US 20240179224A1

a2y Patent Application Publication (o) Pub. No.: US 2024/0179224 Al

a9y United States

Gasparin et al.

43) Pub. Date: May 30, 2024

(54) SYSTEMS AND METHODS FOR
RENDERING INTERACTIVE WEB PAGES

(71) Applicants: Atlassian Pty Ltd., Sydney (AU);
Atlassian US, Inc., San Francisco, CA
(US)

(72) Inventors: Alberto Gasparin, Sydney (AU);
Monica Olejniczak, Sydney (AU);
Rohan Deshpande, Sydney (AU)

(21) Appl. No.: 18/432,836

(22) Filed: Feb. 5, 2024

Related U.S. Application Data

(63) Continuation of application No. 18/102,589, filed on
Jan. 27, 2023, now Pat. No. 11,930,096, which is a
continuation of application No. 17/153,056, filed on
Jan. 20, 2021, now Pat. No. 11,570,280.

1001

Publication Classification

(51) Int. CL
HO4L 67/75 (2006.01)
GOGF 16/955 (2006.01)
GOGF 16/958 (2006.01)
HO4L 67/02 (2006.01)
HO4L 67/50 (2006.01)
(52) US.CL
CPC ... HO4L 67/75 (2022.05); GOG6F 16/955

(2019.01); GO6F 16/986 (2019.01); HO4L
67/02 (2013.01); HO4L 67/535 (2022.05)

57 ABSTRACT

Systems and methods for rendering interactive web pages
are disclosed. A disclosed method includes receiving a web
page request, retrieving web page content for the web page,
identifying one or more components that provide interac-
tivity to the web page in the web content, determining
whether the one or more components are critical compo-
nents and communicating the determined one or more
critical components in a Hypertext Markup Language
(HTML) head and communicating the remainder of the web
content in an HTML body.

Client systam
140

Client

Product Platform 120

Server application Guery S8R engine
Handler
324 126 128

112

Database 122

DBMS 32

oof

Storage 1298

May 30, 2024 Sheet 1 of 4 US 2024/0179224 A1

Patent Application Publication

621 obriolg 21 swada
Ze L eseaERg
14 et 743
aubus H&S HBIPUEH uoneondde Jaaie
: Asny R

4
e

¢l UUOHEId 1oNnPoJd

o1t
WSISAS JUSID

JQOM\

Patent Application Publication

200 ‘L

May 30, 2024 Sheet 2 of 4

US 2024/0179224 Al

202 '\

206 “‘\

208 ’\

210j\

Processing System Volatile Non-transitory
unit memaory memaory memory
& Y 3 &
A
212 1 N

e e e o o o v s e el s s s . o s e . o s e o e o o E
! ¥ |
User inputf Communications ;
output interface(s) i
K TR |
E
!

Patent Application Publication May 30, 2024 Sheet 3 of 4 US 2024/0179224 A1

300
L Receive web page reguest from a0
client device o
¥ 304
. Vi
Retrieve page components

¥ 306
Select first page component

313

]

Add to list of server Add to HTML body

components
/ Yes
310 Yj“"’
Add to list of head - 312
componernts

Add list of client components {o o318

HTML head and send to client |

: 4 318
Send list of server components |

{0 rendering engine

Patent Application Publication @ May 30, 2024 Sheet 4 of 4 US 2024/0179224 A1

Receive HTML head including

client components

402

400 ‘g

v

Initiate render thread

:

Receive HTML body |-

]

4 Render first contentful paint

404

420

A

4 Load critical components

yEs
¥

A4 Load lazy components

426
428 -
" Unloaded ™ .
conditional components >
End thread Yes
o Condition met?
430 -
yes
¥

7 {Load conditional component
432~

¥

Initiate component thread

componernts prese
— 7

it

408
Yes
N * (T 408
Initiate download of |
critical compaonents
No

No -

/C/riﬁeai

components downloaded

410

yes
412

N T
critical components
-~ pbresent? .

""" 414
¥
Download components
No
""" 418
¥ /

US 2024/0179224 Al

SYSTEMS AND METHODS FOR
RENDERING INTERACTIVE WEB PAGES

CROSS-REFERENCE TO RELATED
APPLICATION(S)

[0001] This application is a continuation patent applica-
tion of U.S. patent application Ser. No. 18/102,589, filed Jan.
27, 2023 and titled “Systems and Methods for Rendering
Interactive Web Pages,” which is a continuation patent
application of U.S. patent application Ser. No. 17/153,056,
filed Jan. 20, 2021 and titled “Systems and Methods for
Rendering Interactive Web Pages,” now U.S. Pat. No.
11,570,280, the disclosures of which are hereby incorpo-
rated herein by reference in their entireties.

TECHNICAL FIELD

[0002] The present disclosure relates generally to render-
ing structured documents (such as web pages) and, more
particularly, to efficiently rendering structured documents
using asynchronous techniques.

BACKGROUND

[0003] To display a web page or application on a user
device, a client browser receives structured documents from
a server and processes these structured documents. When a
web page or application includes one or more interactive
elements or components, the browser receives and down-
loads scripts for the interactive elements/components and
processes these for display. Renderings of such interactive
elements/components can cause display of the web page to
be slow, which negatively affects user experience.

SUMMARY

[0004] In certain embodiments of the present disclosure a
computer-implemented method for responding to a web
page request is disclosed. The method includes, at a server:
receiving the web page request from a client device. The
web page request including an identifier of the requested
web page. The method further includes retrieving web page
content based on the identifier of the requested web page.
The web page content including Hypertext Markup Lan-
guage (HTML) web content and one or more components
that provide interactivity for the web page. The method
further includes determining whether any of the one or more
components are critical components, and in response to
determining that at least one of the one or more components
is a critical component, adding the at least one critical
component to an HTML head and communicating the
HTML head to a client device. In addition, the method
includes communicating the remaining web page content in
an HTML body to the client device for rendering.

[0005] In certain other embodiments of the present dis-
closure a computer implemented method for rendering an
interactive web page is disclosed. The method includes, at a
client browser: receiving a Hypertext Markup Language
(HTML) head for the web page. The HTML head including
at least one component tagged as critical and at least one
component tagged as non-critical. The components provide
interactivity to the web page. The method further includes
initiating a component processing thread, downloading and
storing the at least one critical component in a data storage
of the client browser, and downloading and storing the at
least one non-critical component in the data storage after

May 30, 2024

download of the at least one critical component is com-
pleted. The method further includes initiating a render
processing thread, receiving and rendering an HTML body
for the web page, loading the at least one critical component
and loading the at least one non-critical component after
loading the at least one critical component.

[0006] In some further embodiments, a server system for
responding to a web page request is disclosed. The server
system includes a processing unit (also referred to herein as
a “processor”), and non-transitory memory. The memory
includes instructions, which when executed by the processor
cause the server system to: receive the web page request
from a client device. The web page request includes an
identifier of the requested web page. The processor further
configured to retrieve web page content based on the iden-
tifier of the requested web page. The web page content
including Hypertext Markup Language (HTML) web con-
tent and one or more components that provide interactivity
for the web page. The memory further includes instructions,
which when executed by the processor cause the server
system to: determine whether any of the one or more
components are critical components, and in response to
determining that at least one of the one or more components
is a critical component, add the at least one critical compo-
nent to an HTML head and communicating the HTML head
to a client device. The memory also includes instructions,
which when executed by the processor cause the server
system to: communicate the remaining web page content in
an HTML body to the client device for rendering.

[0007] In yet other embodiments, a client device for
rendering an interactive web page is disclosed. The client
device includes a client browser configured to: receive a
Hypertext Markup Language (HTML) head for the web
page. The HTML head includes at least one component
tagged as critical and at least one component tagged as
non-critical. The components provide interactivity to the
web page. The client browser is further configured to initiate
a component processing thread, download and store the at
least one critical component in a data storage of the client
browser, and download and store the at least one non-critical
component in the data storage of the client browser after
download of the at least one critical component is com-
pleted. The client browser is also configured to initiate a
render processing thread, receive and render an HTML body
for the web page, load the at least one critical component,
and load the at least one non-critical component after
loading the at least one critical component.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] In the drawings:

[0009] FIG. 1 is a block diagram of a networked environ-
ment according to some embodiments of the present disclo-
sure.

[0010] FIG. 2 is a block diagram of a computing system
with which various embodiments of the present disclosure
may be implemented.

[0011] FIG. 3 is a flowchart illustrating a method for
responding to a web page request according to some
embodiments of the present disclosure.

[0012] FIG. 4 is a flowchart illustrating a method for
requesting and rendering a web page on a client device
according to some embodiments of the present disclosure.
[0013] While the invention is amenable to various modi-
fications and alternative forms, specific embodiments are

US 2024/0179224 Al

shown by way of example in the drawings and are described
in detail. It should be understood, however, that the drawings
and detailed description are not intended to limit the inven-
tion to the particular form disclosed. The intention is to
cover all modifications, equivalents, and alternatives falling
within the spirit and scope of the present invention as
defined by the appended claims.

DETAILED DESCRIPTION

[0014] In the following description, for the purposes of
explanation, numerous specific details are set forth in order
to provide a thorough understanding of the present inven-
tion. It will be apparent, however, that the present invention
may be practiced without these specific details. In some
instances, well-known structures and devices are shown in
block diagram form in order to avoid unnecessary obscur-
ing.

[0015] Typically, when a user selects a web page, a web
browser executing on the user’s device sends a request to a
server to fetch an HTML document for the web page. In
response to this request, the server returns HTML text.
Typically, the HTML includes the actual content and struc-
ture for the web page along with the style elements such as
cascading style sheet (CSS) elements that specify the styling
of the web page (including background color, layout, font,
etc.). In addition, if the web page is interactive or dynamic,
the HTML may include one or more scripts (such as
JavaScript scripts). Examples of JavaScript include search
boxes on web pages, ability to show or hide more informa-
tion with the click of a button, video feeds embedded in a
page, ability to automatically refresh the web page, etc.
[0016] When the browser reads the received HITML docu-
ment, it parses the document and converts each HTML
element encountered in the document into a node. Eventu-
ally, all HTML elements within the document are converted
to nodes. After the browser has created nodes it creates a
tree-like structure of these node objects, which is called a
document object model (DOM) tree. A DOM tree starts from
the topmost element which is an ‘html’ element and
branches out as per the occurrence and nesting of HTML
elements in the document.

[0017] After constructing the DOM, the browser reads
style information from all sources (e.g., external, embedded,
inline, user-agent, etc.) and constructs a tree like styling
structure called a CSS object model (CSSOM). Each node in
this tree contains CSS style information that will be applied
to DOM elements that it targets. The browser also creates a
render tree, which is a tree-like structure constructed by
combining DOM and CSSOM trees together. The render tree
is used to calculate the layout of each visible element and
paint them on the screen.

[0018] The browser first creates the layout of each indi-
vidual render tree node. The layout consists of the size of
each node in pixels and where (position) it will be printed on
the screen. This process is called layout since the browser is
calculating the layout information of each node.

[0019] Since elements in the render tree can overlap each
other and they can have CSS properties that make them
frequently change the look, position, or geometry (such as
animations), the browser creates layers. Creating layers
helps the browser efficiently perform painting operations
throughout the lifecycle of a web page such as while
scrolling or resizing the browser window. Having layers also
help the browser correctly draw elements in the stacking

May 30, 2024

order (along the z-axis) as they were intended by the
developer. Inside each layer, the browser fills the individual
pixels for whatever visible property the element has such as
border, background color, shadow, text, etc. This process is
called rasterization. To increase performance, the browser
may use different threads to perform rasterization.

[0020] The sequence of operations from creating the DOM
to painting pixels on the screen is called a critical rendering
path and to improve user experience, developers constantly
try to reduce the time taken in the critical rendering path.
This may include reducing the time to first contentful paint
(FCP) (i.e., time taken by the browser to first render any text,
image, non-white canvas on the screen) and reducing the
time to interaction (TTI) (i.e., time taken for the webpage to
be usable and respond to user input).

[0021] To reduce the time to FCP, developers try to
minimize the time taken to generate the render tree. When
the browser requests for a webpage and the server responds
with some HTML text, a client browser starts parsing the
HTML text as soon as a few characters or lines of the
document are available. This way, the browser can build the
DOM tree incrementally, one node at a time. However,
whenever the browser encounters an external resource such
as a script file (JavaScript), a stylesheet file (CSS), an image
file or any other external resource in the HTML text, the
browser starts downloading that file in the background
(away from the main thread, where DOM parsing happens).
When the browser encounters a script element (e.g., a
file/code), if it an embedded script, the browser executes that
script first and then continue parsing the HTML to construct
the DOM tree. So embedded scripts can be considered to be
parser-blocking scripts that can increase time to generate the
render tree.

[0022] If the script element is an external script file, the
browser starts downloading the external script file off the
main thread but it will halt the execution of DOM parsing on
the main thread until that file is downloaded. Once the script
file is downloaded, the browser first executes the down-
loaded script file on the main thread and then continues with
the DOM parsing. If the browser finds another such script
element in HTML, it performs the same operation.

[0023] However, halting DOM parsing while the script file
is downloading in the background is unnecessary in most
cases and increases the rendering time.

[0024] To prevent the DOM parsing from halting and to
reduce FCP time, developers can add ‘async’ or ‘defer’ tags
to the script element. When the ‘async’ tag is used, DOM
parsing is not halted while the script file is downloading.
However, once the file is downloaded, DOM parsing is
halted and the script is executed before parsing can resume.
Alternatively, when the ‘defer’ tag is used, not only does
DOM parsing continue while the script is being down-
loaded, but the script is not executed as soon as it is
downloaded. Instead, the script is executed once the parser
has parsed the entire HTML document, which means the
DOM tree is fully constructed. Accordingly, scripts that have
the defer flag do not block DOM parsing and can reduce the
time to FCP.

[0025] Further, in some cases, to reduce FCP, one tech-
nique is to use server side rendering (SSR). In server side
rendering, if any computational operations need to be per-
formed (e.g., to render a chart, spreadsheet, or retrieve
dynamic data), these operations can be performed on the
server (which often has more powerful computation means

US 2024/0179224 Al

than the client device) and the server can then deliver the
content to the client as pre-computed HTML. This way, the
client has to simply render the static HTML and not run as
many complex, memory-intensive JavaScript functions as
those functions are no longer required to complete the FCP.
[0026] However, even with these techniques, some
JavaScript bundles/components need to be sent to the client
and if these JavaScript bundles are very large, they may take
a significant time to download and execute, which increases
the TTL

[0027] Embodiments of the present disclosure reduce the
TTI by using a number of techniques. In some embodiments,
aspects of the present disclosure distinguish between critical
components (i.e., components required for FCP and/or TTI)
and non-critical components (i.e., components that are not
required for FCP and/or TTI).

[0028] For example, in the case of an issue tracking
system application, such as Jira®, the fields that users
interact with the most or the tasks that users are most likely
to perform on a page may be considered critical. The
components required to provide interactivity for such fields
or tasks may be considered critical components. Whereas
fields that are not typically interacted with or the tasks that
users are less likely to perform on a page may be considered
non-critical and the corresponding components that enable
such functionalities may be defined as non-critical compo-
nents. Similarly, in the case of a board page—e.g., a Trello®
page that shows a board including a plurality of cards,
components that are responsible for rendering the cards of
the board may be defined as critical components. Whereas
components responsible for providing other functionalities
(such as board filter, new issue modals, configuration
modals, navigation sidebar, etc.) may be defined as non-
critical components.

[0029] As used in this disclosure, the term components
refers to JavaScript assets that provide interactive function-
ality to the web page. In particular, a component may refer
to JavaScript code may be divided and sent to the client as
one or more JavaScript assets and provides functionality of
the web page.

[0030] In aspects of the present disclosure, the client
browser can be informed which components are critical
(e.g., required for FCP and/or TTI) as soon as possible so
that the client can begin downloading and executing these
components as soon as possible. In case the web page is
initially rendered on the server using SSR, components for
FCP are not required to be downloaded/executed. In such
cases, the client browser can be informed which components
are required for TTI. Alternatively, if client side rendering is
used, the client browser can be information about the
components that are required for FCP and TTI.

[0031] In some embodiments, the list of components may
be communicated to the client before the HTML text is
communicated. In some specific examples, the list of com-
ponents may be communicated to the client as part of the
HTML head. Non-critical components can be tagged as such
and the client can download and execute these components
at a later stage (e.g., after the critical components are loaded)
or when the user requests interaction with a displayed
interactive element that requires that particular component
to be loaded.

[0032] By communicating the list of critical components
to the client in the HTML head, aspects of the present
disclosure give the client a head-start, where the client can

May 30, 2024

initiate download of the critical components even before it
receives the HTML body to parse. This way, by the time the
client has parsed the HTML body and generated the render
tree, it can have all the critical interactive components
downloaded and ready to execute, thereby also reducing
TTL

[0033] In some embodiments, aspects of the present dis-
closure utilize server side rendering (SSR) and can include
mechanisms to select whether SSR is required for a com-
ponent. For instance, if it is known that a component may
take too long to be computed and converted into HTML at
the server and the component is not required for FCP and/or
TTI, the presently disclosed systems and methods may tag
the component as such. At runtime, when the server receives
a request for the webpage, the server can inspect the tags of
the components and execute the components that are tagged
for SSR. Components that are not tagged for SSR can be
forwarded to the client along with their importance tags.
[0034] These and other aspects of the present disclosure
will be described in detail with reference to FIGS. 1-4 below.
[0035] FIG. 1 illustrates an environment 100 in which one
or more aspects of the present disclosure are implemented.
Specifically, FIG. 1 illustrates the various systems involved
in rendering web pages on client devices according to
embodiments of the present disclosure. The systems include
client system 110 and a product platform 120. The client
system 110 and product platform 120 communicate with
each other over one or more communication networks 130.
[0036] The product platform 120 may be a system or set
of systems configured to provide any type of service/
perform any type of operations for clients. In order to
provide such services/operations, product platform 120
stores data in a database 122. As one example, product
platform 120 may be an issue tracking system used (inter
alia) to create, manage, and track issues. Product platform
120 may, however, provide other services/perform other
operations.

[0037] In the present example, product platform 120
includes a server application 124, a query handler 126, and
a rendering engine 128.

[0038] Server application 124 is executed by a computer
processing system to configure that system to provide
server-side functionality to one or more corresponding client
applications (e.g., client application 112 as discussed
below). Server application 124 comprises one or more
application programs, libraries, APIs or other software ele-
ments that implement the features and functions that are
described herein. For example, where the client application
112 is a web browser, the server application 124 is a web
server such as Apache, IIS, nginx, GWS, or an alternative
web server. Where the client application 112 is a specific/
native application, server application 124 is an application
server configured specifically to interact with that client
application 112.

[0039] In some embodiments, the server application 124
may be provided with both web server and application
server applications.

[0040] Database 122 includes one or more database man-
agement systems (DBMS) 127 and one or more data storage
systems 129 (operating on one or multiple computer pro-
cessing systems). Generally speaking, DBMS 127 receives
structured query language (SQL) queries from a given
application (e.g., server application 124 or rendering engine
128), interacts with data storage system 129 to read/write

US 2024/0179224 Al

data as required by those queries, and responds to the
relevant application with results of the query.

[0041] Database 122 may store any data relevant to the
services provided/operations performed by the server appli-
cation 124. In the present examples, such data includes data
objects (or, in some cases, objects for short). In this context,
a data object is a logical grouping of data. Data for a data
object may be stored across multiple database records (e.g.
across multiple database tables) that are related to one
another by one or more database keys (for example object
identifiers and/or other identifiers).

[0042] By way of specific example, where product plat-
form 120 is an issue tracking system, data objects may be
related to issues that are maintained and managed by the
system. In this case, various data can be maintained in
respect of a given issue, for example: an issue identifier; an
issue state; a team or individual to which the issue has been
assigned; an issue description; an issue severity; a service
level agreement associated with the issue; a tenant to which
the issue relates; an identifier of a creator of the issue; a
project to which the issue relates; identifiers of one or more
issues that the issue is dependent on; identifiers of one or
more issues that depend on the issue; identifiers of one or
more other stakeholders; and/or other data.

[0043] The query handler 126 is configured to receive a
web page request from a client system 110 and respond to
that web page request with data defining the structure (e.g.,
styling information), content (e.g., the actual data to be
displayed on the web page), and behavior (e.g., interactive
components) of the web page. To do this, the query handler
126 is configured to identify the requested web page,
requesting client device 110 and in some examples a user
identifier of the user making the request, retrieve web page
data for the requested web page, determine which compo-
nents need to be rendered on the server and which compo-
nents need to be rendered on the client, communicate the
structure, content, and components that need to be rendered
on the server to the rendering engine 128, receive rendered
HTML data from the rendering engine 128 and communi-
cate this along with the list of components for client side
rendering to the client device 110.

[0044] The rendering engine 128 is configured to receive
web page data from the query handler 126, convert the data
into static HTML and communicate the HTML back to the
query handler 126 for communicating to the client device
110. In some examples, the rendering engine 128 may
convert all the data into static HTML before communicating
an HTML file to the query handler 126. This may be useful
where the webpage data is not large. However, in most
cases, the web page may include large quantities of data and
the web page data communicated to the rendering engine
128 may include multiple components that require compu-
tation, calls to the database 122 to retrieve latest data, etc. In
such cases, waiting for all the computations to be completed
and the data to be converted to HTML may take a consid-
erable amount of time and the client device has to wait for
many seconds before it can load the web page. Accordingly,
to reduce the delay, the rendering engine 128 may be
configured to stream HTML data to the query handler 126 as
and when it is converted. This way, the query handler 126
can stream the HTML data to the client device 110, which
can immediately start creating its DOM, CSSOM, and
render trees and render some content on a display of the
client device 110 quickly.

May 30, 2024

[0045] In certain embodiments, product platform 120 is a
multi-tenanted system: i.e., server application 124 serves
multiple tenants. In these embodiments, any request
received by the product platform 120 is associated with a
particular tenant—e.g. via a tenant identifier. For example, a
given request may be received from/initiated by a particular
account, and the identifier for that account will be associated
with a tenant identifier.

[0046] The applications executed by product platform 120
typically run on multiple computer processing systems. For
example, in some implementations each component of the
product platform 120 may be executed on a separate com-
puter processing system. In other embodiments, multiple (or
even all) components of the product platform 120 may run
on a single computer processing system. In certain cases a
clustered server architecture may be used where applications
are executed across multiple computing instances (or nodes)
that are commissioned/decommissioned on one or more
computer processing systems to meet system demand.

[0047] Client system 110 hosts a client application 112
which, when executed by the client system 110, configures
the client system 110 to provide client-side functionality.
This may include, for example, interacting with (i.e., send-
ing data to and receiving data from) server application 124.
Such interactions typically involve logging on (or otherwise
accessing) server application 124 by providing credentials
for a valid account maintained by the product platform 120.
As noted above, in certain embodiments the account may be
associated with a particular tenant identifier. Once validated,
a user can perform various functions using client application
112, for example requesting web pages, generating requests
to read data from or write data to database 122, automating
such requests (e.g., setting requests to periodically execute
at certain times), and other functions.

[0048] Client application 112 may be a general web
browser application (such as Chrome, Safari, Internet
Explorer, Opera, or an alternative web browser application)
which accesses a server application such as server applica-
tion 124 via an appropriate uniform resource locator (URL)
and communicates with the server application via general
world-wide-web protocols (e.g. HTTP, HTTPS, FTP). When
the client application 112 is a web browser, its main function
is to present web resources requested by the user. Further, a
given client system 110 may have more than one client
application 112, for example it may have two or more types
of web browsers.

[0049] A web browser has seven main components (not
shown)—a user interface, a browser engine, a rendering
engine, networking module, user interface backend,
JavaScript interpreter, and data storage. The user interface
includes parts of the browser display, such as the address bar
(where a user can enter a URL of the webpage the user
wishes to view), back/forward buttons, etc. The browser
engine organizes actions between the Ul and the rendering
engine and the rendering engine is responsible for displaying
the requested content. When a web page is requested, the
rendering engine analyses the received HTML and CSS files
and renders the analyzed content on the screen (using the
processes described earlier). The user interface backend is
used to draw or paint basis widgets like combo boxes and
windows and the JavaScript Interpreter is used to parse and
execute JavaScript code. The data storage is a persistence
layer where the browser saves data locally, such as cookies.

US 2024/0179224 Al

[0050] Client system 110 may be any computer processing
system which is configured (or configurable) by hardware
and/or software to offer client-side functionality. By way of
example, suitable client systems may include: server com-
puter systems, desktop computers, laptop computers, net-
book computers, tablet computing devices, mobile/smart
phones, and/or other computer processing systems.

[0051] The client system 110 and product platform 120 (or
applications of the product platform 120) communicate data
between each other either directly or indirectly through one
or more communications networks 130. Communications
network 130 may comprise a local area network (LAN), a
public network, or a combination of networks.

[0052] The embodiments and features of the present dis-
closure are implemented using one or more computer pro-
cessing systems. For example, client system 110 is a com-
puter processing system and product platform 120 includes
various applications and components that are provided by
one or more computer processing systems.

[0053] FIG. 2 provides a block diagram of a computer
processing system 200 configurable to implement embodi-
ments and/or features described herein. System 200 is a
general purpose computer processing system. It will be
appreciated that FIG. 2 does not illustrate all functional or
physical components of a computer processing system. For
example, no power supply or power supply interface has
been depicted, however system 200 will either carry a power
supply or be configured for connection to a power supply (or
both). It will also be appreciated that the particular type of
computer processing system will determine the appropriate
hardware and architecture, and alternative computer pro-
cessing systems suitable for implementing features of the
present disclosure may have additional, alternative, or fewer
components than those depicted.

[0054] Computer processing system 200 includes at least
one processing unit 202—for example a general or central
processing unit, a graphics processing unit, or an alternative
computational device). The processing unit 202 may also be
generally referred to as a “processor” and may include a
single integrated processing circuit or multiple discrete
processing circuits or processors that are operably coupled
in order to perform the recited processing or computing
functions or services. In some instances, where a computer
processing system 200 is described as performing an opera-
tion or function all processing required to perform that
operation or function will be performed by processing unit
202. In other instances, processing required to perform that
operation or function may also be performed by remote
processing devices accessible to and useable by (either in a
shared or dedicated manner) system 200.

[0055] Through a communications bus 204, processing
unit 202 is in data communication with a one or more
computer readable storage devices which store instructions
and/or data for controlling operation of the processing
system 200. In this example system 200 includes a system
memory 206 (e.g. a BIOS), volatile memory 208 (e.g.
random access memory such as one or more DRAM appli-
cations), and non-volatile (or non-transitory) memory 210
(e.g. one or more hard disks, solid state drives, or other
non-transitory computer readable media). Such memory
devices may also be referred to as computer readable storage
media (or a computer readable medium).

[0056] System 200 also includes one or more interfaces,
indicated generally by 212, via which system 200 interfaces

May 30, 2024

with various devices and/or networks. Generally speaking,
other devices may be integral with system 200, or may be
separate. Where a device is separate from system 200,
connection between the device and system 200 may be via
wired or wireless hardware and communication protocols,
and may be a direct or an indirect (e.g. networked) connec-
tion.

[0057] Wired connection with other devices/networks
may be by any appropriate standard or proprietary hardware
and connectivity protocols, for example Universal Serial
Bus (USB), eSATA, Thunderbolt, Ethernet, HDMI, and/or
any other wired connection hardware/connectivity protocol.
[0058] Wireless connection with other devices/networks
may similarly be by any appropriate standard or proprietary
hardware and communications protocols, for example infra-
red, BlueTooth, WiFi; near field communications (NFC);
Global System for Mobile Communications (GSM),
Enhanced Data GSM Environment (EDGE), long term
evolution (LTE), code division multiple access (CDMA—
and/or variants thereof), and/or any other wireless hardware/
connectivity protocol.

[0059] Generally speaking, and depending on the particu-
lar system in question, devices to which system 200 con-
nects—whether by wired or wireless means—include one or
more input/output devices (indicated generally by input/
output device interface 214). Input devices are used to input
data into system 200 for processing by the processing unit
202. Output devices allow data to be output by system 200.
Example input/output devices are described below, however
it will be appreciated that not all computer processing
systems will include all mentioned devices, and that addi-
tional and alternative devices to those mentioned may well
be used.

[0060] Forexample, system 200 may include or connect to
one or more input devices by which information/data is
input into (received by) system 200. Such input devices may
include keyboards, mice, trackpads (and/or other touch/
contact sensing devices, including touch screen displays),
microphones, accelerometers, proximity sensors, GPS
devices, touch sensors, and/or other input devices. System
200 may also include or connect to one or more output
devices controlled by system 200 to output information.
Such output devices may include devices such as displays
(e.g. cathode ray tube displays, liquid crystal displays, light
emitting diode displays, plasma displays, touch screen dis-
plays), speakers, vibration applications, light emitting
diodes/other lights, and other output devices. System 200
may also include or connect to devices which may act as
both input and output devices, for example memory devices/
computer readable media (e.g. hard drives, solid state drives,
disk drives, compact flash cards, SD cards, and other
memory/computer readable media devices) which system
200 can read data from and/or write data to, and touch screen
displays which can both display (output) data and receive
touch signals (input).

[0061] System 200 also includes one or more communi-
cations interfaces 216 for communication with a network,
such as network 130 of environment 100. Via a communi-
cations interface 216 system 200 can communicate data to
and receive data from networked devices, which may them-
selves be other computer processing systems.

[0062] System 200 may be any suitable computer process-
ing system, for example, a server computer system, a
desktop computer, a laptop computer, a netbook computer,

US 2024/0179224 Al

a tablet computing device, a mobile/smart phone, a personal
digital assistant, or an alternative computer processing sys-
tem.

[0063] System 200 stores or has access to computer appli-
cations (also referred to as software or programs)—i.e.
computer readable instructions and data which, when
executed by the processing unit 202, configure system 200
to receive, process, and output data. Instructions and data
can be stored on non-transitory computer readable media
accessible to system 200. For example, instructions and data
may be stored on non-transitory memory 210. Instructions
and data may be transmitted to/received by system 200 via
a data signal in a transmission channel enabled (for
example) by a wired or wireless network connection over
interface such as 212.

[0064] Applications accessible to system 200 will typi-
cally include an operating system application such as
Microsoft Windows™, Apple macOS™, Apple iOS™,
Android™, Unix™, or Linux™,

[0065] System 200 also stores or has access to applications
which, when executed by the processing unit 202, configure
system 200 to perform various computer-implemented pro-
cessing operations described herein. For example, and refer-
ring to networked environment 100 of FIG. 1 above, client
system 110 includes a client application 112 which config-
ures the client system 110 to perform client system opera-
tions, and product platform 120 includes server application
124 which configures the server environment computer
processing system(s) to perform the described server envi-
ronment operations.

[0066] In some cases part or all of a given computer-
implemented method will be performed by a single com-
puter processing system 200, while in other cases processing
may be performed by multiple computer processing systems
in data communication with each other.

[0067] When developers design web pages, in addition to
previously available tag types, they can add two new types
of tags on any scripts/code in their web page content—a tag
indicating where the corresponding script/code should be
rendered (server or client) and/or a tag indicating the priority
of the script/code (critical, phased, or event based).

[0068] As described previously, some components may be
utilized to generate data/content for the web page. For
example, consider the example of an issue view page. The
web page may include one or more components that retrieve
the latest issue data from the database 122 (such as issue
status, issue title, current assignee, etc.) and display this on
the web page. Another component may be configured to
retrieve comments and/or work flow (which is typically
displayed at the bottom of the page). As it might be desirable
to show the main issue data as soon as the web page is
displayed and as this includes one or more calls to the
database 122, the developer may decide that the correspond-
ing component is critical to FCP and should be rendered by
the server instead of the client. Accordingly, the developer
may add a ‘server’ tag and a “critical’ tag to that component.
On the other hand, although the comment component may
also need to make one or more calls to the database 122 to
retrieve the latest comment data, but because the comments
are displayed towards the bottom of the page, the developer
may decide that the corresponding component is a lazy
loading component that can be loaded once the initial render
tree for FCP is generated. Accordingly, the developer may
add a ‘client’ tag and a ‘lazy’ tag to that script. There may

May 30, 2024

be other components within the web page content, e.g., to
load a text editor to add a comment. As users typically do not
immediately add a comment to a page they are viewing and
also rarely leave comments, the developer may decide that
the corresponding script is not critical to FCP and should be
rendered by the client only if the user requests to leave a
comment. Accordingly, the developer may add a ‘client’ tag
and a ‘conditional’ tag to the component.

[0069] In this manner, the developer may assign tags to
components in the web page content. If one or more com-
ponents are not tagged, the query handler may assign default
tags—e.g., ‘server’ and ‘lazy’ tags.

[0070] Once the components are tagged and the design
process is completed, the content for a web page (including
HTML text, CSS files, and interactive/dynamic components)
is stored in the database 122 or in a cache of the query
handler 126.

[0071] FIG. 3 illustrates an example method 300 for
receiving a web page request and responding to the request
according to some embodiments of the present disclosure.

[0072] The method 300 commences at 302, where the
query handler 126 receives a web page request from a client
device 110. In some cases, a user may enter a web page URL
in a search bar of the web browser or select a particular web
page from list of search results. In other cases, the browser
may automatically generate and send the web page request,
for example, when a user logs into an application hosted by
the product platform 120 via a login page. In any event, the
web page request includes a URL or any other identifier of
the web page. For instance, the web page request may be as
follows—

[0073] HTTP GET
[0074] www.jira.com/issueview
[0075] In addition, the web page request may include

some information about the client application 112 making
the request (e.g., a client application identifier). If the user is
logged into the application, the web page request may also
include a user identifier of the user and in some cases the
tenant identifier of the corresponding tenant (for example, if
the product application is a multi-tenanted application).
[0076] At step 304, the query handler 126 receives the web
page request and retrieves the requested web content. In
some examples, the query handler 126 may store web page
content (e.g., HTML, CSS and interactive/dynamic compo-
nents) in a cache for quick retrieval. In other cases, web page
content may be stored in the database 122 and the query
handler 126 may retrieve the web page content from the
database 122.

[0077] The query handler 126 then parses the retrieved
content to identify the components included in the web
content and at step 306 selects a component to be processed.
In the present embodiment, the query handler 126 processes
components in the order in which they appear in the web
page content. Initially, therefore, the query handler 126
selects the first component it identifies in the web content.
[0078] At 308, the query handler 126 inspects the tag of
the selected component (if any). As described previously, a
developer may add a ‘server’ or ‘client’ tag on a component.
Alternatively, no tag may be added. If no tag is added, in
some examples, the query handler 126 may be configured to
determine the selected component to be a server compo-
nent—i.e., a component to be executed at the server. In other
examples, if no tag is added, the query handler 126 may be

US 2024/0179224 Al

configured to determine the selected component to be a
client component—i.e., component to be executed by the
client.

[0079] At step 308, if the query handler 126 determines
that the component is to be executed by the server (e.g.,
because of the presence of a server tag or a default setting
in case no tag is detected), the method 300 proceeds to step
310 where the component is added to a list of components
for server rendering.

[0080] Alternatively, if the query handler 126 determines
that the component is to be executed by the client (e.g.,
because of the presence of a client tag or a default setting in
case no tag is detected), the method 300 proceeds to step 311
where the query handler 126 determines whether the com-
ponent needs to be communicated in the HTML head or not.

[0081] In some embodiments, the query handler 126 may
be configured to add critical client components and lazy
client components in the HTML head, whereas it may be
configured to ignore other types of client components (such
as conditional loading components), which can be commu-
nicated as part of the HTML body.

[0082] Accordingly, at step 311 a determination is made
whether the selected component is to be added to the head
of the HTML or not. If it is determined that the component
should be added to the HTML head (e.g., because the
component has a ‘critical’ tag or a ‘lazy’ tag), the method
proceeds to step 312 where the query handler 126 adds the
component to a list of head components along with its
importance tag. If an importance tag is not present, the query
handler may assign a default importance tag, such as ‘lazy’.

[0083] Alternatively, if at step 311 a determination is made
that the component does not need to be added to the HTML
head (e.g., because the component has a ‘conditional’ tag),
the method proceeds to step 313 where the corresponding
component is added to the HTML body.

[0084] At step 314, the query handler 126 determines
whether there are any unprocessed components in the web
content. If so, processing returns to step 306 to select the
next unprocessed component. If all components have been
processed, processing continues to step 316, where the query
handler adds the list of head components (along with their
importance tags) to a head of the HTML and communicates
the head to the client browser. In addition, the HTML head
can include configuration information such as user details,
server endpoint addresses, and instance related values like
licenses and products available.

[0085] At step 318, all the components added to the server
component list and to the HTML body are communicated to
the server rendering engine 128. The server rendering engine
128 then executes the server components, converts them into
HTML and communicates it as HTML body to the client
browser (along with static HTML, CSS for the web page,
and any components added at step 313). As the HTML body
is streamed to the client browser, the server rendering engine
128 can communicate the HTML and CSS first and then start
communicating the converted HTML as soon as the corre-
sponding server components are executed and doesn’t have
to wait until all the server components are executed. This
way, the client browser can start generating the DOM,
CSSOM and render trees as soon as the client starts receiv-
ing the HTML body.

May 30, 2024

[0086] It will be appreciated that the server rendering
engine 128 renders the server components using known
techniques and therefore this operation is not described in
detail here.

[0087] FIG. 4 illustrates an example method 400 for
rendering a requested web page at the client device 110. The
method commences at step 402, where the client browser
112 receives an HTML head for the web page requested at
step 302 of method 300. The head includes one or more
components that the client browser has to load and that were
added to the head at step 316.

[0088] Once the client browser receives the HTML head it
performs a number of functions. In particular, it may initiate
multiple processing threads—e.g., it may initiate a compo-
nent processing thread and a render processing thread. Using
the component processing thread, the client browser 112
may download one or more components listed in the HTML
head. Using the render processing thread, the client browser
may render the web page for display on the display of the
user device.

[0089] For clarity, the operations of the component thread
will be described first followed by the operation of the
render processing thread. However, it will be appreciated
that the component thread and the rendering thread may
perform their respective functions in parallel. If the render
thread requires any components downloaded by the com-
ponent thread, it retrieve the component from the client
browser data storage once the component is downloaded.
[0090] Once the component thread and the render thread
are initiated (at step 404), the method proceeds to step 406,
where the component processing thread determines whether
any critical components are provided as part of the HTML
head. As described previously, the components may be
tagged as “critical” (i.e., components that provide interactive
functionality required for useful user interaction with the
web page), ‘lazy’ (i.e., components that are not as important
to provide useful user interaction with the web page imme-
diately) and ‘conditional’ (i.e., components that do not need
to be loaded unless a condition is met).

[0091] To determine whether any critical components are
present, the component thread may inspect the importance
tags associated with the components provided as part of the
HTML head. If any critical components are identified, the
method proceeds to step 408, where the component process-
ing thread initiates download of the critical components.
[0092] If more than one critical component is discovered,
the client browser may be configured to download or
retrieve the corresponding components in parallel.

[0093] At step 410, a check is made to see if the critical
components have downloaded. If there are multiple critical
components, the component thread checks the download
status of each of the critical components and as soon as it
determines that a corresponding component has downloaded
completely, (yes path from step 410), the component down-
load thread stores the downloaded component in the bowser
data storage, from where the render processing thread can
retrieve the component.

[0094] Once it determines all the critical components have
been downloaded, the method proceeds to step 412, where
the component processing thread determines if any non-
critical components were provided as part of the HTML
head. Again, this determination may be made by inspecting
the importance tag associated with each of the components
provided in the HTML head.

US 2024/0179224 Al

[0095] If the client bowser determines that one or more
non-critical components are present, e.g., because it identi-
fies any ‘lazy’ tags, the method proceeds to step 414 where
the component thread initiates download of the lazy com-
ponents.

[0096] Once the non-critical components are downloaded,
the client browser may save the downloaded components in
the browser data storage for execution/loading by the render
thread.

[0097] When all components provided as part of the
HTML head are downloaded, the component processing
thread may be terminated.

[0098] Returning to step 406, if at this step the client
browser determines that no critical components are present
in the HTML head, the method directly proceeds to step 412
where a determination is made whether non-critical compo-
nents are present. At step 412 also if the client browser
determines that no non-critical components are present, the
method 400 may directly proceed to step 416 where the
component processing thread is terminated.

[0099] Steps 406-416 are performed by the component
processing thread. Now operations of the render thread will
be described.

[0100] At step 418, the render processing thread receives
the HTML body. In some examples, the HTML body may be
received a few hundred milliseconds after the HTML head
is received. As HTML may be streamed, the client browser
receives the HTML body in a stream. As soon as it receives
some HTML body text, the client browser begins to generate
the DOM, CSSOM, and render tree for the web page. As
soon as some of the render tree is generated, the client
browser may initiate painting operations.

[0101] At step 420, the render thread may render the FCP
of the web page. It will be appreciated that the FCP may
display all the content, structure and styling of the web page
that is visible on the display screen of the user device.
However, it may not include any behavior or interactive
functions. That is, the user may be able to read the content
of the web page and look at the structure and styling of the
web page, but may not be able to select any interactive
elements of the web page (such as buttons, checkboxes, tabs,
etc.) at this stage.

[0102] At step 422, the render thread retrieves down-
loaded critical components from the browser data storage.
As described previously, the component thread may down-
load the critical components in parallel or sequentially. In
any case, some components may finish downloading before
other components (e.g., because of the component size).
Accordingly, the component processing thread may store the
downloaded critical components in the browser data storage
in a staggered fashion—as soon as the corresponding com-
ponent has finished downloading and therefore, step 422
may be a recurring step, where the render thread retrieves
critical components from the data store until all critical
components have been retrieved.

[0103] At step 422, as and when the render processing
thread requires critical components it retrieves the critical
components from the browser data storage and loads the
component—(this may include executing the component
code, converting into HTML, adding the converted HTML
to the DOM, CSSOM, and render trees and adding the
corresponding interactive behavior to the corresponding
displayed web page clement).

May 30, 2024

[0104] Once all critical component have been loaded, the
web page is considered interactive. The method then pro-
ceeds to step 424 where the render processing thread deter-
mines if any ‘lazy’ components are included in the web
content. If it identifies any lazy components (e.g., based on
importance tags of the components saved in the browser data
store), the method proceeds to step 426 where the lazy
components are loaded. This is similar to step 422 and
therefore is not described in detail again.

[0105] Once the lazy components are loaded, the method
proceeds to step 428, where the render processing thread
determines if any unloaded conditional components are
present in the web content—e.g., received as part of the
HTML body. If it identifies any unloaded conditional com-
ponents in the HTML body, the method proceeds to step 430,
where a determination is made whether the condition to load
one or more of the identified conditional components is met.
In some cases, a condition to load a conditional component
may be the loading of another related component. In other
cases, the condition may be a particular event, such as a user
input to a particular displayed element.

[0106] If at step 430, a determination is made that the
condition is met, the corresponding conditional component
is downloaded and loaded at step 432.

[0107] Alternatively, if the condition for any conditional
components has not been met, the method 400 remains on
step 430 until the condition for any one of the unloaded
conditional components is met. Once the condition is met,
the method proceeds to step 432 and then returns to step 428
to check if any unloaded conditional components remain.
[0108] Returning to step 428, if a determination is made at
this step that the web page does not include any unloaded
conditional components, the method proceeds to step 434
where the render process is considered completed and the
render processing thread is terminated.

[0109] In this manner, the web browser of the presently
disclosed embodiments, can download the critical compo-
nents as soon as the HTML head is received and even before
the HTML body is received. The critical components can
then be ready for loading as soon as the FCP is rendered and
critical interactivity can be provided to the web page sooner
than that provided by previously known techniques.

[0110] By communicating the critical components to the
browser client for download earlier, almost the entirety of
server time duration (i.e., the time taken by the server to
render the web page) can be offset and TTI can be improved
by a large margin. Also by splitting components into critical
and noncritical components, TTI can be further reduced by
loading only the components the users really needs. On a
page where server SSR takes 1.5 seconds and Tti is 8 s when
loading all components, TTI can be reduced 60 6 seconds
using the presently disclosed techniques. Also, further
improvements are possible by better tagging critical and
non-critical components during web page design.

[0111] In the embodiments described above, it is assumed
that some server side scripting/rendering is performed at the
server. In other embodiments, all of the script execution and
rendering can take place at the client. In such embodiments,
a server rendering engine 128 is not required. Further, there
is no need for server/client tags in such embodiments as
there is not execution at the server. Instead, a list of
identified critical and lazy components are communicated to
the client in the HTML head so that the client can start
downloading and executing the critical components as soon

US 2024/0179224 Al

as possible. The non-critical lazy components can be down-
loaded and executed once the critical components have
completed downloading.
[0112] The flowcharts illustrated in the figures and
described above define operations in particular orders to
explain various features. In some cases the operations
described and illustrated may be able to be performed in a
different order to that shown/described, one or more opera-
tions may be combined into a single operation, a single
operation may be divided into multiple separate operations,
and/or the function(s) achieved by one or more of the
described/illustrated operations may be achieved by one or
more alternative operations. Still further, the functionality/
processing of a given flowchart operation could potentially
be performed by different systems or applications.
[0113] Unless otherwise stated, the terms “include” and
“comprise” (and variations thereof such as “including”,
“includes”, “comprising”, “comprises”, “comprised” and
the like) are used inclusively and do not exclude further
features, components, integers, steps, or elements.
[0114] It will be understood that the embodiments dis-
closed and defined in this specification extend to alternative
combinations of two or more of the individual features
mentioned in or evident from the text or drawings. All of
these different combinations constitute alternative embodi-
ments of the present disclosure.
[0115] The present specification describes various
embodiments with reference to numerous specific details
that may vary from implementation to implementation. No
limitation, element, property, feature, advantage or attribute
that is not expressly recited in a claim should be considered
as a required or essential feature. Accordingly, the specifi-
cation and drawings are to be regarded in an illustrative
rather than a restrictive sense.
What is claimed is:
1. A computer-implemented method for responding to a
web page request, the method comprising:
at a server:
receiving the web page request from a client device, the
web page request including an identifier of a
requested web page;
retrieving web page content based on the identifier of
the requested web page, the web page content
including Hypertext Markup Language (HTML)
web content and one or more components that pro-
vide interactivity for the requested web page;
determining whether any of the one or more compo-
nents are critical components;
in response to determining that at least one of the one
or more components is a critical component, adding
the at least one critical component to an HTML head
and communicating the HTML head to the client
device; and
communicating a remaining web page content in an
HTML body to the client device for rendering.
2. The computer-implemented method of claim 1, further
comprising:
determining whether any of the one or more components
require server side rendering; and
in response to determining that at least one of the one or
more components requires server side rendering, ren-
dering the one or more components at the server before
communicating in the HTML body to the client device.

May 30, 2024

3. The computer-implemented method of claim 1,
wherein determining whether any of the one or more com-
ponents are critical components includes inspecting a tag
associated with a respective component of the one or more
components.
4. The computer-implemented method of claim 2,
wherein determining whether any of the one or more com-
ponents require server side rendering includes inspecting a
tag associated with a respective component of the one or
more components.
5. The computer-implemented method of claim 1, further
comprising:
determining whether any of the one or more component is
a lazy loading component; and

in response to determining that at least one of the one or
more components is a lazy loading component, adding
a respective component of the one or more components
to the HTML head.

6. The computer-implemented method of claim 5,
wherein determining whether any of the one or more com-
ponents is a lazy loading component includes inspecting a
tag associated with a respective component of the one or
more components.

7. The computer-implemented method of claim 1, further
comprising:

determining whether any of the one or more components

is a conditional component; and

in response to determining that the at least one component

is a conditional component, adding the at least one
component to the HTML body.
8. The computer-implemented method of claim 7,
wherein determining whether any of the one or more com-
ponents is a conditional component includes inspecting a tag
associated with a respective component of the one or more
components.
9. A computer-implemented method for rendering an
interactive web page, the method comprising:
at a client browser:
receiving a Hypertext Markup Language (HTML) head
for the interactive web page, the HTML head includ-
ing at least one component tagged as critical and at
least one component tagged as non-critical, the com-
ponents providing interactivity to the interactive web
page;
initiating a component processing thread;
downloading and storing the at least one critical com-
ponent in a data storage of the client browser;
downloading and storing the at least one non-critical
component in the data storage after download of the
at least one critical component is completed;
initiating a render processing thread;
receiving and rendering an HTML body for the inter-
active web page;
loading the at least one critical component; and
loading the at least one non-critical component after
loading the at least one critical component.
10. The computer-implemented method of claim 9, fur-
ther comprising:
determining that the interactive web page includes at least
one component tagged as a conditional component;

monitoring interaction of a user with the interactive web
page to determine whether a condition for loading the
conditional component is met; and

US 2024/0179224 Al

in response to determining that the condition for loading
the condition component is met, loading the conditional
component.

11. A server system for responding to a web page request,
the server system comprising:

a processing unit;

non-transitory memory, the memory comprising instruc-

tions, which when executed by the processing unit

cause the server system to:

receive the web page request from a client device, the
web page request including an identifier of a
requested web page;

retrieve web page content based on the identifier of the
requested web page, the web page content including
Hypertext Markup Language (HTML) web content
and one or more components that provide interac-
tivity for the requested web page;

determine whether any of the one or more components
are critical components;

in response to determining that at least one of the one
or more components is a critical component, add the
at least one critical component to an HTML head and
communicate the HTML head to the client device;
and

communicate the remaining web page content in an
HTML body to the client device for rendering.

12. The server system of claim 11, wherein the memory
further comprising instructions, which when executed by the
processing unit, cause the server system to:

determine whether any of the one or more components

require server side rendering; and

in response to determining that at least one of the one or

more components requires server side rendering, render
the at least one component at the server before com-
municating in the HTML body to the client device.
13. The server system of claim 11, wherein determining
whether any of the one or more components are critical
components includes inspecting a tag associated with the
component.
14. The server system of claim 12, wherein determining
whether any of the one or more components require server
side rendering includes inspecting a tag associated with the
component.
15. The server system of claim 11, wherein the memory
further comprising instructions, which when executed by the
processing unit, cause the server system to:
determine whether any of the one or more component is
a lazy loading component; and

in response to determining that at least one of the one or
more components is a lazy loading component, add the
component to the HTML head.

May 30, 2024

16. The server system of claim 15, wherein determining
whether any of the one or more components is a lazy loading
component includes inspecting a tag associated with the
component.
17. The server system of claim 11, wherein the memory
further comprising instructions, which when executed by the
processing unit, cause the server system to:
determine whether any of the one or more components is
a conditional component; and

in response to determining that the at least one component
is a conditional component, adding the component to
the HTML body.
18. The server system of claim 17, wherein determining
whether any of the one or more components is a conditional
component includes inspecting a tag associated with the
component.
19. A client device for rendering an interactive web page,
the client device comprising:
a client browser configured to:
receive a Hypertext Markup Language (HTML) head
for the interactive web page, the HTML head includ-
ing at least one component tagged as critical and at
least one component tagged as non-critical, the com-
ponents providing interactivity to the interactive web
page;
initiate a component processing thread;
download and store the at least one critical component
in a data storage of the client browser;
download and store the at least one non-critical com-
ponent in the data storage of the client browser after
download of the at least one critical component is
completed;
initiate a render processing thread;
receive and render an HTML body for the interactive
web page;
load the at least one critical component; and
load the at least one non-critical component after
loading the at least one critical component.
20. The client device of claim 19, wherein the client
browser further configured to:
determine that the interactive web page includes at least
one component tagged as a conditional component;

monitor interaction of a user of the client device with the
interactive web page to determine whether a condition
for loading the conditional component is met;

in response to determining that the condition for loading

the condition component is met, load the conditional
component.

