
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0351555 A1

Nilsson et al.

US 20140351555A1

(43) Pub. Date: Nov. 27, 2014

(54)

(71)

(72)

(73)

(21)

(22)

(86)

(30)

Dec. 20, 2011

DIGITAL SIGNAL PROCESSOR AND
METHOD FOR ADDRESSINGA MEMORY IN
A DIGITAL SIGNAL PROCESSOR

Applicants: Anders Nilsson, Linkoping (SE); Eric
Tell, Linkoping (SE); Erik Alfredsson,
Linkoping (SE)

Inventors: Anders Nilsson, Linkoping (SE); Eric
Tell, Linkoping (SE); Erik Alfredsson,
Linkoping (SE)
Media Tek Sweden AB, LINKOPING
(SE)

Assignee:

Appl. No.: 14/364,619

PCT Fled: Nov. 28, 2012

PCT NO.:

S371 (c)(1),
(2), (4) Date:

PCT/SE2O12/05132O

Jun. 11, 2014

Foreign Application Priority Data

(SE) 1151230-8

Publication Classification

(51) Int. Cl.
G06F 9/30 (2006.01)
G06F 9/35 (2006.01)
G06F 12/06 (2006.01)

(52) U.S. Cl.
CPC G06F 9/30036 (2013.01); G06F 12/06

(2013.01); G06F 9/35 (2013.01)
USPC .. 711/215

(57) ABSTRACT

In a digital signal processor comprising at least one vector
execution unit and at least a first memory unit a third unit is
arranged to provide addressing data in the form of an address
vector to be used for addressing the first memory unit said
third unit being connectable to the first memory unit through
the on-chip network, in Such a way that data provided from
the third unit can be used to control the reading from and/or
the writing to the first memory unit. This enables fast reading
from and writing to a memory unit of data in any desired
order.

Patent Application Publication Nov. 27, 2014 Sheet 1 of 3 US 2014/0351555 A1

23Ob 231b
23Oa 231a

\- 230 \- 231

Fig. 2

Fig. 1

Patent Application Publication Nov. 27, 2014 Sheet 2 of 3 US 2014/0351555 A1

Patent Application Publication Nov. 27, 2014 Sheet 3 of 3 US 2014/0351555 A1

CNT

data

Fig. 5

RD
RDCNT

US 2014/0351555 A1

DIGITAL SIGNAL PROCESSOR AND
METHOD FOR ADDRESSINGA MEMORY IN

A DIGITAL SIGNAL PROCESSOR

TECHNICAL FIELD

0001. The present invention relates to a digital signal pro
cessor according to the preamble of claim 1. Such a processor
is particularly suitable for OFDM systems.

BACKGROUND AND RELATED ART

0002 Many mobile communication devices use a radio
transceiver that includes one or more digital signal processors
(DSP).
0003 For increased performance and reliability many
mobile terminals presently use a type of DSP known as a
baseband processor (BBP), for handling many of the signal
processing functions associated with processing of the
received the radio signal and preparing signals for transmis
S1O.

0004. Many of the functions frequently performed in such
processors are performed on large numbers of data samples.
Therefore a type of processor known as Single Instruction
Multiple Data (SIMD) processor is useful because it enables
the same instruction to be performed for a whole vector of
data rather than on one integer at a time. This kind of proces
sor is able to process vector instructions, which means that a
single instruction performs the same function to a limited
number of data units. Data are grouped into bytes or words
and packed into a vector to be operated on.
0005. As a further development of SIMD architecture,
Single Instruction stream Multiple Tasks (SIMT) architecture
has been developed. Traditionally in SIMT architecture one
or two vector execution units that use SIMD data-paths have
been provided in association with an integer execution unit,
which may be part of a core processor.
0006 International Patent Application WO 2007/018467
discloses a DSP according to the SIMT architecture, having a
processor core including an integer execution unit and a pro
gram memory, and two vector execution units which are
connected to, but not integrated in the core. The vector execu
tion units may be Complex Arithmetic Logic Units (CALU)
or Complex Multiply-Accumulate Units (CMAC). The data
to be processed in the vector execution units are provided
from data memory units connected to the vector execution
units through an on-chip network.
0007. The memory units comprise address generation
units which are arranged to control the read or write order at
any given time. For increased flexibility, the address genera
tion unit can enable different readout modes, or patterns. Such
as reading from every nth address in the memory. These
modes have to provide a regular pattern, which limits the
possible ways data can be read or written. Further, the avail
able modes are preselected for a particular address generation
unit, and cannot be changed.
0008. The article Nilsson, A and Tell, E: “An 11 mm2, 70
mW fully programmable baseband processor for mobile
WiMAX and DVB-T/H in 0.12 um CMOS, describes a
SIMT type DSP and briefly states that “as the memory banks
can accept external addressing from the network, integer
memories as well as accelerators can be used to provide
address sequences for irregular vector addressing. This also
provides the ability to do indirect vector addressing. This
article does not address any of the problems involved in

Nov. 27, 2014

actually implementing Such a solution, and also hence does
not provide a workable solution.

SUMMARY OF THE INVENTION

0009. It is an objective of the present invention to enable a
more flexible addressing of the data memories of a processor
in SIMT architecture.
0010. This objective is achieved according to the present
invention by a digital signal processor comprising at least one
functional unit, which may be a vector execution unit, an
integer execution unit or an accelerator, and at least a first
memory unit arranged to provide data to be operated on by the
functional unit, a third unit and an on-chip network connect
ing the functional unit, the first memory unit and the third
unit. The digital signal processor is characterized in that the
third unit is arranged to provide addressing data in the form of
an address vector to be used for addressing the first memory
unit, said third unit being connectable to the first memory unit
in such a way that data provided from the third unit can be
used to control the reading from and/or the writing to the first
memory unit and that the processor further comprises a
memory address interface unit arranged to compensate for the
latency between the first and the third unit.
0011. The invention also relates to a method of addressing
a memory in a digital signal processor comprising at least one
functional unit and at least a first memory unit arranged to
provide data to be operated on by the functional unit, and a
on-chip network connecting the functional unit and the first
memory unit, and a third unit arranged to provide addressing
data for the first memory unit in the form of an address vector,
said method comprising the steps of

0012 setting the first memory unit to receive addressing
data from the third unit, providing addressing data from
the third unit to the first memory unit,

0013 reading data from, or writing data to the first
memory unit according to the addressing data.

0014 Hence, according to the invention, addressing can
be achieved fast and efficiently in any order throughout the
memory unit. Data can be addressed in a memory in any
order, as efficiently as an ordered sequence of data since the
addressing may be handled in parallel with the processing
performed by the functional unit. The first memory unit may
be arranged to receive addressing data from the third unit
through a dedicated bus or through the on chip network.
0015 The memory address interface unit provides a solu
tion to the problems caused by latency between the first and
the third unit. In particular, a read signal from the first unit will
take some clock cycles to reach the third unit. When starting
read operations there will be a delay of several clock cycles
before the first data item actually reaches the execution unit.
By storing the first address samples in the memory address
interface unit, before the first unit requests them, the delay at
startup can be reduced.
0016. The third unit may be any unit in the processor, for
example

0017 a memory unit, referred to as the second memory
unit, preferably an integer memory unit,

0018 a scalar execution unit,
0019 a vector execution unit, or
0020 an accelerator unit

0021. Different units may be used for the addressing of
different memory banks.
0022. The first memory unit may be a complex memory or
an integer memory.

US 2014/0351555 A1

0023
prises

0024 Latency memory means arranged to store a num
ber representative of the latency between the first and the
third unit,

0025 Sample memory means arranged to store the
sample number, that is, the number of address items to
be transferred from the third unit to the first unit,

0026. A register for forwarding the address items from
the third unit to the first unit

0027. Accordingly, the memory address interface unit is
preferably arranged to perform the following functions:

0028 reading at least a first address item from the third
unit when the first unit connects to the third unit for
obtaining address information, without waiting for a
read signal

0029 when a read signal is received from the first unit,
forwarding the first address item to the first unit

0030 reading following address items from the third
unit Subsequently until all address items have been read
and forwarding the following address items to the first
unit Subsequently when read signals are received from
the first unit.

0031. The memory address interface unit preferably keeps
track of the number of address items to read from the third
unit by changing the sample counter each time an address
item is read. This is advantageous because the memory
address interface unit will continue to receive read requests
from the first unit after it has read the last address sample from
the third unit. In this way the memory address interface unit
knows when to stop retrieving address items from the third
unit. When the retrieval stops, only the last address samples
are sent from the memory address interface unit to the third
unit.
0032. It is often important that all calculations are per
formed with the same timing, regardless of where the data are
coming from. Since the latency may vary depending on which
units are involved, an advantage of the invention is that the
timing can be controlled by avoiding delay differences caused
by different numbers of pipeline steps between different
units.
0033. In a particularly advantageous embodiment, the sec
ond memory unit comprises an address generation unit
arranged to control the reading of address data from the
second memory unit according to a predefined pattern. In this
embodiment, the method may comprise the step of control
ling reading of addresses from the second memory unit by
means of an address generation unit arranged to control the
reading of address data from the second memory unit accord
ing to a predefined pattern. This enables the handling of
Subsets of the addresses kept in the second memory unit,
which is particularly advantageous for OFDM-based digital
TV applications.
0034. The processor according to the invention is particu
larly well suited for OFDM-based telecommunication stan
dards, for example, according to the LTE and LTE advanced
standards.

The memory address interface unit preferably com

BRIEF DESCRIPTION OF THE DRAWINGS

0035. In the following the invention will be described in
more detail, by way of example, and with reference to the
appended drawings.
0036 FIG. 1 illustrates an example of the SIMT architec
ture.

Nov. 27, 2014

0037 FIG. 2 illustrates the function of address pointers.
0038 FIG.3 illustrates a first embodiment of the invention
in a simplified example of the SIMT architecture.
0039 FIG. 4 illustrates a second embodiment of the inven
tion in a simplified example of the SIMT architecture.
0040 FIG. 5 illustrates a memory address interface unit
according to an embodiment of the invention.
0041 FIG. 6 illustrates a third embodiment of the inven
tion.

DETAILED DESCRIPTION OF EMBODIMENTS

0042 FIG. 1 illustrates an example of a prior art baseband
processor 200 according to the SIMT architecture. The pro
cessor 200 includes a controller core 201 and a first 203 and
a second 205 vector execution unit, which will be discussed in
more detail below. A FEC unit 206 is connected to the on-chip
network. In a concrete implementation, of course, the FEC
unit 206 may comprise several different units.
0043. A host interface unit 207 provides connection to a
host processor not shown in FIG. 1 in a manner well known in
the art. A digital front end unit 209 provides connection to a
front end unit in a manner well known in the art.
0044 As is common in the art, the controller core 201
comprises a program memory 211 as well as instruction issue
logic and functions formulti-context Support. For each execu
tion context, or thread, Supported this includes a program
counter, stack pointer and register file (not shown explicitly in
FIG. 1). Typically, 2-3 threads are supported. The controller
core 201 also comprises an integer execution unit 212 of a
kind known in the art.
0045. The first vector execution unit 203 in this example is
a CMAC vector execution unit, and the second vector execu
tion unit is a CALU vector execution unit. Each vector execu
tion unit 203, 205 comprises a vector controller 213, a vector
load/storeunit 215 and a number of data paths 217. The vector
controller of each vector execution unit is connected to the
program memory 211 of the controller core 201 via the issue
logic, to receive issue signals related to instructions from the
program memory.
0046. The function of the data paths 217, 227 and the
vector load/store units 215, 225 is well known in the art and
will not be discussed in any detail in this document.
0047. There could be an arbitrary number of vector execu
tion units, including only CMAC units, only CALU units or a
suitable number of each type. There may also be other types
of vector execution unit than CMAC and CALU. As
explained above, a vector execution unit is a processor that is
able to process vector instructions, which means that a single
instruction performs the same function to a number of data
units. Data may be complex or real, and are grouped into
bytes or words and packed into a vector to be operated on by
a vector execution unit. In this document, CALU and CMAC
units are used as examples, but it should be noted that vector
execution units may be used to performany suitable function
on vectors of data.
0048. As is known in the art, a number of accelerators 242
are typically used, since they enable efficient implementation
of certain baseband functions such as channel coding and
interleaving. Such accelerators are well known in the art and
will not be discussed in any detail here. The accelerators may
be configurable to be reused by many different standards.
0049. An on-chip network 244 connects the controller
core 201, the digital front end unit 209, the host interface unit
207, the vector execution units 203, 205, the memory banks

US 2014/0351555 A1

230, 232, the integer bank 238 and the accelerators 242.
Vector execution units, scalar execution units, integer execu
tion units and accelerators are collectively referred to in this
document as functional units. A Scalar execution unit is only
able to process one sample at a time, but this sample may have
a real or complex value.
0050. To enable several concurrent vector operations, the
processor preferably has a distributed memory system where
the memory is divided into several memory banks, repre
sented in FIG. 1 by Memory bank 0230 to Memory bank N
231. Each memory bank 230, 231 has its own memory 232,
233 and address generation unit AGU 234, 235 respectively.
The memories 232, 233 are typically, but not necessarily,
complex memories. This arrangement in conjunction with the
on-chip network improves the power efficiency of the
memory system and the throughput of the processor as mul
tiple address calculations can be performed in parallel. The
PBBP of FIG. 2 preferably also includes integer memory
banks 238, each including a memory 239 and an address
generation unit 240.
0051 Each memory has address pointers indicating the
position in the memory that should be read or written next.
0052 For example, the commands
0053 out rO, CDMOADDR
0054 out r1, CDM1 ADDR

set the positions in complex data memory 0 and complex data
memory 1, respectively, that should be read from or written
tO

0055 Each address generation unit 234, 235 performs an
address calculation to control the order in which data are to be
read from or written to the corresponding memory 232, 233.
For increased flexibility, the address generation unit can also
be arranged to enable two or more different modes. Several
Such modes are known in the art. The address generation logic
can for example perform: linear, bit reversed, modulo and
2D-addressing with different increments, including negative
increments. For example, the address generator can be
arranged to read every K:th data item according to the
addressing function, K being an integer. Alternatively, the
address generator might be arranged to address the memory
backwards. Hence, as an example, if the start address is 0, the
address generator can be arranged to read from the corre
sponding memory according to three different modes:

0056 Read each address consecutively, that is, 0,1,2,3,
4, 5, 6, 7

0057 Read every Kith address, that is, if K=2; 0, 2, 4, 6
If the start address is 10 and K=-2

0058 Read backwards, that is 10, 8, 6, 4, 2, 0
0059. In order, for example, to make a vector execution
unit multiply data items from two different memories, the
command might look as follows:

0060 cmac.in CDMO, CDM1
n being the length of the vector to be operated on. This would
then be performed on a vector of n data items from each of the
memories CDMO and CDM1, starting with the data item
indicated by the pointer of the respective memory.
0061. As long as the data of a particular memory is to be
read consecutively, or in an order Supported by its address
generation unit, there is no problem. But the address genera
tor does not support a situation where the vector to be oper
ated on by the vector execution unit was held in the memory
in an irregular order. For example, multiplying together the
Sequences

0062 CDMO 1, 3, 7, 5, 11
and

0063 CDM10,1,2,3,4)

Nov. 27, 2014

would be a very complicated operation because there is no
regular pattern in the sequence to be read from CDMO.
According to the prior art, therefore the address would have to
be set in the AGU manually, before each reading of data from
the memory. This would cause a significant delay in reading
the data which would reduce the processors overall perfor
aCC.

0064 FIG. 2 illustrates the function of the address pointer
in a first and a second memory unit. Each memory unit com
prises a number of data items, including a sequence of data
that is to be provided as input data to a vector execution unit.
0065. The first memory unit 230 is CDMO and the relevant
sequence of data is shown as a block 230a in this memory
unit. An address pointer 230b points to the start of this block,
to indicate where reading of data should start.
0066. The second memory unit 231 is CDM1 which also
has a sequence of data to be used as input data by a functional
unit, such as a vector execution unit. This sequence of data is
shown as a block 231a, with an address pointerpointing 231b
to the start of this block. As can be seen, the location of the
sequence of data 231a in the second memory 231 may be
different from the location of the sequence of data 230a in the
first memory 230.
0067. As the reading proceeds, the pointer will move to
point to the next address to be read from at any given time.
Traditionally, the pointer information is taken from the
address generation unit 234, 235, of the corresponding
memory 230, 231.
0068 FIG. 3 is a simplified drawing showing only the
parts of the SIMT architecture that are particularly relevant
for the present invention. The parts shown, using the same
reference numerals as in FIG. 1, are: one of the vector execu
tion units, in this example, the CALU vector execution unit
205, the first 230 and second 231 memory bank, and the
on-chip network 244 connecting these three units together. As
before, each of the memory banks 230 and 231 comprises a
memory 232, 233, and an address generation unit 234, 235.
There is also a third memory bank 250 comprising a memory
252 and an address generation unit 254. The third memory
bank is also connected to the other units through the network
244.
0069. The third memory bank 250 is typically an integer
memory bank, which makes it suitable for holding address
information in the form of a data vector which may be
referred to as an address vector. This memory bank is some
times referred to as the address memory in this document.
Otherwise, it may be of exactly the same type as the first and
second memory banks 230, 231, which are referred to as data
memories. According to the invention the memory 252 of the
third memory bank 250 holds an address vector to be used for
the addressing of the second memory bank 231. As shown
symbolically by the arrow connecting the second and the third
memory bank the connection bypasses the address generation
unit 235 of the second memory bank 231 to address the
memory 233 directly.
(0070 Since the data in the memory 252 of the third
memory bank 250 can be changed quite easily, this provides
a very flexible way of addressing the second memory bank
231.
0071 Reading address data from a separate memory unit
introduces additional latency in the system. When the execu
tion unit is ready to start receiving data from the second
memory bank, it will send a read signal to the second memory
bank, which is the bank that is to provide the data for the

US 2014/0351555 A1

calculations performed by the execution unit. The second
memory bank will then send a read signal to the address
memory bank. The address memory bank will respond by
sending its first address item to the second memory bank.
Only then can the second memory bank send the data item to
the execution unit. Hence there will be a latency which will
cause a delay at startup of a vector execution.
0072. In order to overcome this delay, in this embodiment
a memory address interface unit 256 is arranged between the
address bank 250 and the second memory bank 231. The
memory address interface unit 256 serves as a memory
address interface unit for intermediate storage of the address
items retrieved from the third memory bank 250. The design
and functions of the memory address interface unit 256 will
be discussed in more detail in connection with FIG. 5.

0073. As a complement, the address generation unit 254 of
the third memory bank 250 can also be used to set a readout
mode, as discussed above in connection with FIG. 1, for
example to read every other data item from the third memory
bank. This means that in some situations the same contents of
the third memory bank can be used for different applications.
For example, a repeat function could be achieved.
0074 As will be understood, a similar arrangement might
be used also for addressing the first memory bank 230, or the
address generation unit 234 of the first memory bank could be
used in a conventional way. Further, any number of memory
banks and functional units, of any kind, might be provided.
There might be a number of memory banks that could be used
as address memories. A memory bank and a memory bank
could easily change the order in which its entries were read or
written, by connecting to the appropriate address memory,
since all units are interconnected through the network 244.
0075 FIG. 4 illustrates another embodiment of the inven

tion. The parts shown, using the same reference numerals as
in FIG. 1, are: the CMAC vector execution unit 203, the
CALU vector execution unit 205, the first 230 and second 231
memory bank, and the network 244 connecting these three
units together. As before, each of the memory banks 230 and
231 comprises a memory 232,233, and an address generation
unit 234,235. A third memory bank 250 is also shown, com
prising a memory 252 and an address generation unit 254. The
third memory bank is also connected to the other units
through the network 244 and may be used as an address
memory as discussed in connection with FIG. 3. In the
embodiment shown in FIG.4, the second memory bank 235 is
addressed from the CMAC vector execution unit 203. This
means that the addresses to be read from the second memory
bank 231 are being calculated in the CMAC vector execution
unit 203. Of course, this is only an example. As the skilled
person would realize the addressing could be performed from
a CALU vector execution unit or from any other type of
functional unit Such as a vector execution unit, another execu
tion unit or accelerator.

0076. As will be understood, the embodiments shown in
FIGS. 4 and 5 could be combined so that some memory banks
would be addressed by means of their internal address gen
eration units 231, 233, others would be addressed from sepa
rate memory banks 250, and yet others from functional units
203, 205.
0077. By using another vector execution unit to calculate
the addresses from which to read in a particular memory,
memory addressing can be achieved in a very flexible way.
This is particularly useful in applications such as

Nov. 27, 2014

0078 Pilot extraction and user separation in OFDM
systems

0079 Rake finger processing in CDMA systems
0080 A method according to the invention of enabling the
addressing of one memory unit from another unit of the
network, for example, integer data memory IDM:

I0081. 1) Set the first memory unit, for example, CDMO
to use IDM as an address source

0082 2) Set the second memory unit, for example,
CDM1 to use linear addressing by means of its address
generation unit

0.083 3) Process the data in the vector execution unit,
for example calculations, on the data provided from the
first and second memory unit in the order they are pro
vided.

0084. 4) For each data item read from the memory unit
by the vector execution unit, the memory is programmed
to retrieve a new address from the network, that is, either
from the third memory unit, in the embodiment of FIG.
3, or from the second vector execution unit, in the
embodiment of FIG. 4. The new address will indicate the
position in the first memory unit from which data is to be
read next.

I0085 Alternatively, for writing the results of the process
ing performed by a vector execution unit to a data memory:

I0086) 1) Set the first memory unit, for example, CDMO
to use IDM as an address source

0087. 2) Set the second memory unit, for example,
CDM1 to use linear addressing by means of its address
generation unit

0088 3) Process data in the vector execution unit, for
example calculations, and write the result to a data
memory.

0089. 4) For each data item written to the data memory
unit by the vector execution unit, the memory is pro
grammed to retrieve a new address from the network,
that is, either from the third memory unit, in the embodi
ment of FIG.3, or from the second vector execution unit,
in the embodiment of FIG. 4. The new address will
indicate the position in the data memory to which data
should be written next.

0090. In the example methods above, of course the
addressing data could be obtained from a vector execution
unit or from Some other unit in the processor, instead of the
address memory.
(0091. In both the examples shown in FIGS. 3 and 4, the
address information to be provided from the address memory,
or from the appropriate vector execution unit, respectively,
must be timed in such a way that the next address to be read
from, or written to, reaches the second memory bank one
clock cycle before it should actually be read from or written
to. That is: there should be a read ahead of data elements
because of pipelining. The amount of data that is read ahead
may be controlled by control signals that are propagated from
the memory block that is addressed through the network to the
address source. Alternatively, it may be controlled by a fixed
value programmed into the memory address interface unit.
The read ahead can also be implemented by address Sources
pushing a pre-defined amount of address data over the net
work, where the number of pipeline stages is encoded in the
hardware.
0092. In order to overcome the problems caused by
latency between the vector execution unit 203 providing the
address data and the memory bank 231 that is to use the

US 2014/0351555 A1

address data, a memory address interface unit 256 is arranged
between the vector execution unit 203 and the second
memory bank 231. The memory address interface unit 256 is
similar to the memory address interface unit 256 of FIG.3 and
serves as a memory address interface unit for intermediate
storage of the address items retrieved from the third memory
bank 250.
0093 FIG. 5 shows a memory address interface unit 256
according to a preferred embodiment of the invention. The
memory interface has a memory 258 and a control unit 260.
The control unit 260 comprises two memories:

0094) a latency memory 262 holding the number of
pipeline steps required to read from the third unit to the
first memory.

0.095 a sample counter 264 arranged to keep track of the
number of address samples to be read from the third unit
203, 250

0096. The latency memory 262 is typically, but not neces
sarily, hardcoded. The sample count memory is arranged to be
set for each operation as needed.
0097. As discussed above the third unit is the one provid
ing the address information. This may be a memory unit 250
as shown in FIG.3 or a vector execution unit 203 as shown in
FIG. 4.

0098. When the data memory bank (not shown in FIG. 5)
is setup to receive addressing data from the third, address
providing, unit, the memory address interface unit 256 reads
the first address data items from the third unit to its memory
258. In this way, when the execution unit that is to receive the
data from the data memory bank sends a read signal to signal
that it is ready to receive the first address item, this first
address item is already stored in the memory address interface
unit and can be sent to the second unit without any delay.
Without the memory address interface unit, the procedure
would be

0099 the execution unit sends a read signal to the
memory unit

0100 the memory unit sends a read signal to the unit
that is to provide the address

0101 the unit that is to provide the address responds by
sending the first address.

0102 The memory unit, upon receiving the first
address, sends the data item to the execution unit.

0103) Therefore, it would take several clock cycles before
the execution unit could startworking. Once started, however,
addresses could be delivered at the appropriate pace.
0104 For configuring the system the following steps are
performed:

0105 1. The core orders external addressing of the data
memory by sending a signal to the memory interface to
fill the queue to the data memory or by writing its control
registers.

0106 2. The memory address interface unit performs a
sufficient number of read operations from the unit pro
viding the address data to have in its memory a number
of address items corresponding to the network latency.
This means that the number of address items should
correspond to the number of pipeline steps that have to
be performed to retrieve the address.

0107. During execution, the memory address interface
unit continues to send address data items from its register to
the data memory unit and to retrieve new address data items
consecutively.

Nov. 27, 2014

0108. The functional unit receiving the data items will
continue to send read signals to the memory unit until it has
received the appropriate number of data items, and the
memory unit will in turn send read signals to the memory
address interface unit. Since some data items were already
read from the address providing unit before the functional
unit started sending read signals, this means that some read
signals will be sent after all the address items have been read
from the address providing unit.
0109 Hence, the latency means that the memory address
interface unit would continue to read address items from the
third unit after it should stop. More precisely it would read as
many address items too many as the number it stored in its
register when it was being configured in step 2 above. To keep
this from happening, the sample counter keeps track of the
number of address samples that have been retrieved. When
the desired number of address samples have been read from
the third unit to the memory address interface unit, the
memory address interface unit stops retrieving new address
samples although it will continue to receive read signals from
the data memory. Instead, for the last address items, the
memory address interface unit will empty its memory to
provide these items to the data memory.
0110. In a preferred embodiment, the address information

is timed in such away that the next address to be read from, or
written to, reaches the second memory bank one clock cycle
before it should actually be read from or written to.
0111 FIG. 6 shows an advantageous embodiment of a
processor according to the invention, in which a number of
memory units can share a smaller number of memory address
interface units. The same reference numbers as above are
used for the same units as shown in previous Figures. As can
be seen the processor according to this embodiment has the
same units as the processors shown in FIGS. 3 and 4, all
connected through the on-chip network 244. In addition, the
embodiment of FIG. 6 has an address crossbar 270 arranged
to provide address information to the desired memory unit
230, 231. In FIG. 6, two memory address interface units 256
are shown, both of which are connected to the address cross
bar 270. The address crossbar then functions as a concentra
tor, selecting for each memory unit 230, 231 which one of the
memory address interface units 256 it should receive address
ing data from.
0112 The embodiments of the invention are particularly
useful in applications in which complex address patterns are
used, which cannot be hard-coded at design time or are infea
sible to store pre-defined in system memory. Such patterns
could be based on run time parameters and must be computed
dynamically.
0113 For example, the OFDM-based telecommunica
tions standard known as LTE (Long Term Evolution) uses
dynamic allocation of frequencies to users. It is necessary to
select the frequencies allocated to one user. In other situations
it is desired to select all pilot tones, which may be done based
on a table. Traditionally this is achieved by looking in a table
to obtain the address information of the pilot tones, then load
the desired data item from memory, shuffle the data in the
frequencies to place the relevant data points adjacent each
other and then Store the data points back in the memory.
0114. This type of address pattern cannot be programmed
into a traditional address generation unit. This means that, for
example, to perform an FFT of the pilot tones, the address
pointer will have to be set several times for each operation,
meaning that just the administration of the data will be so

US 2014/0351555 A1

complicated that it will lower the performance (utilization) of
the DSP processor significantly.
0115) If, instead, the memory unit is programmed to
retrieve a new address from the on-chip network, as discussed
above, each data point to be used can be addressed directly,
reducing the capacity needed for the administration of data,
and thereby increasing the utilization and performance of the
DSP.
0116. Another application in which the present invention

is particularly useful is in digital TV applications. Each
OFDM symbol in DVB-T2 consists of up to 32768 subcarri
ers, resulting in a set of 32768 data points. This signal com
prises pilot tones to be used as reference data, which are
unevenly distributed throughout the frequency spectrum.
Such an address pattern cannot be handled easily in tradi
tional address generation units. According to the invention,
the addresses could simply be stored in the third memory unit
and picked from there by the memory unit providing data to
the vector execution unit.
0117 For digital TV it is also possible to use only a subset
of the 32768 (32k) points. The subset may be 16 k, 8 k, 4 k,
2k or 1 k points, that is, half, quarter, etc., down to /32 of the
points. According to the invention, it would only be necessary
to store one table of the addresses, as a subset of this table
could be selected by setting the addresses accordingly in the
address memory.
0118. The invention is also useful when addressing data is

to be received from units that have unpredictable timing.
Examples of Such units are programmable co-processors or
error correction units such as turbo decoders. Typically pro
grammable co-processors can deliver an address stream with
an average throughput matching the requirement, but with
data delivered in small bursts. In the same way, error correc
tion blocks will work iteratively on a set of data until it is
correct, and it is impossible to predict exactly how many
cycles this will take. Therefore the output from such units will
be unpredictable bursts of data. A memory address interface
unit according to the invention may be used to even out the
bursts of data. If the register 258 shown in FIG. 5 is replaced
with a FIFO queue the memory address interface unit can
store the number of data contained in a burst and send them
consecutively to the next unit.

1. A digital signal processor comprising at least one func
tional unit, which may be a vector execution unit, a scalar
execution unit or an accelerator, and at least a first memory
unit arranged to provide data to be operated on by the func
tional unit, a third unit and an on-chip network connecting the
functional unit, the first memory unit and the third unit, said
digital signal processor being characterized in that the third
unit is arranged to provide addressing data in the form of an
address vector to be used for addressing the first memory unit,
said third unit being connectable to the first memory unit in
such a way that data provided from the third unit can be used
to control the reading from and/or the writing to the first
memory unit and that the processor further comprises a
memory address interface unit arranged to compensate for the
latency between the first and the third unit by serving as an
intermediate storage of the address items retrieved from the
third unit.

2. A processor according to claim 1, wherein the third unit
is an address memory unit, preferably an integer memory
unit, holding address data for addressing the first memory
unit.

Nov. 27, 2014

3. A processor according to claim 1, wherein the third unit
is a second functional unit.

4. A processor according to claim 1, wherein the first
memory unit is a complex memory.

5. A processor according to claim 2, wherein the second
memory unit comprises an address generation unit arranged
to control the reading of address data from the second
memory unit according to a predefined pattern.

6. A processor according to claim 1, further comprising an
address crossbar interconnecting at least one memory address
interface unit and at least a first and a second memory unit to
enable address data to be provided to a selected one of the first
and second memory unit through the memory address inter
face unit.

7. A processor according to claim 1, adapted for telecom
munications, for example, according to the LTE and/or LTE
advanced standard.

8. A processor according to claim 1, adapted for digital
television signals.

9. A method of addressing a memory in a digital signal
processor comprising at least one functional unit, which may
be a vector execution unit, a scalar execution unit oran accel
erator, and at least a first memory unit arranged to provide
data to be operated on by the vector execution unit, and an
on-chip network connecting the vector execution unit and the
first memory unit, and a third unit arranged to provide
addressing data for the first memory unit in the form of an
address vector, said method comprising the steps of

setting the first memory unit to receive addressing data
from the third unit,

providing addressing data from the third unit to the first
memory unit,

reading data from, or writing data to the first memory unit
according to the addressing data,

compensating for the latency between the first and the third
unit by means of a memory address interface unit
arranged to serve as an intermediate storage between the
first and the third unit, for the address items retrieved
from the third unit.

10. A method according to claim 9, wherein the third unit is
an address memory unit, preferably an integer memory unit,
holding address data for addressing the first memory unit.

11. A method according to claim 9, wherein the third unit is
a functional unit.

12. A method according to claim 9, wherein the first
memory unit is a complex memory.

13. A method according to claim 10, comprising the step of
controlling reading of addresses from the address memory
unit by means of an address generation unit arranged to con
trol the reading of address data from the second memory unit
according to a predefined pattern.

14. A method to claim 9, comprising the step of timing the
address information in Such a way that the next address to be
read from, or written to, reaches the first memory unit one
clock cycle before it should actually be read from or written
tO.

15. A method according to claim 14, wherein the amount of
data that is read ahead is controlled by address Sources push
inga pre-defined amount of address data over the network, the
number of pipeline stages being encoded in the hardware.

k k k k k

