) at the previous time (t) by the
coefficient (c). Specifically, the updating unit 50 calculates
Equation (30).

Sil)=—cz(0)

Subsequently, at S124, the updating unit 50 calculates the
second variable (y,(t+At)) of the target element at the target
time (t+At) by adding a value obtained by multiplying a
value based on the external force (f,(t)) and the first variable
(x(t)) of the target element at the previous time (t) by the
unit time (At), to the second variable (y,(t)) of the target
element at the previous time (t). Specifically, the updating
unit 50 calculates Equation (31).

30

YA AD=y O+ {=D4p(0) Jx(DHf (D] At €2

The updating unit 50 executes the following process by
executing the loop process between S121 and S125 as
described above N times. That is, for each of N elements, the
updating unit 50 updates the second variable (y;(t+At)) at the
target time (t+At), based on the first variables (X, (t) to X,(t))
of N elements at the previous time (t).

When the loop process between S121 and S125 is
executed N times, the updating unit 50 proceeds to S126.

Subsequently, the updating unit 50 repeats the loop pro-
cess between S126 and S129 while incrementing i by one
from i=1 to i=N. In the loop process between S126 and
$129, the updating unit 50 executes the process for the i
element of N elements as a target element.

20

25

30

35

40

45

50

55

60

65

32

At §127, the updating unit 50 calculates the first variable
(x(t+At)) of the target element at the target time (t+At) by
adding a value obtained by multiplying the second variable
(v,(t+At)) of the target element at the target time (t+At) by
the predetermined constant (D) and the unit time (At), to the
first variable (x(t)) of the target element at the previous time
(t). Specifically, the updating unit 50 calculates Equation
(32).

(AN =Dy HADAL (32)

Subsequently, at S107, the updating unit 50 executes a
process similar to that in the first example illustrated in FIG.
18. The updating unit 50 proceeds to S129 if the absolute
value (Ix,(t+At)l) of the first variable of the target element at
the target time (t+At) is equal to or smaller than the second
value (No at S107). The updating unit 50 proceeds to S108
if the absolute value (Ix,(t+At)l) of the first variable of the
target element at the target time (t+At) is greater than the
second value.

Subsequently, at S108 and S109, the updating unit 50
executes a process similar to that in the first example
illustrated in FIG. 18.

Subsequently, at S128, the updating unit 50 performs a
constraining process for the second variable (y,(t+At)) of the
target element at the target time (t+At). Specifically, the
updating unit 50 changes the second variable (y,(t+At)) of
the target element at the target time (t+At) to 0, a predeter-
mined value, or a value in accordance with a random
number. When changing to a value in accordance with a
random number, for example, the updating unit 50 changes
the second variable (y,(t+At)) of the target element at the
target time (t+At) to a random number that occurs with a
uniform probability within a predetermined range (for
example, equal to or greater than —0.1 and equal to or
smaller than +0.1). When S128 is finished, the updating unit
50 proceeds to S129.

The updating unit 50 executes the following process by
executing the loop process between S126 and S129 as
described above N times. That is, for each of N elements, the
updating unit 50 updates the first variable (x,(t+At)) of the
target element at the target time (t+At), based on the second
variable (y;(t+At)) of the target element at the target time
(t+At). Furthermore, for each of N elements, when the
absolute value (Ix(t+At)!) of the first variable of the target
element at the target time (t+At) is greater than the second
value, the updating unit 50 changes the absolute value of the
first variable (x,(t+At)) of the target element at the target time
(t+At) to equal to or greater than 0 and equal to or smaller
than the second value, without changing its sign. Further-
more, for each of N elements, when the absolute value
(Ix(t+Ab)!) of the first variable of the target element at the
target time (t+At) is greater than the second value, the
updating unit 50 changes the second variable (y,(t+At)) of
the target element at the target time (t+At) to 0, a predeter-
mined value, or a value in accordance with a random
number.

When the loop process between S126 and S129 is
executed N times, the updating unit 50 proceeds to S117. At
S117, the updating unit 50 executes a process similar to that
in the first example illustrated in FIG. 18. At S118, the
updating unit 50 repeats the process from S104 to S117 until
t exceeds the end time (T). When t becomes greater than the
end time (T), the updating unit 50 terminates this flow. Then,
the updating unit 50 calculates, for each of N elements, the
value of the corresponding spin, in accordance with the sign
of the first variable (x,(T)) at the end time (t=T), and outputs

US 11,966,450 B2

33

the calculated values of the spins as a solution to the
combinatorial optimization problem.

By executing the process in accordance with the flowchart
illustrated in FIG. 19, for each of N elements, the updating
unit 50 updates the first variable (x,(t+At)) and the second
variable (y,(t+At)) for each unit time (At) from the initial
time (t=0) to the end time (t=T), sequentially for each unit
time and alternately between the first variable (x,(t+At)) and
the second variable (y,(t+At)). By executing the process in
accordance with the flowchart illustrated in FIG. 19, the
updating unit 50 calculates the second variable (y,(t+At)) at
the target time (t+At) and thereafter calculates the first
variable (x,(t+At)) at the target time (t+At), for each unit
time. Thus, the updating unit 50 can calculate N first
variables (x;(t) to x,(t)) and N second variables (y,(t) to
ya{(t)) at the end time (t=T) by executing computation in
accordance with the first algorithm using the symplectic
Euler method.

First Example of Process Flow of Second Algorithm

FIG. 20 illustrates a first example of a process flow of the
information processing system 100 when the second algo-
rithm is executed.

When an optimization problem is solved using the second
algorithm given by Equation (11) and Equation (12), the
information processing system 100 executes a process, for
example, through the flow illustrated in FIG. 20. In the
flowchart in FIG. 20, the step of the same process as the
process in the flowchart illustrated in FIG. 18 is denoted by
the same step number. The differences from when the first
algorithm is executed through the flow illustrated in FIG. 18
will be described below.

In the process in FIG. 20, a process at S201 is added
between S111 and S112. At S201, the updating unit 50
calculates, for each of N elements, the sign (s,(t+At)) of the
first variable (x,(t+At)) at the target time (t+At). Specifically,
for each of j=1 to J=N, the updating unit 50 calculates
Equation (33).

s (HAN=sngl(x(+A1)] (33)

The updating unit 50 executes S202 instead of S113. At
S202, the updating unit 50 calculates an update value
(z,(t+At)), based on the signs (s,(t+At) to s,(t+At)) of the
first variables of N elements at the target time (t+At), and a
predetermined action coefficient for each of sets of a target
element and N elements.

In the case of a QUBO problem, the updating unit 50
calculates Equation (34).

N (34)
Zi(e + AD) = —ha(t + Af) — Zji,jsj(z +AD
=

In the case of a HOBO problem, the updating unit 50
calculates Equation (35).

(35)
zi(t+ A =

N N N
TPt + A+ 3 IDsie+ A+ 3T I s+ Ay A+ ..
J=l Jj=lk=1

By executing the process in accordance with the flowchart
illustrated in FIG. 20, the updating unit 50 can calculate N
first variables (x,(t) to x,(t)) and N second variables (y,(t)

20

25

30

35

40

45

50

55

60

65

34

to y,(t)) at the end time (t=T) by executing computation in
accordance with the second algorithm using the symplectic
Euler method.

Second Example of Process Flow of Second Algorithm

FIG. 21 illustrates a second example of a process flow of
the information processing system 100 when the second
algorithm is executed.

When an optimization problem is solved using the second
algorithm given by Equation (11) and Equation (12), the
information processing system 100 also can execute a pro-
cess, for example, through the flow illustrated in FIG. 21. In
the flowchart in FIG. 21, the step of the same process as the
process in the flowchart illustrated in FIG. 19 is denoted by
the same step number. The differences from when the first
algorithm is executed through the flow illustrated in FIG. 19
will be described below.

In the process in FIG. 21, a process at S211 is added
before S121. S211 may be added before S104.

At 8211, the updating unit 50 calculates, for each of N
elements, the sign (s{t)) of the first variable (x/(t)) at the
previous time (t). The updating unit 50 calculates, for each
of N elements, the sign (s(t)) of the first variable (x(t)) at the
previous time (t) by computing Equation (36). Specifically,
for each of j=1 to J=N, the updating unit 50 calculates
Equation (36).

s(D=sng[(x/n)] (36)

The updating unit 50 executes S212 instead of S122. At
$212, the updating unit 50 calculates the update value (z,(t)),
based on the signs (s,(t) to s,(t)) of the first variables of N
elements at the previous time (t) and a predetermined action
coefficient for each of sets of a target element and N
elements.

In the case of a QUBO problem, the updating unit 50
calculates Equation (37).

N 37
20 = —he®) =) Jisi(0)

J=l

In the case of a HOBO problem, the updating unit 50
calculates Equation (38).

N N N (38)
20 = TVa@) + ZJ,{?s j(z)+ZZJ,{§fks LOSO

=1 =1 k=1

By executing the process in accordance with the flowchart
illustrated in FIG. 21, the updating unit 50 can calculate N
first variables (x,(t) to x,(t)) and N second variables (y, (t)
to y,(t)) at the end time (t=T) by executing computation in
accordance with the second algorithm using the symplectic
Euler method.

First Example of Process Flow of Third Algorithm

FIG. 22 illustrates a first example of a process flow of the
information processing system 100 when the third algorithm
is executed.

When an optimization problem is solved using the third
algorithm given by Equation (13) and Equation (14), the
information processing system 100 executes a process, for
example, through the flow illustrated in FIG. 22. In the
flowchart in FIG. 22, the step of the same process as the
process in the flowchart illustrated in FIG. 18 is denoted by

US 11,966,450 B2

35

the same step number. The differences from when the first
algorithm is executed through the flow illustrated in FIG. 18
will be described below.

The updating unit 50 executes S301 instead of S114. At
S301, the updating unit 50 calculates the external force
(f;(t+At)) at the target time (t+At) by multiplying the sign of
the update value (z,(t+At)) at the target time (t+At) by a
coeflicient determined by a predetermined function. Specifi-
cally, the updating unit 50 calculates Equation (39).

Sit+A)=—g(t+Al)sgn[z,(t+AD)] 39)
Here, g(t+At) is given by Equation (40).
g+AD={D-p(t+AD) Wp(r+AT) (40)

By executing the process in accordance with the flowchart
illustrated in FIG. 22, the updating unit 50 can calculate N
first variables (x,(t) to x,(t)) and N second variables (y,(t)
to y(1)) at the end time (t=T) by executing computation in
accordance with the third algorithm using the symplectic
Euler method.

Second Example of Process Flow of Third Algorithm

FIG. 23 illustrates a second example of a process flow of
the information processing system 100 when the third algo-
rithm is executed.

When an optimization problem is solved using the third
algorithm given by Equation (13) and Equation (14), the
information processing system 100 also can execute a pro-
cess, for example, through the flow illustrated in FIG. 23. In
the flowchart in FIG. 23, the step of the same process as the
process in the flowchart illustrated in FIG. 19 is denoted by
the same step number. The differences from when the first
algorithm is executed through the flow illustrated in FIG. 19
will be described below.

The updating unit 50 executes S311 instead of S123. At
S311, the updating unit 50 calculates the external force (f(t))
at the previous time (t) by multiplying the sign of the update
value (z,(t)) at the previous time (t) by a coefficient deter-
mined by a predetermined function. Specifically, the updat-
ing unit 50 calculates the external force (f(t)) at the previous
time (t) by computing Equation (41).

SiH=-g(B)sgnlz,(9)]
Here, g(t) is given by Equation (42).

gO={D-pO WPl

By executing the process in accordance with the flowchart
illustrated in FIG. 23, the updating unit 50 can calculate N
first variables (x,(t) to x,(t)) and N second variables (y,(t)
to y,(1)) at the end time (t=T) by executing computation in
accordance with the third algorithm using the symplectic
Euler method.

Implementation of Circuit in Semiconductor Device

FIG. 24 is a diagram illustrating a configuration of a
computing device 60 that calculates a solution to a combi-
natorial optimization problem by executing the first algo-
rithm in Equation (9), the second algorithm in Equation (11),
or the third algorithm in Equation (13). The computing
device 60 is, for example, an FPGA, a gate array, or an
application-specific integrated circuit, and implemented in
the form of a circuit in a semiconductor device.

The computing device 60 includes a computing circuit 61,
an input circuit 62, an output circuit 63, and a setting circuit
64.

The computing circuit 61 increments t that is a parameter
representing time by unit time (At) from the initial time (for
example, 0) to the end time. The computing circuit 61
calculates the first variable (x,) and the second variable (y,)

@D

“42)

5

10

15

20

25

30

35

40

45

50

55

60

65

36

associated with each of N elements (virtual particles). The
first variable (x,) denotes the position of a corresponding
element (virtual particle). The second variable (y,) denotes
the momentum of a corresponding element (virtual particle).

The computing circuit 61 calculates, for each unit time
from the initial time to the end time, N first variables (x;) and
N second variables (y,), sequentially for each unit time, and
alternately between the first variable (x,) and the second
variable (y,). More specifically, the computing circuit 61
executes computation represented by the algorithm of Equa-
tion (9), Equation (11), or Equation (13), for each unit time
from the initial time to the end time. Then, the computing
circuit 61 calculates a solution to a combinatorial optimiza-
tion problem by binarizing the values of N first variables (x,)
(that is, the respective positions of N virtual particles) at the
end time.

Prior to the computation process by the computing circuit
61, the input circuit 62 acquires the respective initial values
of N first variables (x;) and N second variables (y,) (that is,
the respective initial positions and initial momentums of a
plurality of virtual particles) at the initial time and applies
the acquired initial values to the computing circuit 61. After
the computation process by the computing circuit 61 is
finished, the output circuit 63 acquires a solution to a
combinatorial optimization problem from the computing
circuit 61. Then, the output circuit 63 outputs the acquired
solution. Prior to the computation process by the computing
circuit 61, the setting circuit 64 sets parameters for the
computing circuit 61.

Computing Circuit 61 Executing Process of First Algo-
rithm

FIG. 25 is a diagram illustrating a block configuration of
the computing circuit 61 executing the first algorithm in
Equation (9). The computing circuit 61 is configured as
illustrated in FIG. 25 when the first algorithm in Equation
(9) is executed. In the description of FIG. 25, the previous
time is denoted by t,;. The target time is denoted by t,. This
is applicable to FIG. 26 and FIG. 27.

The computing circuit 61 executing the first algorithm in
Equation (9) includes an X memory 66, a Y memory 67, an
action computing circuit 68, an updating circuit 69, and a
control circuit 70.

The X memory 66 stores N first variables (x,(t,)) at the
previous time (t;). The N first variables (x,(t;)) at the
previous time (t,) stored in the X memory 66 are overwritten
with updating of the time. That is, when N first variables
(x,(1,)) at the target time (t,) are calculated, the calculated N
first variables (x,(t,)) at the target time (t,) are written into
the X memory 66 as new N first variables (x,(t;)) at the
previous time (t,). Prior to computation, the setting circuit
64 writes N first variables x; at the initial time into the X
memory 66.

The Y memory 67 stores N second variables (y,(t,)) at the
previous time (t,). N second variables (y,(t,)) at the previous
time (t,) stored in the Y memory 67 are overwritten with
updating of the time. That is, when N second variables
(v,(t,)) at the target time (t,) are calculated, the calculated N
second variables (y,(t,)) at the target time (t,) are written
into the Y memory 67 as new N second variables (y,(t,)) at
the previous time (t;). Prior to computation, the setting
circuit 64 writes N second variables y, at the initial time into
the Y memory 67.

The action computing circuit 68 acquires N first variables
(x(t,)) at the previous time (t,) from the X memory 66.
Then, the action computing circuit 68 calculates, for each of
N elements, the update value (z,(t,)) at the previous time (t,).

US 11,966,450 B2

37

The updating circuit 69 acquires, for each of N elements,
the update value (z(t,)) at the previous time (t,) from the
action computing circuit 68. Furthermore, for each of N
elements, the updating circuit 69 acquires the first variable
(x,(t,)) at the previous time (t,) from the X memory 66 and
acquires the second variable (y(t,)) at the previous time (t,)
from the Y memory 67. Then, for each of N elements, the
updating circuit 69 calculates the first variable (x,(t,)) at the
target time (t,) and overwrites the first variable (x,(t)) at the
previous time (t,) stored in the X memory 66. In addition,
for each of N elements, the updating circuit 69 calculates the
second variable (y(t,)) at the target time (t,) and overwrites
the second variable (y,(t,)) at the previous time (t,) stored in
the Y memory 67.

The control circuit 70 sequentially updates the target time
(t,) for each unit time (At) to allow the action computing
circuit 68 and the updating circuit 69 to sequentially calcu-
late the first variable (x,(t)) and the second variable (y(t)) for
each unit time (At).

Furthermore, the control circuit 70 generates an index (i)
by incrementing from 1 to N and allows the action comput-
ing circuit 68 and the updating circuit 69 to calculate the first
variable (x(t,)) at the target time (t,) and the second variable
(y,(t,)) at the target time (t,) corresponding to each of N
elements, in the order of index. The action computing circuit
68 and the updating circuit 69 may concurrently calculate a
plurality of first variables (x(t,)) and a plurality of second
variables (y,(t,)) corresponding to a plurality of indices.

The action computing circuit 68 includes a J memory 71,
an H memory 72, a matrix computing circuit 73, an a
function circuit 74, and a first adder circuit 75.

The J memory 71 stores an NxN matrix including (NXN)
coupling coefficients. J; ; denotes the coupling coefficient at
the i"* row and the j” column included in the matrix. J,;
denotes the coupling coefficient of the i” spin and j** spin in
the [sing model representing a combinatorial optimization
problem. Prior to computation, the setting circuit 64 writes
a matrix generated by a user in advance into the J memory
71.

The H memory 72 stores an array including N local
magnetic field coefficients. h, denotes the i local magnetic
field coefficient included in the array. h; denotes a local
magnetic field acting on the i”* spin in the Ising model
representing a combinatorial optimization problem. Prior to
computation, the setting circuit 64 writes an array generated
by a user in advance into the H memory 72.

The matrix computing circuit 73 acquires N first variables
(x(t,)) at the previous time (t,) from the X memory 66. The
matrix computing circuit 73 acquires, for each of N ele-
ments, N coupling coefficients J, ; included in a target row
from the J memory 71. Then, the matrix computing circuit
73 executes, for each of N elements, a product-sum opera-
tion of N first variables (x,(t,)) at the previous time (t,) and
N coupling coefficients J, ; included in the target row.

The o function circuit 74 acquires, for each of N ele-
ments, a target local magnetic field coefficient h, from the H
memory 72. The o function circuit 74 executes, for each of
N elements, the computation {—h,0(t,)}, where a(t) is a
preset function.

The first adder circuit 75 adds, for each of N elements, the
result of the product-sum operation by the matrix computing
circuit 73 to the computation result by the o function circuit
74. With this computation, the first adder circuit 75 outputs,
for each of N elements, the update value (z(t,)) at the
previous time (t,) given by Equation (43).

20

25

30

35

40

45

50

55

60

65

38

N 43)
Zi(t) = —hat) = D i)

J=l

The updating circuit 69 includes a first multiplier circuit
79, a P function circuit 80, a second multiplier circuit 81, a
second adder circuit 82, a third multiplier circuit 83, a third
adder circuit 84, a before-constraint Y memory 85, a fourth
multiplier circuit 86, a fourth adder circuit 87, an averaging
circuit 90, a determination circuit 91, an X constraint circuit
92, and a Y constraint circuit 93.

The first multiplier circuit 79 multiplies, for each of N
elements, the update value (z(t,)) at the previous time (t,)
by the coefficient —c. The P function circuit 80 executes, for
each of N elements, computation of {—D+p(t,)}. The second
multiplier circuit 81 acquires, for each of N elements, the
first variable (x(t,)) at the previous time (t;) from the X
memory 66. Then, the second multiplier circuit 81 multi-
plies, for each of N elements, the first variable (x,(t,)) at the
previous time (t;) by the computation result in the P function
circuit 80.

The second adder circuit 82 adds, for each of N elements,
the computation result in the first multiplier circuit 79 to the
computation result in the second multiplier circuit 81. The
third multiplier circuit 83 multiplies the computation result
in the second adder circuit 82 by the unit time At.

The third adder circuit 84 acquires, for each of N ele-
ments, the second variable (y(t,)) at the previous time (t,)
from the Y memory 67. The third adder circuit 84 adds, for
each of N elements, the second variable (y(t,)) at the
previous time (t,) to the computation result in the third
multiplier circuit 83. With this computation, the third adder
circuit 84 outputs, for each of N elements, the second
variable (y,(t,)) at the target time (t,) given by Equation (44)

Yilt)=y (e)H{=D4p(t) Jxt D—czt)AL

Then, the third adder circuit 84 writes the calculated
second variable (y,(t,)) at the target time (t,) for each of N
elements into the before-constraint Y memory 85. The
before-constraint Y memory 85 stores N second variables
(y{t,)) at the target time (t,) before constraint by the Y
constraint circuit 93.

The fourth multiplier circuit 86 acquires, for each of N
elements, the second variable (y(t,)) before constraint at the
target time (t,) from the before-constraint Y memory 85. The
fourth multiplier circuit 86 multiplies, for each of N ele-
ments, the second variable (y(t,)) before constraint at the
target time (t,) by {DAt}.

The fourth adder circuit 87 acquires, for each of N
elements, the first variable (x,(t;)) at the previous time (t,)
from the X memory 66. The fourth adder circuit 87 adds, for
each of N elements, the first variable (x(t,)) at the previous
time (t;) to the computation result in the fourth multiplier
circuit 86. With this computation, the fourth adder circuit 87
outputs, for each of N elements, the first variable (x(t,)) at
the previous time (t,) given by Equation (45).

(“44)

x{ty)=x(t)+Dyt,)At (45)

The averaging circuit 90 calculates the index value (x,,,)
representing the average of magnitudes of N first variables
(x;(t,) to X,(t;)) at the previous time (t;) stored in the X
memory 66. For example, the index value (x,,.) is the root
mean square or the average absolute value of N first vari-
ables (x;(t) to x,(t)) at the previous time.

The determination circuit 91 determines, for each of N
elements, whether the absolute value (Ix(t,)!) of the first

US 11,966,450 B2

39

variable at the target time (t,) calculated by the fourth adder
circuit 87 is greater than a predetermined second value. For
example, the second value is +1. When the absolute value
(Ix(t,)!) of the first variable at the target time (t,) is greater
than the second value, the determination circuit 91 applies
an enable signal (EN) to the X constraint circuit 92 and the
Y constraint circuit 93.

The X constraint circuit 92 receives, for each of N
elements, the first variable (x,(t,)) at the target time (t,)
calculated by the fourth adder circuit 87. When an enable
signal (EN) is not received from the determination circuit
91, for each of N elements, the X constraint circuit 92 writes
the first variable (x,(t,)) at the target time (t,) calculated by
the fourth adder circuit 87 as it is into the X memory 66.

When an enable signal (EN) is received from the deter-
mination circuit 91, for each of N elements, the X constraint
circuit 92 executes a constraining process for the first
variable (x(t,)) at the target time (t,) calculated by the fourth
adder circuit 87 and writes the first variable (x,(t,)) subjected
to the constraining process into the X memory 66.

Here, as the constraining process, the X constraint circuit
92 changes, for each of N elements, the absolute value of the
first variable (x,(t,)) at the target time (t,) to a value equal
to or greater than 0 and equal to or smaller than the second
value (for example, +1), without changing its sign.

For example, for each of N elements, the X constraint
circuit 92 sets the absolute value (Ix,(t,)!) of the first variable
to a predetermined value or a value in accordance with a
random number that occurs with a uniform probability in a
prescribed interval within a range equal to or greater than 0
and equal to or smaller than the second value (for example,
+1). In this case, the prescribed interval may be any range as
long as it falls within a range equal to or greater than 0 and
equal to or smaller than the second value.

For each of N elements, the X constraint circuit 92 may
change the absolute value (Ix(t,)!) of the first variable at the
target time (t,) to the index value calculated by the averaging
circuit 90.

For each of N elements, the X constraint circuit 92 may
change the absolute value (Ix(t,)!) of the first variable at the
target time (t,) to a value, determined by a random number,
equal to or greater than the index value calculated by the
averaging circuit 90 and equal to or smaller than the second
value (for example, +1). In this case, the value determined
by a random number is, for example, a random number that
occurs with a uniform probability in a prescribed interval
within a range from the index value to the second value (for
example, +1) or smaller.

For each of N elements, the X constraint circuit 92 may
change the absolute value (Ix(t,)!) of the first variable at the
target time (t,) to the increasing coefficient that increases
from O to the second value or smaller with time from the
initial time to the end time. In this case, the increasing
function may be, for example, a linear function that is O at
the initial time and is the second value at the end time, where
time is a variable, or the square root of this linear function.
For each of N elements, the X constraint circuit 92 may
change the absolute value (Ix(t,)!) of the first variable at the
target time (t,) to a value, determined by a random number,
equal to or greater than the increasing coefficient and equal
to or smaller than the second value (for example, +1). In this
case, the value determined by a random number is, for
example, a random number (r) that occurs with a uniform
probability between the increasing coefficient and the sec-
ond value (for example, +1).

The Y constraint circuit 93 acquires, for each of N
elements, the second variable (y,(t,)) at the target time (t,)

20

25

30

35

40

45

50

55

60

65

40

from the before-constraint Y memory 85. When an enable
signal (EN) is not received from the determination circuit
91, for each of N elements, the Y constraint circuit 93 writes
the second variable (y,(t,)) at the target time (t,) acquired
from the before-constraint Y memory 85 as it is into the Y
memory 67.

When an enable signal (EN) is received from the deter-
mination circuit 91, for each of N elements, the Y constraint
circuit 93 executes a constraining process for the second
variable (y«t,)) at the target time (t,) calculated by the fourth
adder circuit 87 and writes the second variable (y(t,))
subjected to the constraining process into the Y memory 67.

Here, as the constraining process, the Y constraint circuit
93 changes, for each of N elements, the second variable (y,
(t,)) at the target time (t,) to a value obtained by multiplying
the second variable (y(t,)) by a random number, 0, a
predetermined value, or a value in accordance with a random
number. In this case, the Y constraint circuit 93 performs the
process such that the changed value is a value within a
prescribed range. For example, the Y constraint circuit 93
may perform the process such that the changed value falls
within a range equal to or greater than —0.1 and equal to or
smaller than +0.1.

As described above, the computing circuit 61 can calcu-
late N first variables (x(T)) and N second variables (y,(T))
at the end time (T) by executing the first algorithm in
Equation (9). Furthermore, when the absolute value of the
first variable (x(t,)) at the target time (t,) becomes greater
than the second value as a result of updating, the computing
circuit 61 can change the absolute value of the first variable
(x,(t;)) at the target time (t,) to a value equal to or greater
than 0 and equal to or smaller than the second value, with its
sign being kept.

The computing circuit 61 described above calculates the
second variable (y(t,)) at the target time (t,) and thereafter
calculates the first variable (x(t,)) at the target time (t,), for
each unit time. Instead of this, the computing circuit 61 may
calculate the first variable (x,(t,)) at the target time (t,) and
thereafter calculate the second variable (y,(t,)) at the target
time (t,), for each unit time.

In this case, the before-constraint Y memory 85 stores N
first variables (x(t,)) at the previous time (t,) before con-
straint by the Y constraint circuit 93. Then, the fourth adder
circuit 87 outputs, for each of N elements, the first variable
(x{t,)) at the target time (t,) given by Equation (46).

x{t2)=x,(t)+Dy (1)AL (46)

The matrix computing circuit 73 acquires N first variables
(x,(t,)) at the target time (t,) from the X memory 66. Then,
the first adder circuit 75 outputs, for each of N elements, the
update variable (z(t,)) at the target time (t,) given by
Equation (47).

N @7
Zi(t2) = =) = Y i)
=

The first multiplier circuit 79 multiplies, for each of N
elements, the update value (z(t,)) at the target time (t,) by
—c. The P function circuit 80 executes, for each of N
elements, computation of {—D+p(t,)}. The second multiplier
circuit 81 multiplies, for each of N elements, the first
variable (x(t,)) at the target time (t,) by the computation
result in the P function circuit 80.

US 11,966,450 B2

41

Then, the third adder circuit 84 outputs, for each of N
elements, the second variable (y,(t,)) at the target time (t,)
given by Equation (48).

i)t {-Dp(t) x(t)-cz ()] A

Even with such a process, the computing circuit 61 can
calculate N first variables (x,(T)) and N second variables
(y,(T)) at the end time (T) by executing the first algorithm in
Equation (9). Furthermore, when the absolute value of the
first variable (x,(t,)) at the target time (t,) becomes greater
than the second value as a result of updating, the computing
circuit 61 can change the absolute value of the first variable
(x,(t,)) at the target time (t,) to a value equal to or greater
than 0 and equal to or smaller than the second value, without
its sign being kept.

Computing Circuit 61 Executing Process of Second Algo-
rithm

FIG. 26 is a diagram illustrating a block configuration of
the computing circuit 61 executing the second algorithm in
Equation (11). The computing circuit 61 is configured as
illustrated in FIG. 25 when the second algorithm in Equation
(11) is executed. The computing circuit 61 illustrated in FIG.
26 has substantially the same configuration as the configu-
ration illustrated in FIG. 25, and a constituent element
having the same function will be denoted by the same
reference sign and will not be further elaborated.

The computing circuit 61 executing the second algorithm
in Equation (11) differs from the configuration illustrated in
FIG. 25 in that it further includes an encoding circuit 96.

The encoding circuit 96 acquires each of N first variables
(x; (t,)) at the previous time (t,) from the X memory 66. The
encoding circuit 96 extracts the sign (-1 or +1) of each of N
first variables (x,(t,)) at the previous time (t,) and outputs the
signs (s,(t,)) of N first variables.

The matrix computing circuit 73 acquires the signs (s(t,))
of N first variables from the encoding circuit 96, instead of
N first variables (x,(t,)) at the previous time (t,). Then, the
matrix computing circuit 73 executes, for each of N ele-
ments, a product-sum operation of the signs of (s(t,)) of N
first variables at the previous time (t;) and N coupling
coeflicients J, ; included in the target row.

As described above, the computing circuit 61 can calcu-
late N first variables (x,(T)) and N second variables (y,(T))
at the end time (T) by executing the second algorithm in
Equation (11).

When the computing circuit 61 calculates the first variable
(x,(t,)) at the target time (t,) and thereafter calculates the
second variable (y,(t,)) at the target time (t,), for each unit
time, the encoding circuit 96 acquires each of N first
variables (x(t,)) at the target time (t,) from the X memory
66. The encoding circuit 96 extracts the sign (-1 or +1) of
each of N first variables (x,(t,)) at the target time (t,) and
outputs the signs (s(t,)) of N first variables. In this case, the
matrix computing circuit 73 acquires the signs (s(t,)) of N
first variables from the encoding circuit 96, instead of N first
variables (x(t,)) at the target time (t,). Then, the matrix
computing circuit 73 executes, for each of N elements, a
product-sum operation of the signs of (s(t,)) of N first
variables at the target time (t,) and N coupling coefficients
J;; included in the target row. Even with such a process, the
computing circuit 61 can calculate N first variables (x,(T))
and N second variables (y,(T)) at the end time (T) by
executing the second algorithm in Equation (11).

Computing Circuit 61 Executing Process of Third Algo-
rithm

FIG. 27 is a diagram illustrating a block configuration of
the computing circuit 61 executing the third algorithm in

48)

10

15

20

25

30

35

40

45

50

55

60

42

Equation (13). The computing circuit 61 is configured as
illustrated in FIG. 27 when the third algorithm in Equation
(13) is executed. The computing circuit 61 illustrated in FIG.
27 has substantially the same configuration as the configu-
ration illustrated in FIG. 25, and a constituent element
having the same function will be denoted by the same
reference sign and will not be further elaborated.

The computing circuit 61 executing the third algorithm in
Equation (13) differs from the configuration illustrated in
FIG. 25 in internal configuration of the updating circuit 69.
The updating circuit 69 executing the third algorithm in
Equation (13) differs from the configuration illustrated in
FIG. 25 in that it further includes an encoding circuit 96 and
a G function circuit 97.

The encoding circuit 96 acquires, for each of N elements,
the update value (z(t,)) at the previous time (t,) from the
action computing circuit 68. The encoding circuit 96
extracts, for each of N elements, the sign (-1 or +1) from the
update value (z,(t,)) at the previous time (t,) and outputs the
sign {sgn(z(t,))} of the update value at the previous time
t,).

The G function circuit 97 executes, for each of N ele-
ments, computation of a predetermined function g(t). Spe-
cifically, the G function circuit 97 executes computation of
£(t,)~{D-p(t)}V(p(1,).

Then, the first multiplier circuit 79 multiplies, for each of
N elements, the sign {sgn(z(t,))} of the update value at the
previous time (t,) output from the encoding circuit 96 by the
computation result in the G function circuit 97.

As described above, the computing circuit 61 can calcu-
late N first variables (x,(T)) and N second variables (y,(T))
at the end time (T) by executing the third algorithm in
Equation (13).

When the computing circuit 61 calculates the first variable
(x,(t,)) at the target time (t,) and thereafter calculates the
second variable (y,(t,)) at the target time (t,), for each unit
time, the encoding circuit 96 acquires the update value
(z,(t,)) at the target time (t,) from the action computing
circuit 68. The encoding circuit 96 extracts, for each of N
elements, the sign (-1 or +1) from the update value (z,(t,))
at the target time (t,) and outputs the sign {sgn(z,(t,))} of the
updated value at the target time (t,). In this case, the G
function circuit 97 executes, for each of N elements, com-
putation of g(t,)={D-p(t,)}V(p(t,)). Then, the first multi-
plier circuit 79 multiplies, for each of N elements, the sign
{sgn(z,(t,))} of the update value at the target time (t,) output
from the encoding circuit 96 by the computation result in the
G function circuit 97.

While certain embodiments have been described, these
embodiments have been presented by way of example only,
and are not intended to limit the scope of the inventions.
Indeed, the novel embodiments described herein may be
embodied in a variety of other forms; furthermore, various
omissions, substitutions and changes in the form of the
embodiments described herein may be made without depart-
ing from the spirit of the inventions. The accompanying
claims and their equivalents are intended to cover such
forms or modifications as would fall within the scope and
spirit of the inventions.

What is claimed is:

1. A calculation device configured to solve a combinato-
rial optimization problem, the calculation device compris-
ing:

a computing circuit comprising:

a first memory and a second memory storing a plurality
of elements, wherein elements of the plurality of
elements stored in the first memory are associated

US 11,966,450 B2

43

with a first variable and elements of the plurality of
elements stored in the second memory are associated
with a second variable; and
an updating circuit comprising a first adder, a second
adder, a first constraint circuit, a second constraint
circuit, and a determination circuit, the updating
circuit being coupled to the first memory and the
second memory, and configured to update, for the
plurality of elements each associated with the first
variable and the second variable, the first variable
and the second variable for each of unit times from
an initial time to an end time, sequentially for the
unit times and alternately between the first variable
and the second variable; and
an output circuit configured to output a solution to the
combinatorial optimization problem that is calculated
based on the elements associated with the first variable
at the end time,
wherein
the plurality of elements correspond to a plurality of
discrete variables representing the combinatorial
optimization problem,
the first variable and the second variable are repre-
sented by a real number,
in a calculation process for each of the unit times, for
each of the plurality of elements:
the first memory outputs the first variable to the first
adder to update the first variable based on the
second variable;
the second memory outputs the second variable to
the second adder to update the second variable
based on the first variable;
when the first variable is smaller than a predeter-
mined first value, the determination circuit applies
a first enable signal to the first constraint circuit,
and the first constraint circuit changes the first
variable to a value equal to or greater than the
predetermined first value and equal to or smaller
than a predetermined threshold value in response
to the first enable signal; and
when the first variable is greater than a predeter-
mined second value, the determination circuit
applies a second enable signal to the first con-
straint circuit, and the first constraint circuit
changes the first variable to a value equal to or
greater than the threshold value and equal to or
smaller than the predetermined second value in
response to the second enable signal,
the predetermined second value is greater than the
predetermined first value, and
the threshold value is greater than the predetermined
first value and smaller than the predetermined second
value.
2. The device according to claim 1, wherein
the updating circuit is configured to:
calculate, for each of the plurality of elements at the
end time, a value of a discrete variable by binarizing
the first variable by the threshold value; and
the output circuit is configured to:
output the calculated values of a plurality of the dis-
crete variables as the solution to the combinatorial
optimization problem.
3. The device according to claim 1, wherein
in the calculation process for each of the unit times, the
updating circuit is configured to:

10

15

20

30

35

40

45

50

60

65

44

for each of the plurality of elements,
when the first variable is smaller than the predeter-
mined first value, change the first variable to a
predetermined value equal to or greater than the
predetermined first value and equal to or smaller than
the threshold value, or a value according to a random
number that occurs with a uniform probability in a
predetermined interval within a range equal to or
greater than the predetermined first value and equal
to or smaller than the threshold value; and
when the first variable is greater than the predetermined
second value, change the first variable to a predeter-
mined value equal to or greater than the threshold
value and equal to or smaller than the predetermined
second value, or a value according to a random
number that occurs with a uniform probability in a
predetermined interval within a range equal to or
greater than the threshold value and equal to or
smaller than the predetermined second value.
4. The device according to claim 1, wherein
in the calculation process for each of the unit times, the
updating circuit is configured to:
for each of the plurality of elements,
when the first variable is smaller than the predeter-
mined first value, change the first variable to a value
obtained by subtracting an index value from the
threshold value; and
when the first variable is greater than the predetermined
second value, change the first variable to a value
obtained by adding the index value to the threshold
value, and
the index value represents an average for magnitudes of
deviations of the elements associated with the first
variable from the threshold value.
5. The device according to claim 1, wherein
in the calculation process for each of the unit times, the
updating circuit is configured to:
for each of the plurality of elements,
when the first variable is smaller than the predeter-
mined first value, change the first variable to a value
determined by a random number, equal to or greater
than the predetermined first value and equal to or
greater than a value obtained by subtracting an index
value from the threshold; and
when the first variable is greater than the predetermined
second value, change the first variable to a value
determined by a random number, equal to or greater
than a value obtained by adding the index value to
the threshold value and equal to or smaller than the
predetermined second value, and
the index value represents an average for magnitudes of
deviations of the elements associated with the first
variable from the threshold value.
6. The device according to claim 4, wherein the index

value is a root mean square or an average absolute value of
the deviations of the elements associated with the first
variable from the threshold value.

7. The device according to claim 1, wherein
in the calculation process for each of the unit times, the
updating circuit is configured to:
for each of the plurality of elements,
when the first variable is smaller than the predeter-
mined first value, change the first variable to a value
obtained by subtracting an increasing coeflicient
from the threshold value; and

US 11,966,450 B2

45

when the first variable is greater than the predetermined
second value, change the first variable to a value
obtained by adding the increasing coefficient to the
threshold value, and
the increasing coefficient is zero at the initial time and
increases with time from the initial time to the end time.
8. The device according to claim 1, wherein
in the calculation process for each of the unit times, the
updating circuit is configured to:
for each of the plurality of elements,
when the first variable is smaller than the predeter-
mined first value, change the first variable to a value
determined by a random number, equal to or greater
than the predetermined first value and equal to or
smaller than a value obtained by adding an increas-
ing coeflicient to the threshold value; and
when the first variable is greater than the predetermined
second value, change the first variable to a value
determined by a random number, equal to or greater
than a value obtained by adding the increasing
coeflicient to the threshold value and equal to or
smaller than the predetermined second value, and
the increasing coefficient is zero at the initial time and
increases with time from the initial time to the end time.
9. The device according to claim 7, wherein the increasing
coeflicient is a linear function that is O at the initial time and
is the predetermined second value at the end time, where
time is a variable, or a square root of the linear function.
10. The device according to claim 1, wherein
in the calculation process for each of the unit times,
for each of the plurality of elements, when the first
variable is greater than the predetermined second value
or when the first variable is smaller than the predeter-
mined first value, the updating circuit is configured to
change the second variable to a value obtained by
multiplying the second variable by a random number, O,
a predetermined value, or a value according to a
random number.
11. The device according to claim 1, wherein
in the calculation process for each of the unit times,
for each of the plurality of elements, the updating circuit
is configured to calculate the first variable at target time
by adding a value obtained by multiplying the second
variable, a predetermined constant, and the unit time
together, to the first variable at a previous time the unit
time before the target time.
12. The device according to claim 11, wherein
in the calculation process for each of the unit times, the
updating circuit is configured to:
for each of the plurality of elements,
calculate an external force, based on the first variable of
each of the plurality of elements and an action
coeflicient for each of sets of a target element and the
plurality of elements; and
calculate the second variable at the target time by
adding a value obtained by multiplying a value
determined by the external force and the first vari-
able by the unit time, to the second variable at the
previous time.
13. The device according to claim 12, wherein
in the calculation process for each of the unit times, the
updating circuit is configured to:
for each of the plurality of elements,
calculate the first variable at the target time by adding
a value obtained by multiplying the second variable

10

15

20

25

30

35

40

45

50

55

60

65

46

at the previous time, the predetermined constant, and
the unit time together, to the first variable at the
previous time;
calculate the external force, based on the first variable
of each of the plurality of elements at the target time
and the action coefficient; and
calculate the second variable at the target time by
adding a value obtained by multiplying a value
determined by the external force and the first vari-
able at the target time by the unit time, to the second
variable at the previous time.
14. The device according to claim 12, wherein
in the calculation process for each of the unit times, the
updating circuit is configured to:
for each of the plurality of elements,
calculate the external force, based on the first variable
of each of the plurality of elements at the previous
time and the action coefficient;
calculate the second variable at the target time by
adding a value obtained by multiplying a value
determined by the external force and the first vari-
able at the previous time by the unit time, to the
second variable at the previous time; and
calculate the first variable at the target time by adding
a value obtained by multiplying the second variable
at the target time, the predetermined constant, and
the unit time together, to the first variable at the
previous time.
15. The device according to claim 12, wherein
the combinatorial optimization problem includes N dis-
crete variables, and
the updating circuit configured to calculate the first vari-
able at the target time for an i” element corresponding
to an i” discrete variable among the N discrete vari-
ables, by Equation (101) or (102),

x,(t+AD =%, (D +Dy (DAL (101)

X, (HAD =D+ Dy ((+ADAL (102)

where

N is an integer equal to or greater than 2,

iis any integer from 1 to N,

D is the predetermined constant,

At is the unit time,

t is the previous time,

t+At is the target time,

x,(t) is the first variable of the i” element at the previous
time,

y(t) is the second variable of the i element at the
previous time,

x,(t+At) is the first variable of the i” element at the target
time, and

y(t+At) is the second variable of the i* element at the
target time.

16. The device according to claim 15, wherein

the combinatorial optimization problem is a quadratic
unconstrained binary optimization (QUBO) problem,
and

the updating circuit is configured to calculate the second
variable of the i” element at the target time by Equation
(103) or Equation (104),

Y+A)=y (O +[{-D+p(t+AL) Y, (t+AL)+f;(1+A1) | At (103)

YerAD=y,(O+[{-D+p(D (4D AL (104)

US 11,966,450 B2

47
where
f(t+At) is given by Equation (105), and f,(t) is given by
Equation (106),

St AD=—cz(t+AL) (105)
fil)=—cz(t) (106)
where
z(t+At) is given by Equation (107),
z{(t) is given by Equation (108),
v (107)
2.t + AD = —ha(t + Af) — Zji,jxj(z +AD
J=1
(108)

N
20 = =he®) =) 750

J=l

where

j is any integer from 1 to N,

h, is an i local magnetic field coefficient included in a
predetermined array including N local magnetic field
coefficients,

J.; is a coupling coefficient at an i row and a j** column
included in a predetermined matrix including NXN
coupling coefficients,

c is a coefficient,

x(t) is the first variable at the previous time for a i
element corresponding to a j** discrete variable among
the N discrete variables,

x{(t+At) is the first variable of the i element at the target
time,

p(t) is a predetermined function with t as a variable, in
which p(t) increases as t increases, becomes 0 with t at
the initial time, and becomes 1 with t at the end time,
and

o(t) is a predetermined function with t as a variable.

17. The device according to claim 15, wherein

the combinatorial optimization problem is a quadratic
unconstrained binary optimization (QUBO) problem,
and

the updating circuit is configured to calculate the second
variable of the i element at the target time by Equation
(103) or Equation (104),

Vi{tHAD=y (DA {=D+p(tH+AD) yx (A (HAD At (103)

Y AD=y,(+H{-D+p(6) x(Hf (D] At
where
f(t+At) is given by Equation (105), and f,(t) is given by
Equation (106),

(104)

(A =—cz (++As) (105)
fil)=—cz(t) (106)
where
z{(t+At) is given by Equation (109), and
z(t) is given by Equation (110),
(109)

N
2t + AD) = —h(t + Af) — Zji,jsj(z +AD
=

20

25

30

35

40

45

50

55

48

-continued
(110)

N
20 = =) =) Jysi(0)

J=l

where

j is any integer from 1 to N,

h, is an i local magnetic field coefficient included in a
predetermined array including N local magnetic field
coefficients,

J;; s a coupling coefficient at an i row and a j** column
included in a predetermined matrix including NXN
coupling coefficients,

c is a coefficient,

p(t) is a predetermined function with t as a variable, in
which p(t) increases as t increases, becomes 0 with t at
the initial time, and becomes 1 with t at the end time,

o(t) is a predetermined function with t as a variable,

s(t+At) is a sign of the first variable of the j™ element at
the target time, and

s;() is a sign of the first variable of the j™ element at the
previous time.

18. The device according to claim 15, wherein

the combinatorial optimization problem is a quadratic
unconstrained binary optimization (QUBO) problem,
and

the updating circuit is configured to calculate the second
variable of the i element at the target time by Equation
(103) or Equation (104),

Vi{tHAD=y (DA {=D+p(t+AD) Yo, (tHADH(HAD] At (103)
Yl AD=y,(H{-D+p(6) x(Hf, (] At

where

f,(t+At) is given by Equation (111),

f,(t) is given by Equation (112),

(104)

F(t+AD=—g(H+ADsgN [z, ((+A)] ain
fi)=—g(n)sgn[z/(0)]

where

g(t+At) is given by Equation (113), and g(t) is given by
Equation (114),

(112)

g(t+At):{D—p(t+At)}\/p(t+At) (113)

=D} \pD
where
sgn(z,(t+At)) denotes a sign of z,(t+At),
sgn(z,(t)) denotes a sign of z(t),

z,(t+At) is given by Equation (115), and
z,(t) is given by Equation (116),

(114)

N (115)
Zi(t+ AD) = —ha(t + Ar) — Zj,v,jx,v(z +AD
=
¥ (116)
2(8) = —hia(t) - ZJ,; 550,

J=l

where
j is any integer from 1 to N,
h, is an i local magnetic field coefficient included in a
predetermined array including N local magnetic field
coefficients,

US 11,966,450 B2

49

J; ;is acoupling coefficient at an i row and a j* column
included in a predetermined matrix including NXN
coupling coefficients,

x,(t) is the first variable at the previous time for a i
element corresponding to a j* discrete variable
among the N discrete variables,

X{(t+At) is the first variable of the j* element at the
target time,

p(t) is a predetermined function with t as a variable, in
which p(t) increases as t increases, becomes 0 with
t at the initial time, and becomes 1 with t at the end
time, and

o(t) is a predetermined function with t as a variable.

19. The device according to claim 15, wherein

the combinatorial optimization problem is a higher order
binary optimization (HOBO) problem, and

the updating circuit is configured to calculate the second
variable of the i” element at the target time by Equation

(103) or Equation (104),

Vi{tHAD=y (DA {=D+p(tH+AD) yx (A (HAD At (103)

Y AD=y,(+H{-D+p(6) x(Hf (D] At
where
f(t+At) is given by Equation (105), and f,(t) is given by
Equation (106),

(104)

S{tHAD=—cz,(t+Al) (105)
Sfilh=—cz{D) (106)
where

z(t+At) is given by Equation (117), and
z(t) is given by Equation (118),

(117)
zi(t+ A =

N N N
IV + Ay + Zj,ﬁﬁ)xj(z + A + ZZJ,{?W(: FADXL(E+AD + ...
= F=1i=1

N N N (118)
20 =J e+ Y IFx 0+ D I om0 + ..

=1 J=lk=1

where

j is any integer from 1 to N,

c is a coefficient,

x(t) is the first variable at the previous time for a i
element corresponding to a j** discrete variable among
the N discrete variables,

x{(t+At) is the first variable of the i element at the target
time,

p(t) is a predetermined function with t as a variable, in
which p(t) increases as t increases, becomes 0 with t at
the initial time, and becomes 1 with t at the end time,

o(t) is a predetermined function with t as a variable,

k is any integer from 1 to N,

T, is an i” element of a first component in a first-rank
tensor,

JO, . is an element that is i of a first component and j*
of a second component in a second-rank tensor,

J® .« is an element that is i” of a first component, j of
a second component, and k of a third component in a
third-rank tensor,

x,(t) is the first variable at the previous time for a k*
element corresponding to a k™ discrete variable among
the N discrete variables, and

20

25

30

35

40

50

55

60

65

50

x,(t+At) is the first variable of the k™ element at the target
time.

20. The device according to claim 15, wherein

the combinatorial optimization problem is a higher order
binary optimization (HOBO) problem, and

the updating circuit is configured to calculate the second
variable of the i element at the target time by Equation
(103) or Equation (104),

Vi{tHAD=y (DA {=D+p(t+AD) Yo, (tHADH(HAD] At (103)

Y AD=y,(+H{-D+p(6) x(Hf, (] At
where
f,(t+At) is given by Equation (105), and f(t) is given by
Equation (106),

(104)

F(H+AD=—cz(++As) (105)
filty=—cz) (106)
where
z,(t+At) is given by Equation (119), and
z,(t) is given by Equation (120),
(119)
z;(t+ A =
N N N
IO + An + ZJ,{?sj(z FAD+ ZZJ,{?,(S}(: FADSE+AD + ...
= J=lk=1
(120)

N N N
20 = 0@ + Y IDsi 0+ 3 I s O + ..
=

k=1

where

j is any integer from 1 to N,

c is a coefficient,

p(t) is a predetermined function with t as a variable, in
which p(t) increases as t increases, becomes 0 with t at
the initial time, and becomes 1 with t at the end time,

o(t) is a predetermined function with t as a variable,

s/{{+At) is a sign of the first variable of the j™ element at
the target time,

s{(t) is a sign of the first variable of the j™ element at the
previous time,

k denotes any integer from 1 to N,

T, is an i element of a first component in a first-rank
tensor,

J@, . is an element that is i of a first component and j*
of a second component in a second-rank tensor,

J®, ., cis an element that is i of a first component, j** of
a second component, and k” of a third component in a
third-rank tensor,

s,(t+At) is a sign of the first variable of the k” element at
the target time, and

s,(t) is a sign of the first variable of the k™ element at the
previous time.

21. A calculation method for solving a combinatorial
optimization problem by an information processing device,
wherein the information processing device comprises a
computing circuit and an output circuit, the computing
circuit comprises a first memory, a second memory, and an
updating circuit, and the updating circuit comprises a first
adder, a second adder, a first constraint circuit, a second
constraint circuit, and a determination circuit, the calculation
method comprising:

storing a plurality of elements using the first memory and
the second memory, wherein elements of the plurality

US 11,966,450 B2

51

of elements stored in the first memory are associated
with a first variable and elements of the plurality of
elements stored in the second memory are associated
with a second variable;
updating, by the updating circuit coupled to the first
memory and the second memory, for each of the
plurality of elements associated with the first variable
and the second variable, the first variable and the
second variable for each of unit times from an initial
time to an end time, sequentially for the unit times and
alternately between the first variable and the second
variable; and
outputting, by the output circuit coupled to the computing
circuit, a solution to the combinatorial optimization
problem that is calculated based on the elements asso-
ciated with the first variable at the end time,
wherein
the plurality of elements correspond to a plurality of
discrete variables representing the combinatorial opti-
mization problem,
the first variable and the second variable are represented
by a real number,
in an updating process for each of the unit times by the
computing circuit, the calculation method comprising,
for each of the plurality of elements:
outputting, by the first memory, the first variable to the
first adder to update the first variable based on the
second variable;
outputting, by the second memory, the second variable
to the second adder to update the second variable
based on the first variable; and
performing a constraining process for the first variable;
the constraining process comprises:
when the first variable is smaller than a predetermined
first value, applying, by the determination circuit, a
first enable signal to the first constraint circuit, and
changing, by the first constraint circuit the first
variable to a value equal to or greater than the
predetermined first value and equal to or smaller than
a predetermined threshold value in response to the
first enable signal;
when the first variable is greater than a predetermined
second value, applying, by the determination circuit,
a second enable signal to the first constraint circuit,
and changing, by the first constraint circuit, the first
variable to a value equal to or greater than the
threshold value and equal to or smaller than the
predetermined second value in response to the sec-
ond enable signal; and
when the first variable is equal to or greater than the
predetermined first value and equal to or smaller than
the predetermined second value, foregoing the
changing of the first variable,
the predetermined second value is greater than the pre-
determined first value, and
the threshold value is greater than the predetermined first
value and smaller than the predetermined second value.
22. A computer program product comprising a non-
transitory computer-readable medium including pro-
grammed instructions for solving a combinatorial optimiza-
tion problem by an information processing device, wherein

10

15

20

25

30

35

40

45

50

55

60

52

the information processing device comprises a computing
circuit and an output circuit, and the computing circuit
comprises a first memory, a second memory, and an updating
circuit, and the updating circuit comprising a first adder, a
second adder, a first constraint circuit, a second constraint
circuit, and a determination circuit, the instructions causing
the information processing device to execute a calculation
method comprising:
storing a plurality of elements using the first memory and
the second memory, wherein elements of the plurality
of elements stored in the first memory are associated
with a first variable and elements of the plurality of
elements stored in the second memory are associated
with a second variable;
updating, by the updating circuit coupled to the first
memory and the second memory, for each of the
plurality of elements associated with the first variable
and the second variable, the first variable and the
second variable for each of unit times from an initial
time to an end time, sequentially for the unit times and
alternately between the first variable and the second
variable; and
outputting, by the output circuit coupled to the computing
circuit, a solution to the combinatorial optimization
problem that is calculated based on the elements asso-
ciated with the first variable at the end time, wherein
the plurality of elements correspond to a plurality of
discrete variables representing the combinatorial opti-
mization problem,
the first variable and the second variable are represented
by a real number,
in an updating process for each of the unit times by the
computing circuit, the calculation method includes, for
each of the plurality of elements:
outputting, by the first memory, the first variable to the
first adder to update the first variable based on the
second variable;
outputting, by the second memory, the second variable
to the second adder to update the second variable
based on the first variable;
when the first variable is smaller than a predetermined
first value, applying, by the determination circuit, a
first enable signal to the first constraint circuit, and
changing, by the first constraint circuit, the first
variable to a value equal to or greater than the
predetermined first value and equal to or smaller than
a predetermined threshold value in response to the
first enable signal; and
when the first variable is greater than a predetermined
second value, applying, by the determination circuit,
a second enable signal to the first constraint circuit,
and changing, by the first constraint circuit, the first
variable to a value equal to or greater than the
threshold value and equal to or smaller than the
predetermined second value in response to the sec-
ond enable signal,
the predetermined second value is greater than the pre-
determined first value, and
the threshold value is greater than the predetermined first
value and smaller than the predetermined second value.

#* #* #* #* #*

