US 20140351694A1
a9 United States

a2y Patent Application Publication (o) Pub. No.: US 2014/0351694 A1

Verma et al. 43) Pub. Date: Nov. 27,2014
(54) DOCUMENT ANALYSIS, COMMENTING AND is a continuation-in-part of application No. 11/945,
REPORTING SYSTEM 958, filed on Nov. 27, 2007, now Pat. No. 8,412,516.
(71) Applicant: Accenture Global Services Limited, Publication Classification
Dublin (IE)
(51) Imt.CL
(72) Inventors: Kunal Verma, Santa Clara, CA (US); GO6F 1727 (2006.01)
Alex Kass, Palo Alio, CA (US); GOG6F 17/22 (2006.01)
Reymonrod G. Vasquez, Vallejo, CA (52) US.CL
Us) CPC GOG6F 17/2725 (2013.01); GO6F 17/2247
: . . - (2013.01)
(73) Assignee: Accenture Global Services Limited USPC. oo 7151237 715/234

21) Appl. No.: 14/455,457
(1) Appl. No ’ (57) ABSTRACT

(22) Filed: Aug. 8,2014 A document analysis, commenting, and reporting system pro-

vides tools that automate quality assurance analysis tailored

Related U.S. Application Data to specific document types. As one example, the system may

(63) Continuation of application No. 12/846,615, filed on implement state machines that evaluate document structure
Jul. 29, 2010, now Pat. No. 8,843,819, which is a instances to determine whether the document structure
continuation of application No. 12/558,483, filed on instances conform to pre-defined syntaxes. The state
Sep. 11, 2009, now Pat. No. 8,271,870, which is a machines may include error states and final states, and mes-
continuation-in-part of application No. 12/121,503, sages may be associated with the error states for display when

filed on May 15, 2008, now Pat. No. 8,266,519, which a state machine reaches the error state.

26Q4 2606 2608 proplematic Phrase Glossary 2910 26\1\ 2 2602
Phrase " Explanation h Suggestion Template Category
To correct this reguirement, follow veasy o use” is often ambioLous
one of the suggestions in the yous » 8MoIGuoLS.
easy o use : Replace with a specific description of
checker to write a more festable
. the expected result.
requirement.
To correct this requirement. follow
none one of the suggestions in the ‘none” implies unproven certainty.
checker to write a more testable | Replace with a specific condition.
requirement.
To correct this reguirement, follow
efficient one of the suggestions in the “efficiently” is often ambiguous. Define
y checker to write a more festable | quantitatively how efficient itis.
requirement.
improved To correct this requirement, follow | . " . "
S is underspecified, unless it specifies
better one of the suggestions in the .
v how much faster, improved, better, or
faster checker to write a more testable .
. . superior.
superior requirement.

-
-«
-
N
= | @inbiy
P :
o
4
= sseqeleq
& — uoniugeq | | — seupuep Zl sisheuy
m 05k XEJUAG 8vl 2IMONKg Juswinoog

— Kiesso || — Aesso

orL ¥l
o aselud apopy
-
= = Aiessol || — Adesso
©
— ol uonoy 0wt woeby sisjatleied
~N—
@ T 3G Jajaweied JUsnoo — ZCF se0ineq Ofi PiT ouiosds
_m 8¢t 185 19} d} | WewIno0g
7
- 3 souessu| anonis | I [
m] oel HIOMIBN BiNONANSEIU)
a : HIOMIBN
> | vr aouggsu| amona | . sigleuweREd
a — 9L} 10ssa%0id 70T osdg
2 I sishjeUy Jepup Jwawmaog JuauInaoQ
Z

011 Jopinoid Aiessois)

S [ot anpoyy Buppoday |
= spodey
.m EZ sinpopy Buguswwog | | pUeE S|N9
= — 1 7T feydsiq __
Dn.... _ 4 a[npopy sis ,mc<_ \.h OF oubuz eoussouy
.m 3T Aiowspy 201
=
.m 707 waishg Buiodsy pue ‘BunusLILIO] 'SISAjEUY JUBWINI0Q
- A3
-«
- 004
=
2
<
-

US 2014/0351694 Al

Nov. 27,2014 Sheet 2 of 48

Patent Application Publication

Z 24nbi4

‘wa)sAs sy Buiueiuieul
pue ‘Buibevew ‘Buihojdap 1o} aw
Jono ajqisuodsal ag jjim ey Weay sy

SIopioyNBlS
[E01LUDB} LIESASUMO(]

‘washs syy Hurdosasp
wes) Justidoprag
10} siqisuodsal uies; aimus ay|
weoy JusLudojeas(siadojena(y
Jojensiutupe aseqeleq
SIBPIOYBE]S JBWoISND
‘waikg Buuspip
B1I9)9)e0) BU} PUE '18SMOIQ JBM
au} ‘seInduiod sy JO 8SN By Ul paUIEH
84 0] PAaU [\M LIS BLSIBIET 8} j0
1sopy Ateayep isanbal pue ‘suohonisul PIC BLOIIE
Kionep wuud ‘fieayep Joi way) abexped HEIS BUGIBED
‘s|eatu asedaid ‘waishg Buuspio
EHLIBIBIEY) Bl WO SJAPIO SAIBDSS [IM
ouM ‘HelS eusisie) 0z noge shoidws
Apuaiing eusiajen 10edul| $S2004d au |
STION [EUOLPPY Jusled uoyjeuejdx3 Jojduosaq) uaby
e - a -
80¢ 90¢ 70T 20e
o K1essojn) uaby

Patent Application Publication = Nov. 27,2014 Sheet 3 of 48 US 2014/0351694 A1

-
3
w0
fam)
CV') ‘\
W
3]
[rees)
o
=
=
[on
8
=4
k=
-
<g
e
3
2 o
S o
2 >
o fomd . —
= | e LL.
roe
(4]
o
o £
(")‘\x
i
N
N\
\ Q2
3 =
= 3
E (=] Q
hand el
= | = 2| g
— o %2 > oy @
= 3 50
s|&|I=2I=21S12]2

US 2014/0351694 Al

Nov. 27,2014 Sheet 4 of 48

Patent Application Publication

$ 24nbi4

pUNG} UOROR ON

pusg

flewy

3J0J8

Moysg

ey

9d

puag

dioH

U0

Joddng

8jeaiy

BA0adwy

sonpay

auyaq

Aynusp

MOl

supspun

UfejUIB

10j09)

sziubosey

910N [RUORIPPY

_uonay 1udied

uoneuejdx3

uonoy

75 80Y

90% Klessojg uonoy

¥y

0y

US 2014/0351694 Al

Nov. 27,2014 Sheet 5 of 48

Patent Application Publication

G 2inbi4

l ‘gyendoiddeu Jo ‘snonBiglue s few
Jouadns
*Jouadns Jo ‘1e11aq ‘parcidu Jayse)
¢ “I9)SB} Lantl MOl S8l10ads) sSajun ‘paiioadsiapun s lageq
pancidius
“1eajo papoddns
l £ . ajqixsy}
JHQIXS]L JO SULIOS BU) aXey\ L) BANE}8) B SI
l St 11 soye moy Aisaeliuenb suyeq snonbiguie s Apuspige
‘asn 0} weaj 0) <spjoid Jasn
Aipadss e 10j sy <uogeinp Apoadss
uBy} 20w ou ainbal m weyshs ey
. Apuaiy Jasn
uoRajdwios 10 aausledioD 0} A
ox Ag <uopoun; Apoadss 0} pasnbai . asn o} Asea
l pajoadxe pue ‘apjoid Jasn pajoadxa el jo uohdulsap
10y SU 80Npal [jim WaisAs ay |) Ajises
aaads e ypm Buioeidal Japisuod ‘snonbiquie uayo si fses
<Hoge Ajoads>
yum <uonoung Agoadss 0 ajge 8q
M <punoibyoeq Ajoadss ypm Jasn v
‘suopduwnsse o} jim, ‘sjustusinbal
| . . pinoo
10} jjeys, asn a1eudoiddeu jo ‘snonbiguue si
sajop [euoppy | Awoud uonsabbng _uoneuejdx3 ‘asetyd wayqoid
E 0I5 905 905 Kiessoj aselyq +0s 205

US 2014/0351694 Al

Nov. 27,2014 Sheet 6 of 48

Patent Application Publication

*90B8)UI Jasn panoidwl ue [1epulewal

g ainBi4

079 8i9 919 719

/ J

‘90e}a)u Jasn panosdiy ue 81ealo Aew siadojaasq ayL 1|0y
229

ajeaun [uonoe
few [spow
siadojsas(g uebe

[Sebost' By bl By Rodos Bg Sovunt }

10d

_ uonIuaQ XejuAg _ _ JOLRUSP] BIMONNG _

_-e0BpIBIUI JoSN panoduul Ue ajesld Aew siedojoraq 8y 1|0y

219
0l 809 909 09 209
N N N N N
[1epuieway] [uonoe] [apowl] luabe [6-01[6-02-6Z-V]
| o7 uoruigeq xeuAg | [31 seunuep ainpnig |

US 2014/0351694 Al

Nov. 27,2014 Sheet 7 of 48

0L~

Patent Application Publication

8t}

| 185 JaisWDID4 1ustundo(

/ 8inbi4
N —
Okl = =
- == <
B2 [—
E =[]
) Apdsiq
[9c, soupysuj aumonig]
[) souD)su| 84njonug|
767 Sishpuy Jepup juswnoo(
uoijiuye(Jalylyusp)
051 XDIAS| |gpp @4nionns
AJpsSs0|9 £ pssos | = o_wwo_\,_ 5o n=
9p 9SDAUd| | epow ISA|pUY
Apssolg| | __ Aupsso|y
7pp Jonjoy| | Ovi 1uaby

A1ouwapy

807 N 185 Jelowining juawinoo(

| 507 ¢ 195 Jejowning Juswinaog

|70/ 7 19S Jejewbing juewinooq

\

L 2sbgp3d(
174 SISA|puUy 1UsWIN20(]

44’

s901h8(Q O/ |

02k yomiap

90D}I9U|

«w
~—
-~

10S83201g

US 2014/0351694 Al

Nov. 27,2014 Sheet 8 of 48

Patent Application Publication

0€8 —-

Che

Q ainbi4

O
P

818

beg

<ajyoid Jasn Ayoadss € J0) sl <UCIeINp AJoadss el 20w OU aanbal jim Wayshs ay |
%X Aq <uonauny Ajoadss o} pannbas 1oys ay) aonpal fim waishs ayy
<Moya Aosdss ylim <uonouny ANoadss 0} ajge aq im <punoifoeq Ajoadss> yum Jasn y

*asn 0) UIga| 0}

"MOfeq 15 SU wiol) alejdwe) & 199)9s 10 wiod Buipess e se syuelwsinba) euibuo
U} as) "UBaIs SIY) Jo doj sy} 1e xoq au} ul BuidAy Ag pansep se Justwalnbas sy asIAeY

‘suonaNASY|

“wone|duog Jo a0usiadwiod o) awi papadxe pue ‘ajyoid Jasn pajoadxe sy jo uonduassp
aoads e yim Buiceidal sepisucs isnonbiguie LYo S ASY3. ‘eseyd 4o plom sy]

5

uojeugjdxy —

jeouen

—0C8

Y

_ jeuibuQ 0y Psasy

opun | | ebueysy

ustlaknbal syl axouby

sjuawainbal BuRUM aYBU [IM p# 85e8(aY ('L 0gX

Ases

anss| sjuslleNnbay Meinay

0,67 10 abrIaAR Ue Aq Sy{sE) UoNIULSP SjuBWaANDAl 818]dLUOS O LI S0NPAY [jiM SALRINUI SJUSLIBINDSI 841 704

/ﬁ sjualuanbes Buium axew [Im p# oSE9|aY b’ L 0gX

a1nbal s0Npal M g 0SERlY 2108

aunbas 8onpas Jim Z4 osesieY 17 108

> [zes

—= 0LL

feydsig

Patent Application Publication Nov. 27,2014 Sheet 9 of 48 US 2014/0351694 A1

(Start)

\

Retrieve document specific parameters 902

Receive document for analysis 904

\

Identify first document structure instance 906

|dentify first glossary in document
specific set 908

Analyze document structure instance
for constituents in glossary 910

Present results of comparison 912

914

Yes .
Perform analysis

)
Perform analysis
operation 916

Identify next glossary in
document specific
parameters 920

Identify next document

Additional n
structure instance 924

instances?

Figure 9

0l 8inbi4

US 2014/0351694 Al

0hL |-
&
S
= T Aeids
S 92l 1asia
“ G0/ N 198 JajoWeled uawniog
% Y0/ £ 190G [8jeuiriEd JBWN20Q
% Logl BOUEISY] BINIONAS | 70 7195 JalSUBIEd aWnsog
aseqeleq

- : (74
= (3T SRS 174 SISA|RUY JUSWINO0Q
]
= 7T sishjely Japuf) JusWinoog
~
B
)
z ~—— vopuyeq [| s ‘enuep|

0s1 XBJUAG 8r aImanng
= — 72F sedisq Ol
= — Aiesso || — Asmssolg
= vl yl
s 98BN BPON | [[BOBLBIU|
o= == | a
w — tessop || Aesson 82l ajnpopy BuijuawiLo) YomyanN
nm vl uonoy Ovl sy
.m BET | 188 Jeisweied Jusiinoo(— 9 105S900id
<
.m Aowapy
>
Z A
~N
m 200} —
]
A

US 2014/0351694 Al

Nov. 27,2014 Sheet 11 of 48

Patent Application Publication

L L @inbi4

POLL -~

oM~

80—

90111

~
M paziibodal oN fHuniovi Juswwon)

ﬁ paziuBoass oy :[qiunioy] wewwo)

b,

“pUNO; UoIE)

7

‘pUNo} Juabe)
ranEmoow_ oN :[giuniueby] Jusliwo) |

\
("UOHS|dWO0d JO 92USISAW0)D O} Uil)

pajoadxs pue ‘ejyoid Jesn pajoadxe
8y} 40 uvolduosap aloads & im
Bugoeidas sepisuos ‘snonbique uayo
st Asea, [znsselyd] juswwo))

v

.

“BUNoy coﬁw A

- ‘Bjgelss sIoW SeNIAOR
Paseq siuBWaLNbal 0§ UCHBWISS SLN N0 SYBU M aAgenil suswiainbas ayy :/oa}

“UOIBJSTES TAUIONSTO SNOIGW I SAUEGIU SIUBWEANDal 8y :90g

Aq sisAjeue sjuawainba; 1oy 20UB1adiiod-0}-aull BONPaL jM SALRIIUL SjuBwaanbal sy} 08

‘sanss] Sjuawianbal o %00} SIEUILIS IIM SATENIUl SjusWannbal 8y :£0gx}
029 B9 90 TG e

\ \ "4,GZ 10 obesene
U AQ sysey Uojilizep Judtliaiinbai £an8 0} oUllf} SONPS1 [fIM SAIBRIL SUSWanbal sy 209

Il L

B4 ([[]

Q|

Aeydsiq

Patent Application Publication Nov. 27,2014 Sheet 12 of 48 US 2014/0351694 A1

(Start)

\

| Retrieve document specific parameters @l

Y

| Receive document for analysis @l

Y

‘ Identify first document structure instance %l

\

|dentify first glossary in document
specific parameters 1208

\
Analyze document structure instance |
for constituents in glossary 1210 |

1214 in glossary? 1220

document structure No
instance contain
constituent ¢

Yes document structure
instance contain
constituent ¢

Embed analysis message

in document 1218
Mark document — —

structure instance 1220 Y

— Identify next
glossary in document
parameter set 1222

Identify next
document structure
instance 1226

Figure 12

US 2014/0351694 Al

¢l 8inbi4

<0t -~

o«
| — =
o0
N EED
=) 74N feydsi
=
- 007 N 19S Jejawirled 1uslinoog
% 0L £18G Jalswesed wawnsog
% Lot 30UEJSU| 8nONnas | 70. 7195 J910UIRIRd JAWRIog
{ aseqeleq]

-t i 74 sishjeUY JuBLINDO
M (¥l BOUEISU] SIS | sAjELY ¥ d
~ 7€) sishjeuy Jepun juswnoog
< 3
3
z] |

XBWAS alnpnng) —
.m Aiessoin) fiessoin) B
~d —— —
.m vl 9seNd il 3popy > — S
=2 e — 0
nn._.. — fiessop | [fuesso ocl ajnpoy Buiiodey YOMIBN
= eyl uoyoy ovl 1uaby
=) | | —
= TCT | 19S Jejeeied JUsWnoog gl} 1085800id
= Aiotwopy
>
«
~d
=
&
]
A

1 9inbi4

US 2014/0351694 Al

Nov. 27,2014 Sheet 14 of 48

\QUO m_c UMNUAIONG UL

Ag syse) uoniuyap sjuswaiinbal sjeidiiod o} awy
B0NPa |IM SAEIIU SlUBWasNbal 8U Z08 %0
0 abejone ue Ag Sp95ep pajeRs-SiuauBINbaL JO
1509 B} 8ONPAY [iIM AR SJusWainbal sy 1109 £ 95EDOY

%0} [BUOBIPPE LB AG S}08jap
PajefeIuBUBANDE. BONPa [IIM 4 85899y 1€°1.0d

%01 [eucippe e Aq s1o9)ep
A R polejsi-UBLWIBANDa) 8ONPaI [IIM £ 88e8|8Y 1£109 o OsBalEY

%01, [EUORIppE UE Aq Sjoajep
pojejeijusLLBANDAL BONPBL M 74 BSERieY 7'10g

901 [BUONIPPE UR AQ S108jap
pojejsI-usWaJnbal soNpal [IiM 74 aseslay 1z 10g Z# oses|ey

9,02 Aq Sj08j8p pelejei-siustualinbal
90NPaJ [l L# 95B8[RY %07 AQ S1o9jep
PajRjeI-SIUBLIBNNDAS 8ONPaI M | # 8Se9|8Y 1|08 L1 BSEB|9Y

siswanbay

N
- 90v 1

- 40p}

<
~—

feydsiq

Patent Application Publication

Patent Application Publication = Nov. 27,2014 Sheet 15 of 48 US 2014/0351694 A1

(Start)

Y

| Retrieve document specific parameters &l

\

| Receive document for analysis &l

\
Receive selection of glossary in
document specific parameters 1506

Y

Select first constituent in glossary 1508

\
Compare constituent with each
document structure instance 1510

Y

Maintain list of document structure

instance(s) that contain constituent
according to syntax definition. 1512

Select next constituent
1516
A

1514

Additional
constituents in
glossary?

Output report showing constituents
with corresponding lists of documents
structure instance(s) 1518

Y
End

Figure 15

US 2014/0351694 Al

Nov. 27,2014 Sheet 16 of 48

Patent Application Publication

WolsAg
Joyddng

209t

91 8inbi4

Jobeuepy
Aiobsen

wayshs
90UBLL4

)

fnug

Jabeuepy
flerey

(

sobeuep
ayjddng

Patent Application Publication = Nov. 27,2014 Sheet 17 of 48 US 2014/0351694 A1

~ 1702
4

w
e
- o
@
o
N~
4 R
2 @
S —
< -
__U)
L

Action

US 2014/0351694 Al

Nov. 27,2014 Sheet 18 of 48

Patent Application Publication

vC8l Swl} MIOMBN

g1 ainbi4

gTgIpIomsse argr ol FARTA 0rer
18P d 181 fnosg 181 VYSY 0181 HSS
_ - o] L e]
< 2 + < . <w. + <
7Zeal OUILL Y9l uonesnusyiny 808} uondAioug {pardiious
asuodsay ._ . “dAsous)
. — |] 0e9”
v + vl v + < i
—— uswasnbey | N — Juswainbay
c8l awny | i 908l Aunosg
_ 8z8l T
7 St ns st
9c8l
Y08l uswannbay

0081

c08l

US 2014/0351694 Al

Nov. 27,2014 Sheet 19 of 48

Patent Application Publication

61 @inbi

eseqeleq
— suue| Zh sisheuy
96l ieeg ssei soueysyy Juewnooq
S sdiysuone|oy
ri6l uoluyeq sser)
- sessen |l ssep
ALY PILD 0l6l 100y
0081 [epoy ABojoruQ — 221 s8%1meq O/l
ES sougjsu ainjoniig | —__ soepo
; — %t HIOMJBN
_ T aouElsy| m§o§m_ |
L1917 Jossesold
el sisAjeuy Japup uswnoog
[306T 1607 sishieuy diysuonerey |
_ 061 SUOREIYISSEID) mocﬂmc__
suoday
[zosT olfio uopeoyissery | | L PUE SI9
T Alowap 971 feydsiq
006t wisisAs sishieuy ABojojuQ

Patent Application Publication Nov. 27,2014 Sheet 20 of 48 US 2014/0351694 A1

Retrieve document specific parameters 2002

Y

Receive document for analysis 2004

Y
Retrieve ontology model 2006
Y
Classify document structure instances
using ontology model 2008

l

Determine horizontal relationships of 2010
document structure instances using ontology
model and instance classifications

l

Output report showing classifications 2012
of document structure instances
and horizontal relationships

End

Figure 20

US 2014/0351694 Al

Nov. 27,2014 Sheet 21 of 48

Patent Application Publication

FAILIE

puodsai ‘asuodsay | sl asuodsay
awighienb ‘e Aeng au| auwit Aenp
adh1bay o}
YSQA 'YSY ‘HSS ‘jdhoul Rnoag uondAious
S018GI8)Y ‘UORBSJUBYINE *UsY0} ‘plomssed Runoag uoeusyIny
auit] 's1004v odk bay Aunooeg
sdiysuonejay splomAay ssej) sied ssej)
7012 oz 801z~ K1essoj9 diysuonefey 9017 b1z

US 2014/0351694 Al

Nov. 27,2014 Sheet 22 of 48

2z @inbi4
80CC— -~
EEO
T Aeydsig
| 8¢l souesu ainonds |
: 90/ N I8S J3jeWiried Juswinioq
: _ % ¢ 108 Islouleled Jualnsog
| ¥¢1 BoUEBISU} 8injonis | 207 7305 ispweied wuswnsog
ZCT sisAjeuy Japup wuewnoog T 8SeqEIEg
! - ¥cl SISAJRUY JUSINS0gQ
\
— UOHUISQ | | —— O4AUSD|
05l xejudg 8vi 8iMmonys 8iee
— hessom || — Adessojg] el SeMRa o
ovi aseild vl apopy | F—» 9ldc —
| = Q0B
— fiesso || - Aessoin || —— Asessoi — — Ock YOMIBN
cOke diysuonesigy el uonoy Ovl by Oleg ™ ¢iec 1 vied
9022 9g Ja)auieled JUSWUNOO — L 311
902 128G J8) d} a 072 ainpopy Buidess o1 J08$8001d
Kowspy e

Patent Application Publication

US 2014/0351694 Al

Nov. 27,2014 Sheet 23 of 48

Patent Application Publication

¢z 8inbi4

_ b
_ 2867 _ L
_ uonoysey | L€—SSBIOqNS Sey $SEYNS Sel—m | _
l——S3R|2qNS Sey—, | - -
| | uopdAsouy veee aeee LoREDRUBYINY _ |
_ uobysey Wawasnbsy prepurig _ | |
_ 0geT - I e — _ |
| . ! 0262 B1EZ— b
_ Aunosg | I
| ajnyssauIsng | | |
82¢T 9Z¢t -~ |
_ uswasnbayeuonpuon ewsnnbeyedung | ssejogns sey | “
—— — — = ———

_ 9887~ YEET . 1 ez |
| l4-S5E[00NS SBYTSSB|IGNS SeyM |
[$58/3qnS sey sseqns sey 918¢— LE7 |
[eez / weshs J80 _ | | 9687 [EUORIUNJUON jevopounyg |
I , /,,w _
| SSE|OGNS SEY— —ssejogns sey adA | wswaiinbaysey |

oLeg— 80cC— 90¢Z - |
_ uooy usby Juswsiinbay adA | juatlisanbay |
| A ---8SBJOgNS SBY-- SSEJOgNS Sy » |
| _
_ _

a2 X4 ,
_ y0sT — e 2062 |
[1004 |
e |
02z

US 2014/0351694 Al

Nov. 27,2014 Sheet 24 of 48

Patent Application Publication

LbayuondAioug

Zwe -

%

S0UBRISUI seY

uogdAinug

ﬂ

ssejqns sey

Aunoag

adh] ewsinbaysey

g 8inbl4

bayou " Jenesaom

juahysey

80y

S108) y—

1oy
sl | asuodsay

le——ad £ |juswalinbeysey—|

oLvg

%

aoueisul sey

aui] ssuodsay

%

$SEIOGNS SBY

SRR Y—M

au)

| —

bayaulif
soy 1onIagqaM

——1uabysey—y]

S0UBjSY; SBY

90vz -~

20UBISY; SBY

JBMIBS UM

vovz -

ﬁ

aouBlsu; sey

weshs

ssejoqns sey
—_

SSBANS SeY

[EUOOUNJUON [———

A

$3eqNS SeY

adAy
Juswa.inbay

le————adf | uswainbeysey

Justuasnbay
piepuelg

%

Ssepgns sey

——juafiysey—m»

%

ssejagns sey

Weby

uswainbay
ajduig

A

ssejagns sey

Wwawasnbay

Gz @b

_E Anugousuan

SjElap Japio

US 2014/0351694 Al

walshg

Nov. 27,2014 Sheet 25 of 48

BuISS8001d 19pI0 E wapsks ejnpow Buiddiys
_D uoslad Jojeasiuipe
Jasn

_E uosIad
Jusupedap soueuy

washAg
Buissaaoid J9pIO _E wayshs ainpouw Bullig
D walshg jepad apio
M weysh walshg
B7S Bissaoold Jepio
i0ued adk) SOJON [euCHIpPY uoneuejdxy aseid
N //.

7052 7167 Kiessojo K3 w5z

Patent Application Publication

US 2014/0351694 Al

Nov. 27,2014 Sheet 26 of 48

Patent Application Publication

9¢ 9inbi4

) ‘Juswalinbal Jouadns
Jouadng
))) ‘ 8|qE1Sa] BIOW B DM O} Jo%0aY0 J9ise)
10 “Jepeq ‘panoidut ‘Je)se) YonuE Moy 5
. 4 Ut suoysabibng auj Jo auo Jayaq
salnads I ssejun ‘paiyoadsiapun s)
Mo||0} ‘1ualaaNbal SIL 108400 0] paaosdwl
"Juswaanbal
sty sy moy Alanneiuend | sjgeisel aiow B ajum 0 JNoayD £
: fusioie
suyaq -snonbigwe uayo si Ajusioys, au} u suoysabbins ay) Jo auo
MO||0} Wustssnbol SIYy 1094100 0
‘Juswialinbal
“uofipuod oyoads B yym aoeiday | 9igeise) alo B 9YIM O} I8M0aYD suou
-Auienao usaosdun saldui suou, ay Ui suonsabtng auj Jo auo
Mo||0} ‘Jiatosnbal SI) 108400 0
) “usweanbal
ynsas payedxe ay) 5
1]E1S8] BIOW B SJUM O} JoNoayD
10 uonduosep ol1oads e yim aogjdey asn 0} Ased
) 8y} W suonsabbns ay Jo auo
snonBiquie usyo st ,asn 0) Ases,)
MOJ|0} ‘Juatalinbal SIy} 10814100 0Of
fioBajen ajejdwea] uonsabbng uoneuejdxy aselyd
- - . - N
—_— . \\ //. \ ,./,
0% 2492 0197 Auessoig aseiyq JMewsIA0Id gggp 9092 $09Z

US 2014/0351694 Al

Nov. 27,2014 Sheet 27 of 48

Patent Application Publication

/Z 9InBi4

{230}
“yead ‘J9A0 ‘WNLUIXeL

“S16SN {BUIBYUI

uoneoof Ag ‘feuueyo

/A e ‘BB IoNE WIBLINOUOS 0001 a>o.m_ocmc g “adlky Joe/9sn Aq umop uexosg £198M 10 Joquny soljawnjopfliceden
.) 0} 9|08 3G 1SN WRYSAs By] :Z-0iny
§18Sh ‘JUN00 Jasn
 '5U011B20) ‘ofeayny ul
I uolRo0| "cosmoo_ paJRo] 8¢ __E.w woysAs ayy zbay sU0nL00| butssacosd SU0QE0T sousunonfuoedes
Bissanoid ‘uoyedo; S 34} Ul paleas) &g plie SUOIRI0| J0}0B/I8SN J0 1817
Jasn ‘paenol 198 | jeys weysAs ey jo siasn sy 1L bay
‘dfeldoidde
A Se 3NQLIE Yors 10} PajEdpUl saawnopfioeden JBLOROUN 4~LON
aq pinoys ales yimod enuuy
* ‘aul| poses))
. o WolsAs ay Jo Buiuogouny . .
1BUBIUI ‘Gam ‘Jauisiu (aul| pases; ‘dn-eip ‘Jouseily
A N 1adosd 10} papsau §| UOHDBULOD s uswiainbay AuAosuL0n s|auueyn JsayaQ
IS ‘pueqpesOq . £-0) spustelnbal AIABUUON
o JBulalu| puegpeoig 1} bay
felp ‘dn-jeig
: ;m_oaxm, 1ouIB} S105M010
SI9SMOJG “1aSMOI
A oY AsoN|eD [EUORIPRI} [je BIA 9]Issasoe SjuULRYD AUBAIRD 1O 1817 sjelieyn) Aanfe(sjauuRyy Aaage(
“spouLEy KBNS 8 18NW WIJSAS By | [z} -0Jny
\S sjoutiey) Alealeq JBUORDUN 4-LON
9liz
3jgeu] aseldud iojeaipu| ajdweg S3I0N v angUNy ealy
N ,/,) i y N\ /,_ ,/.
Wz 212 0Liz AeSSOI) ANGLIY [UOROUNIUON o1 9012 voLz

US 2014/0351694 Al

Nov. 27,2014 Sheet 28 of 48

Patent Application Publication

254

gz @b

%8¢
ajelg Jueby
UMOUNUN

A

Jsnw, | qeus,

{oseiyd woby}-<

8082 . y08¢C

Se18 @‘

20UBISUI BINIDNIS
UBWINOP 10 PU3

Jsnui, | ieus, sleig weby /- weby juenjysuo) /Ew

{eseid uojoy}<

LONOY JUBNISUOY)

ax
a1e1g uonay
Bussiy

(0474

sjeIg U0y

208g "

Jsnu, | Jleys, aseld Apug

i85 018z
81215 sby ale1g Aug
Buissiy weby-uoN

818¢
3]elg uonoy
UMOLBJU(

US 2014/0351694 Al

Nov. 27,2014 Sheet 29 of 48

Patent Application Publication

906¢
L2794
0l

6 9inbi4

.01 8|ge 9q Jsnu, | 0} 9|qe ag [jeys,

¥062
1291
o

808¢C

<

A

08¢

Juad ysnu, | mope 1snu, aje)g ueby /- uaby Jusnjisuon 8jels Jeyg
| dused fleys, | mojfe (s,

Nwad 1snw | moje 1snw | Juued feys | moje (|eys

[4%74
ajels Jusby
A Buissiny

206 —

aseiyd Anug BSBIYY UMOUNUN

018¢ 918¢
aie1g Apug ale1s Wweby
jueby-uoN umoLun

US 2014/0351694 Al

Nov. 27,2014 Sheet 30 of 48

Patent Application Publication

878e

0¢ ainbi4

SJels LohoY
LAMOUNUN

A

4474

S5RIYJ LMOUNUQ

2RI Londy
Buissip

0b0E T
R
8uIt Jo pu3 BP0V UoUBIg (9062) 92 "Oi4

woi4

0ege
ale)g uoioy

uonoy
Janmsuey

(474
QIBIS Uy
Buissipg

7108
9jES 0L

<
o«

aur jo pug 0l

BSBAUJ UMOUNUN

]84
ae)s Uy
UMOLN

A
20—

OO JUBNsLos

3008 — —
S181S < vi8e P00t
Wby ouelg woby anjisuony \ IS [EPOW {$062) 92 014

woi4

BSEI4 UMOUNUN

souelsul
AINJoNIIS JRrUNDOP
jopug o 04,
ey Jeyio Buypluy
v Y

aseilld Apug

Zi0% (%74 []x:74
BN g21s Aug ajes uafy
,0L, Buissipy JeBy-uoN umoUsUN

US 2014/0351694 Al

Nov. 27,2014 Sheet 31 of 48

Patent Application Publication

L¢ anbid

¥0ig
2elg
[BUOBpUOT
Bussipy

20UE}SU
BUNIONIS JUSWNJ0P B0UBISUL aUnjond]s
Jjopug |, UBUM,, JUSLIND0P JO pug
‘uey] 1suj0 Buiiduy

8018
SR
[EUOHpUOY)

0282
SiEIS UoRY

Ji, 1 usum, 8521l |EUOIpUOD Auy

UOHOY JUSNISLOT)

757 8082 » $08¢
SJEIS [BPOVy Jou peys, | Ao Aew, | Ajuo jeus, aegwedy [ey uanpsuon BIS 1BIS
BouBISUl
UODY JUBNJISUOD B 10N SIMOnAS 10U ffeus, | Aluo few, | Auo yeys 8seld AU 852 d LMOUNUN
: : JBLINOOP “ " L n i » :
jopuz L 2
v 4

vTaTA [4174
SJEIS Loy
Buissiy

(4
alelg uonay
LIMOLRYU(

alelg weby
Buissipy

e -—""

0i8¢
ajelg Az
aby-uoN

918

alels waby
UMOUNU(}

US 2014/0351694 Al

Nov. 27,2014 Sheet 32 of 48

Patent Application Publication

Z¢ ainbi4

474
ae1g by
Buissipyg

aT8e
o1} Uofoy
umousun

(V3%
SJEIS feuld

UOHOY JUBNIISUON

Qoueisul aunpdnis

1UBWNOOP JO pul
BOOE

9lElS [EPOI 1 21818 Juaby e

2q Aew, | few, @ weby Jusniisuon

80 few, | few, Juaby umousun aselud Apug

9SBIYJ UMOUNUN

¥08¢
SIEIS JEIS

Y028
ape1s Ao

A0,

(81574
ale)s Aiuz
1waby-uoN

o7
91e13 wshy
UMOUNUP

a1

alelg yueby
puissipyy

202e -~

US 2014/0351694 Al

Nov. 27,2014 Sheet 33 of 48

Patent Application Publication

c¢ ainbi4

901
9je18 Joug
XeyuAg

A

souR)SUl SINENAS

JUBWIND0P JO pul
— —_— 318
SRR e\, ajelg Jueby
aes feuld aseild anfep SIEIS [EPO umoLun

LUIRJLOD JOU J8M, |, 8pnjoLs 10U 18NL,
| UiBIU0D JBnaL JSNW, | 8pnjoul Janau jsnu, | UIBjuos sAemie 1snw, | apnjpout shempe Jsnul, | aney
10U 18N, | B84 J0U 18NW, | 3 J9ABU ISR, | BABY 18ABU ISR, | ,8q SAemie j8nul, | ,8ABY SABME 1S,

SSEIL UMOUYUN

:_: =_=

YOEE
ajels Az

08
aels Lerg

»i
<

asesyd Az | ueby Juanijsuo)

LUIgJuoo Jou jsnul, |, apniout J0u jsnul,
| LIZIUOO JoABU 18N, | OPDIOUI JBABU SN, | UIBJUCD SAemE 1shW, | ,apnjoul SABM|g J8nW
Jousnw, | ,8q Jou 1SN, | ,8q 1oaauU 18NW, | ,9ARY JBABU 1SNUL, | 80 SARAYE JSNL, | BABY SABMR JShu,

:...

A
20es

1454
alelg uaby
Buissip

US 2014/0351694 Al

Nov. 27,2014 Sheet 34 of 48

Patent Application Publication

90i¢
Jje1g Jou3
Xeyuhs

BOUEJSUI 2NJONJIS JUBWNOOP
ay9)dwoo jou saop jey) aseayd fuy

@

vl -

¢ 8inbi4

FOvE
aleig Anug
UMotun

9SEIYg LMoL

sels @;

90UBJSU| BJMONKS
Wwewnoop a1eidwos 0} sse.yd Auy

o253

A alelg euld
200E

LS PaIssel g [im, | se | aleis Aiu3 Juaby uenpsucy | eseiyq Az eS8 VBIG
pauyap aq jIim, | e payisse|o i, | ,se paulsp s,

Se payisse(s
aq |im, | se pauyep aq |Im, | Se payissepd si, | se pauyap si,

H4514
ajelg Jueby
Buissiyy

US 2014/0351694 Al

Nov. 27,2014 Sheet 35 of 48

Patent Application Publication

G¢ @inbi4

90i¢
ajpIg JouT
XeJUAS

BOUBISU}
IMONAS JUSLINDOP JO pug

(v
@.mno_z ou s, | sl

UoI0Y JUsniIsucH
Inouim sadA] uso plieA Jo 108

8182
BIElS Loy
UMOUNUN

A

UONDY JUBNIASLIOD

(4
8jels uoioy
umouNun

2068 —

FOEE),

[Ix74
ale)s Jueby
UMOUNUN

BSEAYd UMOURUP

aEls Anug [

Wwaby Jusnygsuon) | eselud Anul

@ yeg

Jous, |8,

A4
aje)g Juaby
Buissiy

US 2014/0351694 Al

g¢ ainbi

Nov. 27,2014 Sheet 36 of 48

EEE
A feidsig
A
L_o¢l 80UBJ5U| BIONAS | OO N 19S JBlewieiEg Juawnoog
: ¥0L £ 19% opRuweled JUswniog
| —— : % ¢ 1S JajaliBled JUslindog
v 50UBISU{ 8MONILS | - asegeleq
09¢ SINPOY SisARUY SINGLIY 7Sl SisAleuy Jepun WBwnooQ ch sishjeuy Juauinoog
A A
e UOBIUBQA | | o JOLIUED
051 XBJUAS 8vl 2imonng Y
= Messop || — Adessol | ceb SNeaoi
Kessopg [f €092 958IUd i apop >
gy T 20BN
o BUCHIURAN fhessole) | | o Aressols Y09 sjnpoyy uonezyensin B HOMIEN
042 -uon || <7} uonoy 205¢ fug —
B00c 198 Jajatlesed JUBwnoo(L] 977 Jossaoold
Aiowopn

Patent Application Publication

h 209¢

US 2014/0351694 Al

Nov. 27,2014 Sheet 37 of 48

Patent Application Publication

/€ 8inb

=

Jebeusyy

JeBeuepy 90In0say

walskg
A38YJ Hpal)

washg
Apep-3

LONDBIBI OU I LBISAS m N
UONTBISIUI BUO }SE3| 18 UM WSISAS @ ‘

somosoy weey SOOI Ty yfodeg | COMOSR R0l waIg wammﬁm Mwwma\, oensUpy
\ d
\ Nmmm sakoduig MMM_MMWW
Sl N sep _
0Lie PHE o U avpeg [% laisepy
£10-La
Zhg | YOLE - o
f— L5010 —— | [¢}
4 74 X ,A
/ % ‘ L 5 L 4)
Kioysoday SINPON SINPON
aj0y Paloig weloid mo%ommm — empoly 1o empow
IR ubissy | ’ A]
7 y / \; . $= Yoloud -y m Buiiodey -
Aioysoday 108loid|iaisep crm\hm “Temm PUB} 904n0S9Y 108i0)d
./ 7
] |
¥10-10 ~ 750-1a
11010 -
90.¢

8'10-1C \

soBeupy somnosay IHLE - pes 10aloid
j

¥]

;
/
/

yzis—"

/
/

/

i
80.¢

B (L[]

- ¢0LE

US 2014/0351694 Al

Nov. 27,2014 Sheet 38 of 48

Patent Application Publication

8¢ ainbi4

98¢ weyshg Ausp-3 | 44
$28¢e Aoysodey 9j0y 108044 | 01
“pi0oal Yaslaid anaLlal 0} sinpopy 108l0id
ulBjuie Mo|[e Jirys Alonsoday 198loid Jeisepy 8yl 1} -0y
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\Nﬂo\:\mw%v\m fuoysoday 100f0id smisep | 6
sakojdwy Jeyseyy ey wouy pes|19sfoid ppe 0} snpoy 198(0id
ulgjuieyy B mojie |leys Alojisoday 1osfoid Jejsep eyy g-oiny. 7700
o £8¢ "SINPOYA 83IN0SaY
i S10810id uBissY 84} 01 A1o1sIl 8101 100l0sd SpIAcad sinpop 1eloid uuen | ¢
L 0L-0iy I24S 3inpopy 3f0id URIUIZH BUL G 0107 e
) spafoid "AI0IS1Y 8j0J 198(01d pUSS 0} BNPOY 19801
BN UlBJUBIl MO[[|]RUS BInpPoyy 804nosay ubissy a4yl :£60-1d SINPOPY 80n0S3Y UBSSY (7
818¢
918¢ ainpopy Ysloig | 9
YISE ainpoyy Bunioday | 5
718t watusbeuepy sainosey eloid | v
0rgc fioysodsy sshoduwg seisep | ¢
Kloysodey askojdwz - g
Jaisepy syl woy pes| 1sfoid ppe o) snpoyy 10slosd ureien - Kioysodey sshojdwy Jeisepy dmyoeg | 2
iteys Mopsoday safojdwg Jeisepy dnyoeq 8y 284N LTI
Did Ja1sepy | DEQE a[npoyy 1osloid uesueny | §Z8E a|npopy sainasey ubissy | #0SE wasAgiwosig | 4
»
~ 208¢

US 2014/0351694 Al

Nov. 27,2014 Sheet 39 of 48

Patent Application Publication

B¢ 8Inbi4

m ‘Aioysoday mm;m_g@m Jalsep
] ay} wouj pes) jasfosd ppe 0} snpopy 1velald viejuep fioysodey ashoidwzg Jaysepy dmjoeg | £
1 yieys Aopsodey safojdw seisepy dnxoeg oyl (/4N 976¢
716¢ 8npop osloig uieiuep | 9
- ol L 78
— By} UO PBseq plodal Justuubisse ay) o} pes| 1elod a|npojy aoinosay ubissy | ¢
— € Ppe jjeys 8|npojy acinosey ufiissy syl :§'10-1d VAT
016€ ajnpojy 0eloxd | ¢
m ‘parsad Aed yoes Jo pus sy} je
— JaBeuepy aounosay ay) o} Wodas sniels plooas Jasioud
— frewa puas reys anpopy Bunloday 8yl :g'60-1Q
H ARSI SIS
m ‘sqol Wodau yojeq 1senba 0} g.o.mmcms, anpoyy Bumoday | ¢
—] 90Jn0SoY MOJE Jeys ainpopy Bunioday syl :1'¢0-1a
— AAIEA TSI IS TSI TSI SIS SIS
] . uswiubisse 10sfoid s eak0|dws ue 1o} 8jEp-pus
_— peay100loid oy o) $s8908
— eost B I2US BINGON BUILIOdEN SU1 oG painpalyos sy} 8lojed sAep pi iebeuepy 80n0say 8y
_— Peoy SAID |[YS SINPo Bulodey 8yl -'40-Ld 0} {fewa ue anssi 1snul sinpoyy Buiiodsy aul '6'50-101 3p6E
‘pear 109loid & 0} sekojdwg 7760 ‘ped Yooloud & 0y eakoduig
ue ufiisse 0} safeuepy a0in0saY B MOfE Heus ue ubisse o) Jabeuep 921n0saY & MO||2 [[BYS
woshs wewabeuey] aomnosey 100f0id 9yl 2008 weskg Juswiebeuepy e0nosay 190f0id 84l Z0-0S
PP OOIIIIIIIINSSSIIINPYIYIINSNSIres PP OISOy
‘sjoofoud 0y sakojdug ‘sjoaloud o) eakoiduig
ue ufiisse 0} safeuepy a0in0saY B MOfE Heus ue ubisse o) Jabeuep 921n0saY & MO||2 [[BYS wialshg uowebeueyy soinosay 108loid | 2
washs ewabeuey] aomnosay 100f0id 9yl (10-0S weskg Juswebeuepy e0nosay 190f0id 84l |10-0S
PP OOIIIIIIIIISIIIIIIPYYIYINSPIIreY PP OOIIIFPIIIISIIIIINPSIYISSPIIIY
one JusuuBisse pafoid aafojdua o) sayep wsiufisse 199l0.d safojdwa o} saiep
i\ JO-j01 “UC jos ubisse o} JaBueyy 80IN0SAY & MOJE JjBUS 110-1104 “vo |j0s ubisse o} Jabuepy 90In0say & MO|jE [BYS
HAN wolshg wowabeuey] a0mosay 199f0id 84 €0-08 wolshg Juswebeuepy avinossy J0oloid a4l 1£0-0S 906¢
pea pafoid | §16E sobeuep aomosay | ¥06¢ uosiadiwasis | 1
. c06¢

US 2014/0351694 Al

Nov. 27,2014 Sheet 40 of 48

Patent Application Publication

Ot 8inbi4

80in0s3Y 108loig

Aoysoday
8|0y 18lfoid

¢

walD sabeuepy 108loig
waishg walshg o 80.¢ ~YCLE
Y349 ¥pas) Auap-3 /
)/ / /
00V - f /
N\ pes 1oaloig Jabeuep anmosay
\
e i
N \\
CLe — - d
Q- N YOI ooy | |
\ , >
Y d ,\\
\ p , % A) / \
foysoday) aINpop aINPON
sahojdwz 1aloid / me%owmm 1 ainpopy anpop
JoIsel ulejutepy uoissy — palo fugpioda
s Q Q:xomm 3 “ r, “ 7 (| & \ - m g,
W \ waysAg wawalieuryy acinosey 1o
J v

& Aioysoday 109014 Je)sep|

UOHOBASIUL OU UM WNSAS m;
UORORIBILI BUO 1SED] 1B Y)iM WBISAS §

=

J0JBASIIUPY hommcmﬁ_ 32IN083Y

wswhodeg

\\ \ T 1
904¢ - \ e i
0bLE Jabeuepy
-~ sakojdw #
/ mu\:‘_owmm Emwx—. _ 3 \Cou__woawm
i aokgiduig
. olov Jgisep
N &
800v

—~ 200y

US 2014/0351694 Al

Nov. 27,2014 Sheet 41 of 48

Patent Application Publication

L 9inbi-
> {
- N9y
N 7 F—1-ver
B N AN
1 0ty
ya ———\ | |8y
N P Ry 1% 47
) 1252 7 Q N it
K (15) N R RN
S { |~ 0iip
- N804y
N 7 | 90y
duig soisepy | Aiousoday sakojdwig seisepy dnyoeq fionsoday a0y weloug | Asonsdey 1oaloud 181sepy | ainpoyy 100loug uetuepy | ainpoyy
T 7 / \ Y
m D miv\\ obLy—~ 8gLy—" 9Eip— PEIY—
1743
) £l
S waysAg Yoy wpaid [z | 921y
S waishs Ausp-3 | 4L | b2LY
/ fioysoday sakoidwg Jmsey | o1 Vo ——zzip
N aafodw3 Jeysepy dmyoeg | 6 bt 0ZLF
4 foysoday sjoy eloid | ¢ | -8iib
N Aioysoday sfoid Jeysey | £ kot 8iip
% Sinpop afoid uewiew | g | pilp
N ajnpoyy samosay ubissy | ¢ | t—ziip
Va— ainpop wsloid | v oA 0LLY
S ajnpopy Buipodey | ¢ |1 e0ip
/- walshg Juswabeueyy aounosay waloid | 2 |~ 90
nosey ubissy ajnpop 108loid | ainpoyy Bunioday walsAg swabeuryy aoinosey paloid | 7017 washgyweisAg | |
/ ! 7
=1 ogLy 8zLy
b
~= 20L¥

2 9inbi

US 2014/0351694 Al

7T

¢l
& weshs yosyo wpedd | 24 [——1—922y
S
.M weashs Auep-g | 1) -1 V2T
M Aiaysodey sjoy weloud | o4 12228
-5
m Aiopsodey peloid eisepy | 6 | ——022b
- aokoidwg saisepy dnyoeg | ¢ b 18L2P
M Asopsoday 1efoid esepy | 4 b 9120
a.u, sinpopy 1o8loiq uewiepn | 9 | Y12
Z 8Ty ejnpoyy sonosey ubissy | § 1.1-Z1zy
> sppop pafoud | ¥ | 0LEY
. ajnpopy Bupioday | ¢ |_—180Z¥
.m ocTy weishg Juawabeuepy aounosay 1sfoid | z 1 -902¥
= Jobeuepy 20in0saY wiea) pea 109l0id sofojdwy | sebeuepy somosey | 7077 uosio\wasAig | 1
= : ; 7
= — / / /
i~ X W= pezy—" 28Tr— oczr—" ozzr—"
=
2
~Nt
<
2
E

| N

< - 2028
=
2
<
=™

US 2014/0351694 Al

Nov. 27,2014 Sheet 43 of 48

Patent Application Publication

¢ 21nbi

foysoday
| Aoysodsy 5 %ﬁmww oo peloud
o sehodwz o T wests sse] weisfs [~
1 RSB 1 I woeypwpaiy [dnyoeg 1 Awepny [HT:Q_mo%m 108014 Je13¢]
by 100i01d JBlD IojelsiLpy
_—90¢y
g
an:UD ﬁ \\
sebeuep poloid |1 | ﬁO__ L
VAN N vommr// o \.\\> / e POEY
w . | B i3 / £-1-0n
o % o & Z A \
| eppoy 4] epop [\
el sonosay AT gnpoyy [anpopy o
- weweyy o ubssy O pelog Busodey
C 1k A A Y
\ & waysAg Juswaleuey 90:n0s9y josloid
\ \
/
90/ — - \\\.vm\,m
}//, \\
LIOBDBISI OU YiiM LLBJSAG N ,
— |z
UONOBIBIUE BLIO 1SE9} 18 Yim WasAs @ BN
0iey 1aBeuey 20Inosay

- 20ty

US 2014/0351694 Al

Nov. 27,2014 Sheet 44 of 48

Patent Application Publication

y 9inbi

2
£}
Asoysoday sakodws sese | 21 L ~92vp
weysAs %08y U | 44 |- ¥2hY
oakoidwz sese dnyoeg | 04 | —zzvy
weyshg AsA-3 | 6 | 0ZHY
Koysoday sjoy 1weloid | @ | —1—8Lp
Koysodey 18loid Jeisen | £ Lt -0Lvp
%77 ajnpoyy Joaloid uleueN | 9 | ¥ivy
appopy saunosey ubissy | 5 | A4—zivp
anpopy weloid | v |- 0Ly
alnpopy Buodey | € | 180w
vy WalsAS juawabeueyy soinosey 1aloid | z 1 -00%Y
nosay ubissy ajnpoy 109loid | ajnpoyy Buipiodey wialshg juswsbeuepy sninosay waloid | TOTF walshqusisig | |
X =R oghr— sz
. covy

US 2014/0351694 Al

Nov. 27,2014 Sheet 45 of 48

Patent Application Publication

G{ 9Inb14

2
£l
fioysodey safoidw Jeisepy | z1 1925V
wiaysAg ayo ypais | 41 T V25
gakojhug Jeysepy dnspeg | o) |- CCSY
washs Awepa-g | 6 ——1 0¢850
fioysodey ejoy 1aloig | ¢ 181GV
fioysoday peloid asep | 2 —T915P
ainpop 108loid uguepy | o —1"IGY
[Ty eT anpopy sainosey ubissy | ¢ [—1CLGY
anpop osloid | ¢ p——T0LSY
9¢sy ainpopy Buodey | ¢ |1 808V
weisAs waweBeuey sounosey wefoud | 7 --—1905%
walo JOJBHSINWPY Jabeueyy 80inosay safodw3 Jobeueyy 109loid | O0GY uosiad\wRisis | |
] e e gy sz
.. c0%y

ot ainbi

US 2014/0351694 Al

—
Kioysoday askojdwg soisep | 21

WaysAS }o8y0 Ipain | 41

sekojdwg saysepy dnjoeg |

~~

R
N
S
=]
5
< weshs AusA-3 | 6
m foysoday sjoy 1oofoud | ¢
- Asonsodey 1sloid e1sep | £
e
m ajnpoyy ysloid uleluiely | 9
aﬂa ainpopy 8onosay ubissy | ¢
2 snpopy 108foid | ¥
z anpojy Bunsodey | ¢

v09y ajnpow méo%_ 0} E1ep Spuas
wajsAs juatiabeurw a0inosal 19af0id -1 ON

wWsAg wowsbeuep aanosay 1efoid | z

oy 109014 ainpoyy Buisoday walsAg uswebeueyy soinosay 198014 wasAg\weisis |

X =

~ 209%

Patent Application Publication

Lt 8inbi

US 2014/0351694 Al

TS UO S TSI ToTSETY

a|npopy 108loig wetlep

SINPOY 821083y UBISSY

< |0 | o | N

apnpo 108foid

IN0SaI 0] UOHEDIIOU
i Bupodey 510N

ajnpopy Bupoday | ¢

Nov. 27,2014 Sheet 47 of 48

0Ly ‘paubisseun se sakojdwe v0Ly
sufisse WwesAs Jwewebeuew ZZZ
80410881 1981014 :§-1-0M waysAs Jswaleuews somosel
A LSS LSS 10sfoid u) oBed sakoidwe ppe 0} 7] wisishg Juowebeue 90059y 103001 | 2

sajebineu Jobeuep 109l0id 1 1-1-0N

walshs Juatusbeuew 80IN0sal
108l04d uj ebed sshodwe ppe 0}
sejebiney sebeuep 109014 :2-1-0N

Jobeuey| a0inosay safojdw 1abeuep pafold uosiaquelsis | 1

BY [l []

- 204y

Patent Application Publication

US 2014/0351694 Al

Nov. 27,2014 Sheet 48 of 48

Patent Application Publication

s 9v8y

/

- 7Y8Y

8f @Inbi

L

i

/

~0v8y

858y

\ b___nm__gi 8_<aazv\m_m::msu Lvneg mo_:u:_\so\,ucgzum%u E 4 <>)
"oy ‘sapand
m ewalnbay Buss :\,‘.” JusWBINbaY m:_ww_sm 00610 hmﬂﬂ:ﬂﬂ@ﬂ%&% Mﬂcmnmm_\.am fioysodsy eshoidwy seisey | Zb |1 ¥28Y
1snw Aoyisoday aafojdwiy Jeisep oy
[~ swainbay Buissipy] uswainbay Buissing uswaanbey Buissin] washg yoaygy wpaid | vt b A 2z8y
[jswalinbay Buissipn] Jusluasinbay Buissiy] waiwannbay Buissipy] Aioysodey asfoldw Jaisey dnyoeq | o) | {028y
[swainbay Buissiy] juswalinbay Buissiyt GERY 1uswalinbay Buissiy] weyshs Muep-3| 6 | ——gL8y
— Juewanbay Buissi Wielualnbay Buissip Juswalnboy Buissip ainpop 198l0id uesuey | 8 k19187
W Juswalnbay msmw_?m JuswaInbay mc_wﬂ_}m usaInbay @c_wm__zm sinpoy aounosey ubissy | 2 | —1—¥18y
m Juswalinbay mc_mw_ﬁm Juswalinbay mc_wwmz” 1ustL)inbay mc_wm_sm ginpopy pefoid | 9 k12187
— uowainbay Buissi uswsnbay Buissin Juswasnbey Buissiy| anpoyy Bupoday | ¢ | 1—0L8¥
[— juswainbay BuissIn] JuswaInbay Buissin] wawaunboy Buissig] weisAs Juawebeuepy sanosay sloid | v k18087
[— Juswalnbay Buissin] Juswauinbay Buissin JuBtwadnbay Buissipy lioysoday sjoy weloid | ¢ b 19087
— uewainbay Buissyy] juswalinbay Bulssi] Juswalmbay Buissiy] Aioysoday osfoid Jaise | 2 |08y
alLt) UoRNOaXe ydjeq sapuspuadep yojeg auit] ssuodsay aiuQ anqupwasAs | 1
[eeer sy sy
. 208y

US 2014/0351694 Al

DOCUMENT ANALYSIS, COMMENTING AND
REPORTING SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 12/846,615 filed Jul. 29, 2010 which is:
acontinuation of U.S. patent application Ser. No. 12/558,483,
filed Sep. 11, 2009, and a continuation-in-part of U.S. patent
application Ser. No. 12/121,503, filed May 15, 2008 and a
continuation-in-part of U.S. patent application Ser. No.
11/945,958, filed Nov. 27, 2007. This application incorpo-
rates by reference all of the above noted applications in their
entireties.

BACKGROUND OF THE INVENTION

[0002] 1. Technical Field

[0003] This application relates to document analysis, and in
particular, to visualizing the relationships between entities
described in a requirements specification.

[0004] 2. Related Art

[0005] Rapid developments in computer technology have
given rise to the widespread adoption of document authoring
applications. Today, a significant portion of the modern work-
force generates documents using a word processor. Unfortu-
nately, the writing skills of the typical individual have not
improved at anywhere near the pace of technology. As a
result, computer technology often results in faster generation
of poorly written documents, rather than in efficient produc-
tion of clear, consistent, and unambiguous work product.
[0006] At the same time, significant technical challenges
exist in analyzing and providing constructive feedback on
documents. The documents themselves vary widely in pur-
pose, format, and content, and there is no general flexible and
adaptable framework in place for specific document analysis,
commenting, or reporting. Document authoring applications
only provide basic tools that cooperate with authors to
improve document quality. As examples, analysis tools such
as spell checkers and grammar checkers only provide analysis
at a general level, such as checks of the fundamental rules of
a given language. In other words, the specialized nature of
many documents defeats more specific analysis that could
provide meaningful criticism on a document and vastly
improve the substantive content of a document.

[0007] Poorly written documents have many adverse and
costly consequences. Vague or ambiguous terms create mis-
understandings and misinterpretations. Poor formatting frus-
trates testing and validation procedures. Failure to clearly
separate concepts results in extra work needed to untangle
and factor concepts into individual pieces. Contradictory
statements, which often arise in lengthy, complex documents,
create extra work to resolve the meaning and intended pur-
pose of passages in the document. Inconsistent terms leave
different readers with different, possibly inconsistent, expec-
tations regarding specific parts of the document.

[0008] One specific application of the system described
below is to analyze requirements documents. Requirements
documents mediate between stakeholder objectives and the
solution that developers will create to achieve the objectives.
A successful requirements process is one that creates require-
ments documentation that captures stakeholder needs, sets
stakeholder expectations, and may be used by developers to
create a solution which satisfies the stakeholder’s needs and

Nov. 27,2014

expectations. Unsuccessful requirements processes result in
requirements that do not ensure that stakeholders understand
what they will be getting or that developers will build some-
thing that is ultimately going to satisfy the stakeholder’s
needs.

[0009] While creating a good, clear requirements docu-
ment may sound straightforward, it is not. For large software
systems it is extremely difficult to create good requirements
documents. Furthermore, defects in the requirements process
are very expensive. Incorrect, incomplete, or unclear require-
ments are the most common cause of software defects, and
problems resulting from requirements defects are also the
most expensive kinds of “bugs” to fix.

[0010] Some existing tools primarily concentrate on main-
taining requirements and test scripts after a baseline require-
ments set has been defined. However, this is only part of the
story. Many of the most costly requirements defects happen
during the definition process, resulting in a baseline that is of
poor quality, and prior tools are agnostic to the quality of the
requirements or of the definition process and therefore pro-
vide no aid in that regard.

[0011] Moreover, many tools do not provide an overview of
the interactions between entities of a requirements document.
Thus, a reader is often left wondering whether one or more
entities of a requirements document should be, or should not
be, interacting. These tools do not account for the interactions
that occur among entities of a requirements document, and a
reader may be left with an impression that certain entities
interact while other entities do not interact.

[0012] A need exists for improved document analysis tools
that address the problems noted above and other previously
experienced.

SUMMARY

[0013] In one implementation, the system includes a syn-
tax-based document visualization module operative to iden-
tify constituents in document structure instances of an elec-
tronic document and determine whether the constituents in
the document structure instances match constituents of an
editable electronic spoken language glossary. The editable
electronic spoken language glossary may include words or
phrases that are considered permissible words and phrases for
apreviously defined document type specific syntax. The syn-
tax-based document visualization module may be operative
to generate one or more maps, such as a component visual-
ization relationship map or a system visualization relation-
ship map, that illustrate interactions and/or non-interactions
between constituents of the document structure instances.
[0014] Inaddition, or alternatively, the system may include
a syntax-based document attribute analysis module that oper-
ates in conjunction with an electronic attribute glossary. The
electronic attribute glossary may specify one or more
attribute requirements for one or more constituents of the
editable electronic spoken language glossary. The syntax-
based document attribute analysis module may determine
whether one or more document structure instances of the
electronic document satisfy the attribute requirements for one
or more constituents. The syntax-based document attribute
analysis may be further operative to generate and output an
attribute requirement report that identifies whether an
attribute requirement for one or more constituents has been
satisfied.

[0015] Inoneimplementation, the system may be a Visual
Basic for Applications plug-in for the Word 2007™ word

US 2014/0351694 Al

processor. In that regard, the system may provide a specific
ribbon interface. The system may be implemented in many
other ways, however, such as a stand alone application, web
service, or shared function library.

[0016] Other systems, methods, features and advantages
will be, or will become, apparent to one with skill in the art
upon examination of the following figures and detailed
description. All such additional systems, methods, features
and advantages are included within this description, are
within the scope of the invention, and are protected by the
following claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] The system may be better understood with reference
to the following drawings and description. The elements in
the figures are not necessarily to scale, emphasis instead
being placed upon illustrating the principles of the system. In
the figures, like-referenced numerals designate correspond-
ing parts throughout the different views.

[0018] FIG. 1 shows a network including a document
analysis system in communication with other systems.

[0019] FIG. 2 shows an example of an agent glossary.
[0020] FIG. 3 illustrates an example of a mode glossary.
[0021] FIG. 4 shows an example of an action glossary.
[0022] FIG. 5 illustrates an example of a problem phrase
glossary.

[0023] FIG. 6 shows anexample of a structure identifier and

a syntax definition.

[0024] FIG. 7 shows a requirements analysis system.
[0025] FIG. 8 shows a requirement analysis user interface.
[0026] FIG. 9 shows logic flow for a requirements analysis
system.

[0027] FIG. 10 shows a requirements commenting system.
[0028] FIG. 11 shows an analysis messages embedded in a

document under analysis.

[0029] FIG. 12 shows logic flow for a requirements com-
menting system.

[0030] FIG. 13 shows a report generator system.

[0031] FIG. 14 shows an example report.

[0032] FIG. 15 shows logic flow for a report generator
system.

[0033] FIG. 16 shows an example of an agent taxonomy.
[0034] FIG. 17 shows an example of an action taxonomy.
[0035] FIG. 18 shows an example of an ontology model.
[0036] FIG. 19 shows an ontology analysis system.
[0037] FIG. 20 shows logic flow for an ontology analysis

system.

[0038] FIG. 21 shows an example of a requirements rela-
tionship glossary.

[0039] FIG. 22 shows a requirements graphing system.
[0040] FIG. 23 shows an example of a core ontology hier-
archy.

[0041] FIG. 24 shows an example of a document specific

ontology hierarchy.

[0042] FIG. 25 shows an example of an entity glossary.
[0043] FIG. 26 shows an example of an alternative prob-
lematic phrase glossary.

[0044] FIG. 27 shows an example of a non-functional
attribute glossary.

[0045] FIGS. 28-35 show examples of state machines
employed by the requirements analysis system in evaluating
document structure instances.

[0046] FIG. 36 shows an example of a requirements visu-
alization system.

Nov. 27,2014

[0047] FIG. 37 shows an example of a component visual-
ization relationship map.

[0048] FIG. 38 shows an alternative example of a compo-
nent visualization relationship map.

[0049] FIG. 39 shows yet another example of a component
visualization relationship map.

[0050] FIG. 40 shows an example of a system visualization
relationship map.

[0051] FIG. 41 shows an alternative example of a system
visualization relationship map.

[0052] FIG. 42 shows yet another example of a system
visualization relationship map.

[0053] FIG. 43 shows an example of a sub-system visual-
ization relationship map.

[0054] FIG. 44 shows another example of a sub-system
visualization relationship map.

[0055] FIG. 45 shows yet another example of a sub-system
visualization relationship map.

[0056] FIG. 46 shows a further example of a sub-system
visualization relationship map.

[0057] FIG. 47 shows an additional example of a sub-sys-
tem visualization relationship map.

[0058] FIG. 48 shows an example of an attribute require-
ment report.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0059] FIG. 1 shows a network 100 including a document
analysis, commenting, and reporting system 102 (“system
102”). The system 102 is connected to the network infrastruc-
ture 104. Through the network infrastructure 104, the system
102 may communicate with an inference engine 106, such as
by a web services interface 108, and with other entities, such
as the glossary provider 110. The system 100 may analyze a
wide range of document types, with analysis tailored for the
specific document type in question. In one implementation,
the system 100 includes the document parameter sets that
tailor analysis to any specific document type. However, in
other implementations, the system 100 may receive new
document parameter sets or update existing document param-
eters sets by coordinating with the glossary provider 110. To
that end, the glossary provider 110 may maintain a database
of many different document specific parameter sets, two of
which are labeled 112 and 114.

[0060] The system 102 includes a processor 116, memory
118, network interface 120, I/O devices 122, and a document
analysis database 124. The system 102 also includes a display
125 on which graphical user interfaces (GUIs) and analysis
reports are rendered, as noted below. The document analysis
database 124 may store document parameter sets that tailor
the operation of the system 102 to any desired document type.
[0061] In the example shown in FIG. 1, the memory 118
includes an analysis module 126, a commenting module 128,
and a reporting module 130. Each of the modules 126-130 is
described in more detail below, and each module may be used
alone or in combination with other modules to assess a docu-
ment under analysis 132 (“document 132”). The document
132 may be any form of document, such as a word processor
document, spreadsheet document, or text file. In addition, the
document may be any specific type of document, such as a
requirements specification, patent application, contract,
building specification, or other document type.

[0062] As will be described in more detail below, the docu-
ment 132 includes any number of document structure

US 2014/0351694 Al

instances (e.g., the document structure instances 134 and
136). Each document structure instance represents a unit of
content for analysis by the modules 126-130. As examples, a
document structure instance may be a word, phrase, sentence,
or paragraph. Other examples of document structure
instances include arbitrary sequences of characters (e.g.,
serial numbers, email addresses, or encryption keys).

[0063] Yet another example of document structure
instances is requirements statements. Requirements state-
ments may take any number of forms, such as a requirement
statement identifier, followed by a requirement sentence con-
taining an actor, modal verb, action, and statement remainder.
The discussion below uses examples of processing on
requirements statements found in requirements documents.
However, the system 102 may analyze any specific type of
document, with any particular form of document structure
instances.

[0064] The modules 126-130 analyze the document 132 in
a manner tailored to the type of document. To that end, the
modules 126-130 access a document specific parameter set
which may be retrieved from the document analysis database
124, pre-configured in a word processor or other application,
pre-defined as individual files stored in memory, or otherwise
obtained or provided to the modules 126-130. FIG. 1 shows
an example of a document specific parameter set 138. Any of
the information in the document specific parameter set 138
may be made read-only, read-write, or have attached access
control permissions for specific users or groups.

[0065] The document specific parameter set 138 may
include one or more glossaries for analyzing a document. The
glossaries may be spoken language glossaries, written lan-
guage glossaries, language specific glossaries, document
property glossaries, or other types of glossaries, which may
store language components such as words, phrases, or other
language constructs for analysis. Examples of spoken lan-
guage glossaries include glossaries having words from the
English language, words from the Russian language, words
form the Japanese language, or words from Latin or non-
Latin languages. Spoken language glossaries may also
include words from multiple different spoken languages.
Accordingly, the system may perform a multiple language
analysis on a document that includes many languages without
having to load or unload glossaries specific to each language
and separately perform multiple processing passes.

[0066] Examples of written language glossaries include
glossaries having words from the English language, words
from the Russian language, or words from a Latin or non-
Latin language. A written language glossary may have words
depicted in print, script, cursive, or any other font. In other
words, the written language glossary may include visual lan-
guage indicia that the system may analyze to determine, for
example, whether a language construct is vague or ambigu-
ous. A written language glossary may also include words
from one or more written languages, or from words contained
in a spoken language glossary. Accordingly, the system may
also perform multiple language analysis with written lan-
guages.

[0067] Examples of language specific glossaries include
glossaries having words from computer programming lan-
guages, words made up of symbols or other non-alphanu-
meric characters, or components of any other non-written or
non-spoken languages. Examples of document property glos-
saries include glossaries having words describing document
properties, such as the margins of a document, the number of

Nov. 27,2014

pages in a document, the permissible or non-permissible fonts
in a document, or other document property. As a result, the
system may extend its processing to document properties
beyond language constructs, to help critique a document in
other meaningful ways.

[0068] In one embodiment, the document parameter set
138 includes an agent glossary 140, an action glossary 142, a
mode glossary 144, and a phrase glossary 146. The document
specific parameter set 138 further includes a structure identi-
fier 148 and a syntax definition 150. The structure identifier
148 may define a label that flags a portion of the document as
a structure instance for analysis. The syntax definition 150
may define the expected syntax for the structure instance. In
one implementation, the system 102 analyzes a received
document to determine a document type, and then retrieves
the document specific parameter set 138 corresponding to the
determined document type. For example, the system 102 may
retrieve the syntax definition 150, the structure identifier 148,
the glossaries 140-146, or other document parameters corre-
sponding to the determined document type. One example of a
document type is a requirements document.

[0069] In the context of a requirements specification, the
structure identifier 148 may be a regular expression, such as
“[A-Za-z0-9]*[0-9]”. The regular expression specifies that
any combination of uppercase letters, lower case letters, and
digits, followed by a digit, flags the following sentence as a
requirement to analyze. An example syntax definition is:
[agent] [mode] [action] [remainder]. The syntax definition
specifies structure category components for the document
structure. In this example, the structure category components
include an agent, followed by a modal verb, followed by an
action, followed by the rest of the sentence.

[0070] The agent glossary 140 defines the permissible
agents. The mode glossary 144 defines the permissible modal
verbs. The action glossary 142 defines the permissible
actions. The system 102 may enforce the syntax, by perform-
ing processing only on those sentences that meet the syntax
with agents, modes, and actions defined in the glossaries
140-144, or may perform processing on a sentence that par-
tially or wholly meets the syntax. For example, even if an
actor is missing or an unrecognized actor is present, the
system 102 may still analyze the remainder for ambiguous
terms.

[0071] FIG. 2 shows an example of the agent glossary 140.
In the example shown in FIG. 2, the agent glossary 140
defines an agent field 202, an explanation field 204, a parent
field 206, and a notes field 208. The agent field 202 defines
permissible constituent agents for the structure instance syn-
tax, such as “Developers” and “Development Team”. The
explanation field 204 provides diagnostic information rel-
evant to the agent, how the agent performs their job, or other
agent related information. The parent field 206 may be used to
indicate a constituent hierarchy parameter for building hier-
archies of agents, as will be described in more detail below.
The additional notes field 208 provides a place where devel-
opers may insert information regarding a particular agent and
its presence in the agent glossary 140. One of the uses of the
agent glossary 140 is to check that the requirements docu-
ment only specifies that certain actors perform actions.
[0072] FIG. 3 shows an example of the mode glossary 144.
In the example shown in FIG. 3, the mode glossary 144
defines a mode field 302, an explanation field 304, and a notes
field 306. The mode field 302 defines permissible constituent
modes for the actions that an agent may take, such as “must”,

US 2014/0351694 Al

or “will”, while the explanation field 304 provides diagnostic
information related to the mode. The diagnostic information
may expresses issues or concerns about certain modes, may
recommend or encourage certain modes, or may provide
other mode related information and feedback.

[0073] FIG. 4 shows an example of the action glossary 142.
In the example shown in FIG. 4, the action glossary 142
defines an action field 402, an explanation field 404, a parent
field 406, and a notes field 408. The action field 402 defines
permissible constituent actions for the structure instance syn-
tax, such as “Define” and “Tag”. The explanation field 404
provides diagnostic information relevant to the action, how an
agent performs the action, or other action related information.
The parent field 406 may be used to build hierarchies of
actions, as will be described in more detail below. The addi-
tional notes field 408 provides a place where developers may
insert information regarding a particular action and its pres-
ence in the action glossary 142. The system 102 may use the
action glossary 142 to check that the only certain actions are
specified in a requirements document.

[0074] FIG. 5 shows an example of the phrase glossary 146.
In the example shown in FIG. 5, the phrase glossary 146
defines a problem phrase field 502, an explanation field 504,
a suggestion field 506, a priority field 508, and a notes field
510. The problem phrase field 502 defines words or combi-
nations or words that often give rise to problematic state-
ments. Such problem phrases may define ambiguous or inap-
propriate words, such as “could”, or “improved”, particularly
in the context of the specific document type. The problem
phrases may also include industry, domain, or technology
phrases, such as “Windows Mobile” or “strong encryption.”
Thus, the document specific parameter sets tailor the analysis
of the system 102 to the particular document type.

[0075] The explanation field 504 provides a description of
why the problem phrase gives rise to difficulties. For
example, the problem phrase “could” may be associated with
the corresponding explanation of “is ambiguous”. The phrase
glossary 146 may also define suggestions in the suggestion
field 506, explanation field 504, or both, for how to improve
the problem phrase to a less problematic state. For example,
the suggestion field 506 may suggest that “easy” should be
replaced with specific language, such as “The system will
reduce the effort required to <function> by x %.” The docu-
ment reviewer may then adopt the suggestion, complete the
<function> field, and specify a value for ‘x’ to improve the
statement.

[0076] The priority fiecld 508 assigns a priority value to a
problem phrase. The system 102 may then prioritize analysis
and evaluation of problem phrases. As examples, the system
102 may determine which colors or patterns to use to high-
light problem phrases according to the priority value. As
another example, the system 102 may more strongly encour-
age the reviewer to modity the problem phrase, provide addi-
tional suggestions, or take other actions driven by the priority
value. The additional notes field 510 provides a place where
developers may insert information regarding a particular
problem phrase and its presence in the phrase glossary 146.
[0077] FIG. 6 illustrates examples of a structure identifier
148 and a syntax definition 150 for a requirements specifica-
tion. The structure identifier 148 is the regular expression
“[A-Za-z0-9*0-9]” 602. The regular expression specifies that
any combination of alphanumeric characters, followed by a
digit, flags the following sentence as a requirement to ana-
lyze. The syntax definition 150 is: [agent] [mode] [action]

Nov. 27,2014

[remainder]|. The structure category components specified by
the syntax definition are an agent component 604, followed
by a modal verb component 606, followed by an action com-
ponent 608, followed by a remainder component 610 of the
rest of the sentence.

[0078] FIG. 6 also shows an example requirement 612:
“RO1: The Developers may create an improved user inter-
face.” found in the text of the document 132. The system 102
parses the document text, finding first the structure identifier
“R0O1” that matches the structure identifier 148. According,
the requirement sentence that follows is next checked against
the syntax definition 150. In this instance, the syntax defini-
tion, supported by the glossaries 140-144, parse the sentence
as follows: Agent=Developers, Mode=may, Action=create,
and Remainder="an improved user interface.”

[0079] The system 102 may carry out document analysis
operations based on the analysis of the document structure
instances. In the example shown in FIG. 6, the system 102
highlights each structure category component, using a thin
line 614 for the agent, a medium line 616 for the modal verb,
and a heavy line weight 618 for the action. The system 102
uses a dashed line 620 for the remainder.

[0080] In addition, the system 102 applies the phrase glos-
sary 146 against the requirement sentence. As a result, the
system 102 identifies the ambiguous term “improved” in the
requirement sentence, and applies an italic highlight 622 to
emphasize the presence of the problematic word. The system
102 may use any combination of any desired colors, line
weights, line patterns, sounds, animations, icons, or other
indicia to highlight any of the structure components, problem
phrases, structure identifiers, or other parts of the document.
[0081] In addition to the syntax definition shown in FIG. 6,
additional syntax definitions are also possible. For example,
the syntax definition 150 may define conditional syntax defi-
nitions or feature syntax definitions. Table 1 below lists dif-
ferent examples of syntax definitions definable by the syntax
definition 150.

TABLE 1
Syntax Type Syntax Definition Example Structure Instance Example
Statement [agent] [mode] The order-processing
[action] [remainder] system shall send a
message to the procurement
manager.
The user shall click the
button
Conditional When [condition], When the user clicks
[agent] [mode] the button, the order-
[action] [remainder] processing system shall
send a message to the
procurement manager.
Conditional: If [condition] then If the user clicks
[agent] [mode] the button, the order-
[action] [rest] processing system shall
send a message to the
procurement manager.
Feature [system-agent] The order-entry
[mode][remainder] interface shall
have a “cancel’
button.
[0082] In one implementation, the syntax definition 150

further defines syntax definitions according to a set of con-
trolled document structure instance syntaxes. For example,
the syntax definition 150 may define a document structure
instance as a requirement document structure instance. The

US 2014/0351694 Al

requirement document structure instance may then be defined
as a conditional requirement document structure instance or
as a simple requirement document structure instance. The set
of controlled document structure instance syntaxes may also
define additional syntaxes for the simple requirement docu-
ment structure instance or the conditional requirement docu-
ment structure instance. For example, the set of controlled
document structure instance syntaxes may define the simple
requirement document structure instance as a standard
requirement document structure instance, as a business rule
document structure instance, or as any other type of document
structure instance. Table 2 illustrates one example of a set of
controlled document structure syntaxes that may be defined

Nov. 27,2014

module 126 may determine whether the document structure
instance 134 is a requirement statement. The pseudo-codes
below illustrate several methods that the document analysis
module 126 may perform in determining whether the docu-
ment structure instance 134 is a requirement statement
according to the syntax definition 150. The first pseudo-code
below illustrate one method that the document analysis mod-
ule 126 may use to determine whether the document structure
instance 134 contains a structure identifier:

isRequirement (Document structure instances)
if the first word of the document structure instances has a
structure identifier:

according to the syntax definition 150. Other types of syn- return true
taxes may also be defined.
TABLE 2
Syntax
Syntax Type Identifier Syntax Brief Explanation
Requirement Req. Req. —> ConditionalReq | A requirement may be a
SimpleReq simple requirement or a
conditional requirement.
Conditional ConditionalReq. [“if’][condition][“then™] A conditional requirement
[SimpleReq]; or may be an “if-then”, “if-
[“if’][condition] [“then™] then-else”, or “when” kind
[SimpleReq][“else”] of document structure
[SimpleReq]; or instance. It may be either a
[“when”][condition] functional requirement or
[SimpleReq] business rule depending on
the text of the document
structure instance.
Standard StandardReq [Agent] [ModalWord] A standard requirement
[Action] [Rest] may be an agent followed
by a modal word, followed
by an action (verb),
followed by the remainder
of the document structure
instance.
Business Rule BusinessRule [“all” | “only™ | A business rule may be
“exactly”] [Rest] any document structure
instances that starts with
“all”, “only” or “exactly”.
Remainder Rest [rest] —> [Secondary The rest of sentence may
Agent | Secondary contain a number of
Action] secondary agents and
actions from their
respective glossaries.
[0083] FIG. 7 illustrates an example of a requirements -continued
analysis system 702. In the example shown in FIG. 7, the
requirements analysis system 702 includes the document end if
analysis module 126 in communication with a document alse

under analysis 132 and the first document specific parameter
set 138. The document analysis module 126 may also be in
communication with the document analysis database 124 to
retrieve one or more document specific parameter sets 706-
708. The analysis module 126 is also in communication with
the processor 116, the network interface 120 and various
other input/output devices 122. As shown in FIG. 7, the docu-
ment specific analysis module is in communication with the
display 125, which may display an electronic representation
710 of the document under analysis 132 and a graphical user
interface 712 for interacting with the document analysis mod-
ule 126.

[0084] In general, the document analysis module 126 is
operative to analyze the document instances 134-136 of the
document under analysis 132. For example, when analyzing
the document structure instance 134, the document analysis

return false
end else

end isRequirement

[0085] In addition, the document analysis module 126 may
determine whether the document structure instance 134-136
includes any of the constituents in glossaries 140-146 consis-
tent with the syntax definition 150. More specifically, the
document analysis module 126 may determine whether a
document structure instance 134, such as a requirements
statement of a requirements document, includes a constituent
from the agent glossary 140. In an alternative example, the
document analysis module 126 may determine whether a
document structure instance 134 includes a constituent from

US 2014/0351694 Al

the phrase glossary 146, the mode glossary 144, the action
glossary 142, or another glossary from another document
parameter set 704-708.

[0086] The pseudo-code below illustrates one method for
identifying whether the document structure instance 134 con-
tains an agent constituent:

FindAgent(Document structure instance s)
For each agent; in AgentGlossary
If agent, is the first phrase in the document structure instance after
the structure identifier
return true
end if
end for
return false
end FindAgent

[0087] The pseudo-code below illustrates one method for
identifying whether the document structure instance 134 con-
tains a mode constituent:

FindMode(Document structure instance s)
For each mode in ModeGlossary
If mode is the second phrase in the document structure instance
after the agent phrase
return true
end if
end for
return false
end FindMode

[0088] The pseudo-code below illustrates one method for
identifying whether the document structure instance 134 con-
tains an action constituent

FindAction(Document structure instance s)
For each action in ActionGlossary
If action is the third phrase in the document structure instance
after the mode phrase
return true
end if
end for
return false
end FindAction

[0089] The pseudo-code below illustrates one method for
identifying whether the document structure instance 134 con-
tains a constituent from the phrase glossary 146:

FindPhrase(Document structure instance s)
For each phrase; in PhraseGlossary
If phrase; occurs in the document structure instance
return true
end if
end for
return false
end FindPhrase

[0090] The document analysis module 126 may further
perform a document analysis operation based on whether the
document structure instances 134-136 include any of the
constituents in a glossary 140-146 consistent with the syntax
definition 150. Examples of performing a document analysis
operation include identifying a problematic constituent, iden-
tifying a constituent from the glossaries 140-146 contained in
the document structure instances 134-136, identifying that

Nov. 27,2014

the document structure instances 134-136 do not contain a
constituent from the glossaries 140-146, or identifying
whether the document structure instances 134-136 are con-
sistent with the syntax definition 150. In addition, where the
document analysis module 126 identifies an error or issue in
the analyzed document structure instance, the document
analysis module 126 may provide a suggestion for correcting
or rectifying the identified error or issue.

[0091] The document analysis module 126 may also com-
municate with the inference engine 106 to determine whether
one or more document structures instances 134-136 conflict
using the document parameter set 138. For example, the
document parameter set 138 may include one or more docu-
ment structure rules relating to the substantive nature of the
document structure instances 134-136. The document analy-
sis module 126 may transmit the document structure
instances 134-136, along with the document structure rules,
to the inference engine 106 to determine whether the docu-
ment structure instances 134-136 substantively conflict.
[0092] For example, suppose that the document structure
rules include a rule stating that “Encryption delays a message
by five seconds,” and the document structure instances
include first a document structure instance stating that “The
system will encrypt all messages” and a second document
structure instance stating that “The system will send all mes-
sages in less than five seconds.” By transmitting the document
structure rule along with each of the two document structure
instances of the above example to the inference engine 106,
the document analysis module 126 is able to report that the
document structure instances conflict with one another.
[0093] The document analysis module 126 may also use a
constituent hierarchy parameter, such as the parent field 206
of the agent 140, when analyzing the document structure
instances 134-136. The document analysis module 126 may
use the constituent hierarchy parameter to identify whether
the document structure instances 134-136 conflict with a
document structure rule. For example, as shown in FIG. 2, the
parent field 206 of the agent glossary 140 identifies that
“developers” are subordinate to “development team.” Where
a document structure rule states that “Only a development
team shall contact suppliers” and a document structure
instance states that “Developers will contact suppliers,” the
document analysis module 126 determines that the document
structure instance does not conflict with the document struc-
ture rule.

[0094] As another example of using document structure
rules to analyze document structure instances, suppose that a
first business rule states that “If an order is to be delivered, the
patron must pay by payroll deduction” and a second business
rule states that “Only permanent employees may register for
payroll deduction for any company purchase.”” The system
102 may then infer that the inferred business rule from the
first and second business rule is that “Only a permanent
employee can specify that an order can be picked up.”
Accordingly, the document analysis module 126 may output
an alert where a document structure instance states that “The
Patron shall specify whether the order is to be picked up or
delivered.” The document analysis module 126 may also
communicate with the inference engine 106 to perform the
analysis on the document structure instances 134-136 using
the document structure rules.

[0095] The document analysis module 126 may also deter-
mine whether the document under analysis 132 contains
document structure instances 134-136 of a specific type of

US 2014/0351694 Al

document structure instance. For example, the document
analysis module 126 may compare the document parameter
set 138 to determine that the document under analysis 132
does not contain document structure instances of a security
type. The document analysis module 126 may also determine
whether the document structure instances 134-136 are com-
plete. For example, a document structure instance conform-
ing to a conditional syntax definition may have an “if” state-
ment and no “else” statement. In this example, the document
analysis module 126 may output an alert indicating that the
document structure instance is an incomplete conditional
structure instance.

[0096] The document analysis module 126 may also deter-
mine whether the document structure instances satisfy a pri-
ority given to a property or other document structure instance.
For example, the document parameter set 138 may specify
that user interface document structure instances are given the
highest priority level. In analyzing the document under analy-
sis 132, the document analysis module 126 may determine
and identify whether any of the document structure instances
are directed to a user interface.

[0097] In addition, the document analysis module 126 may
further identify document structure instances for which a
complementary document structure instance appears to be
missing. For example, a document structure instance may
specify that “System X will send an alert to System Y.” The
document analysis module 126 is operative to determine
whether a similar document structure instance states that
System Y should process alerts sent by System X.

[0098] The document analysis module 126 may also be in
communication with a graphical user interface 712 for com-
municating analysis messages relating to the analysis of
document structure instances 134-136. FIG. 8 shows one
example of a graphical user interface 712 for communicating
analysis messages relating to the analysis of a document
structure instance. The graphical user interface 712 shown in
FIG. 8 has been configured to communicate analysis mes-
sages associated with the phrase glossary 146. Other graphi-
cal user interfaces may also be configured for each of the
other glossaries, including the agent glossary 140, the action
glossary 142, and the mode glossary 144.

[0099] The graphical user interface 712 associated with the
phrase glossary 146 includes several control parameters 814-
822, including an “ignore this requirement” control param-
eter 814, a “change” control parameter 820, an “undo” con-
trol parameter 816, a “cancel” control parameter 818, and a
“revert to original” control parameter 822. Each ofthe control
parameters 814-822 are associated with an instruction for the
document analysis module 126. For example, selecting the
“ignore this requirement” control parameter 814 instructs the
document analysis module 126 that it should ignore the ana-
lyzed document structure instance; selecting the “change”
control parameter 820 instructs the document analysis mod-
ule 126 that it should change the document structure instance;
selecting the undo control parameter 816 instructs the analy-
sis module 126 that it should undo the last change applied to
the document structure instance; selecting the cancel control
parameter 818 instructs the document analysis module 126
that it should cancel the analysis of the document structure
instance; and, selecting the revert to original control param-
eter 822 instructs the document analysis module 126 that it
should revert the document structure instance to its original
form as it appeared before the analysis by the document
analysis module 126.

Nov. 27,2014

[0100] The graphical user interface 712 also includes sev-
eral different text fields 824-830. The text fields 824-830
include a document structure instance text field 824, an expla-
nation text field 826, an instruction text field 828, and a
suggested change text field 830. The text fields 824-830 may
be associated with fields 502-506 of the phrase glossary 146,
with fields from the document parameter set 138, or with
fields from the document analysis database 124. For example,
as shown in FIG. 8, the suggested text field 830 of the graphi-
cal user interface 712 is associated with the suggestion field
506 of the phrase glossary 146. Similarly, the explanation text
field 826 is associated with the explanation field 504 of the
phrase glossary 146. The document analysis module 146 is
operative to populate the text fields 828-830 with the analysis
messages of their associated fields. Other graphical user inter-
faces associated with the other glossaries 140-144 may
include additional or fewer control parameters, or additional
or fewer text fields.

[0101] In FIG. 8, the document analysis module 126 is
analyzing document structure instances 832 using the con-
stituent “easy” from the phrase glossary 146. The document
analysis module 126 has identified an ambiguous phrase 834
in one of the document structure instances. Having identified
a constituent from the phrase glossary 146, the document
analysis module 126 has retrieved several analysis messages
associated with the constituent “easy” and has populated the
text fields 824-830 of the graphical user interface 712 with
those analysis messages. The document analysis module 126
has populated the document structure instance text field 824
with the text of the document structure instance having the
found constituent. The document analysis module 126 has
also populated the explanation text field 826 with an analysis
message indicating the reason for identifying the constituent
of the document structure instance. The document analysis
module 126 has further populated the instruction text field
828 with an analysis message indicating how to resolve the
identified issue presented in the explanation text field 826,
and the document analysis module 126 has populated the
suggested text field 830 with analysis messages to replace the
text of the identified constituent or the text of the analyzed
document structure instance.

[0102] The text fields 824-830 may also be associated with
the control parameters 814-822. For example, in one imple-
mentation, the suggested text field 830 is associated with the
change control parameter 820. Thus, when an analysis mes-
sage is selected from the suggested text field 830 and the
change control parameter 820 is activated, the document
analysis module 126 may replace the document structure
instance text in the document structure instance text field 824
with the selected analysis message from the suggested text
field 830. The document analysis module 126 may further
change the document under analysis to reflect the changes
made to the analyzed document structure instance of the
document under analysis.

[0103] In addition that the graphical user interface 712 of
FIG. 8 may indicate that the document analysis module 126
has found a constituent from the phrase glossary 146 in the
analyzed document structure instance, other graphical user
interfaces may indicate that the document analysis module
126 has not found a constituent from other glossaries. For
example, a graphical user interface associated with the agent
glossary 140 may present an analysis message indicating that
the document analysis module 126 did not find an agent
constituent in the analyzed document instance. Similarly, a

US 2014/0351694 Al

graphical user interface associated with the action glossary
140 may present an analysis message indicating that the
document analysis module 126 did not find an action con-
stituent in the analyzed document instance. More generally,
the requirements analysis system 702 may be configured such
that a graphical user interface is associated with each of the
document parameters of the document parameter sets for
displaying the analysis of the document analysis module 126.
[0104] FIG. 9 shows logic flow for a requirements analysis
system 702. The document analysis module 126 receives the
document parameters, such as the glossaries 140-146 or the
constituents of the glossaries 140-146, from the document
parameter set 138 (902). The document analysis module 126
then receives the document for analysis (904). In starting the
analysis of the document, the document analysis module
identifies a first document structure instance, such as docu-
ment structure instance 134 (906). The document analysis
module 126 may not identify any document structure
instances, in which case, the document analysis module 126
may display a graphical user interface with an analysis mes-
sage indicating that the document analysis module 126 did
not identify any document structure instances.

[0105] Where the document analysis module 126 identifies
a document structure instance, the document analysis module
126 then identifies a first glossary in the document specific
parameter set (908). The first glossary may be any of the
glossaries 140-146. The first glossary may also be a glossary
stored in the document analysis database 124. Alternatively,
orinaddition, the document analysis module 126 may receive
a structure category component selection value that indicates
the structure category component to start the analysis. For
example, the document analysis module 126 may receive a
structure category component selection value corresponding
to the action category component, in which case, the docu-
ment analysis module 126 begins the analysis of the docu-
ment structure instance with the action glossary 142.

[0106] Thedocument analysis module 126 then begins ana-
lyzing the document structure instance to determine whether
the document structure instance contains any of the constitu-
ents in the first glossary (910). In one implementation, the
document analysis module 126 compares each of the con-
stituents of the first glossary with the document structure
instance. After the analysis, the document analysis module
126 presents the results of the analysis, such as through the
graphical user interface 712 (912).

[0107] Based on the results of the analysis, the document
analysis module 126 may decide to perform a document
analysis operation, pre-configured or otherwise, based on the
results of the analysis (914). Examples of performing a docu-
ment analysis operation include some of the examples previ-
ously mentioned above, but also include, displaying a graphi-
cal user interface, retrieving an analysis message, or
terminating the analysis operation of the document structure
instance. Where the document analysis module 126 decides
to perform a document analysis operation (916), the docu-
ment analysis module 126 may use the graphical user inter-
face 712 to present an analysis message associated with the
results of the analysis. For example, where the document
analysis module 126 determines that the document structure
instance does not have an action constituent from the action
glossary 142, the document analysis module 126 uses the
graphical user interface 712 to present an analysis message
relating to the absence of the action constituent and a control
parameter for adding an action constituent to the analyzed

Nov. 27,2014

document structure instance. Alternatively, or in addition, the
document analysis module 126 may be pre-configured to
apply a change to the document structure analysis based on
the results of the analysis and of the category component
associated with the first glossary. The document analysis
module 126 may perform more than one document analysis
operation on the analyzed document structure instance.
[0108] The documentanalysis module 126 then determines
whether the document parameter set contains additional glos-
saries (918), and if so, identifies the next glossary in the
document parameter set with which to use in analyzing the
document structure instance (920). When the document
analysis 126 determines that there are no additional glossaries
with which to use in analyzing the document structure
instance, the document analysis module 126 then proceeds to
determine whether there are additional document structure
instances to identify (922). If so, the document analysis mod-
ule 126 identifies another document structure instance (922),
and proceeds through the analysis of the additional identified
document structure instance as described above. After the
document analysis module 126 determines that there are no
additional document structure instances to analyze, the docu-
ment analysis module 126 terminates its analysis of the
received document.

[0109] FIG. 10 shows a requirements commenting system
1002. In the system shown in FIG. 10, the requirements
commenting system 1002 includes components similar to
those described with reference to FIG. 7 and the requirements
analysis system 702. However, the requirements commenting
system 1002 may further include the document commenting
module 128.

[0110] In general, the document commenting module 128
is operative to comment on the document instances 134-136
of the document under analysis 132. For example, the docu-
ment commenting module 128 may determine whether the
document structure instance 134-136 includes any of the
constituents in glossaries 140-146 consistent with the syntax
definition 150. More specifically, the document commenting
module 128 may determine whether a document structure
instance 134, such as a requirements statement of a require-
ments document, includes a constituent from the agent glos-
sary 140. In an alternative example, the document comment-
ing module 128 may determine whether a document structure
instance 134 includes a constituent from the phrase glossary
146, the mode glossary 144, the action glossary 142, or
another glossary from another document parameter set 704-
708.

[0111] The document commenting module 128 may fur-
ther output an analysis message based on the analysis per-
formed by the document commenting module 128. In one
implementation, outputting an analysis message includes
embedded an analysis message as a comment in the electronic
representation 710 of the document under analysis 132. The
pseudo-code below illustrates one method performable by the
document commenting module 128 in retrieving analysis
messages and embedding the analysis messages as comments
in the electronic representation 710 of the document under
analysis 132:

ProcessRequirements (Document reqDoc)
For each document structure instance s in reqDoc
If (isRequirement(s) is true)
If (find Agent (s) = true)
Mark agent

US 2014/0351694 Al

-continued

Else
Output ("No Agent Found")
return

End if

If (findMode (s) = true)
Mark mode

Else
Output ("No Mode Found")
return

End if

If (find Action (s) = true)
Mark action

Else
Output ("No Action Found")
return

End if

Mark rest of sentence

If (findPhrase (s) = true)
Mark phrase
Output ("Phrase used in requirement”)

End if

End if
End For
End ProcessRequirements

[0112] The document commenting module 128 may fur-
ther perform one or more of the analyses as described above
with reference to the document analysis module 126.

[0113] FIG. 11 shows analysis messages embedded as
comments 1102-1108 in an electronic representation 710 of a
document under analysis 132. The embedded comments
1102-1108 include a phrase embedded comment 1102, an
agent embedded comment 1104, and action embedded com-
ments 1106-1108. Each of the embedded comments have
analysis messages associated with a glossary 140, 142, and
146. For example, the phrase embedded comment 1102 has
an analysis message associated with the phrase glossary 146,
the agent embedded comment 1104 has an analysis message
associated with the agent glossary 140, and the action embed-
ded comments 1106-1108 have analysis messages associated
with the action glossary 142. Moreover, the document com-
menting module 128 may identify a specific constituent
through the embedded comments 1102-1108, such as identi-
fying the constituent “easy” as shown in FIG. 11.

[0114] Furthermore, the document commenting module
128 may indicate in the electronic representation 710 the
structure category component of the document instances of
the document under analysis 132 with markings 614-620.
Using the markings 614-620 as discussed above with refer-
ence to FIG. 6, the document commenting module 128 may
use a thin line 614 for the agent, a medium line 616 for the
modal verb, and a heavy line weight 618 for the action. The
document commenting module 128 may further use a dashed
line 620 for the remainder.

[0115] FIG. 12 shows logic flow for the requirements com-
menting system 1002. The document commenting module
128 receives the document parameters, such as the glossaries
140-146 or the constituents of the glossaries 140-146, from
the document parameter set 138 (1202). The document com-
menting module 128 then receives the document for analysis
(1204). In starting the analysis of the document, the document
commenting module 128 identifies a first document structure
instance, such as document structure instance 134 (1206).
The document commenting module 128 may not identify any
document structure instances, in which case, the document

Nov. 27,2014

commenting module 128 may display an analysis message
indicating that no document structure instances were identi-
fied.

[0116] Where the document commenting module 128 iden-
tifies a document structure instance, the document comment-
ing module 128 then identifies a first glossary in the document
specific parameter set (1008). The first glossary may be any of
the glossaries 140-146. The first glossary may also be a glos-
sary stored in the document analysis database 124. Alterna-
tively, or in addition, the document commenting module 128
may receive a structure category component selection value
that indicates the structure category component to start the
analysis. For example, the document commenting module
128 may receive a structure category component selection
value corresponding to the action category component, in
which case, the document commenting module 128 begins
the analysis of the document structure instance with the
action glossary 142.

[0117] The document commenting module 128 then begins
analyzing the document structure instance to determine
whether the document structure instance contains any of the
constituents in the first glossary (1210). In one implementa-
tion, the document commenting module 126 compares each
of the constituents of the first glossary with the document
structure instance (1212).

[0118] Where the document commenting module 128
determines that the document structure instance contains a
constituent from the first glossary, the document commenting
module 128 then proceeds to determine whether the docu-
ment structure instance should contain the constituent (1214).
If the document commenting module 128 determines that the
document structure instance should contain the identified
constituent, the documenting commenting module 128 indi-
cates in the document structure instance the identified con-
stituent (1216). For example, the syntax definition 150
defines that a requirement statement should contain an action
category component. Accordingly, the document comment-
ing module 128 will mark a document structure instance
where the document commenting module 128 finds an action
constituent in the document structure instance.

[0119] However, If the document commenting module 128
determines that the document structure instance should not
contain the identified constituent, the documenting comment-
ing module 128 retrieves an analysis message from the docu-
ment parameter set 138 and embeds the analysis message in
the electronic representation 710 of the document under
analysis 132 (1218). For example, the phrase glossary 146
contains constituents that should not appear in a document
structure instance. In this example, where the document com-
menting module 128 identifies a constituent from the phrase
glossary 146 in the document structure instance, the docu-
ment commenting module 128 embeds an analysis message
associated with the identified constituent.

[0120] Alternatively, the document commenting module
128 may determine that the document structure instance does
not contain a constituent from the first glossary. In this case,
the document commenting module 128 determines whether
the document instance structure should contain a constituent
from the glossary. If the document structure instance should
contain a constituent from the glossary, the document com-
menting module 128 retrieves an analysis message associated
with the missing constituent or glossary, and embeds the
analysis message in the electronic representation 710 of the
document under analysis 132 (1218). Alternatively, if the

US 2014/0351694 Al

document structure instance should not contain a constituent
from the glossary, the document commenting module 128
then proceeds to determine whether there are additional glos-
saries (1220) in the document parameter set 138.

[0121] As anexample of the above described logic flow, the
syntax definition 150 defines that a requirements statement
should contain an action category component. Where the
document commenting module 128 identifies a requirements
statement, but further identifies that the requirements state-
ment is missing an action category component, the document
commenting module 128 embeds an analysis message in the
electronic representation 710 of the document under analysis
132 indicating that the requirements statement is missing an
action category component.

[0122] After marking the document structure instance
(1216), embedding an analysis message (1218), or determin-
ing that the document structure instance should not contain a
constituent from the first glossary (1220), the document com-
menting module 128 proceeds to determine whether there are
additional glossaries in the document parameter set 138
(1220). If the document commenting module 128 determines
that there are additional glossaries, the document comment-
ing module 128 identifies the next glossary (1222) and pro-
ceeds to analyze the document structure instance using the
identified glossary (1210). However, if the document com-
menting module 128 determines that there are no remaining
glossaries to use in analyzing the identified document struc-
ture instance, the document commenting module 128 pro-
ceeds to determine whether there are additional document
structure instances remaining in the document under analysis
132 (1224). If there are remaining document structure
instances, the document commenting module 128 identifies
the next document structure instance (1226) and proceeds to
analyze the identified next document structure instance as
described above. Where there are no remaining document
structure instances and no remaining glossaries, the docu-
ment commenting module 128 terminates its analysis and
commenting.

[0123] Although the logic flow described above illustrates
some of the actions of the document commenting module
128, the actions described are not exhaustive. For example,
the document commenting module 128 may mark a remain-
der component of the document structure instances.

[0124] FIG. 13 shows a report generator system 1302. In
the system shown in FIG. 13, the report generator system
1002 includes components similar to those described with
reference to FIG. 7 and the requirements analysis system 702.
However, the report generator system 1302 may further
include the document reporting module 130. The document
reporting module 130 may be configured to analyze elec-
tronic documents and document structure instances as
described above with reference to the document analysis
module 126.

[0125] In general, the document reporting module 130 is
operative to generate reports organized by constituent and
document structure instance document reporting module 130.
More specifically, the document reporting module 130 is
operative to generate a report associating constituents with
document structure instances that contain those constituents
and are consistent with the syntax definition 150. In general,
the document reporting module 130 is operative to receive a
structure category component value and generate a report
using the received structure category component value.

Nov. 27,2014

[0126] FIG. 14 shows an example report 1402 generated by
the document reporting module 130 using an action category
component value. The example report 1402 contains a con-
stituent column 1404 and an identified requirements state-
ment column 1406. In the example report 1402, the constitu-
ent column 1404 contains rows of agent constituents and the
requirements statement column 1406 contains rows of
requirement statements associated with the agent constituent
identified in the constituent column 1404. However, the con-
stituent column 1404 may include other constituents such as
action constituents, mode constituents, or other constituents,
depending on the structure category component value
received by the document reporting module 130. The docu-
ment reporting module 130 may also be pre-configured to
generate areport using a specific document structure category
component.

[0127] FIG. 15 shows logic flow for the report generator
system 1302. The document reporting module 130 receives
the document parameters, such as the glossaries 140-146 or
the constituents of the glossaries 140-146, from the document
parameter set 138 (1502). The document reporting module
130 then receives the document for analysis (1504). After-
wards, the document reporting module 130 receives a struc-
ture category component selection value for selecting a glos-
sary by which to analyze the received document. (1506)
[0128] In starting the report of the received document, the
document reporting module 130 selects a first constituent
from the selected glossary (1508). The document reporting
module 130 then compares the selected first constituent with
the document structure instances of the received document
(1510). As the document reporting module 130 is comparing
the selected first constituent with the document structure
instances, the document reporting module 130 maintains a list
of document structure instances that contain the selected first
constituent according to the syntax definition 150. It is pos-
sible that none of the document structure instances contain
the selected first constituent or contain the selected first con-
stituent consistent with the syntax definition 150.

[0129] After comparing the selected first constituent with
the document structure instances, the document reporting
module 130 then determines whether there are additional
constituents in the selected glossary (1514). Where the docu-
ment reporting module 130 determines there are additional
constituents in the selected glossary, the document reporting
module 130 selects the next constituent in the selected glos-
sary (1516), and proceeds to compare the selected next con-
stituent with the document structure instances in the received
document (1510). The document reporting module 1530 also
maintains a list of document structure instances that contain
the selected next constituent consistent with the syntax defi-
nition 150.

[0130] Where the document reporting module 130 deter-
mines that the selected glossary does not contain additional
constituents, the document reporting module 130 outputs a
report containing the list of constituents from the selected
glossary and the maintained lists of document structure
instances containing the constituents consistent with the syn-
tax definition 150 (1518). In some instances, a list associated
with a constituent may be an empty list. The document report-
ing module 130 may output more than one report depending
on the number of selected glossaries and the number of
received documents.

[0131] FIG. 16 shows an example of an agent taxonomy
1602. The agent taxonomy 1602 illustrates a hierarchical

US 2014/0351694 Al

relationship between agent constituents contained in an agent
glossary 140. For example, the agent taxonomy 1602 illus-
trates that a “supplier manager” is a type of “Manager.” Simi-
larly, FIG. 17 shows an example of an action taxonomy 1702.
The action taxonomy 1702 illustrates a hierarchical relation-
ship between action constituents contained in an action glos-
sary 142. For example, the action taxonomy 1702 shows that
the verb “e-mail” is a more specific verb for “Send.” The agent
taxonomy 1602 or the action taxonomy 1702 may be used as
part of a domain knowledge based analysis to determine
whether there is a conflict among document structure
instances, or, more specifically, requirements statements. For
example, the document analysis, commenting, and reporting
system 102 may include one or more business rules for
resolving conflicts between requirement statements using an
agent glossary 140 configured with the agent taxonomy 1602,
the action glossary 142 configured with the action taxonomy
1702, or other glossary configured with another type of tax-
onomy. The document analysis, commenting, and reporting
system 102 may also be configured to identify similar docu-
ment structure instances, such as “The purchasing system
sends the order to the user” and “The purchasing system faxes
the order to the user,” using the agent taxonomy 1602, the
action taxonomy 1702, or an additional or alternative tax-
onomy.

[0132] FIG. 18 shows an example of an ontology model
1800. In one implementation, the ontology model 1800
defines an ontology hierarchy 1802. The ontology model
1800 may be described using the OWL Web Ontology Lan-
guage. However, the ontology model 1800 may also be
described using other languages such as the Resource
Description Framework (RDF) or the Knowledge Inter-
change Format (KIF).

[0133] The ontology hierarchy 1802 comprises document
structure instance classes related as root classes and child
classes. For example, FIG. 18 shows that the ontology hier-
archy 1802 starts with a root requirement class 1804 and that
the root requirement class 1804 has two child classes, a secu-
rity requirement class 1806 and a time requirement class
1820. In addition, the security requirement class 1806 is a root
class of two child classes, an encryption class 1808 and an
authentication class 1814. Similarly, the time requirement
class 1820 is a root class of two child classes, a response time
class 1822 and a network time class 1824 Additional child
classes include an SSH class 1810, an RSA class 1812, a
security token class 1816, and a password class 1818. As
shown in FIG. 18, the SSH class 1810 and the RSA class 1812
are child classes of the encryption class 1808, and the security
token class 1816 and the password 1818 are child classes of
the authentication class 1814.

[0134] FIG. 18 also shows that the ontology hierarchy 1802
defines class relationships between the root classes and their
associated child classes. For example, FIG. 18 shows that the
ontology model 1800 includes a horizontal class definition
relationship 1828 and a vertical class definition relationship
1826. In general, horizontal class definition relationships
define relationships between classes unrelated to hierarchy,
and vertical class definition relationships define hierarchical
relationships between classes. In the example shown in FIG.
18, the horizontal class definition relationship 1828 is an
“affects” relationship, and shows that the security require-
ment class 1806 affects the time requirement class 1820. In
addition, FIG. 18 shows that the vertical class definition rela-
tionship 1826 is an “is A” relationship that shows that the time

Nov. 27,2014

requirement class 1820 is a child class of the requirement
class 1804. Examples of class definition relationships are
shown below in Table 3.

TABLE 3
Relationship
Type Description
Affect Classifications that affect each other.
Contradict Classifications that contradict each other

Dependency Classifications that depend on each other

Implement Classification that implements a higher-level classification
Similarity Classifications that are similar to each other

isA Classifications that are special cases of other classifications
[0135] FIG. 18 also shows that the ontology model 1800

may further include instance class search terms that facilitate
analysis of document structure instances against the ontology
model 1800. Examples of instance class search terms are the
encryption class search terms 1830 “encrypt” and
“encrypted.” Instance class search terms may be used to asso-
ciate document structure instances with a class. Other
examples of instance class search terms may be “SSH,”
“RSA,” “authenticate,” “password,” or any other search term
associated with the classes included in the ontology model
1800. However, other properties may be used to associate a
document structure instance with one or more classes.
[0136] Turning next to FIG. 19 is an example of an ontol-
ogy analysis system 1900. The ontology analysis system
1900 may include one or more components of the document
analysis, commenting, and reporting system 102. In one
implementation, the memory 118 stores classification logic
1902 and relationship analysis logic 1906 for analyzing a
document under analysis 132 using the ontology model 1800.
The document analysis database 124 may also include addi-
tional ontology models other than ontology model 1800.
[0137] As shown in FIG. 19, the ontology model 1800
includes a root class 1910, such as the requirement class 1804,
and child classes 1912, such as the security requirement class
1806 and the time requirement class 1820. The ontology
model also includes class definition relationships 1914, such
as horizontal relationship 1828 and vertical relationships
1826, and includes instance class search terms, such as the
encryption instance class search terms 1830.

[0138] The classification logic 1902 is operative to analyze
document structure instances 134-136 against the ontology
model 1800 to determine classifications for the document
structure instances among the document structure instance
classes. In one implementation, the classification logic 1902
examines each of the structure instances 134-136 in a docu-
ment under analysis 132, and when a document structure
instance includes a search term associated with a class in the
ontology model 1800, the classification logic 1902 assigns an
instance classification to the document structure instance
based on the found search term and the class associated with
the found search term. However, the classification logic 1902
may assign an instance classification to a document structure
using another property of the document structure instance
other than search term.

[0139] In addition, the classification logic 1902 may com-
municate with the inference engine 106 to use a knowledge
model to determine that the document structure instance is an
instance of a class associated with the found search term. In
one implementation, the inference engine 106 is a Jena infer-
ence engine, available from the Hewlett-Packard Develop-

US 2014/0351694 Al

ment Company, LP located in Palo Alto, Calif. However, the
inference engine 106 may be other reasoning engines such as
Jess, available from the Sandia National Laboratories located
in Livermore, Calif. or Oracle 10G, available from the Oracle
Corporation located in Redwood Shores, Calif. The pseudo-
code below illustrates one implementation of the classifica-
tion logic 1902 when the classification logic 1902 uses the
encryption instance class search terms 1830:

CreateRequirementInstance (Requirement R, Ontology ont, Model

For each class, in Ontology ont
If class; or searchterms (class;) occur in R
m.assert (R is a instance of classi)
end if
end For
end CreatementInstance
where: searchterms (class;) is list of search terms
for an class in an ontology, such as "{encrypt, encrypted}.”

[0140] As one example of the classification logic 1902 in
operation, suppose that a first document structure instance
states that “The messaging system will encrypt all its
responses using SSH” and a second document structure
instance states that “The messaging system will have a
response time of 5 milliseconds.” In this example, the classi-
fication logic 1902 will assert the first document structure
instance as an instance of the encryption class 1808 and the
SSH class 1810. The classification logic 1902 will also assert
the second document structure instance as an instance of the
response time class 1822. The classification logic 1902 may
further maintain these assertions as part of the instance clas-
sifications 1904.

[0141] Inaddition to the classification logic 1902, the rela-
tionship analysis logic 1906 is operative to whether the docu-
ment structure instances 134-136 affect each other. The rela-
tionship analysis logic 1906 may also operate in conjunction
with the classification logic 1902 to determine the document
structure instances 134-136 that affect each other. The rela-
tionship analysis logic 1906 may further use a knowledge
model for determining the document structure instances 134-
136 that affect each other. The relationship analysis logic
1906 may also find related document structure instances,
complimentary document structure instances, or other docu-
ment structure instances. The pseudo-code below illustrates
one example of the relationship analysis logic 1906:

Find AffectedRequirements(Document d, Ontology ont, Model m)
m.loadOntology (ont)
For each Requirement r in a document
CreateRequirementInstance (R, ont, m)
End For
m.executeQuery(SELECT ?R1, 7R2 WHERE
{?R1 RDFE.Type Requirement 7R2
RDF.Type Requirement .7R1 affects 7R2})
End Find AffectedRequirements
where: the m.executeQuery is a SPARQL query that returns any two
instances of class Requirement (R1 and R2) that affect each other.

[0142] As shown above, the relationship analysis logic
1906 uses the SPARQL query language. However, the rela-
tionship analysis logic 1906 may use other query languages,
such as SQL, the JESS Rules language, LISP, or any other
query language.

[0143] FIG. 20 shows logic flow for an ontology analysis
system 1900. The ontology analysis system 1900 initially

Nov. 27,2014

retrieves one or more document parameter sets from the docu-
ment analysis database 124 (2002). As previously discussed,
a document parameter set may include one or more glossa-
ries, structure identifies, syntax definitions, or other param-
eters. The ontology analysis system 1900 then receives the
document under analysis 132 (2004). Thereafter, the ontol-
ogy analysis system 1900 retrieves an ontology model 1800
(2006). The ontology analysis system 1900 may also retrieve
additional ontology models from the document analysis data-
base 124.

[0144] Using the retrieved ontology model and the classi-
fication logic 1902, the ontology analysis system 1900 clas-
sifies the document structure instances of the document under
analysis 132 based on whether the document structure
instances contain associated instance class search terms 1916
(2008). For example, the classification logic 1902 may be
operable to operable to search for instance class search terms
1916 in one or more document structure instances. The ontol-
ogy analysis system 1900 may also maintain a set of instance
classifications 1904 that may be identifiers or other data that
assign one or more classes to a document structure instance.
[0145] After classifying the document structure instances,
the ontology analysis system 1900 may then use the relation-
ship analysis logic 1906 to determine whether there are hori-
zontal class definition relationships between the document
structure instances using the instance classifications 1904 and
the ontology model 1800 (2010). The ontology analysis sys-
tem 1900 may also communicate with an inference engine
106 to classify the document structure instances or to analyze
the class definition relationships between the document struc-
ture instances.

[0146] Following the classification (2008) and relationship
analysis (2010) of the document structure instances, the
ontology analysis system 1900 may output an analysis result
showing the results of the classification and relationship
analysis (2012). As one example of an analysis result, the
ontology analysis system 1900 may insert a relationship noti-
fication message into the document the document under
analysis 132. Additional types of analysis results are also
possible.

[0147] The description above explained the role of several
types of glossaries 140-146, such as the agent glossary 140
that defines permissible agents. In addition to the glossaries
140-146, the document analysis, commenting, and reporting
system 102 may also include other types of glossaries, such as
a requirements relationship glossary. FIG. 21 shows one
example of a requirements relationship glossary 2102. The
requirements relationship glossary 2102 may define relation-
ships between classes of an ontology model. The require-
ments relationship glossary 2102 may also define relation-
ships between the structure category components of a
document structure instance.

[0148] In one implementation, the requirements relation-
ship glossary 2102 includes a class category 2104, a parent
class category 2106, a keywords category 2108, and a rela-
tionship category 2110. Other implementations of the
requirements relationship glossary 2102 may include other
categories. The class category 2104 may identity a class from
an ontology model. The parent class category 2106 may iden-
tify a parent class for a given class from the class category
2104. The keywords category 2108 may include keywords
that facilitate analysis of document structure instances.
Examples of keywords associated with an authentication
class may include “password,” “token,” “authentication,” and

US 2014/0351694 Al

“Kerberos.” The keywords may be used to associate docu-
ment structure instances with a class. Alternatively, or in
addition, the keywords may be used to associate a structure
category component with a class. The relationship category
2110 may identify whether the given class has a relationship
with another class. For example, a security class structure
category component may affect a time structure category
component.

[0149] FIG. 22 is an example of a requirements graphing
system 2202. In the example shown in FIG. 22, the require-
ments graphing system 2202 includes a graphing module
2204 in communication with a document under analysis 132
and a document specific parameter set 2206. The graphing
module 2204 may also be in communication with the docu-
ment analysis database 124 to retrieve one or more document
specific parameter sets 706-708. In one implementation, the
graphing module 2204 is in communication with the docu-
ment parameter set 2206 that includes the agent glossary 140,
the mode glossary 144, the structure identifiers 148, the
action glossary 142, the phrase glossary 146, the syntax defi-
nitions 150, and the relationship glossary 2102. The graphing
module 2204 may also be in communication with the proces-
sor 116, the network interface 120 and various other input/
output devices 122. As shown in FIG. 22, the graphing mod-
ule 2204 is in communication with the display 125, which
may display an electronic representation 2208 of an ontology
hierarchy for the document under analysis 132.

[0150] Although the graphing module 2204 is shown as
integrated as part of the requirements graphing system 2202,
the graphing module 2204 may be integrated as part of any
other system. For example, the graphing module 2204 may be
incorporated into the document analysis, commenting, and
reporting system 102, the requirements analysis system 702,
the requirements commenting system 1002, the report gen-
erator system 1302, or the ontology analysis system 1900. In
other implementations, the graphing module 2204 is accessed
through remote procedure calls, web services, or other inter-
faces to obtain an image to render on the display 125.
[0151] The graphing module 2204 includes logic that gen-
erates or modifies an ontology hierarchy using the document
parameter set 2206 and the document instances 134-136 of
the document under analysis 132. For example, the graphing
module 2204 may first identify a document structure instance
in the document under analysis 132 (2210). The graphing
module 2204 may then select or identify a structure category
component from the identified document structure instance,
such as an agent action or other structure category component
(2212). Thereafter, the graphing module 2204 may generate
an ontology hierarchy that includes the identified structure
category component (2214). In one implementation, the
graphing module 2204 is operative to generate an ontology
hierarchy that includes each of the structure category compo-
nents from an identified document structure instance (2216).
In another implementation, the graphing module 2204 is
operative to generate an ontology hierarchy that includes each
of the structure category components from each of the docu-
ment structure instances 134-136 from the document under
analysis 132 (2218).

[0152] In a further implementation, the graphing module
2204 generates a core ontology hierarchy that has common
root classes, child classes, and relationships. The graphing
module 2204 may be configured to use the core ontology
hierarchy to generate a document specific ontology hierarchy.
For example, the graphing module 2204 may access the vari-

Nov. 27,2014

ous glossaries, such as the agent glossary 140 and the action
glossary 142, to modify the core ontology hierarchy to
include agent and action classes and instances specific to
agent glossary 140 and the action glossary 142. The graphing
module 2204 may then access relationship glossary 2102 to
build types and establish relationships between the classes of
the modified core ontology hierarchy. Thereafter, the graph-
ing module 2204 may extract the structure category compo-
nents from the document structure instances 134-136 to add
instances or identifiers of the document structure instances to
the modified core ontology hierarchy. In other implementa-
tions, the graphing module 2204 may be configured to com-
municate with other modules, such as the analysis module
126, to add instances or identifiers of the document structure
instances 134-136 to the modified core ontology hierarchy.
The modified core ontology hierarchy may then be assigned
as the document specific ontology hierarchy.

[0153] The graphing module 2204 may display one or more
ontology hierarchies as output 2208 on the display 125. For
example, the graphing module 2204 may display the core
ontology hierarchy, the document specific ontology hierar-
chy, or any other hierarchy. The hierarchies may be displayed
at any time including while being generated by the graphing
module 2204, after being generated by the graphing module
2204, or being retrieved from another source, such as a
memory device or other computer system.

[0154] FIG. 23 shows one example of a core ontology hier-
archy 2302. The core ontology hierarchy 2302 may be pre-
configured or generated by the graphing module 2304. In one
implementation, the core ontology hierarchy 2302 is gener-
ated as the output 2208. In general, the core ontology hierar-
chy 2302 illustrates the various relationships between classes
of requirements. The core ontology hierarchy 2302 may be
described using the OWL Web Ontology Language. How-
ever, the core ontology hierarchy 2302 may also be described
using other languages such as the Resource Description
Framework (RDF) or the Knowledge Interchange Format
(KIF).

[0155] The core ontology hierarchy 2302 comprises docu-
ment structure instance classes related as root classes and
child classes. For example, FIG. 23 shows that the core ontol-
ogy hierarchy 2302 starts with a root requirement class 2304
and that the root requirement class 2304 has four child
classes: a RequirementType class 2306, a Requirement class
2308, an Agent class 2310, and an Action class 2312. The
RequirementType class 2306 also has two child classes: a
Functional class 2314 and a Nonfunctional class 2316. The
Nonfunctional class 2316 is also a root class for two child
classes: a Time class 2318 and a Security class 2320. The
Security class 2320 also has two child classes: an Authenti-
cation class 2322 and an Encryption class 2324.

[0156] The Requirement class 2308 also has child classes.
In one implementation, the Requirement class has a Sim-
pleRequirement class 2326 and a ConditionalRequirement
class 2328. The SimpleRequirement class 2326 has two child
classes: a BusinessRule class 2330 and a Standard Require-
ment class 2332.

[0157] Like the Requirement class 2308, the Agent class
2310 has a User class 2334 and a System class 2336 as child
classes. The Action class 2312 may or may not have child
classes.

[0158] The subclasses for a parent class may be different
depending on the context of the ontology hierarchy. For
example, examples of other Nonfunctional classes include a

US 2014/0351694 Al

SecureTokens class, a MessagingProtocol class, or other
classes. The other parent classes may also have alternative
subclasses depending on the context of the ontology hierar-
chy as well. Table 4 below lists some of the classes illustrated
by the core ontology hierarchy 2302. In other implementa-
tions, the core ontology hierarchy 2302 includes alternative
classes.

TABLE 4
Class Description
Root The root of the ontology model
RequirementType A class that defines the type
of requirement
Requirement A class that defines a requirement
Agent A class that defines agents
Action A class that defines actions
Functional A class that defines functional
requirements
Nonfunctional A class the defines non-functional
requirements
Time A class that defines time
Security A class that defines security
Authentication A class that defines authentication
Encryption A class that defines encryption
SimpleRequirement A class that defines all requirements

that are not conditional
A class that defines conditional
requirements

Conditional Requirement

BusinessRule A class that defines those requirements
that are business rules
StandardRequirement A class that defines the standard

requirement having the form:
[agent] [modal] [word]
[action] [rest]
User A class that defines a user
System A class that defines a system

[0159] FIG. 23 also shows that the core ontology hierarchy
2302 defines class relationships between the root classes and
their associated child classes. For example, FIG. 23 shows
that the ontology model 2302 includes a horizontal class
definition relationship 2338 and a vertical class definition
relationship 2340. In general, horizontal class definition rela-
tionships define relationships between classes unrelated to
hierarchy, and vertical class definition relationships define
hierarchical relationships between classes. In the example
shown in FIG. 23, the horizontal class definition relationship
is a “hasRequirementType” relationship, and shows that the
requirement class 2308 has a requirement type of the
RequirementType class 2306. In addition, FIG. 23 shows that
the vertical class definition relationship 2340 is a “has sub-
class” relationship that shows that the time root requirement
class 2304 has four child classes. These relationships are not
exhaustive and other relationships are also possible.
Examples of class definition relationships are shown below in
Table 5.

TABLE 5
Relationship Description
Affect Classifications that affect each other.
Contradict Classifications that contradict each other
Dependency Classifications that depend on each other
Implement Classification that implements a higher-level
classification
Similarity Classifications that are similar to each other
isA Classifications that are special cases of other
classifications

Nov. 27,2014

TABLE 5-continued

Relationship Description

Classifications where a subclass is a
specialization of the parent class. For example,
a “parent” is a sub-class of

“human”, which means that

“parent” is a special sub-group of all
“humans” that are parents

has subclass

hasRequirementType Classifications that define the type of the
requirement. In general, the class may be a
Functional class or a Nonfunctional class. |

hasAgent Classifications where the class is the agent

of the requirement.

Classifications that instances of a class.
In other words, the instance classification
is the specific form of the general class
that the instance class is instantiating.

has instance

hasAction Classifications where the class is the
action of the requirement.

Affects Classifications that affect each other.

hasSecondary Agent Secondary agent of a requirement

hasEncryptionAlgorithm EncryptionAlgorithm used by the System
(e.g. SSH, RSA)

[0160] The core ontology hierarchy 2302 may include, or
be integrated with, one or more domain specific ontologies.
The domain-specific ontology may include one or more
domain-specific classes. For example, the core ontology hier-
archy 2302 includes a domain-specific ontology 2342 that
comprises a Time class 2318, a Security class 2320, an
Authentication class 2322, and an Encryption class 2324. The
domain-specific ontology 2342 is associated with the Non-
functional class 2316 of the core ontology hierarchy 2302.
Other examples of domain-specific ontologies include a
mobile domain-specific ontology that has classes associated
with mobile devices and an SAP system domain-specific
ontology associated with SAP systems. Other domain-spe-
cific ontologies may be configured for other systems as well.

[0161] The domain-specific ontologies may be associated
with other classes. For example, the core ontology hierarchy
may have a domain-specific ontology associated with the
Functional class 2314, a domain-specific ontology associated
with the Requirement class 2308, a domain-specific ontology
associated with the Agent class 2310, and a domain-specific
ontology associated with the Action class 2312. In other
words, a domain-specific ontology may be associated with
any class of the core ontology hierarchy 2302.

[0162] As discussed above, the graphing module 2204 is
operative to generate a document specific ontology hierarchy
using the document under analysis 112 and the core ontology
hierarchy 2302. FIG. 24 illustrates an example of a document
specific ontology hierarchy 2402. In the example shown in
FIG. 24, the document specific ontology hierarchy 2402 gen-
erates the document specific ontology hierarchy 2402 using
the following two document structure instances: 1) The Web
Server shall encrypt all of its responses using SSH; and 2) The
Web Server shall have a response time of 5 milliseconds or
less.

[0163] The document specific ontology hierarchy 2402
includes hierarchy instance identifiers 2404-2412 that iden-
tify and establish relationships between the structure category
components of these two document structure instances. For
example, the document specific ontology hierarchy 2402
includes an agent hierarchy instance identifier 2404 thatiden-
tifies the agent “Web Server,” a standard requirement hierar-
chy instance identifier 2406 that identifies the response time

US 2014/0351694 Al

of 5 milliseconds, a standard requirement hierarchy instance
identifier 2408 that identifies the document requirement that
the Web Server agent has an encryption requirement of SSH,
response time hierarchy instance identifier 2410 that identi-
fies an instance of the response time parent class, and an
encryption hierarchy instance identifier 2412 that identifies
an instance of the encryption parent class.

[0164] The document specific ontology hierarchy 2402
provides a powerful and informative graphical overview of
the relationships between the classes of the core requirement
ontology 2302 and the document structure instances 134-136.
Given the large size of requirements documents, the graphing
module 2204 may provide information about the various sys-
tems being referred to in the requirements document.

[0165] The requirements graphing system 2202 may inter-
act with any other systems, such as requirements analysis
system 702, the requirements commenting system 1002, the
ontology analysis system 1900, or any other system, to pro-
vide information relating to the document structure instances.
For example, the document specific ontology hierarchy 2402
may be queried to provide information about the document
structure instances using one or more query languages, such
as a SPARQL. In one implementation, the following
SPARQL query may be passed to the document specific
ontology hierarchy 2402 to determine if there are any rela-
tionships between the document structure instances:

select ?reql, ?req2 where

{ 2reql hasRequirementType ?typel
?req2 hasRequirementType ?type2 .
Affects domain ?typel .Affects range ?type?2 .
?req2 hasAgent ?agent2 .?7reql hasAgent ?agentl
filter(2agentl = ?agent2)}

[0166] Although the query to the document specific ontol-
ogy hierarchy 2402 may be in any language, the above
SPARQL query returns all requirements for the same agent
that have requirement types that affect each other.

[0167] The requirements graphing system 2202, or any of
the other systems, may also support additional queries. For
example, the requirements graphing system 2202 may sup-
port a system-interaction query that identifies systems that
interact with each other. The system-interaction query may be
configured to return or display all requirements that have a
system agent as a primary agent and a system agent as the
secondary agent.

[0168] Consider the following document structure
instance: The Web Server shall send the vendor data to the
SAP System. In this document structure instance, the Web
Server is the primary agent and the SAP System is the sec-
ondary agent. Both of these systems may be classified in the
agent glossary 140 so that the requirements graphing system
2202 may determine that these systems are interacting with
each other. One example of a system-interaction query is
below:

select ?reql ?agentl ?agent2

where {
?reql hasAgent ?agent? .
?reql hasSecondaryAgent ?agent2.
?agent] RDF:type System.
?agent2 RDF:type System
filter(?agentl != ?agent2)

Nov. 27,2014

[0169] As explained with reference to FIGS. 36-47, the
requirements graphing system 2202, or any other system
described herein, may generate many different types of maps
for visualizing the relationships between entities.

[0170] The requirements graphing system 2202 may also
support identifying systems that are missing non-functional
requirements. In general, there is often the case that a system
may require a particular requirement to be identified. The
required requirement for the system may not be identified in
the requirements document. The requirements graphing sys-
tem 2202 may accept a non-functional requirement identifi-
cation query that returns all systems which are missing a
certain kind of non-functional requirement. Examples of non-
functional requirements include: security, performance, reli-
ability, usability, integration and data requirements. Each of
these non-functional requirements may also include addi-
tional or sub-requirements that are non-functional require-
ments. Other non-functional requirements are also possible.
FIGS. 27,36 and 48 below provide additional detail regarding
non-functional requirements, non-functional attributes, and
other features directed to a non-functional analysis.

[0171] One example of a non-functional requirement iden-
tification query is below:

Function DetectMissingRequirements
Start
For each agent in AgentGlossary
For each NonFunctionalRequirementType in
RequirementsOntology
ExecuteQuery (agent, nonFunctionalRequirementType)
End For
End For
End
Function ExecuteQuery (agent, nonFunctionalRequirementType)
Start
AskQueryString =
“Ask {“+
“req hasAgent agent ;” +
“req hasRequirementType nonFunctionalRequirementType”+
Result = Model.executeQuery (AskQueryString)
If result = false
Print “Agent” + agent + is missing non-functional requirement
type” + nonFunctionalRequirement Type
End

[0172] The requirements graphing system 2202 may also
support identifying interacting systems that do not have com-
patible security profiles. In one implementation, the require-
ments graphing system 2202 supports a security profile iden-
tification query that determines whether interacting systems
have similar protocol requirements. For example, consider
the case where one system has a requirement for supporting a
certain kind of encryption, while an interacting system does
not have any requirement for the same kind of encryption. In
this example, the requirements graphing system 2202 identi-
fies out that there is the potential for a security-based incom-
patibility. One example of a security profile identification
query is below:

select 2agentl ?agent2

where {
?req hasAgent ?agent2 .
?req hasSecondary Agent ?agent2.
?agent]l RDF:type System.
?agent2 RDF:type System.

US 2014/0351694 Al

-continued

2agentl hasRequirementType ?EncryptionReql.

2agent2 hasRequirementType ?EncryptionReq?2.
?EncryptionReql RDF:type Encryption.

?EncyptionReq2 RDF:type Encryption.

?EncryptionReql hasEncryptionTechnique? ?techniquel.
?EncryptionReq?2 hasEncryptionTechnique? ?technique?2.
filter(?agentl != ?agent2 and ?techniquel != ?technique2)

[0173] In the query implemented above, the query identi-
fies two interacting system (denoted by “?agentl” and
“?agent2” in the SPARQL query) that do not use the same
encryption technique. For example, if the first system, that is
system 1, (i.e., “?agentl”) interacts with the second system,
that is system 2, (i.e., “?agent2”), and the first system uses the
RSA encryption technique and the second system uses the
SSH protocol, then the above query returns “system 1 and
“system 2”. The above query is one example for identifying
security profiles, but other queries are also possible for iden-
tifying other security attributes such as authentication, access
control, or other attributes.

[0174] Note that in addition to these queries, the require-
ments graphing system 2202, or any other system, may be
extended by adding other system-based analyses using addi-
tional queries.

[0175] In addition to the system-based analyses, the
requirements graphing system 2202 may support analyses
based on the role of an agent. For example, the requirements
graphing system 2202 may be configured to accept queries
for a particular domain. In one implementation, the require-
ments graphing system 2202 is operative to capture informa-
tion in the domain ontologies about which agents are permit-
ted to perform which actions. This may be used to ensure that
all the requirements meet that constraint. Another variation of
a similar analysis is “Separation of duty”, as outlined in
Sarbanes Oxley. The requirements document, or any other
document under analysis, may be checked to see if the same
agent may perform different roles (e.g. the purchasing man-
ager may be the approving manager).

[0176] FIGS. 25-27 present alternative or additional types
of glossaries. Although reference is made to system 102, any
one of the systems described herein may use any one of the
glossaries described herein for analyzing an electronic docu-
ment or document structure instance.

[0177] Inadditionto, orinstead of, using the agent glossary
140 for analyzing a document structure instance, the system
102 may use an entity glossary. In general, an entity glossary
defines one or more permissible entities that may be found in
a document structure instance.

[0178] FIG. 25 shows an example of an entity glossary
2502. Similar to the agent glossary 140, the entity glossary
2502 also defines permissible agents for the document struc-
ture instance. However, the entity glossary 2502 may be
broader and more flexible than the agent glossary 140 because
the entity glossary 2502 allows a user or system to define an
entity type for the entity. For example, an entity may be
defined as having the entity type “person,” “system,” “Generi-
cEntity,” “GenericAgent,” or “GenericPerson.” Other types
of entity types are also possible. Hence, the entity glossary
provides a robust mechanism for defining the entity type of an
entity, which may be used by the system 102 to further deter-
mine whether a document structure instance comports with a
particular syntax definition.

Nov. 27,2014

[0179] Inthe example shown in FIG. 25, the entity glossary
2502 defines an entity phrase field 2504, an explanation field
2506, an additional notes field 2508, an entity type field 2510,
and a parent field 2512. The phrase field 2504 defines a phrase
that denotes a permissible constituent entity for the structure
instance syntax. For example, as shown in FIG. 25, one per-
missible phrase for an entity is “order portal” and another
permissible phrase for an entity is “finance department user.”
Other permissible phrases may include “shipping module,”
“order details,” or other phrases.

[0180] The explanation field 2506 may provide diagnostic
information relevant to the entity, how the entity performs a
particular job or function, or other entity related information.
The explanation field 2506 may be used by the system 102 in
providing meaningful information about the entity when a
document structure instance is analyzed. The additional notes
field 2508 may be used to provide additional information
about the entity for a user editing or revising the entity glos-
sary 2502 and, in one implementation, may not be used by the
system 102 in analyzing a document structure instance. How-
ever, the system 102 may be configured to read from the
additional notes field 2508 to provide further diagnostic or
helpful information about an entity phrase appearing in a
document structure instance.

[0181] The entity type phrase field 2510 facilitates the
selection of the entity type for an entity phrase. As discussed
above, in one implementation, the entity type selection
options may include “person,” “system,” “GenericEntity,”
“GenericPerson,” “GenericAgent” or other alternative entity
types. As explained below with reference to FIGS. 36-47, the
selected entity type may affect the analysis of a document
structure instance and how a component visualization rela-
tionship map, a system visualization relationship map, or a
sub-system visualization relationship map is generated. By
providing for an entity type, the system 102 provides addi-
tional information regarding the interactions among entities
described by the document structure instances.

[0182] Each of the entity type selection options may iden-
tify a different type of entity for the associated entity phrase.
For example, the “person” entity type may define that the
associated entity phrase identifies a person, such as a user of
another entity described by a document structure instance.
The “system” entity type may define that the associated entity
phrase identifies a system, such as module, component,
machine, or other type of system. The “GenericAgent” entity
type may define that the associated entity phrase is neither a
system nor a person. The “GenericAgent” entity type may
alternatively define that the associated entity phrase is either
or both a system and a person. Hence, the “GenericAgent”
entity type is a flexible entity type that may be associated with
either, both, or neither, a system or a person.

[0183] Asexplained previously with respect to other parent
fields, such as the, parent field 206 or parent field 406, the
parent field 2512 may be used to build hierarchies of entities.
[0184] The entity glossary 2502 may also define entities
that are passive entities that are indirect nouns of a document
structure instance. For example, a report, a data object, a
listing, or other object that is acted upon may be a passive
entity. Other types of passive entities are also possible. The
entity glossary 2502 may define that the “GenericEntity”
entity type identifies a entity phrase as passive entity type. For
example, the “order details” entity phrase shown in FIG. 25 is
associated with the “GenericEntity” entity type and may be
considered by the system 102 as having a passive entity type.

US 2014/0351694 Al

[0185] In addition to the entity glossary 2502, the system
102 may employ an alternative problematic phrase glossary
other than, or in addition to, the problematic phrase glossary
previously described with reference to FIG. 5. FIG. 26 shows
an example of an alternative problematic phrase glossary
2602. In one implementation, the alternative problematic
phrase glossary 2602 includes a problematic phrase field
2604, an explanation field 2606, a suggestion field 2608, a
template field 2610, and a category field 2612.

[0186] The alternative problematic phrase glossary 2602
provides a robust mechanism for identifying problematic
phrases and for suggesting alternative language to correct for
the problematic phrase. The problematic phrase field 2604
identifies one or more problematic phrases. The one or more
problematic phrases may be grouped together, such as a
where a set of problematic phrases share a common ambigu-
ity, failing, or problem. For example, FIG. 26 shows that the
problematic phrases “improved,” “better,” “faster,” and
“superior,” have been grouped together. Grouping problem-
atic phrases together may enhance the analysis of a document
structure instance by providing a common suggestion for
correcting a problematic phrase. In addition, grouping prob-
lematic phrases together reduces the time a user spends modi-
fying and revising the problematic phrase glossary 2602
because the user may rely on using one suggestion for cor-
recting a common set of problematic phrases. However, a
problematic phrase may be stand-alone in the problematic
phrase glossary 2602, such as in the case of the problematic
phrases “efficiently,” “none,” and “easy to use.” Alternative
arrangements of problematic phrases are also possible.
[0187] The explanation field 2606 provides an explanation
as to how a problematic phrase may be corrected, why a
problematic phrase may not be used, or other explanations.
The explanation field 2606 may refer the user to a suggestion
provided by the suggestion field 2608 or another field of the
problematic phrase glossary 2602. The suggestion field 2608
may provide a suggestion text that describes how the prob-
lematic phrase may be replaced, such as an alternative word
or phrase instead of the problematic phrase. The system 102
may display the suggestion text appearing in the suggestion
field 2608 when the system 102 identifies a problematic
phrase.

[0188] The template field 2610 provides a quick and effi-
cient mechanism for replacing identified problematic
phrases. In addition, the words or phrases provided by the
template field 2610 do not leave the user guessing as to which
words or phrases would be more suitable than the identified
problematic phrase. In one implementation, the template field
2610 provides a list of words or phrases that may replace an
identified problematic phrase. For example, the words or
phrases appearing in the template field 2610 may be dis-
played to a user, and a user may select one or more of the
words or phrases from the template field 2610 for replacing a
problematic phrase. Alternatively, or in addition, the system
102 may automatically replace a problematic phrase with one
or more words or phrases appearing in the template field 2610
when a problematic phrase is identified.

[0189] The category field 2612 provides a mechanism for
categorizing a problematic phrase. The system 102 may refer
to the category field 2612 for providing metrics to the user as
to the number and type of problematic phrases appearing in a
document structure instance, in an electronic document, or
both. Alternative reporting mechanisms may also refer to the
category field 2612.

Nov. 27,2014

[0190] In addition to the aforementioned glossaries, the
system 102 may refer to a non-functional attribute glossary
for identifying whether one or more document structure
instances provide for an attribute assigned to an entity in the
entity glossary 2502. FIG. 27 shows an example of a non-
functional attribute glossary 2702. The non-functional
attribute glossary 2702 provides centralized management
over attributes that should be assigned to one or more entities
defined in one or more glossaries, such as entities defined in
the entity glossary 2502.

[0191] In general, a non-functional attribute refers to a fea-
ture, condition, or characteristic of an entity. A non-functional
attribute may define the amount of simultaneous users an
entity may support, the amount of bandwidth available to an
entity, the speed at which an entity is expected to perform an
operation, or other non-functional attribute. A non-functional
attribute may also be a non-functional requirement, which
was previously discussed above. Other types of non-func-
tional attributes are also possible.

[0192] The non-functional attribute glossary 2702 may
include one or more fields for defining non-functional
attributes. In one implementation, the fields of the non-func-
tional attribute glossary 2702 include an area field 2704, a
requirement field 2706, a notes field 2708, a sample field
2710, an indicator phrase field 2712, and an activatable ele-
ment field 2714. Alternative arrangements of attribute fields
are also possible.

[0193] The area field 2704 stores an attribute area assigned
to the attribute requirement of the requirement field 2706. The
attribute area of the area field 2704 may be user-defined,
predefined within the non-functional attribute glossary 2702,
or both. In one implementation, an attribute area is first
defined in the requirement field 2706 with an associated
attribute area identifier in the area field 2704. For example,
FIG. 27 shows that the attribute area “Delivery Channels”
first appears in the requirement field 2706 of the first row of
the non-functional attribute glossary 2702, and that an asso-
ciated attribute area identifier, “Non-Functional,” identifies
that the phrase “Delivery Channels” is an attribute area. Simi-
larly, the attribute area “CapacityVolumetrics™ is first defined
as an attribute area in the fourth row of the non-functional
attribute glossary 2702 by the attribute area identifier “Non-
Functional” stored in the area field 2704. In these examples,
the phrase “Non-Functional” is used as an attribute area iden-
tifier to identify that the phrases “Delivery Channels” and
“CapacityVolumetrics” are attribute areas. Alternative
attribute area identifiers are also possible. As explained below
with reference to FIG. 48, the attribute area stored in the area
field 2704 may be used in organizing a report showing
whether one or more document structure instances satisfy
attribute requirements assigned to an attribute area for an
entity.

[0194] The requirement field 2706 stores an attribute
requirement assignable to at least some of the permissible
constituents found in one or more glossaries, such as the
entity glossary 2502. An attribute requirement generally
describes an attribute that an entity should possess. The
attribute requirement may be categorized by one or more of
the attribute areas stored in the area field 2704. For example,
FIG. 27 shows that the attribute requirement “Connectivity
Requirement” is categorized as a “Delivery Channels”
attribute area. Another attribute requirement categorized as a
“Delivery Channels” attribute area includes the “Delivery

US 2014/0351694 Al

Channels™ attribute requirement. Additional or alternative
attribute requirements are also possible.

[0195] The notes field 2708 stores text describing the
attribute requirement of the attribute field 2706. In one imple-
mentation, the attribute notes text may be displayed in a report
describing whether the document structure instances of an
electronic document satisfy an attribute requirement. Alter-
natively or in addition, the attribute notes text may be dis-
played when a user is modifying or editing the non-functional
glossary 2702. The attribute notes text of the notes field 2708
provides additional descriptive information regarding the
associate attribute requirement.

[0196] The sample field 2710 stores a sample document
structure instance satisfying the attribute requirement of the
requirement field 2706. The sample field 2710 may store one
or more document structure instances. In one implementa-
tion, the sample field 2710 includes a valid document require-
ments statement. Other types of statements are also possible.
The attribute sample text of the sample field 2710 may be
displayed during the editing or modifying of the non-func-
tional glossary 2702. Alternatively, the attribute sample text
of the sample field 2710 may be displayed to assist a user in
revising or developing a document structure instance to sat-
isfy the attribute requirement of the requirement field 2706.
For example, in preparing a document structure instance that
satisfies the attribute requirement of the requirement field
2706, the attribute sample text may be displayed as a guide to
assist the user in preparing a better, valid, or more focused
document structure instance. However, the attribute sample
text may be displayed at any time.

[0197] The indicator phrase field 2712 stores one or more
attribute phrases that identify an associated attribute require-
ment of the requirement field 2706. For example, as shown in
FIG. 27, the attribute indicator phrases “delivery channels,”
“delivery channel,” “browsers,” “browser,” and “Internet
Explorer” are each attribute indicator phrases for the attribute
requirement “Delivery Channels.” In these examples, these
attribute indicator phrases signify that a document structure
instance should contain at least one of these phrases if the
document structure instance is to satisfy the “Delivery Chan-
nels” attribute requirement. Where an electronic document
does not contain a document structure instance having at least
one attribute indicator phrase from the indicator phrase field
2712, the attribute requirement associated with the attribute
indicator phrase may be identified as not being satisfied.
Similarly, where an electronic document does contain a docu-
ment structure instance having at least one attribute indicator
phrase from the indicator phrase field 2712, the attribute
requirement associated with the attribute indicator phrase
may be identified as being satisfied.

[0198] Satisfying the attribute requirement associated with
an attribute requirement phrase may include matching one or
more target phrases from a document structure instance with
the attribute requirement phrase. In one implementation, sat-
isfying an attribute requirement phrase includes establishing
a one-to-one correspondence of the words appearing in the
target phrase with the words appearing in the attribute indi-
cator phrase. In this implementation, a document structure
instance satisfies the attribute requirement “Delivery Chan-
nels” when the phrase “delivery channel” appears in the docu-
ment structure instance. In an alternative implementation,
satisfying an attribute requirement phrase includes a partial
match of the words appearing in a target phrase with the
words appearing in at least one attribute indicator phrase. In

Nov. 27,2014

yet another implementation, matching synonyms of the target
phrase with one or more attribute indicator phrases satisfies
the one or more attribute indicator phrases. Other arrange-
ments for satistying one or more attribute indicator phrases is
also possible.

[0199] The activatable element field 2714 includes an acti-
vatable element for enabling an attribute requirement. The
activatable element field 2714 provides a flexible mechanism
for controlling whether an electronic document should con-
tain a document structure instance that satisfies an attribute
requirement. The activatable element field 2714 may contain
an activatable element 2716 that controls whether an attribute
requirement is enabled. In one implementation, activating the
activatable element 2716 to enable an attribute requirement
signifies that an electronic document should contain at least
one document structure instance that satisfies the correspond-
ing attribute requirement. However, enabling the attribute
requirement may also signify that a greater number of docu-
ment structure instances should satisfy the corresponding
attribute requirement. Determining whether an attribute
requirement is to be satisfied may be based on whether the
activatable element 2716 is activated. Alternatively, deter-
mining whether an attribute requirement is to be satisfied may
be based on whether the activatable element 2716 is not
activated.

[0200] In one implementation, the activatable element
2716 is a checkbox, and an attribute requirement is enabled
when a checkmark appears in the checkbox. Alternatively, the
attribute requirement may be enabled when a checkmark does
not appear in the checkbox. However, the activatable element
2716 may be an alternative type of activatable element, such
as a radio button, text field, or any other type of activatable
element.

[0201] Turning next to FIGS. 28-35, examples of state
machines 2802-3502 are shown that may be employed by the
document analysis, commenting, and reporting system 102
(“system 102”) in evaluating one or more document structure
instances. The state machines 2802-3502 shown in FIGS.
28-35 provide a streamlined mechanism for evaluating docu-
ment structure instances and for determining whether a docu-
ment structure instance conforms to one or more document
structure instance syntaxes. The state machines 2802-3502
evaluate and analyze a document structure instance by the
phrases of the document structure instance, where a phrase is
generally one or more words from the document structure
instance. A phrase may be a constituent from one or more
glossaries, such as the agent glossary 140 or the entity glos-
sary 2502, or the phrase may be one or more words not
appearing in any of the glossaries. Other types of phrases are
also possible.

[0202] As previously discussed with reference to the syntax
definition 150, the syntax definition 150 may define con-
trolled document structure instance syntaxes. Each of the
state machines 2802-3502 shown in FIGS. 28-35 may be used
in evaluating one or more controlled document structure
instance syntaxes recognized by the system 102. The system
102 may select a state machine for processing a document
structure instance based on a document structure instance
identifier associated with the document structure instance that
identifies the controlled document structure instance syntax
to which the document structure instance should conform.
Table 6 below describes examples of additional controlled
document structure instance syntaxes that may correspond to
one or more of the state machines shown in FIGS. 28-35.

US 2014/0351694 Al

TABLE 6

19

Document Structure Syntax Definition
Syntax Type Instance Identifier =~ Example

Brief Explanation

Solution SA [Agent] [“shall” |
“must” | “will”]
Action]

Enablement ER [Agent] [“shall” |

“must” | “will”] [“be
able to”] [Action]; or
[Agent] [“shall” |
“must” | “will”]
[“allow” |
[Agent] [“to™] [Action]

permit”]

Action AC [Agent] [“shall” |

Constraint “will” | “may”] [“only”
| “not™] [Action]
“when | if”]

Condition]; or

[
[
[“Only”] [Agent]
[

“may” | “may be”]
[Action].
Attribute ATR [Entity | Agent]
Constraint [“must”] [“always™ |

“never” | “not”] [“be” |

“have”] [Value].

Definition DEF [Entity | Agent] [“is” |
“will be”] [“defined
as” | “classified as”]
[Entity].

Policy P [Entity | Agent] [“is” |

“is not”] [Action].

The solution syntax may
express that someone,
some system, or both may
be responsible for
performing some action.
The enablement syntax
may express a capability
that the proposed system
may provide, but may not
specify what/who provides
this capability.

There may be two types of
enablement syntaxes: 1) an
enablement syntax that
does not mention a system;
and 2) an enablement
syntax that mentions a high
level capability provided by
a system to a user.

The action constraint
syntax may express a
constraint on how a system
or a component of the
system is expected to
behave.

There may be two types of
action constraint syntaxes:
1) an action constraint
syntax that expresses a
constraint on how a
system, or a component of
the system, is allowed to
behave; and, 2) an action
constraint syntax that
expresses a business rule
that constrains how an
agent in a business takes
an action.

The attribute constraint
syntax may express a
constraint on attributes
and/or attribute values.
The definition syntax may
express a definition of a

non-agent entity.

The policy syntax may
express a policy that
should be adhered to by a

system.

Nov. 27,2014

US 2014/0351694 Al

20

[0203] Alternatively, system 102 may sclect a state
machine for processing a document structure instance based
on one or more modal phrases identified in the document
structure instance. The one or more modal phrases may iden-
tify the controlled document structure instance syntax of the
document structure instance, and, based on the identified
controlled document structure instance syntax, the system
102 may select one or more state machines for processing the
document structure instance. Table 7 below lists examples of
modal phrases that correspond to controlled document struc-
ture instance syntaxes. Other modal phrases corresponding to
other controlled document structure instance syntaxes are
also possible.

TABLE 7
Syntax Type Modal Phrase
Solution shall
must
will
Enablement shall be able to

must be able to
will be able to
shall permit
shall allow
must permit
must allow
will permit
will allow
shall only
shall not

will only

Action Constraint

Nov. 27,2014

TABLE 7-continued

Syntax Type Modal Phrase

will not
may only
may not
may be
may
must always have
must always be
must never be
must never have
must not be
must not have
must always include
must never include
must not include
must always contain
must never contain
must not contain
will be classified as
will be defined as
is classified as
is defined as
Policy is

is not

Attribute Constraint

Definition

[0204] Table 8 below lists examples of document structure
instances that conform to one or more of the controlled docu-
ment structure instance syntaxes described in Table 6 and
Table 7. Although the document structure instances listed
below are shown as conforming to one controlled document
structure instance syntax, a document structure instance may
conform to more than one controlled document structure
instance syntax.

TABLE 8

Syntax Type

Exemplary Document Structure Instance

Solution

Enablement

Action

Constraint

Attribute

Constraint

Definition

Policy

SAl: The Order Processing System shall process orders every 2 hours.
SA2: The Web Server must inform administrator of failed login attempts.
ER1: The user must be able to display the PDF rendition of associated
documents.

ER2: The payroll system shall be able to deduct loan amounts from
paychecks.

ER3: Inventory management system shall allow users to add items.
ER4: Payroll system shall permit users to change direct deposit profiles.
ERS: Order Processing System must permit administrator to view daily
transactions.

AC1: The account management system shall only close an account if the
current balance is zero

AC2: The authentication system shall not grant access when identity-
verification level is less than 8.9.

AC3: Only child-friendly pets may be placed in old age homes.

AC4: Only payroll employees may access the payroll database.

ATR1: Customer standing must always be one of the following: 1) Gold
2) Silver 3) Bronze.

ATR2: Chemical containers must not be stored in subzero temperature.
ATR3: The customer must never have non US address in records.
DEF1: Total sales value is defined as total item value plus sales tax.
DEF2: A graduate student with a grade-point average above 3.5 is
classified as an honors student.

P1: Sales tax is computed on in-state shipments.

P2: Sales tax is not computed on interstate shipments.

US 2014/0351694 Al

[0205] Table 9 below lists the state machines shown in
FIGS. 28-35 and the controlled document structure instance
syntax corresponding to the state machine. Although Table 9
lists one state machine for evaluating a controlled document
structure instance syntax, more than one state machine may
evaluate a single controlled document structure instance syn-
tax, a state machine may evaluate one or more controlled
document structure syntax, or any other arrangement of state
machines and controlled document structure syntaxes.

TABLE 9
State Machine and Reference Number Syntax Type
solution state machine 2802 Solution
enablement state machine 2902 Enablement

action state machine 3102 Action Constraint
action state machine 3202

attribute state machine 3302 Attribute Constraint
definition state machine 3402 Definition

policy state machine 3502 Policy

[0206] Each of the state machines 2802-3502 may be
defined according to a state machine equation. The state
machine equation may be represented as a six-tuple as (2, S,
So, 9, F, E) where,
[0207] “Z” is an alphabet that includes at least one modal
constituent and one or more constituents from the entity glos-
sary 2502, the action glossary 142, or any other glossary;
[0208] “S” a set of states defining the state machine
representing the controlled document structure instance;
[0209] “s,” is a start state;

Nov. 27,2014

[0210] “O” is a transition function and may be evaluated
according to whether a document structure instance
includes a particular constituent;

[0211] “F” is a set of final states indicating that a docu-
ment structure instance conforms to a particular con-
trolled document structure instance syntax; and,

[0212] “E” is the set of error states indicating that a
document structure instance does not conform to the
controlled document structure instance syntax repre-
sented by the state machine.

[0213] State machines 2802-3502 facilitate and expedite
the processing of a document structure instance. In addition,
the state machines 2802-3502 expeditiously identify errors
that may be present in a document structure instance. For
example, state machine 2802 facilitates the identification of at
least five possible errors that may occur in a document struc-
ture instance conforming to the solution type controlled docu-
ment structure instance syntax. The five possible errors
include finding a non-agent entity (represented by Non-Agent
Entity State 2810), recognizing a missing agent (represented
by Missing Agent State 2812), recognizing the presence of an
unknown agent (represented by Unknown Agent State 2816),
recognizing the presence of an unknown action (represented
by Unknown Action State 2818), and identifying a missing
action (represented by Missing Action State 2822). The other
state machines 2902-3502 may identify similar or alternative
errors.

[0214] Table 10 lists possible states found in state machines
2802-3502 and a brief description of each of the states. Alter-
native states are also possible.

TABLE 10

State and Reference

Number

Type of State Brief Description

Start 2804

“To” State 3014

Agent State 2808

Branch Agent State 3008

Branch Model State 3010

Conditional State 3108

Entity State 3304

Modal State 2814

Start A starting state for a state
machine.

A state indicating that an
expected “to” phrase was
found in the document
structure instance.

A state indicating that an
agent constituent was found
in the document structure
instance.

A state indicating that an
expected constituent agent
was found in the document

Transition

Transition

Transition

structure instance.

A state indicating that an
expected constituent modal
was found in the document
structure instance.

A state indicating that an
expected introducing
conditional phrase was
found in the document
structure instance.

A state indicating that an
expected constituent agent

Transition

Transition

Transition

or entity phrase was found in
the document structure
instance.

A state indicating that an
expected modal constituent
was found in the document
structure instance.

Transition

US 2014/0351694 Al

Nov
22

TABLE 10-continued

State and Reference
Number

Type of State

Brief Description

Non-Entity State 2806

Only State 3204

Missing “To” State 3012

Missing Action State 2822

Missing Agent State 2812

Missing Conditional State 3104

Non-Agent Entity State 2810

Syntax Error State 3106

Unknown Action State 2818

Unknown Agent State 2816

Unknown Entity State 3404

Action State 2820

Final State 3110

Transition

Transition

Error

Error

Error

Error

Error

Error

Error

Error

Error

Final

Final

A state indicating that a non-
entity phrase was found in
the document structure
instance.

A state indicating that an
expected phrase with the
word “only” was found in the
document structure
instance.

A state indicating that an
expected “to” phrase was
not found in the document
structure instance.

A state indicating that the
document structure instance
ended and no unevaluated
phrases remain in the
document structure
instance.

A state indicating that a
modal constituent was
found, but an expected
agent constituent was not
found.

A state indicating that an
expected conditional was
not found in the document
structure instance.

A state indicating than an
entity constituent was found
in the document structure
instance, but that the entity
constituent is not an agent
constituent.

A state indicating that a
syntax error occurred in the
document structure
instance.

A state indicating that a
phrase was found in the
document structure
instance, but the phrase is
not an expected action
constituent.

A state indicating that an
expected agent constituent
was not found in the
document structure
instance.

A state indicating that an
expected entity phrase or
constituent agent was not
found in the document
structure instance.

A state indicating that an
expected constituent was
found in the document
structure instance.

A state indicating that the
controlled document
structure instance syntax for
a document structure
instance was evaluated
successfully.

[0215]

As the controlled document structure instance syn-

.27,2014

corrected. An error state may be associated with one or more

tax for a document structure instance is being evaluated, the
evaluation of the controlled document structure instance syn-
tax may result in an error, which is shown above in Table 10
as one or more error states. When an error state is encoun-
tered, an error message may be displayed that describes the
error and may provide a suggestion as to how the error may be

error messages. Table 11 below lists exemplary error mes-
sages associated with one or more error states and the type of
error message displayed. Categorizing error messages
according to an error type may be used in evaluating the
number of errors occurring in a document structure instance,
the number of different types of errors occurring in a docu-

US 2014/0351694 Al

ment structure instance, or other error-related information.
Moreover, the number of errors and the number of different
types of errors may be reported for an entire electronic docu-
ment that is comprised of document structure instances. Other
combinations of evaluating errors in an electronic document
or document structure instance are also possible.

TABLE 11

Error State Error Message

Missing Agent This requirement lacks an agent before

State <variable at which error occurs™. It can be
confusing to leave the agent implicit.

Unknown Action This requirement contains ‘<variable at which

State error occurs™>’ where an action is expected, but
‘<variable at which fault occurs>’ is not in the
action glossary.

Unknown Agent This requirement contains ‘<variable at which

State error occurs™’ where an agent is expected, but
‘<variable at which fault occurs>’ is not in the
entity glossary.

Non Agent This requirement contains ‘<variable at which

Entity State error occurs™> where an agent is expected.

‘<variable at which error occurs>’ is in the entity
glossary but is not designated as an agent.
Missing Action This requirement lacks an action before
State “<variable at which error occurs>’. It can be
confusing to leave the action implicit.

[0216] Turning next to FIG. 36, an example of a require-
ments visualization system 3602 is shown. Where similar
objects appear in the requirements visualization system 3602
that have been previously described for one or more systems,
a description of those objects has been omitted for brevity.
[0217] In the example shown in FIG. 36, the requirements
visualization system 3602 includes a syntax-based document
visualization module 3604 and a syntax-based document
attribute analysis module 3606. The requirements visualiza-
tion system 3602 may also include the entity glossary 2502,
the problematic phrase glossary 2602, and the non-functional
attribute glossary 2702 as part of a document parameter set
3608. As with previously described systems, the document
parameter set 3608 may also include the mode glossary 144,
document structure instance identifiers 148, the action glos-
sary 142, and one or more document structure instance syntax
definitions 150. The syntax-based document visualization
module 3604 and the syntax-based document attribute analy-
sis module 3606 may be in communication with a document
under analysis 132 and the document specific parameter set
3608. The requirements visualization system 3602 may also
be in communication with the document analysis database
124 to retrieve one or more document specific parameter sets
702-706.

[0218] In addition to the document parameter set 3608 and
the document under analysis 132, the syntax-based document
visualization module 3604 and the syntax-based document
attribute analysis module 3606 may be in communication
with other components. For example the syntax-based docu-
ment visualization module 3604 and the syntax-based docu-
ment attribute analysis module 3606 may be in communica-
tion with the processor 116, the network interface 120, and
various input/output devices 122. As shown in FIG. 36, the
syntax-based document visualization module 3604 and the
syntax-based attribute analysis module 3606 are in commu-
nication with the display 125, and the modules 3604-3606
may display various graphical representations from analyz-
ing the document under analysis 132, such as a component

Nov. 27,2014

visualization relationship map, a system visualization rela-
tionship map, a sub-system visualization relationship map, an
attribute requirement report, or any other type of graphical
representations of analyzing the document under analysis
132.

[0219] Although the syntax-based document visualization
module 3604 and the syntax-based document attribute analy-
sis module 3606 are shown as integrated as part of the require-
ments visualization system 3602, the syntax-based document
visualization module 3604 and the syntax-based document
attribute analysis module 3606 may be integrated as part of
any other system. For example, the syntax-based document
visualization module 3604 and the syntax-based document
attribute analysis module 3606 may be incorporated into the
document analysis, commenting, and reporting system 102,
the requirements analysis system 702, the requirements com-
menting system 1002, the report generator system 1302, the
ontology analysis system 1900, or the requirements graphing
system 2202. In other implementations, the syntax-based
document visualization module 3604 and the syntax-based
document attribute analysis module 3606 are accessed
through remote procedure calls, web services, or other inter-
faces to render a graphical representation on the display 125.
[0220] In one implementation, the syntax-based document
visualization module 3604 is operative to generate a compo-
nent visualization relationship map. FIG. 37 shows one
example of a component visualization relationship map 3702.
The component visualization relationship map 3702 may rep-
resent the interaction of a component with another compo-
nent for one or more document structure instances. In general,
acomponent may be an agent, an entity, a system, a person, or
any constituent from the agent glossary 140 or the entity
glossary 2502.

[0221] Thecomponent visualization relationship map 3702
focuses on the interactions between a first constituent in a
document structure instance and other constituents identified
as interacting with the first constituent. The component visu-
alization relationship map 3702 provides a unique analysis of
a set of document structure instances by identifying the inter-
actions between the first constituent and other constituents of
the set of document structure instances and displaying a
visual representation of the interactions between the first
constituent and the other constituents. The component visu-
alization relationship map 3702 may also provide a visual
representation of constituents that are non-interacting to help
identify where a set of document structure instances may be
deficient with respect to the non-interacting constituents. For
example, the component visualization relationship map 3702
may help pinpoint and identify non-interacting constituents
that may, in fact, be interacting constituents.

[0222] In generating the component visualization relation-
ship map 3702, the syntax-based document visualization
module 3604 may perform a recognition process to recognize
that one or more document structure instances conforms to an
interaction syntax. The interaction syntax may be a controlled
document structure instance syntax and may, or may not, be
associated with a document structure instance identifier. The
syntax-based document visualization module 3604 may
parse and/or analyze a document structure instance to identify
interacting constituents and non-interacting constituents
according to the interaction syntax.

[0223] In one implementation, the interaction syntax is
defined as “any requirement that has agent that is a system or
a person and a secondary that is a system or a person.” Alter-

US 2014/0351694 Al

natively, the interaction syntax may be a conditional state-
ment, which may be defined as:

[0224] InteractionRequirement(R)=Requirement(R) &
hasEntity(R,A) & ((System(A) or Person(A)) & Secondary-
Agent(B) & ((System(B) or Person(B)), where:

[0225] R is a document structure instance;

[0226] A is a first phrase from the requirement statement;
[0227] B is a second phrase from the requirement state-
ment;

[0228] Requirement(X) is a function that determines

whether a document structure instance X is a requirement
statement;

[0229] hasEntity(X, Y) is a function that determines
whether the phraseY is an entity within the document struc-
ture instance X;

[0230] System(Y)is a function that determines whether the
phrase Y is an entity having the entity type of “system”;
[0231] Person(Y)is a function that determines whether the
phrase Y is an entity having the entity type of “person”; and,
[0232] SecondaryAgent(Y) is a function that determines
whether the phrase Y is a secondary agent of the requirement
statement X. A phrase Y may be a secondary agent where it is
identified as being a direct object for another subject phrase.
[0233] Afteridentifying document structure instances from
a set of document structure instances that conform to the
interaction syntax, the syntax-based document visualization
module 3604 may then identify whether one or more phrases
from the identified set of document structure instances are
interacting constituents or non-interacting constituents. In
one implementation, the syntax-based document visualiza-
tion module 3604 employs an interacting agent conditional
statement to identify those constituents as interacting or non-
interacting. The interacting agent conditional statement may
be written as a conditional statement defined as “any system
or user that is the agent or secondary agent of an interaction
requirement.” In a conditional language format, the interact-
ing agent conditional statement may be defined as:

[0234] InteractingAgent(A)=(System(A) or Person(A)) &
InteractionRequirement(R) & (Agent(A) or Secondary Agent
(A)), where:

[0235] R is a document structure instance;

[0236] A is a first phrase from the requirement statement;
[0237] B is a second phrase from the requirement state-
ment;

[0238] InteractionRequirement(X) is a function that deter-

mines whether a document structure instance X is an interac-
tion requirement;

[0239] Agent(Y) is a function that determines whether the
phrase Y is an agent;

[0240] System(Y)is a function that determines whether the
phrase Y is an entity having the entity type of “system”;
[0241] Person(Y)is a function that determines whether the
phrase Y is an entity having the entity type of “person”; and,
[0242] SecondaryAgent(Y) is a function that determines
whether the phrase Y is a secondary agent of the requirement
statement X. A phrase Y may be a secondary agent where it is
identified as being a direct object for another subject phrase.
[0243] In addition, the syntax-based document visualiza-
tion module 3604 may identify whether a constituent is an
interacting agent based on whether the constituent has a child,
or sub-component, that is an interacting agent. Examples of
child agents include a billing module defined as a sub-system
of'an order processing system or a shipping module defined as
a sub-system of the order processing system. Other types of

Nov. 27,2014

child agents are also possible. For determining whether a
constituent is an interacting agent based on one or more
children, the syntax-based document visualization module
3604 may employ an interacting child agent conditional state-
ment defined as “any system or user, whose child is an inter-
acting agent.” The interacting child agent conditional state-
ment may also be written in a conditional language format
defined as:

[0244] InteractingAgent(A)=(System(A) or Person(A)) &
child(A,B) & InteractingAgent(B), where:

[0245]
instance;

[0246]
instance;

[0247] System(Y)is a function that determines whether the
phrase Y is an entity having the entity type of “system”;

[0248] Person(Y) is a function that determines whether the
phrase Y is an entity having the entity type of “person”; and,

[0249] Child(X,Y) is a function that determines whether
the phrase B is a child (or sub-component) of the phrase A.

[0250] Inevaluating each of the functions identified above,
the syntax-based visualization module 3604 may refer to one
or more glossaries, such as the entity glossary 2502, the
relationship glossary 2102, the agent glossary 140, or any
other glossary previously discussed.

[0251] FIG. 37 shows that the component visualization
relationship map 3702 includes several visualization relation-
ship objects and several visualization interaction objects. In
general, a visualization relationship object refers to a visual
representation of a constituent from a document structure
instance or a set of document structure instances. The visu-
alization relationship object may represent a constituent in a
document structure instance of an electronic document
matching a permissible constituent found one or more of the
glossaries, such as the entity glossary 2502, the agent glos-
sary 140, or any other glossary. In addition, a visualization
interaction object generally refers to a visual representation
of an interaction, or non-interaction, between one or more
visualization relationship objects. Moreover, visualization
relationship objects may be interacting visualization relation-
ship objects or non-interacting visualization relationship
objects, and a visualization interaction object may identify or
illustrate an interaction established between one or more
visualization relationship objects defined by one or more
document structure instances.

[0252] The exemplary component visualization relation-
ship map 3702 represents a component visualization relation-
ship map for a project resource management system 3706. As
shown in the FIG. 37, the project resource management sys-
tem 3706 has several sub-systems, including an assign
resource module 3704 and a maintain project module 3712.
Because the assign resource module 3704 and the maintain
project module 3712 are “children” of the project resource
management system 3706, the component visualization rela-
tionship map 3702 may also illustrate interactions of the
assign resource module 3704 and the maintain project mod-
ule 3712. However, the visualization module 3604 may be
instructed or configured to generate a component visualiza-
tion relationship maps for other constituents of an electronic
document or a document structure instance. For example, the
visualization module 3604 may be instructed or configured to
generate a component visualization relationship map for the

A is a first phrase from a document structure

B is a second phrase from the document structure

US 2014/0351694 Al

assign resource module 3704, the maintain project module
3712, the project lead 3708, the team resource manager 3710,
or any other constituents.

[0253] The visualization relationship object representing a
constituent may be represented as a graphical iconic image.
The graphical iconic image of the component visualization
relationship map 3702 representing the assign resource mod-
ule 3704 is one example of a visualization relationship object.
Similarly, the graphical iconic image of the component visu-
alization relationship map 3702 representing the project
resource management system 3706 is another example of a
visualization relationship object. Likewise, the graphical
iconic image of the component visualization relationship map
3702 representing the project lead 3708 is a further example
of a visualization relationship object. As discussed below
with reference to FIG. 38, other representations of the visu-
alization relationship objects are also possible.

[0254] As discussed above, the component visualization
relationship map 3702 includes visualization interaction
objects that represent interactions among one or more of the
visualization relationship objects. The component visualiza-
tion relationship map 3702 shows that the visualization inter-
action object represented by the graphical iconic image 3714
illustrates an interaction, established by one or more docu-
ment structure instances, between the assign resource module
3704 and the maintain project module 3712. The component
visualization relationship map 3702 also shows other visual-
ization interaction objects, such as a visualization interaction
object, represented by the graphical iconic image 3716,
between the assign resource module 3704 and the project lead
3708. Depending on the selected constituent for which the
component visualization relationship map 3702 was gener-
ated, and the interactions established by one or more docu-
ment structure instances that include the selected constituent,
a component visualization relationship map may include
none, one, or more than one visualization interaction objects.
[0255] In addition, one or more visualization interaction
objects may include an interaction document structure
instance identifier that identifies the document structure
instance that establishes the interaction, or non-interaction,
between a constituent and other constituents. For example,
the graphical iconic image 3716 includes the interaction
document structure instance identifier “DT-01.8,” which
identifies that the document structure instance having the
document structure instance identifier “DT-01.8" establishes
an interaction between the assign resource module 3704 and
the project lead 3708. Other examples of interaction docu-
ment structure instance identifiers include the interaction
document structure instance identifier “DT-01.2,” the inter-
action document structure instance identifier “DT-01.3,” and
the interaction document structure instance identifier “DT-05.
7> By including interaction document structure instance
identifiers in the component visualization relationship map
3702, the visualization module 3604 assists in identifying
problematic or proper document structure instances. For
example, by reviewing the visualization interaction objects
labeled with interaction document structure instance identi-
fiers, a user or other system can quickly refer to the identified
document structure instance and determine whether the inter-
action, or non-interaction, established by the document struc-
ture instance is a proper, or desired, interaction or non-inter-
action.

[0256] In evaluating a set of document structure instances,
the component visualization relationship map 3702 may

Nov. 27,2014

include a color schema having one or more assignable display
states that displays interactions between constituents of a
document structure instance or an electronic document. The
color schema may include a first display state that displays
that an interaction is established between a first constituent
and a second constituent, a second display state that displays
thata non-interaction is established between the first constitu-
ent and the second constituent, or any other types of display
states.

[0257] In FIG. 37, the component visualization relation-
ship map 3702 includes a first display state 3718 that displays
that a constituent has at least one interaction, and a second
display state 3720 that displays that a constituent does not
have an interaction. The display states may be based on one or
more assignable characteristics of a visualization relationship
object, such as color, shading, orientation, position, or any
other characteristic. In one implementation, the color schema
includes a first color assignable to the first display state 3718,
and a second color different than the first color assignable to
the second display state 3720. However, other implementa-
tions are also possible. Based on the color schema, the visu-
alization module 3604 assigns visualization relationship
objects display states depending on whether a document
structure instance has established an interaction for the con-
stituent.

[0258] Although the visualization module 3604 may be
instructed or configured to generate the component visualiza-
tion relationship map 3702, the visualization module 3604
may generate alternative component visualization relation-
ship maps. FIG. 38 shows an alternative example of a com-
ponent visualization relationship map 3802. The component
visualization relationship map 3802 represents an entity-spe-
cific component visualization relationship map and more par-
ticularly, a system component visualization relationship map,
that illustrates the interactions between the project resource
management system 3706 and constituents having the entity
type “System.” However, other types of component visual-
ization relationship maps may include constituents having an
entity type other than “System,” such as “Person,” “Generi-
cEntity” or other entity type. A component visualization rela-
tionship map that includes interactions between a selected
constituent and other constituents of mixed entity types is also
possible.

[0259] The system component visualization relationship
map 3802 includes an entity type identifier cell 3804 that
identifies the interacting entity types, a set of rows 3808-3826
for the constituents identified in the electronic document and
a set of columns 3828-3830 for the constituents identified in
the electronic document having the entity type “System.” In
one implementation, each of the rows 3806-3826 and each of
the columns 3828-3830 match at least one permissible con-
stituent of a glossary, such as the entity glossary 2502 or the
agent glossary 140. In an alternative implementation, a row
and/or a column may represent an impermissible constituent
or impermissible phrase. Other arrangements of permissible
and impermissible constituents and phrases are also possible.
[0260] Inoneimplementation, each row 3806-3826 and the
each column 3828-3830 represents a visualization relation-
ship object for the system component visualization relation-
ship map 3802. In addition, the system component visualiza-
tion relationship map 3802 also includes visualization
interaction objects. With respect to the system component
visualization relationship map 3802, a visualization interac-
tion object may be an intersection cell between a row and a

US 2014/0351694 Al

column where a document structure instance establishes an
interaction between the constituent represented by the row
and the constituent represented by the column. As one
example, the intersection cell 3830 between the row 3820 and
the column 3828 represents a visualization interaction object.
The intersection cell 3832 illustrates that a document struc-
ture instance identified by the syntax-based document visu-
alization module 3604 establishes an interaction between the
assign resource module 3704 and the maintain project mod-
ule 3712. Alternatively, a visualization interaction object may
be an intersection cell between a row and a column where an
interaction is not established between the constituent repre-
sented by the row and the constituent represented by the
column. As one example, the intersection cell 3834 between
the row 3806 and the column 3828 represents a visualization
interaction object where a document structure instance has
not established an interaction between the assign resource
module 3704 and the backup master employee repository
3722.

[0261] FIG. 39 shows an alternative example of a compo-
nent visualization relationship map 3902. The component
visualization relationship map 3802 represents an entity-spe-
cific component visualization relationship map and more par-
ticularly, a person component visualization relationship map,
that illustrates the interactions between the project resource
management system 3706 and constituents having the entity
type “Person.”” However, other types of component visualiza-
tion relationship maps may include constituents having an
entity type other than “Person,” such as “System,” “Generi-
cAgent,” “GenericEntity” or other entity type. A component
visualization relationship map that includes interactions
between a selected constituent and other constituents of
mixed entity types is also possible.

[0262] The person component visualization relationship
map 3902 includes an entity type identifier cell 3904 that
identifies the interacting entity types, a set of rows 3906-3916
for the constituents identified in the electronic document and
a set of columns 3918-3920 for the constituents identified in
the electronic document having the entity type “Person.” In
one implementation, each of the rows 3906-3916 and each of
the columns 3918-3920 match at least one permissible con-
stituent of a glossary, such as the entity glossary 2502 or the
agent glossary 140. In an alternative implementation, a row
and/or a column may represent an impermissible constituent
or impermissible phrase. Other arrangements of permissible
and impermissible constituents and phrases are also possible.

[0263] In one implementation, each row 3906-3916 and
each column 3918-3920 represents a visualization relation-
ship objects for the person component visualization relation-
ship map 3902. In addition, the person component visualiza-
tion relationship map 3902 also includes visualization
interaction objects. With respect to the person component
visualization relationship map 3902, a visualization interac-
tion object may be an intersection cell between a row and a
column where a document structure instance establishes an
interaction between the constituent represented by the row
and the constituent represented by the column. As one
example, the intersection cell 3922 between the row 3908 and
the column 3918 represents a visualization interaction object.
The intersection cell 3922 illustrates that at least one docu-
ment structure instance identified by the visualization inter-
action object establishes an interaction between the project
resource management system 3706 and the resource manager
3724. Alternatively, a visualization interaction object may be

Nov. 27,2014

an intersection cell between a row and a column where an
interaction is not established between the constituent repre-
sented by the row and the constituent represented by the
column. As one example, the intersection cell 3924 between
the row 3912 and the column 3918 represents a visualization
interaction object where a document structure instance has
not established an interaction between the assign resource
module 3704 and the resource manager 3724.

[0264] In another implementation, the syntax-based docu-
ment visualization module 3604 is operative to generate a
system visualization relationship map. FIG. 40 shows one
example of a system visualization relationship map 4002. The
system visualization relationship map 4002 may represent the
interactions among constituents identified in a document
structure instance, a set of document structure instances, or an
electronic document. The system visualization relationship
map 4002 provides a comprehensive visualization of the
interactions and non-interactions that occur among constitu-
ents. The system visualization relationship map 4002 assists
in the identification of proper and improper interactions, and
helps identify whether a constituent has any interaction. The
system visualization relationship map 4002 may help pin-
point and identify non-interacting constituents that should, in
fact, be interacting constituents.

[0265] In generating the system visualization relationship
map 4002, the syntax-based document visualization module
3604 may perform a recognition process to recognize that one
or more document structure instances conforms to an inter-
action syntax. As discussed the interaction syntax may be a
controlled document structure instance syntax and may, or
may not, be associated with a document structure instance
identifier. The syntax-based document visualization module
3604 may parse and/or analyze a document structure instance
to identify interacting constituents and non-interacting con-
stituents according to the interaction syntax. In recognizing
whether a document structure instance conforms to an inter-
action syntax for generating the system visualization relation-
ship map 4002, the syntax-based document visualization
module 3604 may employ any one of the syntaxes previously
discussed.

[0266] Similar to the component visualization relationship
map 3702, the system visualization relationship map 4002
includes several system visualization relationship objects and
several system visualization interaction objects. In general, a
system visualization relationship object refers to a visual
representation of a constituent from a document structure
instance or a set of document structure instances. The system
visualization relationship object may represent a constituent
in a document structure instance of an electronic document
matching a permissible constituent found one or more of the
glossaries, such as the entity glossary 2502, the agent glos-
sary 140, or any other glossary. In addition, a system visual-
ization interaction object generally refers to a visual repre-
sentation of an interaction, or non-interaction, between one or
more visualization relationship objects. Moreover, system
visualization relationship objects may be interacting system
visualization relationship objects or non-interacting system
visualization relationship objects, and a system visualization
interaction object may identify or illustrate an interaction
established between one or more system visualization rela-
tionship objects defined by one or more document structure
instances.

[0267] The exemplary system visualization relationship
map 4002 represents a system visualization relationship map

US 2014/0351694 Al

for several constituents including the assign resource module
3704, project resource management system 3706, the project
lead 3708, the team resource manager 3710, the maintain
project module 3712, the backup master employee repository
3722, and the resource manager 3724.

[0268] The system visualization relationship object repre-
senting a constituent may be represented as a graphical iconic
image. The graphical iconic image of the system visualization
relationship map 4002 representing the assign resource mod-
ule 3704 is one example of a system visualization relationship
object. Similarly, the graphical iconic image of the system
visualization relationship map 4002 representing the project
resource management system 3706 is another example of a
system visualization relationship object. Likewise, the
graphical iconic image of the system visualization relation-
ship map 4002 representing the project lead 3708 is a further
example of a system visualization relationship object. As
discussed below with reference to FIG. 41, other representa-
tions of the system visualization relationship objects are also
possible.

[0269] As discussed above, the system visualization rela-
tionship map 4002 includes system visualization interaction
objects that represent interactions among one or more of the
system visualization relationship objects. The system visual-
ization relationship map 4002 shows that the system visual-
ization interaction object 4004 illustrates an interaction,
established by one or more document structure instances,
between the backup master employee repository 3722 and the
project lead 3708. The system visualization relationship map
4002 also shows other visualization interaction objects, such
as a visualization interaction object, represented by the
graphical iconic image 4006, between the assign resource
module 3704 and the project lead 3708. Depending on the
document structure instance or the document structure
instances of an electronic document, a system visualization
relationship map may include none, one, or more than one
system visualization interaction objects.

[0270] In evaluating a set of document structure instances,
the system visualization relationship map 4002 may include a
color schema having one or more assignable display states
that displays interactions between constituents of a document
structure instance or an electronic document. The color
schema may include a first display state that displays that an
interaction is established between a first constituent and a
second constituent, a second display state that displays that a
non-interaction is established between the first constituent
and the second constituent, or any other types of display
states.

[0271] In FIG. 40, the system visualization relationship
map 4002 includes a first display state 4008 that displays that
aconstituent has at least one interaction, and a second display
state 4010 that displays that a constituent does not have an
interaction. The display states may be based on one or more
assignable characteristics of a visualization relationship
object, such as color, shading, orientation, position, or any
other characteristic. In one implementation, the color schema
includes a first color assignable to the first display state 4008,
and a second color different than the first color assignable to
the second display state 4010. However, other implementa-
tions are also possible. Based on the color schema, the visu-
alization module 3604 assigns system visualization relation-
ship objects display states depending on whether a document
structure instance has established an interaction for the con-
stituent.

Nov. 27,2014

[0272] Although the visualization module 3604 may be
instructed or configured to generate the system visualization
relationship map 4002, the visualization module 3604 may
generate alternative system visualization relationship maps.
FIG. 41 shows an alternative example of a system visualiza-
tion relationship map 4102. The system visualization rela-
tionship map 4102 represents an entity-specific system visu-
alization relationship map and more particularly, a system
visualization relationship map that illustrates the interactions
between a first set of constituents having an entity type of
“System” and a second set of constituents having an entity
type “System.” However, other types of system visualization
relationship maps may include constituents having an entity
type other than “System,” such as “Person,” “GenericEntity”
or other entity type. A system visualization relationship map
that includes interactions between constituents of mixed
entity types is also possible.

[0273] The system visualization relationship map 4102
includes an entity type identifier cell 4104 that identifies the
interacting entity types, a set of rows 4106-4126 for the con-
stituents identified in the electronic document having the
entity type “System” and a set of columns 4128-4142 for the
constituents identified in the electronic document having the
entity type “System.” In one implementation, each of the rows
4106-4126 and each of the columns 4128-4142 match at least
one permissible constituent of a glossary, such as the entity
glossary 2502 or the agent glossary 140. In an alternative
implementation, a row and/or a column may represent an
impermissible constituent or impermissible phrase. Other
arrangements of permissible and impermissible constituents
and phrases are also possible.

[0274] In one implementation, each row 4106-4126 and
each column 3828-3830 represents a system visualization
relationship object for the system visualization relationship
map 4102. In addition, the system visualization relationship
map 4102 also includes system visualization interaction
objects. With respect to the system visualization relationship
map 4102, asystem visualization interaction object may be an
intersection cell between a row and a column where a docu-
ment structure instance establishes an interaction between the
constituent represented by the row and the constituent repre-
sented by the column. As one example, the intersection cell
4144 between the row 4112 and the column 4136 represents
asystem visualization interaction object. The intersection cell
4144 illustrates that a document structure instance identified
by the visualization interaction object establishes an interac-
tion between the assign resource module 3704 and the main-
tain project module 3712. Alternatively, a system visualiza-
tion interaction object may be an intersection cell between a
row and a column where an interaction is not established
between the constituent represented by the row and the con-
stituent represented by the column. As one example, the inter-
section cell 4146 between the row 4114 and the column 4142
represents a visualization interaction object where a docu-
ment structure instance has not established an interaction
between the maintain project module 3712 and the backup
master employee repository 3722.

[0275] FIG. 42 shows an alternative example of a system
visualization relationship map 4202. The system visualiza-
tion relationship map 4202 represents an entity-specific sys-
tem visualization relationship map and more particularly, a
person visualization relationship map that illustrates the
interactions between a first set of constituents having an entity
type of “System” and constituents having the entity type

US 2014/0351694 Al

“Person.” However, other types of system visualization rela-
tionship maps may include constituents having an entity type
other than “Person” or “System,” such as “GenericAgent,”
“GenericEntity,” or other entity type. A system visualization
relationship map that includes interactions established
between constituents of mixed entity types is also possible.

[0276] The system visualization relationship map 4202
includes an entity type identifier cell 4204 that identifies the
interacting entity types, a set of rows 4206-4226 for the con-
stituents identified in the electronic document having the
entity type “System,” and a set of columns 4228-4234 for the
constituents identified in the electronic document having the
entity type “Person.” In one implementation, each of the rows
4206-4226 and each of the columns 4228-4234 match at least
one permissible constituent of a glossary, such as the entity
glossary 2502 or the agent glossary 140. In an alternative
implementation, a row and/or a column may represent an
impermissible constituent or impermissible phrase. Other
arrangements of permissible and impermissible constituents
and phrases are also possible.

[0277] In one implementation, each row 4206-4226 and
each column 4228-4234 represents a system visualization
relationship objects for the system visualization relationship
map 4202. In addition, the system visualization relationship
map 4202 may include system visualization interaction
objects. With respect to the system visualization relationship
map 4202, a system visualization interaction object may be an
intersection cell between a row and a column where a docu-
ment structure instance establishes an interaction between the
constituent represented by the row and the constituent repre-
sented by the column. As one example, the intersection cell
4236 between the row 4206 and the column 4228 represents
asystem visualization interaction object. The intersection cell
4236 illustrates that at least one document structure instance
identified by the syntax-based document visualization mod-
ule 3604 establishes an interaction between the project
resource management system 3706 and the resource manager
3724. Alternatively, a system visualization interaction object
may be an intersection cell between a row and a column where
an interaction is not established between the constituent rep-
resented by the row and the constituent represented by the
column. As one example, the intersection cell 4238 between
the row 4212 and the column 4228 represents a system visu-
alization interaction object where a document structure
instance has not established an interaction between the assign
resource module 3704 and the resource manager 3724.

[0278] In another implementation, the syntax-based docu-
ment visualization module 3604 is operative to generate a
sub-system visualization relationship map. FIG. 43 shows
one example of a sub-system visualization relationship map
4302. The sub-system visualization relationship map 4302
may represent the interactions among constituents identified
in a document structure instance or a subset of document
structure instances from a set of document structure
instances. In one implementation, the sub-system visualiza-
tion relationship map 4302 provides a visualization of the
interactions between a subset of document structure instances
that set out requirements for achieving an objective, such as a
particular goal, use, or other type of objective. A subsystem
visualization relationship map 4302 may also provide a visu-
alization of the interactions between a subset of document
structure instance that set out requirements for achieving
more than one objective. For example, the subset of document
structure instances may set out the requirements for adding a

Nov. 27,2014

new user to a system or provisioning a new service. The
sub-system visualization relationship map 4302 assists in the
identification of proper and improper interactions among
requirements identified for a particular objective, and helps
identify whether a constituent has any interaction in towards
achieving the particular objective. The sub-system visualiza-
tion relationship map 4302 may help pinpoint and identify
non-interacting constituents that should, in fact, be interact-
ing constituents.

[0279] In generating the sub-system visualization relation-
ship map 4302, the syntax-based document visualization
module 3604 may perform a recognition process to recognize
that one or more document structure instances conforms to an
interaction syntax. As discussed previously, the interaction
syntax may be a controlled document structure instance syn-
tax and may, or may not, be associated with a document
structure instance identifier. The syntax-based document
visualization module 3604 may parse and/or analyze a docu-
ment structure instance to identify interacting constituents
and non-interacting constituents according to the interaction
syntax. In recognizing whether a document structure instance
conforms to an interaction syntax for generating the sub-
system visualization relationship map 4302, the syntax-based
document visualization module 3604 may employ any one of
the syntaxes previously discussed.

[0280] In addition, the syntax-based document visualiza-
tion module 3604 may identify a document structure instance
for inclusion in the sub-system visualization relationship map
4302 based on a type-of-use identifier associated with the
document structure instance. A type-of-use identifier may
identify a use achievable by the document structure instance.
For example, the type-of-use identifier may identify that a
document structure instance is a first step or first action
towards achieving a particular objective.

[0281] The type-of-use identifier may also distinguish the
document structure instance from a set of document structure
instance. Moreover, document structure instances with simi-
lar type-of-use identifiers may be grouped together as a subset
of' document structure instances. For example, a first type-of-
use identifier may identify that a first document structure
instance is a first step or first action towards achieving a
particular objective, and a second type-of-use identifier may
identify that a second document structure instance is a second
step or second action towards achieving the same particular
objective. Other arrangements of type-of-use identifiers are
also possible.

[0282] Similar to the component visualization relationship
map 3702, the sub-system visualization relationship map
4302 includes several system visualization relationship
objects and several system visualization interaction objects.
With respect to the sub-system visualization relationship map
4302, the system visualization relationship objects may rep-
resent a constituents from a subset of document structure
instances, such as where the subset of document structure
instances are distinguishable by one or more type-of-use
identifiers. Similarly, the system interaction objects of the
sub-system visualization relationship map 4302 may be a
visual representation of an interaction, or non-interaction,
between one or more of the visualization relationship objects.
[0283] The sub-system visualization relationship map
4302 represents a sub-system visualization relationship map
for several constituents identified in document structure
instances having a type-of-use identifier. Examples of con-
stituents shown in the sub-system visualization relationship

US 2014/0351694 Al

map 4302 include a reporting module 4304, the assign
resource module 3704, the maintain project module 3712, the
resource manager 3724 and the project resource management
system 3706.

[0284] Inoneimplementation, the visualization interaction
objects of the sub-system visualization relationship map 4302
are identified by the type-of-use identifier associated with the
document structure instance establishing the interaction, or
non-interaction, between constituents. For example, the
graphical iconic image 4306 includes the type-of-use identi-
fier “UC-1-3,” which identifies that the document structure
instance having the type-of-use identifier “UC-1-3" estab-
lishes an interaction between an employee 4308 and the
reporting module 4304. Other examples of type-of-use iden-
tifiers include the type-of-use identifier “UC-1-4,” the type-
of-use identifier “UC-1-2,” and the type-of-use identifier
“UC-1-1." By including the type-of-use identifiers in the sub-
system visualization relationship map 4302, the visualization
module 3604 assists in identifying the document structure
instances that recite constituents used in achieving a particu-
lar objective, use, or goal. For example, by reviewing the
system visualization interaction objects labeled with type-of-
use identifiers, a user or other system can quickly refer to the
identified document structure instance and determine
whether the interaction, or non-interaction, established by the
document structure instance is a proper, or desired, interac-
tion or non-interaction.

[0285] Like the system visualization relationship map
4002, the sub-system visualization relationship map 4302
includes system visualization interaction objects that repre-
sent interactions among one or more of the system visualiza-
tion relationship objects. The sub-system visualization rela-
tionship map 4302 shows that the system visualization
interaction object 4306 illustrates an interaction, established
by one or more document structure instances, between the
employee 4308 and the reporting module 4304. Depending
on the type-of-use identifier associated with a document
structure instance or the type-of-use identifiers associated
with a subset of document structure instances of an electronic
document, a sub-system visualization relationship map may
include none, one, or more than one system visualization
interaction objects.

[0286] In evaluating a set of document structure instances,
the sub-system visualization relationship map 4302 may also
include a color schema having one or more assignable display
states that displays interactions, or non-interactions, between
constituents of a document structure instance or an electronic
document. In FIG. 43, the sub-system visualization relation-
ship map 4302 includes a first display state 4310 that displays
that a constituent has at least one interaction, and a second
display state 4312 that displays that a constituent does not
have an interaction. The display states 4310-4312 may be
based on one or more assignable characteristics of a visual-
ization relationship object, such as a color, shading, orienta-
tion, position, or any other characteristic. In one implemen-
tation, the color schema includes a first color assignable to the
first display state 4310, and a second color different than the
first color assignable to the second display state 4312. How-
ever, other implementations are also possible. Based on the
color schema, the visualization module 3604 assigns system
visualization relationship objects display states depending on
whether a document structure instance has established an
interaction for the constituent.

Nov. 27,2014

[0287] Although the visualization module 3604 may be
instructed or configured to generate the system visualization
relationship map 4302, the visualization module 3604 may
generate alternative system visualization relationship maps.
FIG. 44 shows an alternative example of a sub-system visu-
alization relationship map 4402. The system visualization
relationship map 4402 represents an entity-specific sub-sys-
tem visualization relationship map and more particularly, a
sub-system visualization relationship map that illustrates the
interactions between a first set of constituents having an entity
type of “System” and a second set of constituents having an
entity type “System.” However, other types of sub-system
visualization relationship maps may include constituents
having an entity type other than “System,” such as “Person,”
“GenericEntity” or other entity type. A sub-system visualiza-
tion relationship map that includes interactions between con-
stituents of mixed entity types is also possible.

[0288] The sub-system visualization relationship map
4302 includes an entity type identifier cell 4404 that identifies
the interacting entity types, a set of rows 4406-4426 for the
constituents identified in the electronic document having the
entity type “System” and a set of columns 4428-4432 for the
constituents identified in the electronic document having the
entity type “System.” In one implementation, each of the rows
4405-4426 and each of the columns 4428-4432 match at least
one permissible constituent of a glossary, such as the entity
glossary 2502 or the agent glossary 140. In an alternative
implementation, a row and/or a column may represent an
impermissible constituent or impermissible phrase. Other
arrangements of permissible and impermissible constituents
and phrases are also possible.

[0289] In one implementation, each row 4406-4426 and
each column 4428-4432 represents a system visualization
relationship object for the sub-system visualization relation-
ship map 4402. In addition, the sub-system visualization rela-
tionship map 4402 also includes system visualization inter-
action objects. With respect to the sub system visualization
relationship map 4402, a system visualization interaction
object may be an intersection cell between a row and a col-
umn where a document structure instance establishes an inter-
action between the constituent represented by the row and the
constituent represented by the column. As one example, the
intersection cell 4434 between the row 4406 and the column
4430 represents a system visualization interaction object. The
intersection cell 4434 illustrates that a document structure
instance identified by the syntax-based document visualiza-
tion module 3604 establishes an interaction between the
project resource management system 3706 and the reporting
module 4304. Alternatively, a system visualization interac-
tion object may be an intersection cell between a row and a
column where an interaction is not established between the
constituent represented by the row and the constituent repre-
sented by the column. As one example, the intersection cell
4436 between the row 4414 and the column 4430 represents
avisualization interaction object where a document structure
instance has not established an interaction between the main-
tain project module 3712 and the reporting module 4304.

[0290] FIG. 45 shows an alternative example of a sub-
system visualization relationship map 4502. The sub-system
visualization relationship map 4502 represents an entity-spe-
cific sub-system visualization relationship map and more par-
ticularly, a sub-system visualization relationship map that
illustrates the interactions between a first set of constituents
having an entity type of “System” and constituents having the

US 2014/0351694 Al

entity type “Person.”” However, other types of sub-system
visualization relationship maps may include constituents
having an entity type other than “Person” or “System,” such
as “GenericAgent,” “GenericEntity,” or other entity type. A
sub-system visualization relationship map that includes inter-
actions established between constituents of mixed entity
types is also possible.

[0291] The sub-system visualization relationship map
4502 includes an entity type identifier cell 4506 that identifies
the interacting entity types, a set of rows 4506-4526 for the
constituents identified in subset of document structure
instances having the entity type “System,” and a set of col-
umns 4528-4534 for the constituents identified in a subset of
document structure instances having the entity type “Person.”
In one implementation, each of the rows 4506-4526 and each
of'the columns 4528-4534 correspond to at least one permis-
sible constituent of a glossary, such as the entity glossary
2502 or the agent glossary 140. In an alternative implemen-
tation, a row and/or a column may represent an impermissible
constituent or impermissible phrase. Other arrangements of
permissible and impermissible constituents and phrases are
also possible.

[0292] In one implementation, each row 4506-4526 and
each column 4528-4534 represents a system visualization
relationship objects for the sub-system visualization relation-
ship map 4502. In addition, the sub-system visualization rela-
tionship map 4502 may include system visualization interac-
tion objects. With respect to the sub-system visualization
relationship map 4502, a system visualization interaction
object may be an intersection cell between a row and a col-
umn where a document structure instance establishes an inter-
action between the constituent represented by the row and the
constituent represented by the column. As one example, the
intersection cell 4538 between the row 4510 and the column
4532 represents a system visualization interaction object. The
intersection cell 4538 illustrates that at least one document
structure instance identified by the syntax-based document
visualization module 3604 establishes an interaction between
the project resource management system reporting module
4304 and the resource manager 3724. Alternatively, a system
visualization interaction object may be an intersection cell
between a row and a column where an interaction is not
established between the constituent represented by the row
and the constituent represented by the column. As one
example, the intersection cell 4538 between the row 4512 and
the column 4532 represents a system visualization interaction
object where a document structure instance has not estab-
lished an interaction between the assign resource module
3704 and the resource manager 3724.

[0293] The syntax-based document visualization module
3604 may also generate a sub-system visualization relation-
ship map that includes one or more document structure
instances that establish the interaction, or non-interaction,
between two constituents. Referring to FIG. 46 is an alterna-
tive example of a entity-specific sub-system visualization
relationship map 4602 that includes a visualization interac-
tion object 4604 having a document structure instance. The
document structure instance “UC 1-4: Project resource man-
agement system sends data to reporting module” establishes
an interaction between the reporting module 4304 and the
project resource management system 3706. The document
structure instance of the visualization interaction object 4604
includes a type-of-use identifier, “UC 1-4,” which indicates to
the syntax-based document visualization module 3604 that

Nov. 27,2014

the document structure instance should be included in a sub-
set of document structure instances relating to a particular
objective. For example, other type-of-use identifiers may also
include the prefix “UC,” which indicates to the syntax-based
document visualization module 3604 that the document
structure instance associated with the type-of-use identifier
having the prefix “UC” should be included in the subset with
the document structure instance associated with the type-of-
use identifier “UC 1-4.” Other type-of-use identifiers are also
possible.

[0294] FIG. 47 is yet another example of an entity-specific
sub-system visualization relationship map 4702 that includes
visualization interaction objects 4704-4706 having at least
one document structure instance. As shown in FIG. 47, a first
visualization interaction object 4704 includes one document
structure instance, whereas a second visualization interaction
object 4706 includes more than one document structure
instance. By including document structure instances in the
entity-specific sub-system visualization relationship map
4602 and the entity-specific sub-system visualization rela-
tionship map 4702, the syntax-based document visualization
module 3604 facilitates rapid identification of the document
structure instances that establish the interaction between con-
stituents. Inclusion of the document structure instances in the
entity-specific sub-system visualization relationship maps
4602-4702 reduces time and resources spent in reviewing an
electronic document to identify the document structure
instances that establish the interactions between constituents.
[0295] FIG. 48 shows one example of an attribute require-
ment report 4802 generated by the syntax-based document
attribute analysis module 3606. With reference to F1G. 27, the
syntax-based document attribute analysis module 3606 refers
to the non-functional attribute glossary 2702 to determine
whether one or more document structure instances satisfy an
attribute for a constituent in the document structure instance.
[0296] For instance, the syntax-based document attribute
analysis module 3606 may first identify a constituent in a
document structure instance that matches a first permissible
constituent found in one or more glossaries, such as the entity
glossary 2502 or the agent glossary 140. The syntax-based
document attribute analysis module 3606 may then analyze
the document structure instance, such as by parsing the words
and phrases of the document structure instance, for a docu-
ment structure instance phrase that satisfies an attribute
requirement associated with the constituent. As previously
discussed, satisfying an attribute requirement may include
satisfying one or more target phrases from a document struc-
ture instance with an attribute requirement phrase. The syn-
tax-based document attribute analysis module 3606 may then
generate the attribute requirement report 4802 which may
indicate whether an attribute for constituent was satisfied by
one or more document structure instances.

[0297] Ingeneral, an attribute requirement report organizes
major categories of non-functional attributes by system and
sub-system. In alternative implementations, an attribute
requirement report may organize minor categories, alterna-
tive categories, or any other type of categories. The attribute
requirement report 4802 is an example of a category-specific
attribute requirement report for a performance category of
non-functional attributes. Category handles 4838-4846 may
allow a user or system to select an alternative category-spe-
cific attribute requirement report for another category, such as
a capacity and volumetrics category, a delivery channels cat-
egory, a new area category, and an availability. However, the

US 2014/0351694 Al

attribute requirement report 4802 may also be implemented
as a cross-category attribute requirement report that identifies
whether document structure instances satisfy attributes for
more than one attribute category.

[0298] The organization of the attribute requirement report
4802 facilitates identifying if a category (such as a perfor-
mance category, a capacity and volumetrics category, a deliv-
ery channels category, or other category) of a non-functional
attribute is not specified for any system and/or sub-system. As
shown in FIG. 48, the attribute requirement report 4802 iden-
tifies that a number of attributes have not been satisfied for the
performance category.

[0299] In one implementation, the attribute requirement
report 4802 includes a set of rows 4804-4824, wherein each
row represents a constituent identified by the syntax-based
document attribute analysis module 3606. The attribute
requirement 4802 may also include a set of columns 4828-
4832, wherein each column represents an attribute require-
ment contained within the non-functional attribute glossary
2702. However, other arrangements of rows and columns are
possible. Moreover the attribute requirement report 4802 may
be represented by any type of report, such as a pie chart, a bar
chart, a step chart, or any other type of chart.

[0300] The attribute requirement report 4802 may further
include an intersection cell that between a row and column
that identifies whether a document structure instance satisfies
an attribute requirement assigned to a constituent. As shown
in FIG. 48, the attribute requirement report 4802 includes an
intersection cell 4834 that identifies that a document structure
instance satisfies the online response time attribute for the
master employee repository constituent. In this example, the
document structure instance that satisfies the online response
time attribute is “The Master Employee Repository must
provide an average response time of 500 milliseconds for
employee record queries.” However, other document struc-
ture instances that satisfy the online response time attribute
for the master employee repository constituent are also pos-
sible.

[0301] Moreover, the attribute requirement report 4802
may include an intersection cell 4836 that identifies that a
document structure instance does not satisfy an attribute
requirement assigned to a constituent. Alternatively, the inter-
section cell 4836 may identify that no document structure
instances from an electronic satisfies an attribute requirement
assigned to a constituent. In the attribute requirement report
4802, the intersection 4836 identifies that no document struc-
ture instances satisfies the online response time attribute
assigned to the E-verify system constituent. In this example,
the document structure instance that satisfies the online
response time attribute is “The Master Employee Repository
must provide an average response time of 500 milliseconds
for employee record queries.”

[0302] The systems, components, and logic described
above may be implemented in many different ways, including
a combination of hardware and software, or as software for
installation on any desired operating system including Linux,
Unix, or Windows. The functionality may be implemented in
a single system or functionally partitioned across multiple
systems. As another example, the components, systems, and
logic may be implemented as computer-executable instruc-
tions or as data structures in memory and may be stored on,
distributed across, or read from many different types of
machine-readable media. The machine-readable media may
include RAM, ROM, hard disks, floppy disks, CD-ROMs,

Nov. 27,2014

flash memory or other machine-readable medium. The com-
ponents, systems and logic may also be encoded in a signal,
such as a signal received from a network or partitioned into
sections and received in multiple packets communicated
across a network.

[0303] The systems may be implemented in software, hard-
ware, or a combination of software and hardware. The sys-
tems may be implemented in a computer programming lan-
guage, such as C# or Java, or in a query language, such as the
SPARQL Protocol and RDF Query Language (“SPARQL”).
The systems may also use one or more metadata data models,
such as the Resource Description Framework (“RDF”).
Moreover, the systems may use a knowledge representation
language, such as the Web Ontology Language (“OWL”) in
conjunction with a semantic framework, such as Jena.
[0304] Furthermore, the systems may be implemented with
additional, different, or fewer components. As one example, a
processor or any other logic or component may be imple-
mented with a microprocessor, a microcontroller, a DSP, an
application specific integrated circuit (ASIC), program
instructions, discrete analog or digital logic, or a combination
of'other types of circuits or logic. As another example, memo-
ries may be DRAM, SRAM, Flash or any other type of
memory. The systems may be distributed among multiple
components, such as among multiple processors and memo-
ries, optionally including multiple distributed processing sys-
tems.

[0305] Logic, such as programs or circuitry, may be com-
bined or split among multiple programs, distributed across
several memories and processors, and may be implemented in
or as a function library, such as a dynamic link library (DLL)
orother shared library. The DLL, for example, may store code
that implements functionality for a specific module as noted
above. As another example, the DLL may itself provide all or
some of the functionality of the system. In one implementa-
tion, the system is implemented using Visual Basic for Appli-
cations as a Word™ application plug-in.

[0306] Interfaces between the systems and the logic and
modules within systems may be implemented in numerous
ways. For example, interfaces between systems may be Web
Services, Simple Object Access Protocol, or Enterprise Ser-
vice Bus interfaces. Other examples of interfaces include
message passing, such as publish/subscribe messaging,
shared memory, and remote procedure calls.

[0307] While various embodiments of the invention have
been described, it will be apparent to those of ordinary skill in
the art that many more embodiments and implementations are
possible within the scope of the invention. Accordingly, the
invention is not to be restricted except in light of the attached
claims and their equivalents.

1. (canceled)

2. A document analysis system comprising:

a memory comprising:

a document structure instance for analysis; and

state machines configured to evaluate the document struc-

ture instance; and

processing circuitry in communication with the memory, the
processing circuitry configured to:

identify a syntax of the document structure instance;
select a state machine from among the state machines for
analysis of the document structure instance, the state machine
selected in response to identification of the syntax of the
document structure instance;

US 2014/0351694 Al

determine phrases in the document structure instance; and

parse contents of the document structure instance phrases

and responsively move through states of the selected
state machine, to determine, using the selected state
machine, conformance of the document structure
instance to a controlled document structure instance
syntax associated with the selected state machine.

3. The document analysis system of claim 2, wherein the
processing circuitry is further configured to identify the syn-
tax of the document structure instance based on a phrase
among the determined phrases within the document structure
instance.

4. The document analysis system of claim 2, wherein the
circuitry is further operable to identify the syntax of the
document structure instance based on a syntax identifier asso-
ciated with the document structure instance.

5. The document analysis system of claim 2, wherein the
selected state machine comprises a transition state, an error
state, and a final state.

6. The document analysis system of claim 5, wherein the
final state represents conformance of the document structure
instance to the controlled document structure instance syntax.

7. The document analysis system of claim 5, wherein the
error state represents non-conformance of the document
structure instance to the controlled document structure
instance syntax.

8. The document analysis system of claim 7, wherein the
circuitry is further configured to:

output a message to be displayed in response to the selected

state machine moving to the error state, wherein the
message comprises a suggestion to correct the non-con-
formance.

9. The document analysis system of claim 5, wherein the
transition state represents identification of an expected con-
stituent within the contents of the document structure
instance as the contents are parsed.

10. The document analysis system of claim 2, wherein the
selected state machine is associated with more than one con-
trolled document structure instance syntax.

11. A method comprising:

identifying a document structure instance within the docu-

ment;

identifying a syntax of the document structure instance;

selecting a state machine from a plurality of state machines

based on the syntax of the document structure instance,
the state machine associated with a controlled document
structure instance syntax; and

determining, using the selected state machine, conform-

ance of the document structure instance to the controlled
document structure instance syntax by parsing contents
of the document structure instance and moving through
states of the selected state machine corresponding to the
parsed contents.

12. The method of claim 11, wherein determining the con-
formance of the document structure instance comprises:

moving through a transition state, an error state, and a final

state based on parsed content of the document structure
instance.

13. The method of claim 12, wherein the document struc-
ture instance is determined to conform to the controlled docu-
ment structure instance syntax in response to the selected
state machine moving to the final state.

14. The method of claim 12, wherein the document struc-
ture instance is determined to be non-conformant to the con-

Nov. 27,2014

trolled document structure instance syntax in response to the
selected state machine moving to the error state.

15. The method of claim 14, further comprising:

displaying a message in response to the selected state

machine moving to the error state, the message compris-
ing a suggestion to correct the non-conformance.

16. A product comprising:

a machine readable storage medium other than a transitory

signal; and

instructions stored on the medium, the instructions config-

ured to cause circuitry to:

receive a document structure instance within the docu-

ment;

identify a syntax of the document structure instance;

identify a state machine to analyze the document structure

instance, the state machine being selected from a plural-
ity of state machines based on the syntax of the docu-
ment structure instance;

parse contents of the document structure instance;
move from one state of the state machine to another state of
the state machine in response to the parsed content; and

evaluate whether the document structure instance con-

forms to a controlled document structure instance syntax
corresponding to the state machine based on a last state
within the state machine corresponding to a last con-
stituent of the parsed content of the document structure
instance.

17. The product of claim 16, wherein the controlled docu-
ment structure instance syntax is a first controlled syntax, the
medium further comprising instructions to cause the circuitry
to:

identify a modal phrase in the document structure instance;

identify a second controlled syntax for the document struc-

ture instance to comply with;

identify a second state machine corresponding to the sec-

ond controlled syntax; and

evaluate whether the document structure instance con-

forms to the second controlled syntax by transitioning
through states of the second state machine according to
the parsed content of the document structure instance.

18. The product of claim 16, wherein conformance of the
document structure instance to the controlled document
structure instance syntax corresponding to the state machine
is based on the last state of the state machine being a final
non-error state.

19. The product of claim 18, wherein the state machine
comprises a start state, a transitory state, an error state, and a
final state.

20. The product of claim 19, wherein the state machine by
default begins at the start state, and to move from one state of
the state machine to another state of the state machine in
response to the parsed content, the medium further compris-
ing instructions to cause the circuitry to:

identify a constituent in the parsed content of the document

structure instance; and

determine a next state corresponding to the constituent

based on a current state of the state machine.

21. The product of claim 19, wherein the error state iden-
tifies, in the document structure instance, at least one of a
non-agent entity error, a missing agent error, an unknown
agent error, an unknown action error, or a missing action
error.

