wo 2021/071579 A1 |0 0000 KA 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

World Intellectual Propert N
o amisaton " > O O
International Bureau = (10) International Publication Number
(43) International Publication Date ——’/ WO 2021/071579 A1

15 April 2021 (15.04.2021) WIPOIPCT

(51) International Patent Classification: Virgil; 90 Park Avenue, 20th Floor, New York, NY 10016
GO6N 3/08 (2006.01) GO6T 11/40 (2006.01) (US). BOBOLEA, Dragos;, 90 Park Avenue, 20th Floor,
GO6N 3/04 (2006.01) New York, NY 10016 (US).

(21) International Application Number: (74) Agent: LEONARD, Michael, Aristo II et al.; LeonardPa-

PCT/US2020/045830 tel PC, 218 North Lee Street, Suite 300, Alexandria, VA
22314 (US).

(22) International Filing Date:

12 August 2020 (12.08.2020) (81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AOQO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
(26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,

(25) Filing Language: English

(30) Priority Data:

16/595,727 08 October 2019 (08.10.2019) US KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD,

(71) Applicant: UIPATH, INC. [US/US]; 90 Park Avenue, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
20th Floor, New York, NY 10016 (US). NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,

. SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,

(72) Inventors: NEAGOVICI, Mircea; 90 Park Avenue, 20th TR, TT, TZ. UA, UG, US, UZ, VC, VN, WS, ZA, ZM. ZW.

Floor, New York, NY 10016 (US). ADAM, Stefan; 90 Park
Avenue, 20th Floor, New York, NY 10016 (US). TUDOR,

(54) Title: DETECTING USER INTERFACE ELEMENTS IN ROBOTIC PROCESS AUTOMATION USING CONVOLUTIONAL
NEURAL NETWORKS

200 FIG- 2
.

UNATTENDED
ROBOT

i

210 220 030 234 L

EXECUTE ! AUTOMATE

|

- N E |

y DEPLOY | f\, t </mainframe> :
= |

I

|

» | ! IRobot(s) ! <web>

\\ /ﬁ‘ e
ol et . e 5</enterprise app>

Designer Conductor MONITOR </desktop app> |

[——

232 T

o
o

ATTENDED
ROBOT

(57) Abstract: Graphical elements in a user interface (UI) may be detected in robotic process automation (RPA) using convolutional
neural networks (CNNs). Such processes may be particularly well-suited for detecting graphical elements that are too small to be de-
tected using conventional techniques. The accuracy of detecting graphical elements (e.g., control objects) may be enhanced by provid-
ing neural network-based processing that is robust to changes in various Ul factors, such as different resolutions, different operating
system (OS) scaling factors, different dots-per-inch (DPI) settings, and changes due to UI customization of applications and websites,
for example.

[Continued on next page]

WO 20217071579 A [IN 00000000 00O 0O

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2021/071579 PCT/US2020/045830

TITLE
DETECTING USER INTERFACE ELEMENTS IN ROBOTIC PROCESS

AUTOMATION USING CONVOLUTIONAL NEURAL NETWORKS

CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims the benefit of U.S. Nonprovisional Patent
Application No. 16/595,727 filed October 8, 2019. The subject matter of this earlier

filed application is hereby incorporated by reference in its entirety.

FIELD
[0002] The present invention generally relates to Robotic Process Automation
(RPA), and more specifically, to detecting user interface (UI) elements in RPA using

convolutional neural networks (CNN).

BACKGROUND

[0003] Robotic process automation (RPA) allows automation of the execution of
repetitive and manually intensive activities. RPA can be used, for example, to interact
with software applications through a user interface (UI), similar to how a human being
would interact with the application. Interactions with the UI were typically performed
by an RPA application using application programming interface (API) calls to a function
that returns a set of coordinates (i.e., a “selector”). The RPA application can then use
this information to simulate a mouse click of a button, for example, that causes the target

application to act as if the user had manually clicked on the button.

WO 2021/071579 PCT/US2020/045830

[0004] Perthe above, in a typical RPA implementation for native computing systems,
the selectors work using the underlying properties of the graphical elements of the Ul
to identify graphical elements in the application (e.g., buttons, text fields, etc.).
However, this technique breaks down when trying to automate the same software in

VDEs, such as those provided by Citrix®, VMWare®, VNC®, and Windows®

(Windows® Remote Desktop). The reason for the breakdown is that VDEs stream an
image of the remote desktop in a similar manner to how video streaming services do.
There are simply no selectors to be identified in the images (i.e., “frames”) of the video.
The RPA application thus cannot make an API call to determine the location of a
graphical element to be provided to the application, for example. Attempts have been
made to solve this challenge using optical character recognition (OCR) and image
matching for VDE scenarios. However, these techniques have proven to be
insufficiently reliable and have caused maintenance issues since even minor changes in
the Ul tend to break the automations.

[0005] Computer Vision™ (CV) by UiPath®, for example, solves this problem by
using a mix of artificial intelligence (AI), OCR, text fuzzy-matching, and an anchoring
system. A CV model identifies the specific graphical elements in the image. This
provides more accurate identification of graphical elements, such as text fields, buttons,
check boxes, icons, etc.

[0006] To recognize graphical elements, Al algorithms, such as Faster Region-based
Convolutional Neural Network (R-CNN), may be used. See, for example, Shaoqing
Ren et al., Faster R-CNN: Towards Real-Time Object Detection with Region Proposal

Networks, arXiv:1506.01497v3 (submitted June 4, 2015). Faster R-CNN passes images

WO 2021/071579 PCT/US2020/045830

of the target application interface through a ResNet with dilated convolutions (also
called atrous convolutions) that output feature maps or tensors (i.e., a smaller image
with 2048 channels). These feature maps are further passed through another neural
network a region proposal network (RPN) that proposes thousands of possible
rectangles where a graphical element of interest is believed to potentially have been
found, as well as guesses with respect to what regions are believed to be graphical
elements as a list of coordinates. The feature maps are grids and there are proposals
(also called anchors) for each square on the grid. For each anchor, the RPN provides a
classification. Further, there is a graphical element match score between 0 and 1 and a
regression part indicating how far an anchor would need to be moved to match a
particular graphical element. In other words, the RPN outputs regions where it thinks
it found graphical elements, as well as what these graphical elements are believed to
potentially be and associated probabilities.

[0007] With these proposals, many crops are made from the feature tensors output
from the backbone ResNet. In these large feature tensors, feature dimensions are
cropped. Cropped boxes are then passed again through a few layers of the CNN, which
can output a more precise location and class distribution. Such Faster R-CNN 100 for
graphical element detection is shown in FIG. 1.

[0008] However, due to this repeated cropping, certain smaller graphical elements
may not have a representative pixel by the end of the process. For instance, passing a
2048 x 1024 input image through a ResNet backbone that produces a feature map with
2048 channels with a standard stride of 32 that reduces dimensionality by a factor of

two each time, a 10x 10 checkbox, for example, would not have a representative pixel

WO 2021/071579 PCT/US2020/045830

by the end of the ResNet process. Also, changes to resolutions, operating system (OS)
scaling factors, dots-per-inch (DPI) settings, and changes due to UI customization of
applications and websites, for example, are difficult to accommodate using current

techniques. Accordingly, an improved Ul element detection approach may be beneficial.

SUMMARY

[0009] Certain embodiments of the present invention may provide solutions to the
problems and needs in the art that have not yet been fully identified, appreciated, or
solved by current image analysis techniques. For example, some embodiments of the
present invention pertain to detecting Ul elements in RPA using CNNs. Some
embodiments enhance the accuracy of detecting graphical elements (e.g., control objects)
by providing neural network-based processing that is robust to changes in various Ul
factors, such as different resolutions, different OS scaling factors, different DPI settings,
and changes due to UI customization of applications and websites, for example.
[0010] In an embodiment, a computer program is embodied on a non-transitory
computer-readable medium, the program is configured to cause at least one processor
to create a raw dataset by collecting images directly from an environment on which a
CNN will operate and augment the raw dataset to produce an augmented dataset. The
program is also configured to cause the at least one processor to train the CNN using
the augmented dataset and detecting graphical elements in a Ul using the trained CNN.
[0011] In another embodiment, a computer-implemented method includes
augmenting, by a computing system, a raw dataset using channel randomization, hue

shift, color inversion, random cropping, random scaling, blurring of images, or any

WO 2021/071579 PCT/US2020/045830

combination thereof, to produce an augmented dataset. The computer-implemented
method also includes training a CNN, by the computing system, using the augmented
dataset. The computer-implemented method further includes detecting graphical
elements in a Ul, by the computing system, using the trained CNN.

[0012] In yet another embodiment, a system includes memory storing computer
program instructions and at least one processor configured to execute the computer
program instructions. The at least one processor is configured to detect graphical
elements in a Ul using a Faster R-CNN network. The detection includes overlaying
rectangles over an image as a grid and providing a predetermined number of proposals
for each rectangle in the grid. The proposals include a scale and a stride distance. The
stride distance defines a distance between the rectangles. Each time two rectangles are
compared, an intersection over a union or an intersection over a minimum is used with
a given threshold. The threshold is an adaptive threshold that depends on an area of a

given rectangle.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] In order that the advantages of certain embodiments of the invention will be
readily understood, a more particular description of the invention briefly described
above will be rendered by reference to specific embodiments that are illustrated in the
appended drawings. While it should be understood that these drawings depict only
typical embodiments of the invention and are not therefore to be considered to be
limiting of its scope, the invention will be described and explained with additional

specificity and detail through the use of the accompanying drawings, in which:

WO 2021/071579 PCT/US2020/045830

[0014] FIG. 1 illustrates an implementation of Faster R-CNN.

[0015] FIG. 2 is an architectural diagram illustrating an RPA system, according to
an embodiment of the present invention.

[0016] FIG. 3 is an architectural diagram illustrating a deployed RPA system,
according to an embodiment of the present invention.

[0017] FIG. 4 is an architectural diagram illustrating the relationship between a
designer, activities, and drivers, according to an embodiment of the present invention.
[0018] FIG. 5 is an architectural diagram illustrating an RPA system, according to
an embodiment of the present invention.

[0019] FIG. 6is an architectural diagram illustrating a computing system configured
to detect UI elements in an RPA system using CNNs, according to an embodiment of
the present invention.

[0020] FIG. 7 is a flowchart illustrating a process for training a neural network,
according to an embodiment of the present invention.

[0021] FIG. 8 is a flowchart illustrating a process for training a neural network,

according to an embodiment of the present invention.

DETAILED DESCRIPTION OF THE EMBODIMENTS

[0022] Some embodiments pertain to detecting Ul elements in RPA using CNNs.
This process may be particularly well-suited for detecting graphical elements that are
too small to be detected using conventional techniques. For instance, in some Uls,
checkboxes may vary in size between 8 X 8 pixels and 32 X 32 pixels and edit boxes

may vary between 20X 10 pixels and 3500 X 32 pixels, for example. However,

6

WO 2021/071579 PCT/US2020/045830

graphical elements of any size may be detected in some embodiments without deviating
from the scope of the invention. Indeed, some embodiments enhance the accuracy of
detecting graphical elements (e.g., control objects) by providing neural network-based
processing that is robust to changes in various Ul factors, such as different resolutions
(e.g., 800 x 600 to 3840 x 2160 and beyond), different OS scaling factors (e.g., 75%
to 200%), different DPI settings, and changes due to UI customization of applications
and websites, for example.

[0023] Per the above, in some embodiments, video images may come from a VDE
server, and may be of a visual display or a part thereof. Some example VMs include,
but are not limited to, those provided by Citrix®, VMWare®, VNC®, Windows® Remote
Desktop, etc. However, images may also come from other sources, including, but not
limited to, Flash, Silverlight, or PDF documents, image files of various formats (e.g.,
JPG, BMP, PNG, etc.), or any other suitable image source without deviating from the
scope of the invention. Such images may include, but are not limited to, a window, a
document, a financial receipt, an invoice, etc.

[0024] FIG. 2 is an architectural diagram illustrating an RPA system 200, according
to an embodiment of the present invention. RPA system 200 includes a designer 210
that allows a developer to design and implement workflows. Designer 210 may provide
a solution for application integration, as well as automating third-party applications,
administrative Information Technology (IT) tasks, and business IT processes. Designer
210 may facilitate development of an automation project, which is a graphical
representation of a business process. Simply put, designer 210 facilitates the

development and deployment of workflows and robots.

WO 2021/071579 PCT/US2020/045830

[0025] The automation project enables automation of rule-based processes by giving
the developer control of the execution order and the relationship between a custom set
of steps developed in a workflow, defined herein as “activities.” One commercial
example of an embodiment of designer 210 is UiPath Studio™. Each activity may
include an action, such as clicking a button, reading a file, writing to a log panel, etc.
In some embodiments, workflows may be nested or embedded.

[0026] Some types of workflows may include, but are not limited to, sequences,
flowcharts, Finite State Machines (FSMs), and/or global exception handlers. Sequences
may be particularly suitable for linear processes, enabling flow from one activity to
another without cluttering a workflow. Flowcharts may be particularly suitable to more
complex business logic, enabling integration of decisions and connection of activities
in a more diverse manner through multiple branching logic operators. FSMs may be
particularly suitable for large workflows. FSMs may use a finite number of states in
their execution, which are triggered by a condition (i.e., transition) or an activity. Global
exception handlers may be particularly suitable for determining workflow behavior
when encountering an execution error and for debugging processes.

[0027] Once a workflow is developed in designer 210, execution of business
processes is orchestrated by conductor 220, which orchestrates one or more robots 230
that execute the workflows developed in designer 210. One commercial example of an
embodiment of conductor 220 is UiPath Orchestrator™. Conductor 220 facilitates
management of the creation, monitoring, and deployment of resources in an
environment. Conductor 220 may act as an integration point with third-party solutions

and applications.

WO 2021/071579 PCT/US2020/045830

[0028] Conductor 220 may manage a fleet of robots 230, connecting and executing
robots 230 from a centralized point. Types of robots 230 that may be managed include,
but are not limited to, attended robots 232, unattended robots 234, development robots
(similar to unattended robots 234, but used for development and testing purposes), and
nonproduction robots (similar to attended robots 232, but used for development and
testing purposes). Attended robots 232 are triggered by user events and operate
alongside a human on the same computing system. Attended robots 232 may be used
with conductor 220 for a centralized process deployment and logging medium.
Attended robots 232 may help the human user accomplish various tasks, and may be
triggered by user events. In some embodiments, processes cannot be started from
conductor 220 on this type of robot and/or they cannot run under a locked screen. In
certain embodiments, attended robots 232 can only be started from a robot tray or from
a command prompt. Attended robots 232 should run under human supervision in some
embodiments.

[0029] Unattended robots 234 run unattended in virtual environments and can
automate many processes. Unattended robots 234 may be responsible for remote
execution, monitoring, scheduling, and providing support for work queues. Debugging
for all robot types may be run in designer 210 in some embodiments. Both attended and
unattended robots may automate various systems and applications including, but not
limited to, mainframes, web applications, VMs, enterprise applications (e.g., those
produced by SAP®, SalesForce®, Oracle®, etc.), and computing system applications
(e.g., desktop and laptop applications, mobile device applications, wearable computer

applications, etc.).

WO 2021/071579 PCT/US2020/045830

[0030] Conductor 220 may have various capabilities including, but not limited to,
provisioning, deployment, configuration, queueing, monitoring, logging, and/or
providing interconnectivity. Provisioning may include creating and maintenance of
connections between robots 230 and conductor 220 (e.g., a web application).
Deployment may include assuring the correct delivery of package versions to assigned
robots 230 for execution. Configuration may include maintenance and delivery of robot
environments and process configurations. Queueing may include providing
management of queues and queue items. Monitoring may include keeping track of robot
identification data and maintaining user permissions. Logging may include storing and
indexing logs to a database (e.g., an SQL database) and/or another storage mechanism
(e.g., ElasticSearch®, which provides the ability to store and quickly query large
datasets). Conductor 220 may provide interconnectivity by acting as the centralized
point of communication for third-party solutions and/or applications.

[0031] Robots 230 are execution agents that run workflows built in designer 210.
One commercial example of some embodiments of robot(s) 230 is UiPath Robots™. In
some embodiments, robots 230 install the Microsoft Windows® Service Control
Manager (SCM)-managed service by default. As a result, such robots 230 can open
interactive Windows® sessions under the local system account, and have the rights of a
Windows® service.

[0032] In some embodiments, robots 230 can be installed in a user mode. For such
robots 230, this means they have the same rights as the user under which a given robot

230 has been installed. This feature may also be available for High Density (HD) robots,

10

WO 2021/071579 PCT/US2020/045830

which ensure full utilization of each machine at its maximum potential. In some
embodiments, any type of robot 230 may be configured in an HD environment.

[0033] Robots 230 in some embodiments are split into several components, each
being dedicated to a particular automation task. The robot components in some
embodiments include, but are not limited to, SCM-managed robot services, user mode
robot services, executors, agents, and command line. SCM-managed robot services
manage and monitor Windows® sessions and act as a proxy between conductor 220 and
the execution hosts (i.e., the computing systems on which robots 230 are executed).
These services are trusted with and manage the credentials for robots 230. A console
application is launched by the SCM under the local system.

[0034] User mode robot services in some embodiments manage and monitor
Windows® sessions and act as a proxy between conductor 220 and the execution hosts.
User mode robot services may be trusted with and manage the credentials for robots
230. A Windows® application may automatically be launched if the SCM-managed
robot service is not installed.

[0035] Executors may run given jobs under a Windows® session (i.e., they may
execute workflows. Executors may be aware of per-monitor dots per inch (DPI) settings.
Agents may be Windows® Presentation Foundation (WPF) applications that display the
available jobs in the system tray window. Agents may be a client of the service. Agents
may request to start or stop jobs and change settings. The command line is a client of
the service. The command line is a console application that can request to start jobs and

waits for their output.

11

WO 2021/071579 PCT/US2020/045830

[0036] Having components of robots 230 split as explained above helps developers,
support users, and computing systems more easily run, identify, and track what each
component is executing. Special behaviors may be configured per component this way,
such as setting up different firewall rules for the executor and the service. The executor
may always be aware of DPI settings per monitor in some embodiments. As a result,
workflows may be executed at any DPI, regardless of the configuration of the computing
system on which they were created. Projects from designer 210 may also be
independent of browser zoom level in some embodiments. For applications that are
DPI-unaware or intentionally marked as unaware, DPI may be disabled in some
embodiments.

[0037] FIG. 3 is an architectural diagram illustrating a deployed RPA system 300,
according to an embodiment of the present invention. In some embodiments, RPA
system 300 may be, or may be a part of, RPA system 200 of FIG. 2. It should be noted
that the client side, the server side, or both, may include any desired number of
computing systems without deviating from the scope of the invention. On the client
side, a robot application 310 includes executors 312, an agent 314, and a designer 316.
However, in some embodiments, designer 316 may not be running on computing system
310. Executors 312 are running processes. Several business projects may run
simultaneously, as shown in FIG. 3. Agent 314 (e.g., a Windows® service) is the single
point of contact for all executors 312 in this embodiment. All messages in this
embodiment are logged into conductor 330, which processes them further via database
server 340, indexer server 350, or both. As discussed above with respect to FIG. 2,

executors 312 may be robot components.

12

WO 2021/071579 PCT/US2020/045830

[0038] In some embodiments, a robot represents an association between a machine
name and a username. The robot may manage multiple executors at the same time. On
computing systems that support multiple interactive sessions running simultaneously
(e.g., Windows® Server 2012), multiple robots may be running at the same time, each
in a separate Windows® session using a unique username. This is referred to as HD
robots above.

[0039] Agent 314 is also responsible for sending the status of the robot (e.g.,
periodically sending a “heartbeat” message indicating that the robot is still functioning)
and downloading the required version of the package to be executed. The
communication between agent 314 and conductor 330 is always initiated by agent 314
in some embodiments. In the notification scenario, agent 314 may open a WebSocket
channel that is later used by conductor 330 to send commands to the robot (e.g., start,
stop, etc.).

[0040] On the server side, a presentation layer (web application 332, Open Data
Protocol (OData) Representative State Transfer (REST) Application Programming
Interface (API) endpoints 334, and notification and monitoring 336), a service layer
(API implementation / business logic 338), and a persistence layer (database server 340
and indexer server 350) are included. Conductor 330 includes web application 332,
OData REST API endpoints 334, notification and monitoring 336, and API
implementation / business logic 338. In some embodiments, most actions that a user
performs in the interface of conductor 320 (e.g., via browser 320) are performed by
calling various APIs. Such actions may include, but are not limited to, starting jobs on

robots, adding/removing data in queues, scheduling jobs to run unattended, etc. without

13

WO 2021/071579 PCT/US2020/045830

deviating from the scope of the invention. Web application 332 is the visual layer of
the server platform. In this embodiment, web application 332 uses Hypertext Markup
Language (HTML) and JavaScript (JS). However, any desired markup languages, script
languages, or any other formats may be used without deviating from the scope of the
invention. The user interacts with web pages from web application 332 via browser 320
in this embodiment in order to perform various actions to control conductor 330. For
instance, the user may create robot groups, assign packages to the robots, analyze logs
per robot and/or per process, start and stop robots, etc.

[0041] In addition to web application 332, conductor 330 also includes service layer
that exposes OData REST API endpoints 334. However, other endpoints may be
included without deviating from the scope of the invention. The REST APIis consumed
by both web application 332 and agent 314. Agent 314 is the supervisor of one or more
robots on the client computer in this embodiment.

[0042] The REST APIin this embodiment covers configuration, logging, monitoring,
and queueing functionality. The configuration endpoints may be used to define and
configure application users, permissions, robots, assets, releases, and environments in
some embodiments. Logging REST endpoints may be used to log different information,
such as errors, explicit messages sent by the robots, and other environment-specific
information, for instance. Deployment REST endpoints may be used by the robots to
query the package version that should be executed if the start job command is used in
conductor 330. Queueing REST endpoints may be responsible for queues and queue
item management, such as adding data to a queue, obtaining a transaction from the

queue, setting the status of a transaction, etc.

14

WO 2021/071579 PCT/US2020/045830

[0043] Monitoring REST endpoints monitor web application 332 and agent 314.
Notification and monitoring API 336 may be REST endpoints that are used for
registering agent 314, delivering configuration settings to agent 314, and for
sending/receiving notifications from the server and agent 314. Notification and
monitoring API 336 may also use WebSocket communication in some embodiments.
[0044] The persistence layer includes a pair of servers in this embodiment — database
server 340 (e.g., a SQL server) and indexer server 350. Database server 340 in this
embodiment stores the configurations of the robots, robot groups, associated processes,
users, roles, schedules, etc. This information is managed through web application 332
in some embodiments. Database server 340 may manages queues and queue items. In
some embodiments, database server 340 may store messages logged by the robots (in
addition to or in lieu of indexer server 350).

[0045] Indexer server 350, which is optional in some embodiments, stores and
indexes the information logged by the robots. In certain embodiments, indexer server
350 may be disabled through configuration settings. In some embodiments, indexer
server 350 uses ElasticSearch®, which is an open source project full-text search engine.
Messages logged by robots (e.g., using activities like log message or write line) may be
sent through the logging REST endpoint(s) to indexer server 350, where they are
indexed for future utilization.

[0046] FIG. 4 is an architectural diagram illustrating the relationship 400 between a
designer 410, activities 420, 430, and drivers 440, according to an embodiment of the
present invention. Per the above, a developer uses designer 410 to develop workflows

that are executed by robots. Workflows may include user-defined activities 420 and Ul

15

WO 2021/071579 PCT/US2020/045830

automation activities 430. Some CV activities may include, but are not limited to, click,
type, get text, hover, element exists, refresh scope, highlight, etc. Click in some
embodiments identifies an element using CV, OCR, fuzzy text matching, and multi-
anchor, for example, and clicks it. Type may identify an element using the above and
types in the element. Get text may identify the location of specific text and scan it using
OCR. Hover may identify an element and hover over it. Element exists may check
whether an element exists on the screen using the techniques described above. In some
embodiments, there may be hundreds or even thousands of activities that can be
implemented in designer 410. However, any number and/or type of activities may be
available without deviating from the scope of the invention.

[0047] Ul automation activities 430 are a subset of special, lower level activities that
are written in lower level code (e.g., CV activities) and facilitate interactions with the
screen. UI automation activities 430 facilitate these interactions via drivers 440 that
allow the robot to interact with the desired software. For instance, drivers 440 may
include OS drivers 442, browser drivers 444, VM drivers 446, enterprise application
drivers 448, etc.

[0048] Drivers 440 may interact with the OS at a low level looking for hooks,
monitoring for keys, etc. They may facilitate integration with Chrome®, IE®, Citrix®,
SAP®, etc. For instance, the “click” activity performs the same role in these different
applications via drivers 440.

[0049] FIG. 5 is an architectural diagram illustrating an RPA system 500, according
to an embodiment of the present invention. In some embodiments, RPA system 500

may be or include RPA systems 200 and/or 300 of FIGS. 2 and/or 3. RPA system 500

16

WO 2021/071579 PCT/US2020/045830

includes multiple client computing systems 510 running robots. Computing systems
510 are able to communicate with a conductor computing system 520 via a web
application running thereon. Conductor computing system 520, in turn, is able to
communicate with a database server 530 and an optional indexer server 540.

[0050] With respect to FIGS. 3 and 5, it should be noted that while a web application
is used in these embodiments, any suitable client/server software may be used without
deviating from the scope of the invention. For instance, the conductor may run a server-
side application that communicates with non-web-based client software applications on
the client computing systems.

[0051] FIG. 6 is an architectural diagram illustrating a computing system 600
configured to detect Ul elements in an RPA system using CNNs, according to an
embodiment of the present invention. In some embodiments, computing system 600
may be one or more of the computing systems depicted and/or described herein.
Computing system 600 includes a bus 605 or other communication mechanism for
communicating information, and processor(s) 610 coupled to bus 605 for processing
information. Processor(s) 610 may be any type of general or specific purpose processor,
including a Central Processing Unit (CPU), an Application Specific Integrated Circuit
(ASIC), a Field Programmable Gate Array (FPGA), a Graphics Processing Unit (GPU),
multiple instances thereof, and/or any combination thereof. Processor(s) 610 may also
have multiple processing cores, and at least some of the cores may be configured to
perform specific functions. Multi-parallel processing may be used in some
embodiments. In certain embodiments, at least one of processor(s) 610 may be a

neuromorphic circuit that includes processing elements that mimic biological neurons.

17

WO 2021/071579 PCT/US2020/045830

In some embodiments, neuromorphic circuits may not require the typical components
of a Von Neumann computing architecture.

[0052] Computing system 600 further includes a memory 615 for storing
information and instructions to be executed by processor(s) 610. Memory 615 can be
comprised of any combination of Random Access Memory (RAM), Read Only Memory
(ROM), flash memory, cache, static storage such as a magnetic or optical disk, or any
other types of non-transitory computer-readable media or combinations thereof. Non-
transitory computer-readable media may be any available media that can be accessed
by processor(s) 610 and may include volatile media, non-volatile media, or both. The
media may also be removable, non-removable, or both.

[0053] Additionally, computing system 600 includes a communication device 620,
such as a transceiver, to provide access to a communications network via a wireless
and/or wired connection. In some embodiments, communication device 620 may be
configured to use Frequency Division Multiple Access (FDMA), Single Carrier FDMA
(SC-FDMA), Time Division Multiple Access (TDMA), Code Division Multiple Access
(CDMA), Orthogonal Frequency Division Multiplexing (OFDM), Orthogonal
Frequency Division Multiple Access (OFDMA), Global System for Mobile (GSM)
communications, General Packet Radio Service (GPRS), Universal Mobile
Telecommunications System (UMTS), ¢cdma2000, Wideband CDMA (W-CDMA),
High-Speed Downlink Packet Access (HSDPA), High-Speed Uplink Packet Access
(HSUPA), High-Speed Packet Access (HSPA), Long Term Evolution (LTE), LTE
Advanced (LTE-A), 802.11x, Wi-Fi, Zigbee, Ultra-WideBand (UWB), 802.16x, 802.15,

Home Node-B (HnB), Bluetooth, Radio Frequency Identification (RFID), Infrared Data

18

WO 2021/071579 PCT/US2020/045830

Association (IrDA), Near-Field Communications (NFC), fifth generation (5G), New
Radio (NR), any combination thereof, and/or any other currently existing or future-
implemented communications standard and/or protocol without deviating from the
scope of the invention. In some embodiments, communication device 620 may include
one or more antennas that are singular, arrayed, phased, switched, beamforming,
beamsteering, a combination thereof, and or any other antenna configuration without
deviating from the scope of the invention.

[0054] Processor(s) 610 are further coupled via bus 605 to a display 625, such as a
plasma display, a Liquid Crystal Display (LCD), a Light Emitting Diode (LED) display,
a Field Emission Display (FED), an Organic Light Emitting Diode (OLED) display, a
flexible OLED display, a flexible substrate display, a projection display, a 4K display,
a high definition display, a Retina® display, an In-Plane Switching (IPS) display, or any
other suitable display for displaying information to a user. Display 625 may be
configured as a touch (haptic) display, a three dimensional (3D) touch display, a multi-
input touch display, a multi-touch display, etc. using resistive, capacitive, surface-
acoustic wave (SAW) capacitive, infrared, optical imaging, dispersive signal
technology, acoustic pulse recognition, frustrated total internal reflection, etc. Any
suitable display device and haptic I/O may be used without deviating from the scope of
the invention.

[0055] A keyboard 630 and a cursor control device 635, such as a computer mouse,
a touchpad, etc., are further coupled to bus 605 to enable a user to interface with
computing system. However, in certain embodiments, a physical keyboard and mouse

may not be present, and the user may interact with the device solely through display 625

19

WO 2021/071579 PCT/US2020/045830

and/or a touchpad (not shown). Any type and combination of input devices may be used
as a matter of design choice. In certain embodiments, no physical input device and/or
display is present. For instance, the user may interact with computing system 600
remotely via another computing system in communication therewith, or computing
system 600 may operate autonomously.

[0056] Memory 615 stores software modules that provide functionality when
executed by processor(s) 610. The modules include an operating system 640 for
computing system 600. The modules further include a graphical element detection
module 645 that is configured to perform all or part of the processes described herein
or derivatives thereof. Computing system 600 may include one or more additional
functional modules 650 that include additional functionality.

[0057] One skilled in the art will appreciate that a “system” could be embodied as a
server, an embedded computing system, a personal computer, a console, a personal
digital assistant (PDA), a cell phone, a tablet computing device, a quantum computing
system, or any other suitable computing device, or combination of devices without
deviating from the scope of the invention. Presenting the above-described functions as
being performed by a “system” is not intended to limit the scope of the present invention
in any way, but is intended to provide one example of the many embodiments of the
present invention. Indeed, methods, systems, and apparatuses disclosed herein may be
implemented in localized and distributed forms consistent with computing technology,
including cloud computing systems.

[0058] It should be noted that some of the system features described in this

specification have been presented as modules, in order to more particularly emphasize

20

WO 2021/071579 PCT/US2020/045830

their implementation independence. For example, a module may be implemented as a
hardware circuit comprising custom very large scale integration (VLSI) circuits or gate
arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete
components. A module may also be implemented in programmable hardware devices
such as field programmable gate arrays, programmable array logic, programmable logic
devices, graphics processing units, or the like.

[0059] A module may also be at least partially implemented in software for
execution by various types of processors. An identified unit of executable code may,
for instance, include one or more physical or logical blocks of computer instructions
that may, for instance, be organized as an object, procedure, or function. Nevertheless,
the executables of an identified module need not be physically located together, but may
include disparate instructions stored in different locations that, when joined logically
together, comprise the module and achieve the stated purpose for the module. Further,
modules may be stored on a computer-readable medium, which may be, for instance, a
hard disk drive, flash device, RAM, tape, and/or any other such non-transitory
computer-readable medium used to store data without deviating from the scope of the
invention.

[0060] Indeed, a module of executable code could be a single instruction, or many
instructions, and may even be distributed over several different code segments, among
different programs, and across several memory devices. Similarly, operational data may
be identified and illustrated herein within modules, and may be embodied in any suitable
form and organized within any suitable type of data structure. The operational data may

be collected as a single data set, or may be distributed over different locations including

21

WO 2021/071579 PCT/US2020/045830

over different storage devices, and may exist, at least partially, merely as electronic
signals on a system or network.

[0061] FIG. 7 is a flowchart illustrating a process 700 for training a neural network,
according to an embodiment of the present invention. The process begins with framing
a problem as a graphical element detection problem at 710. Next, a raw dataset is
created at 720. The raw dataset is created in some embodiments by collecting images
(i.e., screenshots of different application user interfaces) directly from the environment
on which the CNN will operate. In some embodiments, the raw dataset includes
screenshots from widely varying applications in an attempt to make the trained
algorithm more robust. The raw dataset may also be created from synthetic data that
provides images that are similar to those from real screenshots.

[0062] Synthetic data may be created in some embodiments by a program that
generates other programs. The interfaces of the generated programs may then be
scraped to obtain “screenshots.” In some embodiments, the interfaces may look similar
to desired software applications, such as enterprise resource planning (ERP) systems.
[0063] The raw dataset is then augmented at 730, creating an augmented dataset.
The augmented dataset is created from the raw dataset in order to create additional
datapoints in addition to the raw datapoints to train the neural network, and may include
the raw dataset as well. As a nonlimiting example for visualization purposes, consider
the scenario of collecting five images of a cat as raw data. Augmented data may be
created by modifying the cat images in various ways that include, but are not limited to,
flipping images horizontally, changing colors, artificially adding noise, artificially

adding lighting, or any combination thereof. This helps to simulate scenarios that may

22

WO 2021/071579 PCT/US2020/045830

happen in the real world. As such, the augmented dataset provides more datapoints for
the neural network, making it more robust to real world scenarios, once trained.

[0064] Insome embodiments, the dataset is augmented using channel randomization,
hue shift, color inversion, random cropping, random scaling, blurring of images, or any
combination thereof. Channel randomization makes the CNN robust to different color
schemes. Channel randomization involves changing channel order (e.g., converting red
into blue), resulting in new images and helping the network to understand colors. Hue
shift and color inversion also make the network more robust to different color schemes.
The latter may be especially beneficial since most Uls have white or dark themes.
[0065] Random cropping helps to achieve the translation effect due to the anchor
stride and network convolutions strides. This assists in solving the intrinsic problem of
strides in the architecture. Random cropping may be performed by overlaying a
substantial number of rectangles (e.g., dozens of rectangles), which are usually laid out
as a grid and then matched with actual labels. If a match occurs, the cropped image is
taken as a positive example to train the network. If, however, the match does not occur,
the cropped image is used as negative example to train the network.

[0066] The anchors have a granularity (scale) and a stride distance between the boxes.
Thus, if there is a check box between two text boxes, for example, the algorithm in some
embodiments will not miss it. The proposed network can be made to be sensitive to
even small translations (e.g., a four pixel translation).

[0067] In some implementations, different cropping techniques may be used for
different controls. For example, to identify a graphical element that is an image, it may

be cropped at the bottom. Similarly, tables may be adjusted by size and other general

23

WO 2021/071579 PCT/US2020/045830

text may be cropped in the middle in some embodiments. Using different cropping
techniques may yield better results in some embodiments, but this may not be known
beforehand.

[0068] Random scaling may allow coverage of a wider part of the real-life
distribution of different systems and applications. For example, a button rendered in
800 x 600 resolutions may have 16 X 16 pixels. However, when the same button is
rendered in a 4k monitor, number of pixels in the button area will be considerably higher.
The neural network may be trained for different scales using this approach. Blurring of
images may also be used to make the network more robust to different compression and
resize blurs that can occur in actual implementations.

[0069] After the augmented dataset is produced, a Faster R-CNN architecture
designed for graphical element detection is used to detect graphical elements at 740. In
some embodiments, the Faster R-CNN architecture is modified to be suitable for
detecting small UI graphical elements and/or improving graphical element detection
accuracy by making the algorithm more robust to changes in the Ul. For example,
image resizing may be bypassed. Conventional Faster R-CNN resizes to a fixed shape,
but some embodiments do not do this. Atrous convolutions may be used to assist in
finding larger Ul elements and to take more context into account. Also, variable
proposal sizes may be used. For example, it is typically expected to find more graphical
elements in a larger screenshot than in a smaller one.

[0070] Faster R-CNN was found to be the most effective architecture during
comparative testing with other architectures. However, any other suitable architecture,

such as SSD, RetinaNet, YOLO, etc., may be modified without deviating from the scope

24

WO 2021/071579 PCT/US2020/045830

of the invention. Also, while the RPN backbone of some embodiments is ResNet-101,
having the fastest performance and best wmAP during testing, any desired RPN
backbone may be used without deviating from the scope of the invention.

[0071] The Faster R-CNN implementation of some embodiments may be the
Tensorflow object detection API. In such embodiments, the momentum optimizer with
a learning rate that roughly follows an exponential decay rule may be used. Due to the
range of the object sizes, we made the following decisions were made with respect to a
practical implementation. It was decided to use a dilated convolution in the ResNet-
101 backbone to increase the receptive field without incurring a model size penalty. For
this, first stage atrous rate was set to 2. The following anchor settings were also used:
(1) a base size of width = 64 and height = 64; (2) a stride with width = 8 and height = 8;
(3) scales 0f 0.25, 0.5, 1.0, and 2.0; and (4) aspect ratios of 0.5, 1.0, and 2.0. The number
of proposals of both stages was set to 400. Proposals are a hyper-parameter for two
stage detection networks.

[0072] The CNN architecture is only inherently invariant to translation if all of the
strides are equal to 1. Otherwise, differences start to appear. Additionally, due to the
stride of the anchors, even greater problems emerge with respect to translation. Thus,
the dataset should be augmented to include translations.

[0073] In some embodiments, each time two boxes are compared, the intersection
over the union or the intersection over the minimum is used with a given threshold. An
adaptive threshold may be used in some embodiments that depends on the area of the
box. For small graphical elements, a small threshold works well. However, for larger

graphical elements, a larger threshold may be preferable.

25

WO 2021/071579 PCT/US2020/045830

[0074] Each prediction in some embodiments comes with a “confidence” that the
network has with respect to that prediction. The threshold may be the minimum
confidence take that prediction into account. For instance, if the minimum confidence
is 70%, only predictions with at least that confidence value would be used in some
embodiments. In certain embodiments, the confidence is computed dynamically as a
function of precision/recall.

[007S] The model in some embodiments provides a fixed number of detected
controls. Based on a precision/recall tradeoff, these proposals may be filtered with
different thresholds for design time (i.e., when a developer is defining the automation)
and at runtime (i.e., when the robot runs the automation on its own). At design time, a
threshold may be used that maximizes precision (i.e., only graphical elements are shown
that are believed to be accurately identified with a high degree of certainty). For
example, a confidence of above 90% may be required in some embodiments as the high
degree of certainly. However, any desired higher confidence may be used without
deviating from the scope of the invention. In this manner, the chances that the graphical
elements are found at runtime are high.

[0076] At runtime, however, a lower threshold may be used that maximizes recall.
Thus, a larger number of potential graphical elements may be identified. Multi-anchor
post-processing, such as that described in U.S. Patent Application No. 16/517,225, may
then be used to help identify the desired controls even with low precision (high noise)
detections.

[0077] Some embodiments realize various advantages over existing image

recognition techniques. For instance, some embodiments provide more accurate recall

26

WO 2021/071579 PCT/US2020/045830

(i.e., fewer Ul elements are missed or misidentified). Some embodiments are more
robust to Ul theme changes and Ul scaling. Certain embodiments can be incrementally
improved by adding more data, as well as by adding architecture changes (e.g., changing
the internal mechanics of the neural network, but still having the same input/output).
[0078] FIG. 8 is a flowchart illustrating a process 800 for training a neural network,
according to an embodiment of the present invention. The process beings with creating
a raw dataset by collecting images directly from an environment on which a CNN will
operate at 810. In some embodiments, the raw dataset is created from synthetic data
mimicking real screenshots.

[0079] Next, the raw dataset is augmented to produce an augmented dataset at 820.
In some embodiments, the augmenting of the raw dataset includes flipping images
horizontally, changing colors, artificially adding noise, artificially adding lighting, or
any combination thereof. In certain embodiments, the augmenting of the raw data
comprises using channel randomization, hue shift, color inversion, random cropping,
random scaling, blurring of images, or any combination thereof. In some embodiments,
the augmented dataset includes translations.

[0080] In embodiments where random cropping is used to produce cropped images,
the augmenting of the raw dataset may include overlaying rectangles over the cropped
image as a grid, matching the overlaid rectangles to actual labels, using the cropped
image as a positive example to train the CNN when a match occurs, and using the
cropped image as a negative example to train the CNN when a match does not occur.
In certain embodiments, proposals are provided for each rectangle in the grid. The

proposals include a scale and a stride distance, the stride distance defining a distance

27

WO 2021/071579 PCT/US2020/045830

between the rectangles. In some embodiments, each time two rectangles are compared,
an intersection over a union or an intersection over a minimum is used with a given
threshold. In certain embodiments, the threshold is an adaptive threshold that depends
on an area of a given rectangle. In some embodiments, different cropping techniques
are used to identify at least two different graphical element types.

[0081] The CNN is then trained using the augmented dataset at 830. In some
embodiments, the CNN includes a Faster R-CNN architecture. In certain embodiments,
dilated convolution is used in the RPN backbone with two stages, different scales are
used, and different aspect ratios are used.

[0082] Graphical elements are then detected in a Ul using the trained CNN at 840.
In some embodiments, the detecting of the graphical elements includes providing a fixed
number of proposals for each graphical element. In certain embodiments, the proposals
are filtered with different thresholds for design time and for runtime, the runtime
threshold requiring a higher detection probability than the design time threshold.
[0083] The process steps performed in FIGS. 7 and 8 may be performed by a
computer program, encoding instructions for the processor(s) to perform at least part of
the process described in FIGS. 7 and 8, in accordance with embodiments of the present
invention. The computer program may be embodied on a non-transitory computer-
readable medium. The computer-readable medium may be, but is not limited to, a hard
disk drive, a flash device, RAM, a tape, and/or any other such medium or combination
of media used to store data. The computer program may include encoded instructions

for controlling processor(s) of a computing system (e.g., processor(s) 610 of computing

28

WO 2021/071579 PCT/US2020/045830

system 600 of FIG. 6) to implement all or part of the process steps described in FIGS.
7 and 8, which may also be stored on the computer-readable medium.

[0084] The computer program can be implemented in hardware, software, or a
hybrid implementation. The computer program can be composed of modules that are
in operative communication with one another, and which are designed to pass
information or instructions to display. The computer program can be configured to
operate on a general purpose computer, an ASIC, or any other suitable device.

[008S] It will be readily understood that the components of various embodiments of
the present invention, as generally described and illustrated in the figures herein, may
be arranged and designed in a wide variety of different configurations. Thus, the
detailed description of the embodiments of the present invention, as represented in the
attached figures, is not intended to limit the scope of the invention as claimed, but is
merely representative of selected embodiments of the invention.

[0086] The features, structures, or characteristics of the invention described
throughout this specification may be combined in any suitable manner in one or more
embodiments. For example, reference throughout this specification to “certain

2

embodiments,” “some embodiments,” or similar language means that a particular
feature, structure, or characteristic described in connection with the embodiment is
included in at least one embodiment of the present invention. Thus, appearances of the
phrases “in certain embodiments,” “in some embodiment,” “in other embodiments,” or
similar language throughout this specification do not necessarily all refer to the same

group of embodiments and the described features, structures, or characteristics may be

combined in any suitable manner in one or more embodiments.

29

WO 2021/071579 PCT/US2020/045830

[0087] It should be noted that reference throughout this specification to features,
advantages, or similar language does not imply that all of the features and advantages
that may be realized with the present invention should be or are in any single
embodiment of the invention. Rather, language referring to the features and advantages
is understood to mean that a specific feature, advantage, or characteristic described in
connection with an embodiment is included in at least one embodiment of the present
invention. Thus, discussion of the features and advantages, and similar language,
throughout this specification may, but do not necessarily, refer to the same embodiment.
[0088] Furthermore, the described features, advantages, and characteristics of the
invention may be combined in any suitable manner in one or more embodiments. One
skilled in the relevant art will recognize that the invention can be practiced without one
or more of the specific features or advantages of a particular embodiment. In other
instances, additional features and advantages may be recognized in certain embodiments
that may not be present in all embodiments of the invention.

[0089] One having ordinary skill in the art will readily understand that the invention
as discussed above may be practiced with steps in a different order, and/or with
hardware elements in configurations which are different than those which are disclosed.
Therefore, although the invention has been described based upon these preferred
embodiments, it would be apparent to those of skill in the art that certain modifications,
variations, and alternative constructions would be apparent, while remaining within the
spirit and scope of the invention. In order to determine the metes and bounds of the

invention, therefore, reference should be made to the appended claims.

30

WO 2021/071579 PCT/US2020/045830

CLAIMS

1. A computer program embodied on a non-transitory computer-readable
medium, the program configured to cause at least one processor to:

create a raw dataset by collecting images directly from an environment on
which a convolutional neural network (CNN) will operate;

augment the raw dataset to produce an augmented dataset;

train the CNN using the augmented dataset; and

detect graphical elements in a user interface (UI) using the trained CNN.

2. The computer program of claim 1, wherein the raw dataset is created

from synthetic data mimicking real screenshots.

3. The computer program of claim 1, wherein the augmenting of the raw
dataset comprises flipping images horizontally, changing colors, artificially adding

noise, artificially adding lighting, or any combination thereof.

4. The computer program of claim 1, wherein the augmenting of the raw

data comprises using channel randomization, hue shift, color inversion, random

cropping, random scaling, blurring of images, or any combination thereof.

31

WO 2021/071579 PCT/US2020/045830

5. The computer program of claim 4, wherein random cropping is used to
produce cropped images and the program is further configured to cause the at least
one processor to:

overlay rectangles over a cropped image of the produced cropped images as a
grid;

match the overlaid rectangles to actual labels;

when a match occurs, use the cropped image as a positive example to train the
CNN; and

when a match does not occur, use the cropped image as a negative example to

train the CNN.

6. The computer program of claim 5, wherein the program is further
configured to cause the at least one processor to:

provide proposals for each rectangle in the grid, wherein

the proposals comprise a scale and a stride distance, the stride distance
defining a distance between the rectangles, wherein

each time two rectangles are compared, an intersection over a union or an
intersection over a minimum is used with a given adaptive threshold that depends on

an area of a given rectangle.

7. The computer program of claim 5, wherein different cropping

techniques are used to identify at least two different graphical element types.

32

WO 2021/071579 PCT/US2020/045830

8. The computer program of claim 1, wherein the CNN comprises a
Faster Region-based Convolutional Neural Network (R-CNN) architecture with a

region proposal network (RPN).

0. The computer program of claim 1, wherein the augmented dataset

comprises translations.

10. The computer program of claim 1, wherein

the detecting of the graphical elements comprises providing a fixed number of
proposals for each graphical element, and

the proposals are filtered with different thresholds for design time and for
runtime, the runtime threshold having a higher detection probability than the design

time threshold.

11. A computer-implemented method, comprising:

augmenting, by a computing system, a raw dataset using channel
randomization, hue shift, color inversion, random cropping, random scaling, blurring
of images, or any combination thereof, to produce an augmented dataset;

training a convolutional neural network (CNN), by the computing system,
using the augmented dataset; and

detecting graphical elements in a user interface (UI), by the computing

system, using the trained CNN.

33

WO 2021/071579 PCT/US2020/045830

12. The computer-implemented method of claim 11, wherein random
cropping is used to produce cropped images and the method further comprises:

overlaying rectangles over a cropped image of the produced cropped images
as a grid, by the computing system,;

matching the overlaid rectangles to actual labels, by the computing system;

providing proposals for each rectangle in the grid, by the computing system,;

when a match occurs, using the cropped image as a positive example to train
the CNN, by the computing system; and

when a match does not occur, using the cropped image as a negative example

to train the CNN, by the computing system.

13. The computer-implemented method of claim 12, wherein different

cropping techniques are used to identify at least two different graphical element types.

14. The computer-implemented method of claim 12, wherein

each time two rectangles are compared, an intersection over a union or an
intersection over a minimum is used with a given threshold, and

the threshold is an adaptive threshold that depends on an area of a given

rectangle.

15. The computer-implemented method of claim 11, further comprising:
creating the raw dataset, by the computing system, by collecting images

directly from an environment on which the CNN will operate, wherein

34

WO 2021/071579 PCT/US2020/045830

the raw dataset is created from synthetic data mimicking real screenshots, and
the augmenting of the raw dataset comprises flipping images horizontally,
changing colors, artificially adding noise, artificially adding lighting, or any

combination thereof.

16. The computer-implemented method of claim 11, wherein

the detecting of the graphical elements comprises providing a fixed number of
proposals for each graphical element, and

the proposals are filtered with different thresholds for design time and for
runtime, the runtime threshold having a higher detection probability than the design

time threshold.

17. A system, comprising:

memory storing computer program instructions; and

at least one processor configured to execute the computer program
instructions, the at least one processor configured to:

detect graphical elements in a user interface (UI) using a Faster

Region-based Convolutional Neural Network (R-CNN) architecture with a region
proposal network (RPN) backbone, the detection comprising overlaying rectangles
over an image as a grid and providing a predetermined number of proposals for each
rectangle in the grid, wherein

the proposals comprise a scale and a stride distance, the stride distance

defining a distance between the rectangles,

35

WO 2021/071579 PCT/US2020/045830

each time two rectangles are compared, an intersection over a union or an
intersection over a minimum is used with a given threshold, and
the threshold is an adaptive threshold that depends on an area of a given

rectangle.

18. The system of claim 17, wherein the proposals are filtered with
different thresholds for design time and for runtime, the runtime threshold having a

higher detection probability than the design time threshold.

19. The system of claim 17, wherein the at least one processor is further
configured to:

create a raw dataset by collecting images directly from an environment on
which the Faster R-CNN will operate; and

augment the raw dataset to produce an augmented dataset, wherein

the raw dataset is created from synthetic data mimicking real screenshots, and

the augmenting of the raw dataset comprises flipping images horizontally,
changing colors, artificially adding noise, artificially adding lighting, or any

combination thereof.

20. The system of claim 19, wherein
the augmenting of the raw data comprises using channel randomization, hue
shift, color inversion, random cropping, random scaling, blurring of images, or any

combination thereof, and

36

WO 2021/071579 PCT/US2020/045830

random cropping is used to produce cropped images and the at least one

processor is further configured to:

overlay rectangles over a cropped image of the produced cropped
images as a grid,

match the overlaid rectangles to actual labels;

when a match occurs, use the cropped image as a positive example to
train the CNN; and

when a match does not occur, use the cropped image as a negative

example to train the CNN.

37

WO 2021/071579 PCT/US2020/045830

(1/8)

FIG. 1
N

Detected Graphical Element

Layers of CNN

Max Pooling

Feature Maps

ResNet with
Dilated Convolutional

Convolution

Faster R-CNN for Graphical Element Detection

WO 2021/071579 PCT/US2020/045830

(2/8)

200 FIG- 2
N

UNATTENDED
ROBOT

o

210 220 039 234

E............... Anmns amnms inmng

i AUTOMATE
t

§ </mainframe>

.................. ' obot(s) E </web>
{<IVM>

I </enterprise app>

EXECUTE

Designer Conductor MONITOR ¢ </desktop app> |

R e sn Ao e snon

232

o

ATTENDED
ROBOT

WO 2021/071579 PCT/US2020/045830
(3/8)
FIG. 3
\ ’
320 }12 ;5/16
/ 310 o i
i Executor Designer
Browser | 314 :
| S |
: . ™ Agent(s)
Client Side : e e :
332 - .
Web App“cahon (HTML/JS) s H H‘ H H
Presentation || | ~; .; - | | | | 336
Layer : : z § § § § : § //
334 Conf. Log Mon. Queues Conf. Log Mon. Queues A
T OData REST API Endpoints Neification and "}~ 330
SLervice API Implementation / Business Logic
ayer
338~

Persistence

Layer
Server Side

Datébase

Indexer Server
Server

@ ODODOODD ODODOODD WOODODOOD OOOODODD WODOODOD DODODOON WODODODOD ODODODDD WODOOBODD ODODOODD WOODODOOD OODODODD WOODODOD OODOODOD YODODOODD ODODODDD WODODODD ODOODODD WDODDODOD SOBODOOD

WO 2021/071579

400

Designer

/ T Activities
410 440~—""1" Drivers
440
T 0S Browser VM Enterprise
/ : / : / : / :
442 444 446 448

PCT/US2020/045830

User-Defined
Activities

Ul Automation

WO 2021/071579 PCT/US2020/045830

510

Robots

520

Conductor

WO 2021/071579

600

N

Display
625

Keyboard
630

Cursor
Control

Device
635

PCT/US2020/045830
(6/8)
FIG. 6
Communication Processor(s)
1 A" Device
620 610
I ¥
= Bus
605
640 645 I 650
/ ™~
: Graphical Element Other Functional
Operating .
S N— System Detection Module Modules

Memory 615

WO 2021/071579 PCT/US2020/045830

(7 18)

FIG. 7
N

START

k:

Frame Problem as a /,,« 710
Graphical Element
Detection Problem
720
Create Raw Dataset
k
730
Augment Raw Dataset ——
k
740
Use Faster R-CNN to /,/"
Detect Graphical Elements

l

END

WO 2021/071579 PCT/US2020/045830

(8/8)

FIG. 8
N

START

810
Create Raw Dataset //
820
Augment Raw Dataset
k
830
Train CNN T
k
840
Use Trained CNN to Detect /,/"
Graphical Elements

l

END

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2020/045830

A. CLASSIFICATION OF SUBJECT MATTER
GOG6N 3/08(2006.01)i, GOGN 3/04(2006.01)i, GO6T 11/40(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOO6N 3/08; GOOF 9/44; GO6K 9/46; GO6N 3/04; GO6T 11/40

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models

Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: raw dataset, collect, convolutional neural network (CNN), train, graphical element, user
interface (UI)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X KEVIN MORAN et al.. Machine Learning—Based Prototyping of Graphical User 1-4,10-11,15-16
Interfaces for Mobile Apps. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,
May 2018, pp. 1-26.

Pages 1-12, 21-22

Y 3-9
A 5-7,12-14,17-20
Y SHAOQING REN et al.. Faster R-CNN: Towards Real-Time Object Detection with R 8-9
egion Proposal Networks. Microsoft Research, 04 Jun 2015, pp. 1-9.
Pages 1-3
A UIPATH. UiPath Studio - Basic Concepts. Youtube, 22 July 2014, Retrieved fr 1-20
om the Internet: <URL: https://www.youtube.com/watch?v=dDbiQpqA7S0>.
Pages 1-5
A US 2017-0206431 A1 (MICROSOFT TECHNOLOGY LECENSING, LLC.) 20 July 2017 1-20

Paragraphs [0057]-[0127]; and figures 3-7

A US 2007-0271552 A1 (ROBERT A. PULLEY) 22 November 2007 1-20
Paragraphs [0027]-[0030]; and figure 1

|:| Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"D" document cited by the applicant in the international application "X" document of particular relevance; the claimed invention cannot be

"E" eartlier application or patent but published on or after the international considered novel or cannot be considered to involve an inventive
filing date step when the document is taken alone

"L" document which may throw doubts on priority claim(s) or which is "Y" document of particular relevance; the claimed invention cannot be
cited to establish the publication date of another citation or other considered to involve an inventive step when the document is
special reason (as specified) combined with one or more other such documents,such combination

"O" document referring to an oral disclosure, use, exhibition or other means

being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
09 November 2020 (09.11.2020) 11 November 2020 (11.11.2020)
Name and mailing address of the [SA/KR Authorized officer

International Application Division

Korean Intellectual Property Office YANG JEONG ROK
189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea

\\ 3
Facsimile No. +82-42-481-8578 Telephone No. +82-42-481-5709 \\m\\\‘

Form PCT/ISA/210 (second sheet) (July 2019)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2020/045830
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2017-0206431 Al 20/07/2017 US 9858496 B2 02/01/2018

US 2007-0271552 Al 22/11/2007 None

Form PCT/ISA/210 (patent family annex) (July 2019)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - wo-search-report
	Page 49 - wo-search-report

