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SOFT - RIGID ROBOTIC JOINTS 
CONTROLLED BY DEEP 

REINFORCEMENT - LEARNING 

CROSS - REFERENCE TO RELATED 
APPLICATION 

[ 0001 ] The present application claims the benefit of and 
priority to U.S. Provisional Application No. 63 / 155,490 , 
filed on Mar. 2 , 2021 , and U.S. Provisional Application No. 
63 / 217,854 , filed on Jul . 2 , 2021. The entire disclosures of 
each of the foregoing applications are incorporated by 
reference herein . 

BACKGROUND 

[ 0002 ] The combination of elasticity and rigidity found 
within mammalian limbs enables dexterous manipulation , 
agile , and versatile behavior , yet most modern robots are 
either primarily soft or rigid . Most mammals have ligaments 
that connect bone to bone , enabling joints to passively 
redirect forces and softly constrain the range of motion . 
Hybrid robots , composed of both soft and rigid parts , 
promote compliance to external forces while maintaining 
strength and stability provided by rigid robots . 
[ 0003 ] Natural manipulators , such as the human arm , have 
been shaped by the long - term optimization of evolution . 
They tend to be extremely versatile , having the dexterity to 
work with various objects and environments . The hybrid 
composition of rigid and soft components including bones , 
muscles , and connective tissues yield inherent compliance 
and flexibility . Biological joints often have passive stability 
and elasticity that create mechanical feedback that benefits 
disturbance responses . In addition , recent progress in the 
mechanical complexity of robots has popularized embed 
ding intelligence within the system . Such robots may inher 
ently dampen motion through elastic components or enable 
complicated movements emerging from simple actuation , 
e.g. , origami robots . 
[ 0004 ] In contrast , traditional robot arms tend to feature 
rigid components that are susceptible to large moments 
propagating throughout the entire robot . This means the 
robot's structural integrity can be compromised by a large 
unpredictable disturbance . Robotic manipulators involving 
rigid joints have strictly defined degrees of freedom result 
ing from the mechanical design . These joints typically fit 
within three categories : prismatic joints ( linear movement 
on an axis ) , revolute joints ( rotational movement around an 
axis ) , or a combination of the two . 
[ 0005 ] Rigid robotic joints are often actuated by motors 
that change their position directly , allowing straightforward 
kinematic models to calculate the joint's position . Due to 
their dynamics , traditional feedback control systems , such as 
a proportional integral derivative ( PID ) controller , can solve 
this problem relatively well , with modifications that can 
adapt to the influences of gravity . One modification to 
account for nonlinearities involves feed - forward neural net 
works with PID input features . 
[ 0006 ] While these dynamics are effective within con 
trolled environments , rigid robots pose dangers to both 
themselves and humans because of their intrinsic inability to 
deal with external forces . In environments where humans are 
directly interfacing with robots — such as industrial manu 
facturing or telepresence — the robot's lack of compliance 
can put workers and civilians at risk of injury . Measures 

have been taken to increase the safety of these robots , but 
they are not innately safe . Factors including intrinsic safety , 
human detection , and control techniques influence the over 
all safety . The risk that a robot will cause physical harm has 
also been shown to moderate people's willingness to work 
with the robot . Strategies such as safety fences and human 
detection increase safety but limit the human - robot collabo 
ration . 

[ 0007 ] Flexible robots can mitigate these external forces 
through structural compliance while maintaining morpho 
logical similarities with rigid robots . Systems such as soft 
robots and tensegrity - based robots with elastic components 
are inherently compliant . Biologically inspired approaches 
tend to exemplify this behavior . The motion of legged 
tensegrity structures has been validated by biological simu 
lations while simplifying the underlying bone - ligament 
architecture . From a bio - mimicry perspective , a human 
finger has been functionally recreated through one - shot 
three - dimensional ( 3D ) printing techniques employing both 
rigid and elastic components . Soft robots can provide safe 
human interaction , resulting in safer environments . Soft 
cable - driven exo - suits can be compliant while avoiding 
obstruction to the user's range of motion . Intelligent design 
approaches have even resulted in programmable tensegri 
ties . However , due to the non - linearities within the elastic 
components , these compliant robots tend to require complex 
models in order to be controlled properly . 
[ 0008 ] Soft robotics made from elastic components 
increase compliance while often sacrificing stability and 
precision . An accurate model of the system would enable the 
use of modern control techniques which can provide optimal 
solutions . Optimal control finds the proper control values 
which optimize an objective function based on the system 
model . A Linear - Quadratic Regulator ( LQR ) solves the 
problem of minimizing a quadratic cost matrix ( encoding 
weights of errors , energy use , etc. ) over a specified time 
horizon , however it is expensive and demands accurate 
models . Model predictive control optimizes a finite time 
horizon window that is repeatedly solved at each new 
time - step , reducing computational cost while enabling 
anticipation of future events . To create the model , a common 
method involves system identification , which can estimate 
the dynamics based on measurements . 
[ 0009 ] However , noise in the design process can breed 
inconsistencies in production , and the non - linear nature of 
flexible robots further complicates modeling . This empha 
sizes the need for control methods that can learn from data . 
One potential solution for controlling this variation in robots 
involves having precisely adjusted models for each physical 
instance . But these approaches are cumbersome due to the 
requirement of constructing precise models . Thus , there is a 
need for a system and method of controlling soft - rigid 
hybrid robotic joints that overcome the deficiencies of the 
conventional control methodologies . 

SUMMARY 

[ 0010 ] The present disclosure provides a soft - rigid hybrid 
robotic joint with variable kinetic parameters that are con 
trollable through learned methods . In particular , the present 
disclosure provides a novel approach to designing and 
constructing a hybrid joint through parametric design 
choices that adjust dynamic properties of the system . Deal 
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ing with the inherent modularity and variability necessitates 
a model - free controller that adjusts to new contexts in a 
relatively short time . 
[ 0011 ] Reinforcement learning ( RL ) solves the above 
noted deficiencies of conventional control methods through 
a data driven approach to solve the optimal control problem . 
Deep - reinforcement learning ( DRL ) extends this framework 
by using neural networks as parameter estimators . In DRL , 
algorithms solve for an optimal policy that will compute the 
control value ( or action ) from the current state of the system . 
As used herein , the term " model - free ” denotes control 
methods that do not explicitly model the dynamics of the 
system . 

[ 0012 ] DRL solves control problems through gathering 
data , surpassing human skill in the domain of games , 
teaching legged robots to walk , and much more . However , 
neural algorithms are data intensive and gathering data on 
robots can be incredibly costly in machine - hours , making 
sample efficiency important . Transfer learning provides a 
method for reducing training time by using prior knowledge . 
Whether through examples of expert trajectories or an agent 
trained in simulation , transfer learning involves an agent 
leveraging training experience from some domain A to 
perform better on a new task in a similar domain B. In the 
case of robotics , simulations provide a route to shortening 
real world training times through pre - trained models that can 
be fine - tuned on the physical robot . 
[ 0013 ] The present disclosure provides a methodology for 
the construction of novel robotic joints with a hybrid soft 
rigid structure and model - free control strategies for this class 
of joints . First , the joint design begins with a simplistic 3D 
printing approach enabling easy customization with a mold 
ing process that supports interfacing between soft and rigid 
parts . Customization includes modifying the perforation of 
the rigid components , resulting in three types of joints ( i.e. , 
perforated , semi - perforated , and solid ) , each with distinct 
ligament meshes . 
[ 0014 ] Second , the joints c characterized through spring 
and damper experiments to provide insight in how the 
modification changes the dynamics . These experiments 
expose significant nonlinearities in the system and identify 
how design parameters can modulate the spring - damper 
terms , leading to future work of programmable dynamics . 
The parameters found inform a simulation , e.g. , MujoCo , 
enabling the use of transfer learning , e.g. , transferring 
machine learned knowledge / algorithm from a simulation to 
a physical / real world . As used herein , “ transfer learning ” 
denotes training of a control algorithm that includes a DRL 
algorithm on a simulation ( e.g. , of the joint ) and transferring 
the algorithm resulting from the training to control of the 
physical object , namely , the robotic joint . 
[ 0015 ] The present disclosure also describes and evaluates 
two model - free control methodologies which require mini 
mal user input : a proportional - integral - derivative ( PID ) con 
troller and a Soft Actor - Critic ( SAC ) algorithm . Three tasks 
were designed to evaluate the accuracy of each controller . 
The tasks were termed : 1 ) increasing steps , 2 ) decreasing 
steps , and 3 ) sinewave . The SAC policy yields greater 
precision through a wider range than the tuned PID control 
ler , and robustly solves the presented tasks by generalizing 
through the disclosed joint designs . Thus , the present dis 
closure provides a method for designing soft - rigid robotic 

joints with parameterizable stiffness and damping . Model 
free DRL is used to compensate for variability and non 
linearities . 
[ 0016 ] According to one embodiment of the present dis 
closure , a robotic arm is disclosed . The robotic arm includes 
a first link , a second link , and a joint interconnecting the first 
link and the second link , such that the first link is movable 
relative to the second link along an axis of motion . The joint 
includes : a socket component coupled to a distal end portion 
of the second link and a ball component coupled to a 
proximal end portion of first link , the ball component is 
configured to rotationally fit within the socket component . 
The joint also includes a flexible membrane encasing the 
socket component and the ball component . 
[ 0017 ] Implementations of the above embodiments may 
include the following modifications . According to one 
aspect of the above embodiment , the socket component may 
include a first plurality of through - holes . The ball compo 
nent may include a second plurality of through - holes . The 
first plurality of through - holes may be disposed in a first 
socket plane and a second socket plane . The first socket 
plane and the second socket plane may be perpendicular to 
each other and are aligned with the axis of motion . The 
second plurality of through - holes may be disposed in a first 
ball plane and a second ball plane . The first ball plane and 
the second ball plane may be perpendicular to each other and 
are aligned with the axis of motion . 
[ 0018 ] According to another aspect of the above embodi 
ment , the flexible membrane may be disposed within a space 
defined by the first plurality of through - holes and the second 
plurality of through - holes . The flexible membrane may be 
formed from an elastomer . 
[ 0019 ] According to a further aspect of the above embodi 
ment , the robotic arm may also include an actuator coupled 
to the second link and a cable coupled to the first link , 
wherein the actuator is configured to move the first link by 
spooling the cable . Each of the socket component and the 
ball component may include at least one routing block 
configured to route the cable around the joint . 
[ 0020 ] According to another embodiment of the present 
disclosure , a method of manufacturing a robotic joint is 
disclosed . The method includes forming a first plurality of 
through - holes in a ball component ; forming a second plu 
rality of through - holes in a socket component ; and inserting 
the ball component into the socket component to form a 
robotic joint , wherein the ball component is movable rela 
tive to the socket component along an axis of motion ; and 
applying a flexible membrane over the robotic joint and 
within a space defined by the first plurality of through - holes 
and the second plurality of through - holes . 
[ 0021 ] Implementations of the above embodiments may 
include the following modifications . According to one 
aspect of the above embodiment , applying the flexible 
membrane includes placing the robotic joint in a mold and 
pouring a liquid precursor composition of the flexible mem 
brane . 
[ 0022 ] According to another aspect of the above embodi 
ment , the first plurality of through - holes may be disposed in 
a first socket plane and a second socket plane and the first 
socket plane and the second socket plane may be perpen 
dicular to each other and are aligned with the axis of motion . 
The second plurality of through - holes may be disposed in a 
first ball plane and a second ball plane and the first ball plane 

a 
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and the second ball plane may be perpendicular to each other 
and are aligned with the axis of motion . 
[ 0023 ] According to another embodiment of the present 
disclosure , a method for programming a control agent for 
controlling a robotic arm is disclosed . The method includes 
running a simulation of a robotic arm based on a plurality of 
physical parameters on a workstation ; training a reinforce 
ment learning algorithm based on the simulation of the 
robotic arm ; and loading a control agent based on the 
reinforcement learning algorithm into a controller control 
ling the robotic arm . 
[ 0024 ] Implementations of the above embodiments may 
include the following modifications . According to one 
aspect of the above embodiment , training may further 
include performing a plurality of tasks to reach a random 
point a three - dimensional space of the simulation . Training 
may also include implementing a reward function config 
ured to minimize distance traveled to the random point . 
According to another aspect of the above embodiment , the 
method may also include retraining the reinforcement learn 
ing algorithm based on operation of the robotic arm in a 
physical space . 

BRIEF DESCRIPTION OF DRAWINGS 

with a ball component being one of the three types ( perfo 
rated , semi - perforated , solid ) according to the present dis 
closure ; 
[ 0040 ] FIG . 15 are plots ( angle as a function of time ) of a 
drop test performed on a robotic arm having a shoulder joint 
with a perforated ball component , a simulated drop test , and 
an idealized drop test , according to the present disclosure ; 
[ 0041 ] FIG . 16 are plots ( angle as a function of time ) of 
drop test performed on robotic arms having an elbow joint 
with a ball component being one of the three types ( perfo 
rated , semi - perforated , solid ) according to the present dis 
closure ; 
[ 0042 ] FIG . 17 are plots ( angle as a function of time ) of a 
drop test performed on a robotic arm having an elbow joint 
with a perforated ball component , a simulated drop test , and 
an idealized drop test , according to the present disclosure ; 
[ 0043 ] FIG . 18 shows a 3D visualization of an end effector 
trajectory moved by a robotic arm according to the present 
disclosure ; 
[ 0044 ] FIG . 19 shows a plot of an angle of the shoulder 
joint as a function of time of the robotic arm moving the end 
effector of FIG . 18 ; 
[ 0045 ] FIG . 20 shows a plot of an angle of the elbow joint 
as a function of time of the robotic arm moving the end 
effector of FIG . 18 ; 
[ 0046 ] FIG . 21 shows plots of a measured angle of the 
shoulder joint while performing an increasing steps maneu 
ver using a SAC algorithm and a PID algorithm and the 
resulting error for each ; 
[ 0047 ] FIG . 22 shows plots of a measured angle of the 
elbow joint while performing an increasing steps maneuver 
using a SAC algorithm and a PID algorithm and the resulting 
error for each ; 
[ 0048 ] FIG . 23 shows plots of a measured angle of the 
shoulder joint while performing a decreasing steps maneu 
ver using a SAC algorithm and a PID algorithm and the 
resulting error for each ; 
[ 0049 ] FIG . 24 shows plots of a measured angle of the 
elbow joint while performing a decreasing steps maneuver 
using a SAC algorithm and a PID algorithm and the resulting 
error for each ; 
[ 0050 ] FIGS . 25 and 26 show goal ( ideal ) plots of a 
measured angle of the shoulder joint while performing a sine 
wave maneuver along with plots using a SAC algorithm , a 
PID algorithm , a retrained SAC algorithm and the resulting 
error for each ; 
[ 0051 ] FIG . 27 shows absolute error plots as a function of 
time for each of three types of joint components , for each of 
the shoulder joint , the elbow joint , and the robotic arm , 
performing three motions increasing steps , decreasing 
steps , and sinus wave ) ; 
[ 0052 ] FIG . 28 shows a tuning plot for reaching an angle 
of about 35 ° using a PID control algorithm for the shoulder 
joint ; 
[ 0053 ] FIG . 29 shows a 3D visualization grid search 
values for the shoulder joint for each of the Kp , K , and K , 
parameters of the PID control algorithm according to the 
present disclosure ; 
[ 0054 ] FIG . 30 shows a tuning plot for reaching an angle 
of about 35º using a PID control algorithm for the elbow 
joint ; and 

[ 0025 ] Various embodiments of the present disclosure are 
described herein below with reference to the figures 
wherein : 
[ 0026 ] FIG . 1 is a perspective view of a robotic arm 
having a hybrid soft - rigid shoulder and elbow joints accord 
ing to the present disclosure ; 
[ 0027 ] FIG . 2 is a perspective view of a 3D model of the 
robotic arm of FIG . 1 according to the present disclosure ; 
[ 0028 ] FIG . 3 is a side view of 3D model of the shoulder 
joint according to the present disclosure ; 
[ 0029 ] FIG . 4 is a side view of 3D model of the elbow joint 
according to the present disclosure ; 
[ 0030 ] FIG . 5 is a partial , cross - sectional view of the 
shoulder joint according to the present disclosure ; 
[ 0031 ] FIG . 6 is a partial , cross - sectional view of the 
elbow joint according to the present disclosure ; 
[ 0032 ] FIG . 7 is a side view of a perforated ball compo 
nent of the shoulder joint according to one embodiment of 
the present disclosure ; 
[ 0033 ] FIG . 8 is a side view of a semi - perforated perfo 
rated ball component of the shoulder joint according to 
another embodiment of the present disclosure ; 
[ 0034 ] FIG . 9 is a side view of a solid ball component of 
the shoulder joint according to another embodiment of the 
present disclosure ; 
[ 0035 ] FIG . 10 is a plot of force measured as a function of 
an angle during closing of the shoulder joint according to the 
present disclosure ; 
[ 0036 ] FIG . 11 is a plot of force measured as a function of 
an angle during opening of the shoulder joint according to 
the present disclosure ; 
[ 0037 ] FIG . 12 is a plot of force measured as a function of 
an angle during closing of the elbow joint according to the 
present disclosure ; 
[ 0038 ] FIG . 13 is a plot of force measured as a function of 
an angle during opening of the elbow joint according to the 
present disclosure ; 
[ 0039 ] FIG . 14 are plots ( angle as a function of time ) of 
drop test performed on robotic arms having a shoulder joint 
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[ 0055 ] FIG . 31 shows a 3D visualization grid search 
values for the elbow joint for each of the Kp , K1 , and Kj 
parameters of the PID control algorithm according to the 
present disclosure . 

DETAILED DESCRIPTION 

a 

a 

a 

unspools the cable 44 , the first link 12 moves relative to the 
second link 14 about the first joint 20 and in particular , as the 
cable 44 is spooled , a first ( i.e. , elbow ) angle between the 
first and second links 12 and 14 decreases and conversely , as 
the cable 44 is unspooled , the first angle increases . 
[ 0061 ] The second actuator 50 and the second spool 52 are 
coupled to the third link 16 , i.e. , distal end portion 16b . The 
second spool 52 includes a cable 54 securely coupled to the 
second link 14 , proximal end portion 14b , such that the 
second spool 52 is coupled proximally of the second joint 30 
and the cable 54 is coupled distally of the second joint 30 . 
The cable 54 is routed through routing blocks 55a , 551 , 55c . 
The routing block 55a is disposed on the proximal end 
portion 16 a of the third link 16 and over a socket component 
34 of the second joint 30 ( FIG . 3 ) . The routing blocks 55b 
and 55c are disposed on a distal end portion of the second 
link 14 and over a ball component 32 of the second joint 30 . 
In embodiments , any suitable number of routing blocks or 
configurations may be used to minimize the forces and angle 
of attack of the cables relative to the links of the robotic arm . 
[ 0062 ] During operation , as the second actuator 50 spools 
and unspools the cable 54 , the second link 14 moves relative 
to the third link 16 about the second joint 30 and in 
particular , as the cable is spooled , a second ( i.e. , shoulder ) 
angle between the first and second links 12 and 14 decreases 
and conversely , as the cable 54 is unspooled , the second 
angle increases . In addition to a cable and spool system , 
various other mechanical linkages may be used , such as a 
belt , a drive rod , and the like . 
[ 0063 ] With reference to FIGS . 2-6 , each of the first and 
second joints 20 and 30 are ball and socket joints . The first 
joint 20 includes a ball component 22 and a socket compo 
nent 24. Similarly , the second joint 30 includes a ball 
component 32 and a socket component 34. The ball com 
ponents 22 and 32 as well as the socket components 24 and 
34 may be solid or hollow and may have a plurality of 
through - holes 35 formed therethrough . The ball components 
22 and 32 may be formed from any suitable rigid material , 
such as polymers ( e.g. , polylactic acid ) , metals , ceramics , 
and combinations thereof . The ball components 22 and 32 
may be formed using subtractive or additive manufacturing 
( e.g. , machining , laser cutting , 3D printing , etc. ) 
[ 0064 ] With reference to FIGS . 7-9 , various embodiments 
of the components are shown with respect to the ball 
component 32. Same modifications may be made to other 
components and only the ball component 32 is described for 
the sake of brevity . As shown in FIG . 7 , the ball component 
32 includes through - holes 35 disposed in a square grid 
pattern such that the through - holes 35 and a distance ther 
ebetween covers the majority of the surface of the ball 
component 32. This pattern is denoted herein “ perforated ” . 
As used herein , “ through - holes ” denotes a pair of holes that 
lie on the same longitudinal axis . In embodiments , where the 
joint components are solid , the through - holes may define a 
lumen through the component ( i.e. , ball components 22 and 
32 and socket components 24 and 34 ) . 
[ 0065 ] In embodiments , the through - holes 35 may be 
disposed in any suitable pattern , such as rectangular , circular 
( concentric circles ) , and the like . The through - holes 35 may 
be disposed in a plurality of planes . As shown in FIG . 7 , the 
through - holes 35 lie in two perpendicular planes , i.e. , X and 
y planes , which are aligned with the axis of intended motion . 

[ 0056 ] Embodiments of the presently disclosed robotic 
system including a robotic arm are described in detail with 
reference to the drawings , in which like reference numerals 
designate identical or corresponding elements in each of the 
several views . As used herein the term " distal ” refers to the 
portion of the robotic arm that is closer to an end effector 
held by the robotic arm , while the term “ proximal ” refers to 
the portion that is farther from the end effector . 
[ 0057 ] The terms “ application ” and / or " software ” are used 
interchangeably and may include a computer program 
designed to perform functions , tasks , or activities for the 
benefit of a user . Application may refer to , for example , 
software running locally or remotely , as a standalone pro 
gram or in a web browser , or other software which would be 
understood by one skilled in the art to be an application . An 
application may run on a controller , or on a user device , 
including , for example , a mobile device , a personal com 
puter , or a server system . 
[ 0058 ] The present disclosure provides a robotic arm 
having one or more hybrid soft - rigid joints . With reference 
to FIG . 1 , a robotic arm 10 includes a first link 12 , a second 
link 14 , and a third link 16. The links 12 , 14 , 16 may be 
formed from any suitable rigid material , such as metal , 
carbon fiber , polymer , etc. The links 12 , 14 , 16 may have any 
suitable shape such as rods , bars , hollow housings , and etc. 
Each of the links 12 , 14 , 16 includes a distal end portion 12a , 
14a , 16a , and a proximal end portion 12b , 14b , 16b , respec 
tively . The first link 12 may include an end effector 13 ( e.g. , 
grasper ) coupled to the distal end portion 12a . The first link 
12 may also include a sensor 15 , which may be disposed on 
the distal end portion 12a or on any other part of the robotic 
arm 10. In embodiments , multiple sensors 15 may be used 
to measure operational parameters of the robotic arm 10 . 
The sensor 15 may be an inertial measurement unit ( IMU ) 
configured to measure angular motion , roll , pitch , yaw , and 
other motion parameters . The sensor 15 may include accel 
erometers , gyroscopes , magnetometer , and other sensors 
suitable for measuring these motion parameters . 
[ 0059 ] The first and second links 12 and 14 are intercon 
nected by a first joint 20 , which acts like an elbow joint and 
the second and third links 14 and 16 are interconnected by 
a second joint 30 , which acts like a shoulder joint . Each of 
the first and second joints 20 and 30 are coupled to a first 
actuator 40 and a second actuator 50 , respectively . Each of 
the first and second actuators 40 and 50 may be motors 
coupled to first and second spools 42 and 52 , respectively . 
The first and second actuators 40 and 50 may include various 
sensors , such as torque sensors , angular sensors , encoders , 
and the like , configured to measure force imparted by the 
first and second actuators 40 and 50 and angle between the 
first , second , and third links 12 , 14 , 16 . 
[ 0060 ] The first actuator 40 and the first spool 42 are 
coupled to the second link 14 , namely , the distal end portion 
14a . The first spool 42 includes a cable 44 securely coupled 
to the first link 12 , such that the first spool 42 is coupled 
proximally with the first joint 20 and the cable 44 is coupled 
distally of the first joint 20 , i.e. , the proximal portion 12b of 
the first link 12. Thus , as the first actuator 40 spools and 

a 

a 

a 
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In particular , the primary axes of rotation for the second joint 
30 is the Oy direction ( FIG . 3 ) , and the first joint 20 as the 
Ox direction ( FIG . 4 ) . 
[ 0066 ] With reference to FIG . 8 , the ball component 32 
includes through - holes 35 that are disposed in a “ semi 
perforated ” pattern since there are fewer through - holes 35 
than in the “ perforated " pattern of FIG . 8. The through - holes 
35 are disposed along diagonal axes “ a - a ” and “ b - b ” which 
lie on the x plane . Similarly , the through holes 35 disposed 
on the y plane are disposed along corresponding diagonal 
axes ( not shown . ) FIG . 9 shows a solid ball component 32 
that is devoid of any through holes . As noted above , each of 
the components may be hollow , including the solid ball 
component 32 of FIG . 9 . 
[ 0067 ] To form the joints 20 and 30 the ball components 
are cast in a flexible membrane 37 , which is disposed over 
the ball components 22 and 32 and socket components 24 
and 34. The membrane 37 may be formed from any suitable 
compliant , flexible , and elastic polymer , i.e. , elastomers . 
Suitable elastomers include rubbers , such as natural rubbers , 
silicone rubbers ethylene propylene rubber , ethylene pro 
pylene diene rubber , and nitrile rubbers and synthetic elas 
tomers such as styrene - butadienes , polyisoprenes , polybuta 
dienes , polysiloxanes , fluoroelastomers , polyurethane 
elastomers , and the like . The ball components 22 and 32 and 
socket components 24 and 34 are joined together , such that 
the ball components 22 and 32 rotationally fits within their 
counterpart socket components 24 and 34 and the membrane 
37 is applied thereto . The ball components 22 and 32 fit 
within their counterpart socket components 24 and 34 , 
which are then placed within mold supports 39 ( FIGS . 5 and 
6 ) and the liquid precursor composition of the membrane 37 
is poured into the mold supports 39 to form the membrane 
37 after curing , which may be from about 15 minutes to 
about 5 hours , depending on the curing times of the polymer . 
In addition , the liquid composition penetrates the ball com 
ponents 22 and 32 and the socket components 24 and 34 via 
the through - holes 35 as well as their interconnecting lumens . 
This allows the membrane 37 to encase the joints 20 and 30 
and acts as connective tissue within the components of the 
joints 20 and 30. In further embodiments , the membrane 37 
may be formed by casting , dipping , layering , calendaring , 
spraying , and combinations thereof 
[ 0068 ] Adjusting degree of perforation ( i.e. , number of 
through - holes 35 and lumens therebetween ) the ball com 
ponents 22 and 32 and socket components 24 and 34 
changes the amount of negative ( i.e. , empty ) space , leading 
to changes in the amount of the membrane 37 that penetrates 
the ball components 22 and 32 and socket components 24 
and 34 , which in turn , modulates dynamics of the joints 20 
and 30. In particular , the combination of the membrane 37 
surrounding the joints 20 and 30 and within the through 
holes 35 creates a system of spring - dampers which can be 
modified by design parameters including hole quantity , 
outer - membrane width , and choice of flexible material used 
in forming the membrane 37. Thus , the joint dynamics may 
be adjusted by varying the quantity of through - holes 35 in 
the elastic membrane 37 of each joint . The through - holes 35 
act as parallel spring - damper systems , effectively adjusting 
the non - linear dynamics . 
[ 0069 ] The robotic arm 10 may be controlled using any 
suitable control methodologies including model - free meth 
odologies such as a proportional - integral - derivative ( PID ) 
controller and the model - free reinforcement learning algo 

rithm , such as soft actor critic ( SAC ) algorithm . The robotic 
arm 10 may also be controlled using model - based control 
techniques . 
[ 0070 ] In order to generate a suitable control agent for 
controlling movement of the robotic arm 10 , the robotic arm 
10 may be modeled using spring - damper characterization , 
e.g. , through force - deflection experiments as described in 
the “ Examples ” section . The sensors 15 as well as the 
sensors of the actuators 40 and 50 may be used to measure 
various parameters ( e.g. , force ) . These parameters along 
with dimensions of the robotic arm 10 may be used to 
generate a simulation of the robotic arm 10 ( e.g. , a MuJoCo 
simulator as described in the “ Examples ” section ) . The 
simulation of the robotic arm 10 may be used to train a 
control agent , which in embodiments may be machine 
learning algorithm as described in Example 4 below . Suit 
able machine learning algorithms include model - free rein 
forcement learning techniques such as Proximal Policy 
Optimization ( PPO ) , Trust Region Policy Optimization 
( TRPO ) , Asynchronous Advantaged Actor Critic ( A3C ) and 
Soft Actor Critic ( SAC ) . 
[ 0071 ] The terms “ artificial intelligence , " " data models , " 
or “ machine learning " may include , but are not limited to , 
neural networks , convolutional neural networks ( CNN ) , 
recurrent neural networks ( RNN ) , generative adversarial 
networks ( GAN ) , Bayesian Regression , Naive Bayes , near 
est neighbors , least squares , means , and support vector 
regression , among other data science and artificial science 
techniques . 
[ 0072 ] In various embodiments , the neural network may 
include a temporal convolutional network , with one or more 
fully connected layers , or a feed forward network . Training 
of the neural network may happen on a separate system , e.g. , 
workstations with graphic processor unit ( “ GPU ” ) , high 
performing computer clusters , etc. , and the trained algorithm 
would then be deployed to a computer 100 ( FIG . 1 ) con 
trolling the robotic arm 10. The computer 100 may include 
any suitable processor ( not shown ) operably connected to a 
memory ( not shown ) , which may include one or more of 
volatile , non - volatile , magnetic , optical , or electrical media , 
such as read - only memory ( ROM ) , random access memory 
( RAM ) , electrically - erasable programmable ROM ( EE 
PROM ) , non - volatile RAM ( NVRAM ) , or flash memory . 
The processor may be any suitable processor ( e.g. , control 
circuit ) adapted to perform the operations , calculations , 
and / or set of instructions described in the present disclosure 
including , but not limited to , a hardware processor , a field 
programmable gate array ( FPGA ) , a digital signal processor 
( DSP ) , a central processing unit ( CPU ) , a microprocessor , 
and combinations thereof . Those skilled in the art will 
appreciate that the processor may be substituted for by using 
any logic processor ( e.g. , control circuit ) adapted to execute 
algorithms , calculations , and / or set of instructions described 
herein . 
[ 0073 ] The following Examples illustrate embodiments of 
the present disclosure . These Examples are intended to be 
illustrative only and are not intended to limit the scope of the 
present disclosure . 

EXAMPLE 1 

[ 0074 ] This Example describes construction of an exem 
plary robotic arm according to the present disclosure . 
[ 0075 ] Carbon fiber rods with a 13 mm outer diameter 
were used as artificial bones linking the joints as shown in 
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FIG . 1. EcoFlex 00-50 ( Smooth - On ) , was used as the 
passive elastic component due to its ability to deform , and 
its usage in fabricating soft robots ( 53-55 ) having tensile 
strength of 315 psi , 12 psi 100 % modulus , and 980 % 
elongation at break . 
[ 0076 ] Polylactic acid ( PLA ) was used for the rigid com 
ponents of the joints , motor - mounts , sensor - mounts , and 
cable routing . Three types of joints were prepared perfo 
rated , semi - perforated , and solid . The computer - aided 
design ( CAD ) modeled joints and mold designs were printed 
with a Prusa i3 MK3 3D printer . Once inserted on the mold 
supports as seen in FIGS . 5 and 6 , the mold was sealed with 
an easily removable adhesive such as hot glue . After mixing 
a 1 : 1 ratio of Ecoflex - 50 , the silicone material was poured 
into the mold and is left to cure for approximately 3 hours . 
The final product is shown in FIG . 1 : a hybrid joint con 
taining rigid components housed within a soft silicone mesh . 
[ 0077 ] BN055 IMU sensors were used to measure oper 
ating parameters of the robotic arm . The IC BNO55 IMU 
sensor includes a built - in sensor fusion that allows for a 100 
Hz sampling rate , returning the axis angles : roll , pitch , and 
yaw . 12V DC motors with 4.2 kg / cm were used as actuators . 
A custom PCB was designed to interface with the electronics 
and communicate with a desktop computer using I2C serial 
communication . In order to simulate and process large 
amounts of data , a PC with an Intel Core i7-9700 K 
processor was used to speed up training time . 
[ 0078 ] The motor mounts were attached to the carbon fiber 
rods at roughly the location of the major muscles of a human 
arm . The cables acting on the carbon fiber rods transmit a 
force similar to tendons pulling on bones . The biceps 
brachialis flexes the elbow joint increasing Ox as denoted 
in FIG . 4 — and thus the corresponding motor mount is 
placed on the upper arm with the cable connecting to the 
lower arm . The medial deltoid is the prime mover for 
shoulder abduction , which is seen as positively increasing 
Oy denoted in FIG . 3. Accordingly , the second motor mount 
is located to simulate the force created by the medial deltoid . 
Together the placement gives the ability of shoulder abduc 
tion by and biceps flexion Ox . 
[ 0079 ] When directly wrapping the cables around the 
shoulder joint , the forces required to cause movement were 
too large for the chosen motors due to the angle of attack 
which is created by the cable attaching the shoulder's motor 
and the upper - arm — is too small to transmit the necessary 
forces . Another issue stemming from the cable wrapping 
around the joint was that it can lose its pathing , falling to 
either side of the joint rather than tracing the desired route . 
Routing blocks were used to route the cable for the shoulder 
joint as shown in FIG . 3. Bearings were attached for less 
cable friction . Within Autodesk Inventor , the measured 
angle of attack before was Oa = 59.1 ° and after adding the 
cable routing was measured as Ob = 22.5 ° . Thus Ft = Fmotdeos 
( 0 ) calculates the transfer force Ft from the motor force Fm . 
The chosen cable routing offers about 1.8 times more force . 

a 

were applied perpendicular to the joint angle , as depicted in 
FIGS . 10-13 , which show opening and closing plots for both 
joints , in a quasistatic manner . More than 10 repeated trials 
were run for both directions of each of the shoulder and 
elbow joints . The starting angles were determined by the 
resting point after the first trial which was removed from the 
data . 

[ 0082 ] The torsional spring coefficients were character 
ized through force - deflection experiments shown in plots of 
FIGS . 10-13 . Each joint was anchored to the testbed by the 
proximal end of the link , and an IMU was attached distally . 
The experiments of joint opening seen in FIGS . 10 and 12 
has the data circling counterclockwise while joint closing 
seen in FIGS . 11 and 13 circles clockwise in time . The data 
shows that increasing the number of holes — which increases 
the aggregate cross - sectional surface area of the rubber 
requires more force to get to the same angular displacement 
during joint opening . The results are less clear during joint 
closing . The force required to close the joint depends on both 
the volume of silicone material within the through - holes and 
external membrane thickness surrounding the rigid compo 
nents . In the plots of FIGS . 10-13 the number of through 
holes in each of the perforated , semi - perforated , and solid 
joints are easily distinguishable as a function of the angle 
and force used to open / close the joint . The graphs appear 
discontinuous at 0 N due to mechanical hysteresis and 
slipping within the joint . Hysteresis in FIGS . 10-13 repre 
sents graphically as a belly and demonstrates non - linearities ; 
different forces are required depending on the directionality 
of joint movement . This characterization supports our need 
for data - driven non - linear estimators . 
[ 0083 ] Damping experiments were conducted using a 
drop - test . The resulting oscillations are shown in FIGS . 14 
and 16 , which were characterized by fitting an exponential 
decay equation to the positive peaks of the data . These 
experiments provide more evidence that varying the design 
allows for control over dynamic parameters . 
[ 0084 ] For the damping experiments the proximal side of 
the joint was attached to the testbed while the distal portion 
of the joint connected to the rest of the arm . In the case of 
the shoulder this includes the upper arm , lower arm , elbow 
joint and mounted parts . For the elbow , the experiment only 
included the lower arm . Each joint was displaced by around 
75 ° and released . Data was cropped at the peak of the first 
oscillation to align the separate trials . The motion after the 
first peak is shown in FIGS . 14 and 16. The envelopes of the 
peaks were used to fit the exponential decay equation to the 
data . This resulted in the time constant t . The damped 
angular frequency wd was calculated from the inter - peak 
times resulting in the necessary parameters for modeling . 
[ 0085 ] Characterization of the robotic arms dynamics pro 
vided insights and analysis which helped build more accu 
rate models and control schemes . From these experiments 
and the calculations in “ Modeling spring - damper ” , the time 
constant t and the damping ratio & were acquired to param 
eterize both an ideal second order spring - damper and the 
MuJoCo simulator . The ideal equation was used to validate 
MuJoCo . Both approaches were compared to the experi 
mental data in FIGS . 15 and 17. The nonlinearities emerge 
as differing resonant frequencies between the initial high 
amplitude transient and the tail . A small time shift of 4 ms 
was utilized to align with the tail since it is closer to the 
small - deviation linear dynamics . These modeling results 

EXAMPLE 2 

[ 0080 ] This Example describes simulation modeling and 
evaluation of the exemplary robotic arms of Example 1 . 
[ 0081 ] The setup of the spring experiment involved 
anchoring each joint with the proximal portion meeting a 
rigid testbed and the distal end attaching to a single rod with 
an IMU . Force was measured through a calibrated load cell , 
which records simultaneously alongside the IMU . Forces 
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( 4 ) 
MSE - ?lve [ ( yt – yi ) ? 

t = 0 

provide a sufficiently accurate foundation for experimenting 
with control strategies specifically reinforcement learning 
algorithms - in simulation . 
[ 0086 ] The robotic arm was simplified as a revolute joint 
for each corresponding actuated axis . Each joint was mod 
eled as a torsional spring - damper system . The ideal equation 
for a damped harmonic oscillator is shown in formula ( 1 ) 
below : 

[ 0094 ] with T as the total time - steps , yt as the measured 
value , and yt as the goal value . MSE was used to determine 
the parameters resulting in the minimum error to a desired 
set point , formalized using formula ( 5 ) : y = ae ttcos ( @dt ) ( 1 ) 

) ( 5 ) 
[ 0087 ] where od is the damped angular frequency and t is 
the time constant . The relation between the damped angular 
frequency and the natural frequency of the system follows 
from 0 , = 0 , V1-82 . The natural frequency wn can be found 
using 0 , = 1 / ( CT ) . Finally , solving for results in formula ( 2 ) : 

min 
( Kp , Kj , KD ) = arg MSE ( KP , K1 , KD ) Kp , K? , Kd 

= 

1 ( 2 ) 

Nitwd ) 2 + 1 

[ 0095 ] The ranges for the grid search were chosen based 
off preliminary hand - tuning , and used ten Kp values , ten K , 
values and three K , values ( since the derivative term is often 
dropped ) . The results are shown in FIGS . 28-31 and Table 1 . 
A grid search over 300 parameter combinations was used to 
tune the PID controller . Each trial involved reaching the set 
point of 35 ° which resides near the center of the workspace . 
FIGS . 28 and 30 show each trial of the grid , with a 
highlighted line showing the best result for the shoulder and 
elbow joints , respectively . FIGS . 29 and 31 show a 3D 
visualization of grid search values for the shoulder joint 
( FIG . 29 ) and elbow joint ( FIG . 31 ) over Kp , K , and Kj 
parameters , with the best value being marked . MSE values 
are shown on a side bar . The values in Table 1 display the 
results , showing that the elbow joint mainly needed the 
proportional term while the shoulder joint requires a suffi 
ciently large integral term . 

, 

[ 0088 ] These equations result in the ideal characterization 
which is shown on the right in FIGS . 15 and 17 for shoulder 
and elbow joints , respectively , alongside the experimental 
data and MuJoCo model . 
[ 0089 ] MuJoCo is a multi joint rigid body simulator 
specializing in robotics and biomechanics which uses dif 
ferent solvers to compute forward and inverse dynamics and 
kinematics . MuJoCo is highly optimized , having higher 
relative speeds for robotic - like tasks while maintaining the 
top precision compared to other popular simulators ( other 
than in the case of many disjoint bodies ) . MuJoCo also has 
been used for designing environments for reinforcement 
learning experimentation through OpenAI Gym . Rigid bod 
ies can be created or imported , assigned material properties , 
and actuated around specified joints . Internal parameters can 
be set to manipulate joint and actuator dynamics . In order to 
mirror the physical robot , the 3D models of the robotic arms 
of Example 1 were imported into MuJoCo . The weights of 
each piece were set , along with the parameters T and ( for 
the spring - damper system . The resulting graphs validating 
the accuracy of MuJoCo are shown in FIGS . 15 and 17 , 
comparing the plots of drop tests with ideal and simulated 
( MuJoCo ) plots . 

TABLE 1 

tuned PID parameters 

Parameter Search Range Shoulder Best Elbow Best 

?? 
K ; 
?? 

[ 2 , 12 ] 
[ 0 , 4 ] 
[ 0 , 2 ] 

5.3 
1.7 
0 

9.8 
4 
.1 

[ 0096 ] The KP , KI , and KD terms of the PID controller 
were fit to minimize the MSE as described above . 

EXAMPLE 4 
EXAMPLE 3 

[ 0090 ] This Example describes PID control algorithm for 
controlling the exemplary robotic arms of Example 1 . 
[ 0091 ] The PID control algorithm was adjusted using the 
robotic arm with perforated joints . The control function 
evaluated is shown in formula ( 3 ) : 

( 3 ) u ( t ) = Kpe ( t ) + Ki = i? 

[ 0097 ] This Example describes a reinforcement learning 
algorithm used in controlling the exemplary robotic arms of 
Example 1 . 
[ 0098 ] The reinforcement learning control algorithm was 
adjusted using the robotic arm with perforated joints . The 
SAC agent was trained in simulation , using a grid search to 
select hyper - parameters , followed by transfer of the robot 
skills acquired in simulation to the real robotic system and 
then fine - tuning the agent on the physical robot . Physical 
training for the SAC agent occurred only for the perforated 
joint design on one task ( i.e. , increasing steps ) . The SAC 
agent was subsequently retrained to correct for some errors . 
The SAC - retrained agent appears in the case of the sinewave 
task and was fine - tuned on the task to account for the distinct 
goal dynamics . 
[ 0099 ] The reinforcement learning problem was defined as 
maximizing the total discounted future reward in formula ( 6 ) 

R = & k = operite ( 6 ) 

de ( t ) e ( t ) dt Kd dt 

[ 0092 ] where u ( t ) is the control value output , KP is the 
proportional term , KI is the integrator term , KD is the 
derivative term , and e ( t ) is the error for the time - step t . 
[ 0093 ] To tune the controller , a grid search was used to test 
300 different values for the shoulder and elbow joint . MSE 
was calculated using formula ( 4 ) : 
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computational capability . Goal - conditioned algorithms 
allow for accomplishing a variety of tasks through policies 
that depend on specific goal inputs . Thus , goal - conditioned 
algorithms may be formulated similarly to controllers that 
require set points . Since there are delays in the hardware 
from sensing , communication to the main computer , and 
other unaccounted for attributes , the current state is non 
Markovian . To computationally alleviate this issue , the ten 
previous observations were included . Both the simulation 
and physical prototype have a sampling rate of 100 Hz , 
permitting the history to account for 10 ms delays . One 
single observation ( not including history ) contains joint 
angles 0 , 0 , recorded from the IMUS , joint velocities ( x , w , 
calculated from the angles , previous action Qt - 1 , and the goal 
joint angles g . 
[ 0109 ] The fidelity of the MuJoCo simulation provided an 
efficient way to experiment with network hyper - parameters . 
Multiple hyper - parameter searches were performed to iden 
tify efficient learning rate values , quantity of layers , layer 
sizes , and activation functions . One parameter was varied 
while the others were held constant , alternating until suffi 
cient values were found . After agents with the varied param 
eters underwent a training period , mean episode reward was 
used to determine the best performing hyper - parameters . 
This process iterated until the mean episodic reward stopped 
increasing . The final chosen hyper - parameters include dense 
layers of sizes with ReLU activation functions . Decaying 
learning - rates ad outperformed constant learning rates fol 
lowing adt ) = at / T where a is the initial learning rate , t is the 
current episode , and T is the total number of episodes . The 
initial learning rate was chosen as a = 0.001 . 
[ 0110 ] The reward function was incrementally adapted 
through observation both in MuJoCo and on the physical 
robot . The final terms for the reward include the distance 
reward rd and the velocity reward rv . The calculation of 
reward was done using formulas ( 13 ) - ( 15 ) : 

a 

[ 0100 ] where y is a discount factor and it is the reward 
given at time - step At each time - step , the agent used a 
policy ht ( st ) = at to select an action based on the current 
state st . The state is iterated forward and yields the reward 
via ( st + 1 , rt ) = f ( st , at ) based on the environment dynamics 
given by function f . The reinforcement learning algorithm 
attempts to find the optimal policy , * ( st ) = at , which returns 
the action that maximizes Rt . 
[ 0101 ] The value function of a state was defined by a 
formula ( 7 ) below : 

V ( s ) = E ( Rt \ st = s ) 
[ 0102 ] while the action - value function was defined as a 
formula ( 8 ) below : 

Q ( s , a ) = E ( Rt | st = s , atra ) , ( 8 ) 

[ 0103 ] where the probability distributions of actions are 
yielded from v ( s ) . Actor Critic algorithms are built to 
parameterize estimators for the value and policy functions . 
For the deep reinforcement learning variant , the estimators 
used were feed - forward neural networks . 
[ 0104 ] Model - free reinforcement learning techniques such 
as Proximal Policy Optimization ( PPO ) , Trust Region Policy 
Optimization ( TRPO ) , Asynchronous Advantaged Actor 
Critic ( A3C ) and Soft Actor Critic ( SAC ) have the capacity 
to accomplish control tasks in both simulated and physical 
robotic control tasks . SAC is a sample - efficient and stable 
reinforcement learning algorithm which follows policy gra 
dient methods , enabling use on continuous action spaces . An 
entropy maximization formulation encourages exploration 
and results in a policy that is not overly sensitive to 
hyper - parameters , making it a prime candidate for the 
robotic arms of Example 1 . 
[ 0105 ] SAC increases sample efficiency and stability of 
the training process by increased exploration through 
rewarding actions that result in higher variance of the policy . 
This is given by the policy that solves the maximum entropy 
objective represented in formula ( 9 ) : 

= argmax , H11E - oy ( r , + QE ( ( ls . ) ) ) ] ( 9 ) 

[ 0106 ] where the expected value of H defines the entropy 
of the policy given the current state , and a is a temperature 
term that scales the impact of the entropy . The entropy term 
H is calculated as log ( at | st ) . Feed - forward neural net 
works are optimized to minimize the objective functions for 
the value , Q - value , and policy functions . The corresponding 
objective functions are listed in formulas ( 10 ) - ( 12 ) , which 
are alternately minimized until convergence . 

Jy = Haj [ +2 ( V ( S . ) Harre [ O ( se , . ) - log a ( ls ) ] ? 1 ( 10 ) 

Je = Hispa [ + 2 ( Q ( $ , 2 . ) – ( r ( s , . ) + y H * [ W ( $ : + 1 ) ] ) ) ? ] ( 11 ) 
Jv = H5 , Ha [ a log ( ( a.ls . ) ) - Q ( s , a . ) ] ] ( 12 ) 

[ 0107 ] Two environments were created to act in parallel , 
one with the physical robotic arm of Example 1 and one 
robotic arm created in a MuJoCo simulation as described 
above in Example 2. An OpenAI gym ( available at https : // 
gym.openai.com/ ) template was expanded to include the 
custom MuJoCo environment . This allows an agent to 
receive an observation from an environment , compute , and 
return an action . The environment can then simulate forward 
dynamics based on the action , which continued until the task 
is finished . 
[ 0108 ] SAC was chosen as the algorithm to update net 
work weights ; the network architecture plays roles in the 

?_ + ? ( 13 ) 

T. TL Pw = - ( V10,1 + 0,1 ) ( 14 ) 

St + 1 

Pi = Cila + C2 ' w ( 15 ) 

[ 0111 ] The square roots were used since the gradients for 
updating became increasingly small when the reward was 
small . This removed a problem of oscillation around the 
target goal when velocities were very small , yet the dis 
tances were still significant . The constants cl and c2 are 
weights of the distance and velocity respectively which can 
help avoid sub - optimal policies such as a policy which 
does not move , in order to always minimize velocity . This 
reward shaping created a dense reward function which trains 
the agent to minimize distance and reduce action output 
since the motors hold their position with a control value of 
0 . 
[ 0112 ] Three separate tasks were selected to test the effec 
tiveness of the SAC and PID algorithms controlling the 
robotic arm . Each algorithm receives the current state and 
goal state as inputs and produces control values for each 
motor , attempting to match its joint angles and velocities to 
the proposed goal . FIG . 18 shows a 3D visualization of the 
end effector's trajectory with its corresponding joint angles , 
with FIGS . 19 and 20 show angles of the shoulder and elbow 
joints respectively through the movement of FIG . 19 . 
[ 0113 ] As shown in FIGS . 21-26 , these physical tasks 
included the arm following ( a ) increasing steps ( FIGS . 21 

a 
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and 22 ) , ( b ) decreasing steps ( FIGS . 23 and 24 ) , and ( c ) 
sinewave trajectories ( FIGS . 25 and 26 ) . Evaluation of 
control algorithms on three separate tasks were performed 
with the shoulder joint ( FIGS . 21 , 23 , and 25 ) and elbow 
joint ( FIGS . 22 , 24 , and 26 ) . The goal and experimental 
trajectories of multiple trials are shown on top , while each 
the corresponding mean error is shown on bottom . Increas 
ing steps task were used to train SAC , which is most similar 
to the PID tuning task . Decreasing steps task highlighted 
asymmetry of joint dynamics . Sinewave task including a 
SAC - retrained agent that has been fine - tuned to properly 
capture dynamic goals . 
[ 0114 ] These experiments were used to determine the 
ability of both control algorithms to handle smooth and 
discrete goal - position changes while compensating for grav 
ity , mechanical hysteresis , and other non - linearities . Both 
joints were evaluated simultaneously , thus errors are depen 
dent on each other . However , it was assumed the measure 
ments are disentangled due to the orthogonality of the 
actuated axes . 
[ 0115 ] To see how well each model adapted to new , 
unfamiliar static and dynamic tasks , the SAC algorithm was 
trained and the PID controller was tuned on a static task 
( increasing steps ) shown in FIGS . 21 and 22. For the 
dynamic sinewave task , a decrease in SAC performance was 
resolved with a brief retraining period that compensated for 
the unencountered domain . The PID controller did not 
require re - tuning because it was tuned about a single point 
within the range of motion and does not differentiate 
between static and dynamic tasks . 
[ 0116 ] In order to train the agent sufficiently , the MuJoCo 
simulation was used to reduce real - world training time . The 
training task involved reaching to random points in the state 
space repeatedly . The most successful agent through training 
in simulation was transferred and fine - tuned on the physical 
robot . The physical training task was initially limited to an 
increasing steps task ( FIGS . 21 and 22 ) in order to assess 
generalization . For the sinewave task , fine - tuning of the 
agent was done by training on increasing steps by briefly 
continuing training on the new task . Fine - tuning may be 
used for different joint types , tasks , or simply anything 
changing the problem while maintaining sufficient similar 
ity . 
[ 0117 ] Overall , the SAC agent showed lower error for 
both the elbow and shoulder joints during the increasing 
steps task ( FIG . 21 ) . The PID controller was only able to 
perform comparably when operating near the position the 
control coefficients were tuned for ( 35 ° ) , otherwise having 
higher errors . The PID controller performs worse on the 
shoulder joint than the elbow , likely due to uncompensated 
gravitational forces and the bidirectional mechanical hys 
teresis depicted in FIGS . 12 and 13. In contrast , the SAC 
agent performs consistently throughout each joint's entire 
range of motion , indicating that the system's transient 
dynamics have been characterized by the policy network . 
[ 0118 ] FIG . 23 shows the decreasing steps task , where the 
SAC agent continued to generalize well . The PID controller 
failed to minimize the steady state error throughout the 
range of the experiment , and performs better on the elbow 
joint compared to the shoulder joint indicating that the 
elbow is a simpler control task . In both cases , SAC kept 
reducing in error and the PID controller does not . 
[ 0119 ] In FIG . 25 , the shape of the error graph ( bottom 
portion ) shows a “ bouncing ” behavior , where the minimal 

error points represent the time where the true position 
crosses over the goal trajectory . The PID generalized better 
than the original SAC for the elbow joint and comparably for 
the shoulder , explained by its inability to distinguish 
between task types and more direct control of the elbow . It 
was observed that the original SAC algorithm had larger 
error magnitudes . Since the task involved a dynamic trajec 
tory rather than static goal positions , a retrained version of 
the same algorithm was tested to see if performance 
improved . The SAC - retrained agent performed significantly 
better , outperforming the other control methods . 
[ 0120 ] Error analysis for the SAC and PID algorithms was 
applied to each joint design . “ Shoulder ” and “ elbow ” indi 
cate which physical joint corresponds with the error signal . 
“ Combined ” refers to the summation of the shoulder and 
elbow errors . The background shading of each plot indicates 
the best performer . The SAC agents outperform the PID 
controller when considering each combined error . Although 
SAC does not generalize to the sine wave as well , the 
SAC - retained algorithm was able to perform best for each 
joint design . Since all algorithms were fit to the Perforated 
design , performance generally decreases for the other 
designs along with larger oscillations . 
[ 0121 ] Absolute errors of each joint design when under 
going these selected tasks were compared . FIG . 27 shows 
the error signal of the three trials for each task . The errors are 
separated by task ( increasing steps , decreasing steps , sin 
ewave ) , joint design ( perforated , semi - perforated , solid ) , 
and error signal ( shoulder , elbow , combined ) . 
[ 0122 ] It was observed that the best performing controllers 
per experiment using the background shading in FIG . 27 , 
determined by the absolute error summed through time . 
Overall , the SAC agents perform best in 23/27 cases com 
pared to the PID controller . The results are shown in Table 
2. For the most important measurement the Combined 
error — SAC outperforms PID control in 9/9 cases . Note that 
the SAC results include the SAC - retrained . 

a 

TABLE 2 

Average combined shoulder and elbow error per sample 

PID 

error ( 9 ) Design 
SAC 

error o 
SAC - r 
error ( 0 ) Task 

Increasing steps 

Decreasing steps 

Perforated 
Semi - perforated 
Solid 
Perforated 
Semi - perforated 
Solid 
Perforated 
Semi - perforated 
Solid 

1.90 
2.30 
2.23 
2.95 
4.39 
3.11 
6.77 
9.26 
6.52 

1.55 
2.27 
2.06 
1.76 
3.85 
2.63 
7.84 
14.44 
9.23 

N / A 
N / A 
N / A 
N / A 
N / A 
N / A 
3.54 
8.79 
4.83 

Sinewave 

[ 0123 ] General trends indicate that SAC decreases the 
amplitude of the error oscillations , lowering the steady - state 
error through time in the static tasks ( top 2 rows of FIG . 27 ) . 
Interestingly , the PID control performed best solely with the 
elbow joint on the sinewave and decreasing steps tasks . In 
both cases , SAC performs significantly better in the paired 
shoulder measure , coinciding with how the RL reward 
function accounts for the sum of both joint errors . Thus , the 
SAC controller outperformed a PID controller and general 
ized well through differing physical properties and goal 
trajectories . Retraining the SAC agent solved a new type of 
task which also generalized between joint designs . 
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[ 0124 ] The present disclosure provides for a novel method 
of designing flexible robotic joints , where elastic ligament 
meshes interweave traditional robotic joints to introduce 
compliance while maintaining stability . This novel class of 
robotic joints was used to construct a humanoid arm , dem 
onstrating how the ligament mesh design can be manipu 
lated to adjust dynamic characteristics ; thus , three designs 
were constructed . Robotic joint components ( i.e. , ball - and 
socket and hinge joint components ) and molds were 
designed to accommodate ligaments and 3D printed with 
negative space to cast a surrounding and interweaving 
elastic membrane . The simple casting process allows for 
rapid , low - cost prototyping , opening an avenue for creating 
systems with dynamic properties through simple mechanical 
modifications in 3D CAD . The variable nature of this system 
was accounted for through model - free controllers which 
successfully control the manipulator across joint designs and 
tasks . 

[ 0125 ] Due to both the nonlinearities and variability in 
fabrication and design parameters , this disclosure compared 
two model - free control algorithms : the SAC reinforcement 
learning algorithm and a PID controller . The PID parameters 
were chosen through a grid search optimizing for MSE 
values . Since RL algorithms require large training times , a 
simulation was used to determine the SAC architecture 
through a grid search of hand - picked network hyper - param 
eters including learning rate , hidden layer quantity , hidden 
layer size , and activation function . The best simulated agent 
was transferred to the physical robot and trained on a single 
task , drastically reducing training time on the robot . 
[ 0126 ] Requisite robot training hours were replaced with 
simulation training ( e.g. , training a model which generalizes 
with varied dynamic properties ) and subsequent transfer of 
the robot skills acquired in simulation to the real robotic 
system . The SAC algorithm was only trained on one joint 
design ( i.e. , perforated ) and one task ( i.e. , increasing steps ) , 
yet generalizes well to each experiment involving static goal 
positions . Fine - tuning the agent on the dynamic task ( i.e. , 
sinewave ) took little time and generalized for each joint 
design . Examining the performance of the manipulator built 
from each joint design ( i.e. , perforated , semi - perforated , 
solid ) through each task ( i.e. , increasing steps , decreasing 
steps , sinewave ) shows that SAC outperforms the PID 
controller ( FIG . 27 ) . 
[ 0127 ] Overall , the differences are evident between the 
two control methodologies . Although the PID controller 
achieves satisfactory results on the tuned region , the control 
accuracy diminished as the distance from the region 
increased . This is most prominent in the shoulder joint , and 
with tasks requesting a decrease in angle . The pulder joint 
experiences a significantly larger moment of inertia along 
with compounding nonlinear dynamics which the PID con 
troller struggles to account for . This indicates that the PID 
controller is sufficient for simple tasks such as controlling a 
one - joint one - link mechanism . Thus , fine - tuning a simula 
tion - trained reinforcement learning agent provides a method 
for solving more complex dynamic problems . 
[ 0128 ] Regarding control of these joints , reinforcement 
learning has the potential to generalize in the case of 
complicated joint - link combinations and varying dynamics . 
Use of SAC algorithm achieved great results . It is envi 
sioned that additional modifications may be used to speed up 
training and expand generalization such as : Hindsight Expe 
rience Replay ( HER ) , domain randomization , actuator ran 

domization , curriculum learning , meta - learning and more . 
Since this manipulator is similar to the human arm , there is 
potential to use motion capture data , enabling techniques 
which use expert demonstrations such as apprenticeship 
learning and generative adversarial imitation learning 
( GAIL ) . 
[ 0129 ] While the present disclosure only provided three 
different joint designs ( i.e. , perforated , semi - perforated , and 
solid ) various other designs are contemplated . Characteriza 
tion of how each design parameter directly influences the 
dynamics could yield programmable soft - rigid joints . The 
design of the manipulator can be sophisticated and refined to 
provide additional primary degrees of freedom and more 
exact motion . Also , while the involved tasks ( i.e. , increasing 
steps , decreasing steps , sinewave ) are representative of static 
and dynamic goals , they are not exhaustive and other tasks 
suitable for developing control agents are contemplated . A 
study examining tasks which best train an agent across the 
whole state - space would highlight the advantages provided 
by the proposed training pipeline . 
[ 0130 ] Furthermore , a strength of the joint design is that it 
aids load bearing tasks while diminishing external distur 
bances . Such tasks could involve adapting to varying loads 
strictly through observing the changed dynamics or perform 
ing high - level tasks such as object manipulation . Currently 
the proposed manipulator uses gravity and spring force to 
open the joints , yet antagonistic motors are biological and 
grant tunable compliance . In human arms , injuries show 
obvious modifications of strain curves which influences 
bio - mechanical properties , and the proposed system may be 
used to generate similar modifications . This disclosure pro 
vides a platform to produce a variety of robot arms mechani 
cally akin to healthy / injured human arms , damaged / fatigued 
iterations , limbs with desired joint properties , and more . 
Furthermore , this disclosure provides foundational steps 
leading to a future where users can design a task , and 
simulations optimize the design and creation of a robot 
which best serves the task . 

[ 0131 ] This disclosure also verified the ability to adjust the 
joint dynamics through varying the quantity of through 
holes in the elastic membrane of each joint , experimentally 
testing three conditions : perforated , semi - perforated , and 
solid . The through - holes act as parallel spring - damper sys 
tems , effectively adjusting the non - linear dynamics . Experi 
mentally the disclosure analyzed the stiffness in FIGS . 
10-13 , and the damping in FIGS . 14-17 . Non - linearities 
manifested primarily in the form of hysteresis , time delays , 
and higher order functions . The results clearly support a 
need for data - driven non - linear estimators , and the param 
eters found proved to be sufficient for simulations which 
inform learning algorithms . 
[ 0132 ] It will be appreciated that of the above - disclosed 
and other features and functions , or alternatives thereof , may 
be desirably combined into many other different systems or 
applications . Also , that various presently unforeseen or 
unanticipated alternatives , modifications , variations or 
improvements therein may be subsequently made by those 
skilled in the art which are also intended to be encompassed 
by the following claims . Unless specifically recited in a 
claim , steps or components according to claims should not 
be implied or imported from the specification or any other 
claims as to any particular order , number , position , size , 
shape , angle , or material . 
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What is claimed is : 
1. A robotic arm comprising : 
a first link ; 
a second link ; 
a joint interconnecting the first link and the second link , 

such that the first link is movable relative to the second 
link along an axis of motion , the joint including : 

a socket component coupled to a distal end portion of the 
second link ; 

a ball component coupled to a proximal end portion of 
first link , the ball component configured to rotationally 
fit within the socket component ; and 

a flexible membrane encasing the socket component and 
the ball component . 

2. The robotic arm according to claim 1 , wherein the 
socket component includes a first plurality of through - holes . 

3. The robotic arm according to claim 2 , wherein the ball 
component includes a second plurality of through - holes . 

4. The robotic arm according to claim 2 , wherein the first 
plurality of through - holes is disposed in a first socket plane 
and a second socket plane . 

5. The robotic arm according to claim 4 , wherein the first 
socket plane and the second socket plane are perpendicular 
to each other and are aligned with the axis of motion . 

6. The robotic arm according to claim 3 , wherein the 
second plurality of through holes is disposed in a first ball 
plane and a second ball plane . 

7. The robotic arm according to claim 6 , wherein the first 
ball plane and the second ball plane are perpendicular to 
each other and are aligned with the axis of motion . 

8. The robotic arm according to claim 3 , wherein the 
flexible membrane is disposed within a space defined by the 
first plurality of through - holes and the second plurality of 
through - holes . 

9. The robotic arm according to claim 1 , wherein the 
flexible membrane is formed from an elastomer . 

10. The robotic arm according to claim 1 , further com 
prising an actuator coupled to the second link and a cable 
coupled to the first link , wherein the actuator is configured 
to move the first link by spooling the cable . 

11. The robotic arm according to claim 10 , wherein each 
of the socket component and the ball component includes at 
least one routing block configured to route the cable around 
the joint . 

12. A method of manufacturing a robotic joint , the method 
comprising : 

forming a first plurality of through - holes in a ball com 
ponent ; 

forming a second plurality of through - holes in a socket 
component ; and 

inserting the ball component into the socket component to 
form a robotic joint , wherein the ball component is 
movable relative to the socket component along an axis 
of motion . 

13. The method according to claim 12 , further compris 
ing : 

applying a flexible membrane over the robotic joint and 
within a space defined by the first plurality of through 
holes and the second plurality of through - holes . 

14. The method according to claim 13 , wherein applying 
the flexible membrane includes placing the robotic joint in 
a mold and pouring a liquid precursor composition of the 
flexible membrane . 

15. The method according to claim 12 , wherein the first 
plurality of through - holes is disposed in a first socket plane 
and a second socket plane and the first socket plane and the 
second socket plane are perpendicular to each other and are 
aligned with the axis of motion . 

16. The method according to claim 12 , wherein the second 
plurality of through - holes is disposed in a first ball plane and 
a second ball plane and the first ball plane and the second 
ball plane are perpendicular to each other and are aligned 
with the axis of motion . 

17. A method for programming a control agent for con 
trolling a robotic arm , the method comprising : 

running a simulation of a robotic arm based on a plurality 
of physical parameters on a workstation ; 

training a reinforcement learning algorithm based on the 
simulation of the robotic arm ; and 

loading a control agent including the reinforcement learn 
ing algorithm into a controller controlling the robotic 
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arm . 

18. The method according to claim 17 , wherein training 
includes : 

performing a plurality of tasks to reach a random point a 
three - dimensional space of the simulation . 

19. The method according to claim 18 , wherein training 
further includes : 

implementing a reward function configured to minimize 
distance traveled to the random point . 

20. The method according to claim 17 , further compris 
ing : 

retraining the reinforcement learning algorithm based on 
operation of the robotic arm in a physical space . 


