0O 02/35471 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

2 May 2002 (02.05.2002) PCT WO 02/35471 Al
(51) International Patent Classification’: GO06T 5/00, GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
5120, 5/30, 1720 LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI,
(21) International Application Number: PCT/US01/32525 ;Ii SZ%)&TJ’ T™, TR, TT, TZ, UA, UG, US, UZ, VN, YU,
(22) International Filing Date: 16 October 2001 (16.10.2001) (84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
(25) Filing Language: English patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
(26) Publication Language: English IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
(30) Priority Data: 6.
09/693,378 20 October 2000 (20.10.2000) US Published:

(71) Applicant and
(72) Inventor: LEE, Shih-Jong [US/US]; 15418 SE 53rd
Place, Bellevue, WA 98006 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: IMAGE PROCESSING APPARATUS USING A CASCADE OF POLY-POINT OPERATIONS

100 110
102 104 o /
M
f/ / Address emory
Central Bus 112
. Cache
Processing M . P
Unit emories mage 114

108

Data Bus

Image2 l
‘ 116

I Imagel P

(57) Abstract: A high speed image processing apparatus comprising a central processing unit 102 anda memory to store images 110
wherein a program directs the central processing unit to perform a poly-point operation 320 on image data. Poly-point operations
filter images without multiplication or division yet achieve versatile filter characteristics. Poly-point operations accomplish linear or
non-linear filter operations quickly and allow complex image processing operations on general purpose computing apparatus.

10

15

20

25

WO 02/35471 PCT/US01/32525

Image Processing Apparatus Using a Cascade of Poly-Point
Operations

Technical Field

This invention relates to high-speed image processing operations.

Background Art

Conventional approaches for image processing implement image operations directly from
their specifications. These approaches demand significant computational resources. For
example, a 3 by 3 image convolution requires 9 multiplications, 8 additions, and one
division for each pixel in an image. In the prior art solution, floating point operations may
be required in order to express the fine detail of the filter kernel and to normalize the
result. The precision required for these computations frequently is not consistent with the
quantization and sampling of the input image, which is limited to reduce the image storage
and transmission requirement. As the image coding (number of pixels, color quantization
and luminance quantization) becomes more complete, the computations required to
process even simple algorithms becomes overwhelming because of the increase in volume
of data. Prior art image processors have been created to meet the demands of current
generation images. Specialized hardware has been created to address the high
computational demand. However, the specialized hardware is expensive and difficult to
program and the result achieved is not worth the effort expended. In the prior art, little
effort has been expended to reduce the complexity of the computation; rather the prior art
attempts to meet the complexity with increased facility. Moreover, general large kernel or
three-dimensional image processing operations are still prohibitively expensive even with

the specialized hardware.

30

35

40

45

50

55

60

WO 02/35471 PCT/US01/32525

The prior art has expended the resources to implement the computations required for the
general solution of the image processing problem, the capacity requirements generally
exceed those available on general purpose computers like the Personal Computer (PC).
Thus, the technical advances in general purpose PCs and the price advantages have not

heretofore replaced the specialized image processing hardware.

The programming tasks for the specialized hardware are complex because computation
optimization frequently requires assembly level instructions, management of several
different types of computing resources, several different types of development tools,
parallel processing with interleaved results, and/or use of highly optimized primitive
functions provided by a hardware vendor that are not easily tailored to any particular

application.

Disclosure of Invention

The invention discloses methods for cascading simple, easily programmable poly-point
operations in general purpose computers. The invention allows image processing
programming in high level programming language such as C, C++ or Java that can be
compiled into different general purpose computing platforms. The efficiency of the
operations allows sufficient throughput improvement to enable real time image processing
in resource constrained mobile computing or information/e-appliénce platforms or to
enable real time high performance image processing for industrial, scientific and medical

applications using lower cost computing facilities or image processing units.

Brief Description of Drawings

Figure 1 shows hardware architecture for Poly-Point image processing.

Figure 2 shows a processing flow diagram for the steps in performing a poly-point image

operation.

Figure 3A shows a first quad point kernel for use in creating a 32 point linear filter

programmed as a cascade of three quad point filters.

65

70

75

80

85

90

WO 02/35471 PCT/US01/32525

Figure 3B shows a second quad point kernel for use in creating a 32 point linear filter

programmed as a cascade of three quad point filters

Figure 3C shows a third quad point kernel for use in creating a 32 point linear filter

programmed as a cascade of three quad point filters.

Figure 4A shows the intermediate filter result for a cascade of the first and second quad

point kernels shown in Figure 3A and 3B

Figure 4B shows the 32 point linear filter equivalent of a cascade of 3 quad point filters

shown in Figures 3A, 3B, and 3C.
Figure 5 shows the method for performing a cascade of poly-point operations.

Figure 6A shows part 1 of six dual point additions that cascade to form a 32 point linear

filter.

Figure 6B shows part 2 of six dual point additions that cascade to form a 32 point linear

filter.

Figure 6C shows part 3 of six dual point additions that cascade to form a 32 point linear

filter.

Figure 6D shows part 4 of six dual point additions that cascade to form a 32 point linear

filter.

Figure 6E shows part 5 of six dual point additions that cascade to form a 32 point linear

filter.

Figure 6F shows part 6 of six dual point additions that cascade to form a 32 point linear

filter.

WO 02/35471 PCT/US01/32525

Figure 7A shows the intermediate result of 6A of the 6 dual point additions.

95 Figure 7B shows the intermediate result of 6A cascaded with 6B of the 6 dual point
additions.

Figure 7C shows the intermediate result of 6A cascaded with 6B cascaded with 6C.
100 Figure 7D shows the intermediate result of 6A cascaded with 6B, 6C, and 6D.
Figure 7E shows the 32-point linear filter result of the cascade of all 6 dual point additions.

Figure 8A shows the first of three quad point filters that when cascaded will form the filter

105 shown in Figure 9B that could be used for vertical edge detection.

Figure 8B shows the second of three quad point filters which when cascaded will form the

filter shown in Figure 9B which could be used for vertical edge detection

110 Figure 8C shows the third of three quad point filters which when cascaded will form the

filter shown in Figure 9B that could be used for vertical edge detection.

Figure 9A shows the intermediate filter result from cascading the first and second quad
point filters shown in figures 8A, and 8B.

115
Figure 9B shows the filter formed by cascading the filters of Figure 8A, 8B, and 8C. This

filter could be used for vertical edge detection.

Figure 10A shows the first of three quad point maximum kernels used to perform a 32
120 point grayscale morphological dilation programmed as cascade of three quad-point

maximum kernels wherein each darkened element indicates part of the maximum function.

Figure 10B shows the second of three quad point maximum kernels used to perform a 32

point grayscale morphological dilation programmed as cascade of three quad-point

WO 02/35471 PCT/US01/32525

125 maximum kernels wherein each darkened element indicates part of the maximum function.

Figure 10C shows the third of three quad point maximum kernels used to perform a 32

point grayscale morphological dilation programmed as cascade of three quad-point

maximum kernels wherein each darkened element indicates part of the maximum function.
130

Figure 11A shows the first maximum operator for the 32-point grayscale morphological

dilation

Figure 11B shows the cascade result of the first and second maximum operators of Figures

135 10A and 10B.

Figure 11C shows the cascade result of the first, second, and third quad-point maximum

operators to form a 32 point grayscale morphological dilation.

140 Figure 12A shows the first of 6 dual point maximum operators used to form a 32 point

grayscale morphological dilation programmed as cascade of six dual-point maximum

Figure 12B shows the second of 6 dual point maximum operators used to form a 32 point

grayscale morphological dilation programmed as cascade of six dual-point maximum
145

Figure 12C shows the third of 6 dual point maximum operators used to form a 32-point

grayscale morphological dilation programmed as cascade of six dual-point maximum

Figure 12D shows the fourth of 6 dual point maximum operators used to form a 32-point

150 grayscale morphological dilation programmed as cascade of six dual-point maximum

Figure 12E shows the fifth of 6 dual point maximum operators used to form a 32-point

grayscale morphological dilation programmed as cascade of six dual-point maximum

155 Figure 12F shows the sixth of 6 dual point maximum operators used to form a 32-point

grayscale morphological dilation programmed as cascade of six dual-point maximum

WO 02/35471 PCT/US01/32525

Figure 13A shows the intermediate result of the first of 6 dual point maximum operators
used to form a 32-point grayscale morphological dilation programmed as cascade of six

160 dual-point maximum

Figure 13B shows the intermediate result of combining the first and second dual point

maximum operators shown in Figures 12A, and 12B.

165 Figure 13C shows the intermediate result of combining the first, second and third dual

point maximum operators shown in Figures 12A, 12B, and 12C.

Figure 13D shows the intermediate result of combining the first, second, third and fourth
dual point maximum operators shown in Figures 12A, 12B, 12C, and 12D.

170
Figure 13E shows the result of combining all six dual point maximum operators shown in

Figures 12.

L}

Best Mode for Carrying Out the Invention

175 Referring to Figure 1, a computer 100 has at least one Central Processing Unit (CPU) 102
and one memory module 110. Simple computers could have the CPU and memory on a
single chip. More complicated computers may have multiple CPUs and multiple memory
boards. This invention stores an image as a contiguous block in memory or other
convenient way for memory addressing. Multiple images 112, 114, 116 can be efficiently

180 stored and accessed. The interface between the CPU and the memory is through an
address bus 106 and a data bus 108. Most CPUs have on-chip or external high speed
cache memories 104. This architecture exists on almost all computers. The memory
access can be under the control of the CPU or through a Direct Memory Access (DMA)
module.

185
Images are efficiently accessed by sequentially incrementing the address corresponding to
single or multiple memory locations depending upon word length and pixel quantization.

Poly-point operations (or simply point operations) are performed in the CPU on data

WO 02/35471 PCT/US01/32525

loaded from the memory addressed. Poly-point operations can be complex and may

190 include any mathematical operation that uses a pixel value as input.
The results of the poly-point operations are stored in either an internal buffer, cache
memory or an image in memory. The steps shown in Figure 2 130 can carry out the poly-

point image operations.

195 As shown in Figure 2, memory addresses are incremented sequentially 132 and data
associated with the addressed memories are loaded into the CPU 102. The desired
operation is performed on the data 134 and the result of the operation is saved to an
internal buffer or memory 136. A check is performed to determine whether the whole
image is processed 138. If the whole image is processed, the poly-point image operation is

200 completed 140. Otherwise, the memory addresses are incremented 132 and the steps are

repeated.

Many memory capacity, access and processing speed up features are built into general
purpose CPUs. For example, the Intel® Pentium® III processor integrates the P6

205 Dynamic Execution micro-architecture, Dual Independent Bus (DIB) Architecture, a
multi-transaction system bus, Intel® MMX™ media enhancement technology, and
Internet Streaming SIMD (Single Instruction Multiple Data) Extensions. It also includes
Advanced Transfer Cache and Advanced System Buffering to achieve higher data
bandwidth. It has memory cache-ability up to 4 GB of addressable memory space and

210 system memory scalability up to 64 GB of physical memory that allows the storage of a
huge number of images (Intel Pentium® III Processor for SC242 at 450 MHz to 1.13 GHz
Datasheet). PowerPC 7400 uses AltiVec technology vector processing units to speed

processing (see http://www.altivec.org for a complete list of AltiVec related papers and

articles, including technology overviews).

215
The poly-point image operations in this invention are simple and predictable. The
simplicity and predictability improves the efficiency of memory caching and operation
predictions that are built into many CPUs. This invention uses a cascade of poly-point
operations to achieve high speed linear filtering and morphological operations that form

220 the bases of most neighborhood based image processing functions.

WO 02/35471 PCT/US01/32525

Filtering is conventionally achieved by neighborhood convolutions. This invention can
efficiently achieve the same or equivalent neighborhood convolutions by a simple program
225 | that performs a cascade of poly-point additions/subtractions. The poly-points to be added
are from different locations of the same image (an exception would be motion detection).
This can be efficiently programmed as additions of different memory locations that
increment simultaneously. For example, a quad-point addition can be programmed as the
sum of four incremental memory contents as follows:
230
I_out[++i] = Lin[i] + Lin[j++] + Lin[k++] + Lin[l++];

The memory pointers i, j, k and 1 are offset according to the kernel specification.

235 The simple addressing mode of image memory allows efficient use of prefetch and cache-
ability instructions provided by the CPU. For example, a substantial portion, the
neighborhood portion, of the input image could be loaded into the cache memory 104 to

facilitate high speed processing.

240 Figure 4B shows a 32 point linear filter that can be programmed as cascade of three quad-
point kernels shown in Figure 3A, 160, Figure 3B, 170, and Figure 3C, 180. Here the
quad-point name stems from the four unit values in each kernel. As will be apparent to
those skilled in the art, similar kernels with fewer or more values could also be used. The
kernels are selected to ease the processing demand yet achieve a computationally efficient

245 filtering result. Note that all the primitive kernels 160, 170, 180 have four unit
coefficients. These coefficients render the multiplication operation in convolution moot,
since the result of multiplication by 1 or zero is identical to the value being multiplied or it
is zero. Thus, no time needs to be spent performing the multiplication operation. Only
addition is required to convolve these kernels with each other or with input image pixels.

250 In addition, because the kernels are small, few pixels need to be retrieved from memory to
compute the output result. All operations are integer. Pixels may be typically expressed in
integer 8 bit values. To maintain 8 bit values for the output image and to normalize the
output result, a right shift of 2 bits (effectively divide by 4) can be applied as part of the

operation. Filters involving non-unity values (requiring multiplication) or large size

WO 02/35471 PCT/US01/32525

255 kernels are broken down into a sequence of small, simple and fast addition (and bit shift)
operations. The particular small kernels selected are chosen to approximate the
characteristics of the filter they replace. The shapes of filters that can result frorﬁ differing
combinations of these basic filters approximates very well behaved traditional filters and
thus produces most of their performance while at the same time creating a large decrease

260 in computational load for the CPU. In the conventional approach, a 32 point linear filter
requires 32 multiplications, 31 additions, and a divide for each pixel. Depending upon the
kernel, floating point operations may also be required. Yet, the result achieved may not be
significantly different than what‘could be achieved with the simpler approach described
herein. In the example, the quad-point operations only require 12 additions and three 2 bit

265 shifts per output pixel value.

To illustrate how this approach develops complex filter shape or large size kernels, the
example kernels 160, 170, 180 are combined. 160 combined with 170 produces 200
(figure 4A). Therefore, convolving 160 and 170 with an input image to produce a resultl is

270 equivalent to filtering of the same input image with 200. But the time required is less
using the multi-step primitive kernels 160, 170. Cascading 180 with Result] to produce
Result2 is equivalent to filtering of the input image with 210. Again, it will be clear that
time is saved. As will be apparent, the time saved becomes dramatically large where large
kernel size or multi-dimensional filters are involved. Note that the principle of simple

275 kernels with unit values can be used to produce a wide variety of filters. The kernels are
not restricted to quad element figures, as in this example, but can be constructed from a

variety of primitive kernels.

The steps for performing a cascade of the poly-point operations are shown in Figure 5 350.
280 In step 310 memory address pointers are setup according to the size and shape of the
kernel for the poly-point operation. Poly-point operation is performed for the entire image,
320. A check is performed 330 to determine whether all stages in the image filter cascade
are completed. If all stages are completed 340, the image filtering function is completed.
Otherwise, the memory address pointers are set up for the next poly-point operation 310

285 and the steps are repeated.

WO 02/35471 PCT/US01/32525
10

In one embodiment of the invention, the operations as shown in Figure 5 350 can be

programmed in the pseudo codes as follows:

290 char I[image_size], I_out[image_size], I_2[image_size];

register int i, j, k, 1;

For (i =-1, j =0, k = line_length, 1 = line_length+1; i<image_size;)
L out[++] = A [E] + I[G++] + I [k + I [1++])>>2;
295 For (i=-1, j = line_length-2, k = line_length-1, 1 = j+line_length; i<image_size;)
I_2[++i] = (I_out [i] + I_out [j++] + I_ out [k++] + I_ out [I4++])>>2;
For (i =-1, j = 1, k = 2*line_length-1, 1 = k+2; i<image_size;)
I_out [++i] =(L2 [i] + 12 [j++] + L2 [k++] + L2 [[++])>>2;

300 In this implementation, image memories are declared as arrays in a software program.
Registers are used for the address pointer to increase the access speed. “line_length” is the
length of each line of the image. “image_size” is the size of the image. The program is
very simple and straightforward so it can be easily optimized or written in C/C++, Java,
assembly language or other computer languages for the best performance. Additional

305 programs may be written to handle image boundary conditions. As an example, each line
of an image can be filtered in its entirety by extending image memory to include extra data
for boundary condition handling. Alternatively, the boundary condition management can
be done one line at a time. The origin of each kernel can affect a shift in the image position
that can also be dealt with as part of the boundary condition.

310

The same 32 point linear filtering can be programmed as a cascade of six dual-point
additions as shown in Figure 6. The cascade of kernels of figure 6 are equivalent to a
larger kernel which is developed in Figures 7A, 7B, 7C, 7D, 7E wherein poly-point

315 operations are cascaded beginning with 400, cascaded with 410 to produce 460, cascaded
with 420 to produce 470, cascaded with 430 to produce 480, arid cascaded with 440 and
450 to produce 490. Cascading very small kernels may be appropriate for CPU’s with
slower ALU yet fast memory speed. The dual-point operations only require 6 additions for

each pixel. This compares favorably to the prior art approach that requires 32

WO 02/35471 PCT/US01/32525
11

320 multiplications and 31 additions per pixel. In one embodiment of the invention, the

operations of Figure 6 can be programmed in the pseudo codes as:

char I[image_size], I_out[image_size], I_1[image_size];
registerint [, j, k, I;
325
For (i = 0; i<image_size;)
L[] =@ [i++] + I[i])>>1;
For (i = -1, j = line_length; i<image_size;)
I out[++] = (@_1 [i] + L1 [j++])>>1 ;
330 For (i=-1, j = line_length-1; i<image_size;)
L 1[++] = _out [i] + L out[j++])>>1 ;
For (i = -1, j = line_length-2; i<image_size;)
ILout[++]=_1[i]+ LI [j+D>>1 ;
For (i =-1, j = 1; i<image_size;)
335 L 1[++] = (I_out [i] + L out [j++])>>1 ;
For (i =-1, j = 2*line_length-1; i<image_size;)

Lout[++] = (I_1[i] + L1[++D)>>1

340 As can be appreciated by those skilled in the art, the poly-point operations do not have to |
be limited to 2 or 4 points. Poly-point additions can be easily programmed in a general
purpose CPU and additions of different points can be cascaded together to form the desired
filter kernel in a most efficient fashion for the available computing resource. The number
of points per stage of operation can also be flexibly adjusted to match the CPU and

345 memory speed to avoid processing dead time due to CPU or memory bottleneck. Fewer

points are used for slower CPU and more points are used for slower memory.

Poly-point filters may operate in conjunction with prior art filters in a system. Certain
filter actions may require extreme precision, and others may be capable with a more

350 approximate result. For example, in filtering of color components of an image, lower
precision is generally required than is necessary for the luminance information. Poly-point

filters may also be cascaded with prior art filters.

WO 02/35471 PCT/US01/32525
12

This invention is efficient for large kernel filtering. It achieves convolution without

355 multiplication and can be easily used for efficient multi-dimensional processing. For
example, tracking of objects in images whose position changes with time may be done
using poly-point filtering. Poly-point operations can be created that use subtraction or
combination of addition and subtraction to create other linear filters. Figures 8A, 8B, 8C,
shows small changes to Figure 3C kernel 180 to create a cascade of filters 160, 170, 520

360 that could be used for vertical edge detection. In this example, 160 is cascaded with 170 to
create 200 (Figure 9A) which is cascaded with 520 to create 620 (Figure 9B).

Morphologic Filtering by Cascade of Poly-Point Maximum/Minimum

365
Similar to linear filters, morphologic filtering is conventionally achieved by neighborhood
operations. This invention can efficiently achieve the same operations by a simple
program that performs cascade of poly-point maximum/minimum. The poly-points to be
operated are from different locations of the same image. This can be efficiently

370 programmed as maximum/minimum of different memory locations that increment
simultaneously. For example, a quad-point maximum can be programmed as the

maximum of four incremental memory contents as follows:

I_out[++i] = MAX(MAX(_in[i], Lin[j++]), MAX(L_in[k++], I_in[I++]));
375

Where memory pointers i, j, k and 1 are offset according to the specification of the kernel.

Figure 10A, 10B, 10C, and Figurel1A, 11B, 11C, shows 32 point grayscale morphological
dilation 750 programmed as a cascade of three quad-point maximum kernels 700,710,720.
380 730 is cascaded with 710 to produce 740 which is cascaded with 720 to produce 750.
Wherein the maximum associated value of each of the 4 darkened elements of the kernels
replaces the value of the pixel in the image being filtered. Note that fewer and more
closely grouped pixels from the image are required to perform any individual filtering

operation. This speeds up memory access. In addition, 12 overall maximum operations

WO 02/35471 PCT/US01/32525
13
385 are performed per pixel instead of 32. In one embodiment of the invention, the operations

can be programmed in pseudo code as:

char I[image_size], I_out[image_size], I_2[image_size];

390 registerinti, j, k, [;

For (i = -1, j =0, k = line_length, 1 = line_length+1; i<image_size;)
I_ out [++i] = MAX(MAXT [i], I [j++]), MAX{T [k++], I[1++]));
For (i = -1, j = line_length-2, k = line_length-1, 1 = j+line_length; i<image_size;)
395 I_Z[++i] = MAX(MAX(I_out [i], I_out [j++]), MAX(L out [k++], I_out [I4++]));
For (i=-1,j=1,k=2%line_length-1, 1 = k+2; i<image_size;)
I_out [++i] = MAX(MAX(_2 [i], 1.2 [j++]), MAX(I_2 [k++], .2 [1++]));

The same 32 point grayscale morphological dilation can be programmed as cascade of six
400 dual-point maximum as shown in Figures 12 and 13 wherein the maximum value of each
of two darkened elements of the kernels 800, 810, 820, 830, 840 and 850 replaces the
value of the pixel in the image being filtered. In this example, the two element maximum
operators 800 (same as 900) and 8§10 in combination effect the maximum operator 910.
The combination of 800, 810, and 820, effect a maximum operator 920. The combination
405 of 800, 810, 820 and 830 effect a maximum operator 930. The combination of 800, 810,
820, 830, 840 and 850 effect a maximum operator 940. In comparison with the quad-point
operators of Figure 10 that produce the same result, this may be appropriate for CPU’s
with slower ALU yet fast memory assess speed. Alternatively, an intermediate result 910,
920, or 930 may be desired as an output.
410
In one embodiment of the invention, the operations of Figure 12 can be programmed in

pseudo codes as:

char Ifimage_size], I_out[image_size], I_1[image_size];

415 Registerint1, j, k, 1;

For (i = 0; i<image_size;)

WO 02/35471 PCT/US01/32525
14

L1[i] =MAX I [i++], I[iD);
For (i =-1, j = line_length; i<image_size;)
420 Iout [++] =MAX (_1[i], L1 [j++D;
For (i = -1, j = line_length-1; i<image_size;)
I_1[++i] = MAX (I_out [1], 1 _out [j++]);
For (i = -1, j = line_length-2; i<image_size;)
I_out [++i] =MAX (I_1[i], I_1 [j++]);
425 For (i=-1,j=1;i<image_size;)
I_1[++] = MAX (I_out [i], I_out[j++]);
For (i =-1, j = 2*line_length-1; i<image_size;)
L out [++] =MAX (I_1 [i], L1 [j++D;

430 As can be appreciated by those skilled in the art, the poly-point operations do not have to
be limited to 2 or 4 points. Poly-point maximum can be easily programmed in a general
purpose CPU and the neighborhood maximum of different points can be cascaded together
to form the desired structuring element in the most efficient fashion for the available
computing resource. The number of points per stage of operation can also be flexibly

435 adjusted to match the CPU and memory speed to avoid processing dead time due to CPU
or memory bottleneck. Fewer points are used for slower CPUs and more points are used

for slower memory.

This invention is very efficient for large kernel morphological operations. It can be easily
440 applied to highly efficient multi-dimensional processing. The operations can also be
expanded. Changing the neighborhood operator from maximum to minimum will change
dilation into erosion. Combinations of dilation and erosion will create morphological
opening, closing and hit-or-miss transformation. From the hit-or-miss transformation,
morphological thinning and thickening operations can be created.
445
The invention has been described herein in considerable detail in order to comply with the
Patent Statutes and to provide those skilled in the art with the information needed to apply
the novel principles and to construct and use such specialized components as are required.
However, it is to be understood that the inventions can be carried out by specifically

450 different equipment and devices, and that various modifications, both as to the equipment

WO 02/35471 PCT/US01/32525
15

details and operating procedures, can be accomplished without departing from the scope of

the invention itself.

WO 02/35471 PCT/US01/32525
16

The Claims defining the invention are:

455
1. A high speed image processing apparatus comprising:
a. a central processing unit having a data bus and an address bus to access and
load data;
b. amemory to store images, wherein the memory is connected to the central
460 processing unit through the data bus and the address bus

¢. aprogram directs the central processing unit to perform a poly-point operation
on image data loaded from the memory through the data bus and the address

bus.

465 2. The apparatus of claim 1 further comprises a means to save the poly-point operation

results to memory.

3. The apparatus of claim 1 wherein the poly-point operation comprises the steps of:
a. incrementing at least one memory addresses sequentially and

470

<

Loading data associated with the addressed memory into a CPU;

performing at least one ALU operation on the data and

/0

saving the result of the operation to memory

checking whether the whole image is processed

oo

repeating the poly-point image operation
475
4. The apparatus of claim 1 further comprising a program to perform cascade of poly-

point operations.

5. The apparatus of claim 1 wherein the data from the memory is loaded to the central

480 processing unit by a DMA device.

6. The apparatus of claim 2 wherein the means for saving the poly-operation results to the

memory of claim 2 comprises a DMA device.

WO 02/35471 PCT/US01/32525
17

485 7. The apparatus of claim 3 wherein the poly-point operation steps include at least one

addition operation.

8. The apparatus of claim 3 wherein the poly-point operation steps include at least one

subtraction operation.

490
9. The apparatus of claim 3 wherein the poly-point operation steps include at least one
maximum operation.
10. The apparatus of claim 3 wherein the poly-point operation steps include at least one
495 minimum operation.

11. The apparatus of claim 3 wherein the poly-point operation result is saved to memory
by a DMA device.

500 12. The method of claim 4 further comprising the steps of:
a. setting up memory address pointers according to the size and shape of the
kernel for a poly-point operation;
b. performing the poly-point operation for at least a portion of an image;
c. performing a check to determine that all stages in the image filtering cascade
505 are completed.

d. performing a cascaded poly-point operation for at least a portion of an image

WO 02/35471

PCT/US01/32525
-1/9 -
100 110
102 104 106 /
f/ / \Address Mermory
Central ous 112
. Cache
Processing . B
Unit Memories g 114
Image2]
: 4l,f 116
108 Data Bus magel
Figure 1
130
Start
¢ 132
Increment memory
‘ P address and load data
¢ 134
Perform Operation
+ 136
Save Result
No 138
140

Figure 2

End

PCT/US01/32525

WO 02/35471

. OO0
OOO
@@@ 00000000

OO0mm=~00
Ornamnnaa(
Ot m=0
01344310
Ornamoaa-0
OO0mwma=a=00
O000000O0

1

Figure 3C

210

000
§ 000

Figure 3B

000000
O0~=~00
Orvnaa™0
Ol N N O
OO0 =~==~00
O0000O0

200

OO
OOV

Figure 4B

Figure 4A

WO 02/35471

PCT/US01/32525

- 3/9 -
350

Start

Set up initial f

pointers to

310

appropriate
memory locations

7 f320
Perform a poly-point
image operation

Figure 5

330
No End of
Cascade
stages?
340

End -j

WO 02/35471 PCT/US01/32525

-4/9 -

00, OO0
JOoloR Nololo)
00,
S99 .00 |
OO0

OO ¢ 00
NOIOILINOCIOY:

WO 02/35471

470

460

400

OO0O00O0O0
O0OOO00O
OCOOOOO
OCOOOOO
000000
000000

O000O0O0
OOBOO0O0
OCOOOO0O0
OGO OO00O
000000
O0O0O0O00O

000000
O000OO0O0
OGO0OO0O0
OGO0OO0O0
O00O0O0O0
000000

- 5/9 -

Figure 7C

Figure 7B

Figure 7A

490

480

PCT/US01/32525

O0000000
O0OOOO0OO0
COOOOOOO
COOOOOOO
COOOOOOO
COOOOOOO

O0OOOOOO0
OO0000000

OCOO00O00O
OO0BBOOO0O
OOOOOO
OO
O00OOBOOO0
OO0OO0O00O

Figure 7D

Figure 7E

//////////////

elole
000 i
000 *

000 ,
- 000 |

00
.00]
OO

WO 02/35471 PCT/US01/32525

- 719 -

O0000000
COLOOOOO0O
OOOOOOOO
COOOOOOO
OOOOOOOO
OO0

COOOOO0O0
00000000

Figure 9B

620

OO0 000
O0OLOLOO0
OLOEOO
g OGO
OO0OLBOO
OO0 00O0

Figure 9A

WO 02/35471 PCT/US01/32525

- 8/9 -

700 710

® 00 e
cCee o0 | XOX
' JOX
Figure 10A Figure 10B Figure 10C
750
730 240 O0O0OO0O0OO0O0O0

CCe00000O

O0O0O000O OO0OOO0OO0OO OeeeeeoeO
oJoX X Jolonmmorol X JoRonmmON X X X X X JO
oJoJoX X JoRmmON X N N RORNNON X X X X } JO
O0O000C0 OCeeeed C0000000
O0O0000 0000 0CLOeeee O
O0O00O00O O0O0O0O0OO 00000000

Figure 11A Figure 11B Figure 11C

WO 02/35471 PCT/US01/32525

-9/9 -

800 810 820

o0 Yo oce
00 oe oe
S_1 S 2 S 3
Figure 12A Figure 12B Figure 12C
0 840 850
0O
ce 000 00
CYe) 000 CYe)
S 4 5.5 S 6
Figure 12D Figure 12E Figure 12F
940
910 930
20 720 00000000
000000 000000 OOOOOO 000000 oJoX X X X JoXeo
[ofoX X JoXomueleX X JoloameleX J JoloammoleX X JOXO) 0000000
O00000 000Cee0 OOe00O Cee0eO 00000000
000000 000000 O0OCeeO CeeeeO Ce000000
O0O0000O OOOO0OO OOOOOO 0OOeeOO C0000000
000000 000000 OOOCOOO 000000 oJeX X X X JOXO)
00000000
Figure 13A Figure 13B Figure 13C Figure 13D

Figure 13E

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US01/32525

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) . GO6T 5/00, 5/20, 5/30, 1/20
US CL 382/257,260,302,303,307,308

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 382/257,260,302,303,307,308,304

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US 5,046,190 A (DANIEL et al) 03 September 1991, col. 3, lines 25-60, col. 4, lines 25- 1-4 and 9-14
-— 30, col. 5, lines 37-50, and col. 10, lines 37-64. JEUU—
Y 5-6 and 11
X US 4,692,944 A (MASUZAKI et al) 08 September 1987, se abstract, col. 2, lines 11-35, 1-3, 7-8
- col. 2, line 49 to col. 4, line 19, and claims 6and12. | e
5- 6 and 11

I:I Further documents are listed in the continuation of Box C.

]

See patent family annex.

* Special categories of cited documents:

“A" document defining the general state of the art which is not considered to be
of particular relevance

“E" earlier application or patent published on or after the international filing date

“L" document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

“Q" document referring to an oral disclosure, use, exhibition or other means

“p” document published prior to the international filing date but later than the
priority date claimed

“T" later document published afier the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“Xn document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such d such combi
being obvious to a person skilled in the art

“&" document member of the same patent family

Date of the actual completion of the international search

25 February 2002 (25.02.2002)

Date of mailing of the ternatlonal search report

MAR J007 o

Name and mailing address of the ISA/US

Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703)305-3230

Dave Moore

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

