a9y United States

Faibish et al.

US 20180260398A1

a2y Patent Application Publication o) Pub. No.: US 2018/0260398 A1

43) Pub. Date: Sep. 13, 2018

(54)

(71)

(72)

@

(22)

(63)

CLUSTER FILE SYSTEM COMPRISING
DATA MOVER MODULES HAVING
ASSOCIATED QUOTA MANAGER FOR
MANAGING BACK-END USER QUOTAS

Applicant: EMC IP Holding Company LLC,

Hopkinton,

Inventors:

MA (US)

Appl. No.: 15/977,548

Filed:

MA (US)

May 11, 2018

Sorin Faibish, Newton, MA (US);

Sassan Teymouri, Saratoga, CA (US);
John M. Bent, Los Alamos, NM (US);
James M. Pedone, JR., West Boylston,

Related U.S. Application Data

Continuation of application No. 14/499.,429, filed on

Sep. 29, 2014.

Publication Classification

Int. CL.
GOGF 17/30
U.S. CL
CPC .. GOGF 17/30073 (2013.01); GOGF 17/30221
(2013.01); GOGF 17/30082 (2013.01)

(57) ABSTRACT

A cluster file system comprises a front-end file system, a
back-end file system, data mover modules arranged between
the front-end and back-end file systems, and a quota man-
ager associated with at least a given one of data mover
modules. The data mover modules are configured to control
archiving of data between the front-end file system and the
back-end file system for respective users based at least in
part on respective user quotas established by the quota
manager and identifying corresponding portions of the back-
end file system available to the users. The front-end file
system may comprise archive directories configured for
respective ones of the users, with the data mover modules
being configured to archive a given file from the front-end
file system in the back-end file system responsive to a link
to that file being stored in a corresponding one of the archive
directories of the front-end file system.

/ 300

D
(52)

(2006.01)

/30 el
FRONT-END FILE SYSTEM 306-14 BACK-END FILE SYSTEM 315-1
315
_ 381~ /. PDM SERVERS
308-1 e — /3" Data User! L316 Usert-Aviloble-HSM~Quota
Usert ink1 HSM QUOTA ser1—Available-HSM-Quo
User!-Quota MANAGER !
tempf foo! Pool1 fool filet
318-21 77 306-2y 315-2
308-2 . /dir2 { s
@ file —1— k2 L] User? PDM SERVERS User2-Available-HSM-Quota
- Userfzo-ogUOtO Pool2 foo2 file2
emp!
N 306-Ny 315N
308-N SN /gy PN SERVERS i P
fileN —-L_ linkN UserN-Available-HSM-Quota
UserN Data UserN
UserN-Quota PoolN fooN fileN
tempN fooN

Patent Application Publication

Sep. 13,2018 Sheet 1 of 6 US 2018/0260398 A1

107 A

102 A

FIG. 1 o
HIGH-PERFORMANCE COMPUTING SYSTEM
J's 108-1 J's 108-2 r 108-N
COMPUTE COMPUTE COMPUTE
NODE NODE NODE
FRONT-END FILE SYSTEM
It 118 I 112
ARCHIVE FRONT-END
DIRECTORIES STORAGE TIER(S)

106 A

DATA MOVER MODULES

1116

HSM QUOTA MANAGER FOR
BACK-END USER QUOTAS AND
ARCHIVE DIRECTORY QUOTAS

[

\

A

y

104

BACK-END FILE SYSTEM

[114

BACK-END STORAGE TIER(S)

Patent Application Publication Sep. 13, 2018 Sheet 2 of 6 US 2018/0260398 A1

FIG. 2

CONFIGURE DATA MOVER MODULES FOR
ARRANGEMENT BETWEEN FRONT-END FILE [200
SYSTEM AND BACK-END FILE SYSTEM

\

CONFIGURE A QUOTA MANAGER
ASSOCIATED WITH AT LEAST A GIVEN | 202
ONE OF THE DATA MOVER MODULES

\

ESTABLISH VIA THE QUOTA MANAGER
USER QUOTAS IDENTIFYING CORRESPONDING

PORTIONS OF THE BACKEND FILE SYSTEM [204
AVAILABLE TO RESPECTIVE USERS
CONTROL ARCHIVING OF DATA BETWEEN
THE FRONT-END FLE SYSTEM AND THE | _ 0.

BACK-END FILE SYSTEM BASED AT LEAST IN
PART ON THE ESTABLISHED USER QUOTAS

US 2018/0260398 A1

Sep. 13,2018 Sheet 3 of 6

Patent Application Publication

Nely NOO} NIoOd
D}ONY-NSH-8|qD]IDAY-NJ8s)
N-Glg /

ol 7005 /0o
D)OND-NSH-|GDIDAY-Z4asn N
218/

loly J0o} }joog

D3OND-NSH-2|qP|IDAY- | J8s

115/

N3LSAS 3714 ANI-XIvE

yos 7

00¢ \\

NOOJ Ndwsy
pjonH-NJI8s
NissN B0 a _w___,_h_fh Nel} bl
SYINIS Nad T Nel oo
g / M/ | y-aie N-80¢
700} 7dwey
onp-z4es
P o} Nov_cm_/:- - zes))
SYINYIS Nad bjoq A o
Croane W/ | -gie 7-80¢
100} | duis)
¥10ND NSH o — |aosq)
}49s() DID(X —Jall
WL s nad WP/ | —gie 1-g0¢
Ly-90¢ _
NLSAS T114 ON3-INOY4
2087/
& 914

US 2018/0260398 A1

Sep. 13,2018 Sheet 4 of 6

Patent Application Publication

WORLN | MOMLIN IVAR | g,
ININIOYNYI 99 | LSYILLINA dI Wad
/Byornoag /s41/ \zum% »\oow
/1dws)/s41/) . Nd =
300N 00¥X |« = HOLIMS £ L907 HOLINS N3LSAS
9 0} | n SHQd a [
00N 00¥X | - - g T 41N
- - SWQd [oo----
J0ON 00X = > a9 0}
43159 NOTISI Givd dHd JOVAUILNI ol o4
yoy T 99 || 34 QOOH NIGOY 43sn “
wt A |
L e e e |
)
S
007 .
vy oId

US 2018/0260398 A1

Sep. 13,2018 Sheet 5 of 6

Patent Application Publication

108
e e HVD |_
S WL | o =
405~ ols Loareo
\
/
/
65\ \
eSS \
05 ygn LNBME]
nomd |
s/ N N
S300N
1-70§ —] ¥3LSNTD NOTISI

005 \\

S4d

1 |
1 |
| |
| YI9YNVA |
| yLond |
| NSH |
| o~
T |
1 |
m INIONT ADI10d m
1 {
e T
WL E e
| In}1S3Y sy | h
| XIS0d XISOd |
gzs/ H———1 Vg
G 9Id

2057

Patent Application Publication Sep. 13, 2018 Sheet 6 of 6 US 2018/0260398 A1
FIG. 6
600
610-1 610-2 -t
§ § §
APPS APPS APPS
viRtAL | [viRroal %0272 viRrua o
6021 ~~| MACHINE 1| | MACHINE 2 MACHINE L
HYPERVISOR ~ 604
PHYSICAL INFRASTRUCTURE ~ 605
FIG. 7
700
£ 702-1 /
PROCESSING DEVICE £ 702-2
(714 - PROCESSING
NETWORK DEVICE
INTERFACE 703
710 PROCESSING
PROCESSOR DEVICE
MEMORY PROCESSING
DEVICE

US 2018/0260398 Al

CLUSTER FILE SYSTEM COMPRISING
DATA MOVER MODULES HAVING
ASSOCIATED QUOTA MANAGER FOR
MANAGING BACK-END USER QUOTAS

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] The present application is a continuation of U.S.
patent application Ser. No. 14/499.429 filed Sep. 29, 2014,
entitled “Cluster File System Comprising Data Mover Mod-
ules having Associated Quota Manager for Managing Back-
End User Quotas,” the disclosure of which is incorporated
by reference herein.

FIELD

[0002] The field relates generally to information process-
ing systems, and more particularly to information processing
systems that incorporate cluster file systems.

BACKGROUND

[0003] It is common in high-performance computing
(HPC) systems and other information processing systems for
multiple compute nodes to access a cluster file system. For
example, HPC systems such as supercomputers typically
include large numbers of compute nodes that access a
parallel file system, distributed file system or other type of
cluster file system. A cluster file system as the term is
broadly used herein generally allows multiple compute
nodes or other types of clients to share access to files over
a network.

[0004] One well-known cluster file system is the Lustre
file system. Lustre is a Linux-based high performance clus-
ter file system utilized for computer clusters ranging in size
from small workgroup clusters to large-scale, multi-site
clusters. Lustre can readily scale to support tens of thou-
sands of clients, petabytes of storage capacity, and hundreds
of gigabytes per second of aggregate input-output (1O)
throughput. Due to its high performance and scalability,
Lustre is utilized in many supercomputers, as well as other
complex computing environments, including large enter-
prise data centers.

[0005] In conventional Lustre implementations, it can be
difficult to balance the conflicting requirements of storage
capacity and 10O throughput. IO operations on object storage
servers are generally performed directly with back-end
storage arrays associated with those servers, and the corre-
sponding storage devices may not be well matched to the
current needs of the system. This can lead to situations in
which either performance is less than optimal or the costs of
implementing the system become excessive.

[0006] For example, certain types of highly cost effective
storage, such as scale-out network attached storage, are
often seen as failing to provide performance characteristics
that are adequate for use with supercomputers and other
complex computing environments that utilize Lustre file
systems.

[0007] Accordingly, despite the many advantages of Lus-
tre file systems and other similar cluster file systems, a need
remains for additional improvements, particularly with
regard to 10 operations. For example, further acceleration of
1O operations, leading to enhanced system performance
relative to conventional arrangements, would be desirable.

Sep. 13,2018

Additionally or alternatively, an ability to achieve particular
levels of performance at lower cost would be advantageous.

SUMMARY

[0008] Illustrative embodiments of the present invention
provide cluster file systems that implement both a front-end
file system and a back-end file system, with a plurality of
intermediate data mover modules and an associated quota
manager controlling movement of data between the front-
end and back-end file systems, so as to provide significant
improvements relative to conventional arrangements.
[0009] Inone embodiment, a cluster file system comprises
a front-end file system, a back-end file system, data mover
modules arranged between the front-end and back-end file
systems, and a quota manager associated with at least a
given one of data mover modules. The data mover modules
are configured to control archiving of data between the
front-end file system and the back-end file system for
respective users based at least in part on respective user
quotas established by the quota manager and identifying
corresponding portions of the back-end file system available
to the users.

[0010] The front-end file system may comprise archive
directories configured for respective ones of the users, with
the data mover modules being configured to archive a given
file from the front-end file system in the back-end file system
responsive to a link to that file being stored in a correspond-
ing one of the archive directories of the front-end file
system.

[0011] As noted above, illustrative embodiments
described herein provide significant improvements relative
to conventional arrangements. In some of these embodi-
ments, the quota manager facilitates the provision of optimal
hierarchical storage management with selective archiving of
files in the back-end file system. This helps to ensure that the
allocated portions of the back-end file system are appropri-
ately sized for their respective users, while also avoiding
unnecessary archiving of scratch files or other temporary
files that would otherwise waste archive space in the back-
end file system. The allocated portions of the back-end file
system can grow or shrink as needed to accommodate the
changing requirements of the respective users. For example,
the quota manager can proactively recommend increases or
decreases in the archive space allocated to respective users,
therefore ensuring that there will always be adequate space
to archive desired application files.

[0012] Other embodiments include, without limitation,
methods, apparatus, systems, and articles of manufacture
comprising processor-readable storage media.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 is a block diagram of an information pro-
cessing system implementing a cluster file system compris-
ing data mover modules and an associated quota manager
for managing back-end user quotas in an illustrative embodi-
ment of the invention.

[0014] FIG. 2 is a flow diagram of an exemplary process
implemented using the quota manager in the information
processing system of FIG. 1.

[0015] FIG. 3 shows another embodiment of an informa-
tion processing system implementing a cluster file system
comprising data mover modules and an associated quota
manager for managing back-end user quotas.

US 2018/0260398 Al

[0016] FIGS. 4 and 5 show respective other embodiments
of cluster file systems each comprising data mover modules
and an associated quota manager for managing back-end
user quotas.

[0017] FIGS. 6 and 7 show examples of processing plat-
forms that may be utilized to implement at least a portion of
each of the systems of FIGS. 1 and 3-5.

DETAILED DESCRIPTION

[0018] Illustrative embodiments of the present invention
will be described herein with reference to exemplary infor-
mation processing systems and associated computers, serv-
ers, storage devices and other processing devices. It is to be
appreciated, however, that embodiments of the invention are
not restricted to use with the particular illustrative system
and device configurations shown. Accordingly, the term
“information processing system” as used herein is intended
to be broadly construed, so as to encompass, for example,
processing systems comprising private and public cloud
computing or storage systems, as well as other types of
processing systems comprising physical or virtual process-
ing resources in any combination.

[0019] FIG. 1 shows an information processing system
100 configured in accordance with an illustrative embodi-
ment of the present invention. The information processing
system 100 comprises a front-end file system 102, a back-
end file system 104 and a plurality of data mover modules
106 arranged between the front-end and back-end file sys-
tems 102 and 104. The information processing system 100
further comprises an HPC system 107 comprising a plurality
of compute nodes 108-1, 108-2, . . . 108-N. The compute
nodes 108 of the HPC system 107 are coupled to the
front-end file system 102, but may additionally or alterna-
tively be coupled to or otherwise associated with other
system components in other embodiments. For example, in
some embodiments, the data mover modules 106 can be
implemented at least in part utilizing software running on
the compute nodes 108.

[0020] The front-end file system 102 and back-end file
system 104 in the present embodiment are associated with
respective different sets of one or more hierarchical storage
tiers for use in hierarchical storage management (HSM).
[0021] In the present embodiment, the front-end file sys-
tem 102 and back-end file system 104 are assumed to be of
different types. More particularly, the front-end file system
102 comprises one or more front-end storage tiers 112 which
may comprise, for example, object storage server or OSS
tiers, and the back-end file system 104 comprises one or
more back-end storage tiers 114 which may comprise, for
example, scale-out network attached storage or scale-out
NAS tiers. In such an arrangement of the front-end and
back-end storage tiers 112 and 114, the OSS tiers are
illustratively implemented using a Lustre file system, and
the scale-out NAS tiers are illustratively implemented using
nodes of a scale-out NAS cluster. Numerous other types of
storage tiers, as well as combinations of multiple types of
storage tiers, can be utilized in implementing each of the
front-end and back-end storage tiers 112 and 114.

[0022] The data mover modules 106 in the present
embodiment illustratively have associated therewith an
HSM quota manager 116. The data mover modules 106 are
configured to control archiving of data between the front-
end file system 102 and the back-end file system 104 for
respective users based at least in part on respective user

Sep. 13,2018

quotas established by the quota manager 116 and identifying
corresponding portions of the back-end file system 104
available to those users. The quota manager 116 is illustra-
tively implemented internally to at least a given one of the
data mover modules 106.

[0023] The “users” in this embodiment may refer, for
example, to respective ones of the compute nodes 108,
although the term “user” as utilized herein is intended to be
broadly construed so as to encompass numerous other
arrangements of human, hardware, software or firmware
entities, as well as combinations of such entities.

[0024] The data mover modules 106 enforce the respective
back-end user quotas established by the quota manager 116
for the respective users. The quota manager 116 in some
embodiments includes an associated policy engine provid-
ing one or more policies for use by the quota manager 116
in establishing the back-end user quotas.

[0025] In some embodiments, there are multiple back-end
file systems of different types. An example of such an
embodiment will be described below in conjunction with
FIG. 5. For such embodiments, the data mover modules 106
are illustratively configured to control archiving of data
between the front-end file system 102 and each of the
multiple back-end file systems responsive to user quotas
established by the quota manager 116 for each of the
back-end file systems.

[0026] Although multiple data mover modules 106 are
utilized in the present embodiment, it is possible in other
embodiments to utilize only a single data mover module.
Also, although the quota manager 116 in the present embodi-
ment is shown as being arranged internally to at least one of
the data mover modules 106, the quota manager 116 in other
embodiments can be implemented at least in part within
other system components, such as the front-end file system
102 or the compute nodes 108 of the HPC 107, or as an
entirely separate component that communicates with one or
more of the data mover modules 106.

[0027] The front-end file system 102 in the present
embodiment comprises a plurality of archive directories 118
configured for respective ones of the above-noted users. The
archive directories 118 illustratively include the respective
user quotas that identify corresponding portions of the
back-end file system 104 available to those users, and may
include additional or alternative information.

[0028] The data mover modules 106 are configured to
archive a given file from the front-end file system 102 in the
back-end file system 104 responsive to a link to that file
being stored in a corresponding one of the archive directo-
ries 118 of the front-end file system 102. Additionally or
alternatively, files from the front-end file system 102 can be
configured for archiving in the back-end file system 104 by
storing the files themselves in the appropriate ones of the
archive directories 118.

[0029] Such an arrangement is beneficial in that it pro-
vides a high degree of control over the particular types of
files from the front-end file system 102 that are archived in
the back-end file system 104. For example, archiving of
temporary files from the front-end file system 102 in the
back-end file system 104 can be effectively prevented by
preventing storage of the temporary files or links to the
temporary files in the archive directories 118.

[0030] In operation, a given user can store links in its
corresponding archive directory for only those files that are
known to be needed later on. The user will not store links for

US 2018/0260398 Al

scratch files and other temporary files, and as a result those
files will not be archived and will not waste archive space.
As noted above, the data mover modules 106 are configured
to archive those files for which links to those files have been
stored in the archive directories 118. Accordingly, there is no
need to copy or move into the archive directory the actual
files that need to be archived, as respective stored links for
these files identify them to the data mover modules 106 as
appropriate targets for archiving in the back-end file system
104.

[0031] The quota manager 116 in the present embodiment
not only establishes the above-noted back-end user quotas,
but also establishes archive directory quotas for respective
ones of the archive directories 118. Moreover, the quota
manager 116 proactively recommends changes to the
archive directory quotas based on current sizes of the
archive directories 118 relative to the established archive
directory quotas. Similar adjustments can be made to the
back-end user quotas based on amounts of the respective
allocated portions of the back-end file system that are
currently being utilized by the corresponding users. For
example, the back-end file system can be dynamically
reallocated among the users by appropriate adjustment of the
corresponding back-end user quotas.

[0032] The quota manager 116 in the present embodiment
facilitates the provision of optimal HSM with selective
archiving of files in the back-end file system 104. This helps
to ensure that the allocated portions of the back-end file
system are appropriately sized for their respective users,
while also avoiding unnecessary archiving of scratch files or
other temporary files that would otherwise waste archive
space in the back-end file system. The allocated portions of
the back-end file system can grow or shrink as needed to
accommodate the changing requirements of the respective
users. For example, the quota manager 116 can proactively
recommend increases or decreases in the archive space
allocated to respective users, therefore ensuring that there
will always be adequate space to archive desired application
files.

[0033] Additional details regarding exemplary quota man-
ager functionality will be described below in conjunction
with the embodiment of FIG. 3. Similar functionality can be
incorporated into the quota manager 116 of FIG. 1.

[0034] Also, although the quota manager 116 of FIG. 1 is
configured to manage both back-end user quotas and archive
directory quotas, this is by way of illustrative example only,
and in other embodiments a given quota manager may
instead be configured to manage only back-end user quotas
or only archive directory quotas.

[0035] The front-end file system 102 in some embodi-
ments is configured to include an HSM API for communi-
cating with one or more of the data mover modules 106.
Such an API may comprise a Lustre HSM API of the type
implemented in version 2.5 of the Lustre file system,
although other types of HSM APIs may be used in other
embodiments.

[0036] Through such an HSM API, a given one of the data
mover modules 106 may be provided with information that
allows it to control archiving and other movement of data
between front-end and back-end file systems.

[0037] By way of example, a given one of the data mover
modules 106 may be configured in the form of a multi-
threaded application that communicates with a correspond-
ing HSM API of the front-end file system 102. The infor-

Sep. 13,2018

mation received in the given data mover module via the
HSM API illustratively comprises commands to move files
from the front-end file system 102 to the back-end file
system 104 and to restore files from the back-end file system
104 to the front-end file system 102. In other embodiments,
the front-end file system 102 need not include any HSM
APIs, and can instead utilize other types of interfaces for
communicating with the data mover modules 106.

[0038] The term “data movement” as used in this and
other contexts herein is intended to be broadly construed, so
as to encompass data migration as well as other types of
movement of data between storage tiers, including various
types of data movement that may be associated with the
above-described archiving of data between the front-end file
system 102 and the back-end file system 104.

[0039] Conventional aspects of Lustre file systems suit-
able for use in implementing the front-end file system 102
are described in, for example, Cluster File Systems, Inc.,
“Lustre: A Scalable, High-Performance File System,”
November 2002, pp. 1-13, and F. Wang et al., “Understand-
ing Lustre Filesystem Internals,” Tech Report ORNL/TM-
2009/117, April 2010, pp. 1-95, which are incorporated by
reference herein.

[0040] Scale-out NAS cluster tiers of the back-end file
system 104 and other scale-out NAS clusters referred to
herein may be implemented, for example, using Isilon®
storage platforms, such as storage platforms comprising
Isilon® platform nodes and associated accelerators in the
S-Series, X-Series and NL-Series product lines, commer-
cially available from EMC Corporation of Hopkinton, Mass.
[0041] Other types of storage products that may be used to
implement portions of one or more of the file systems 102
and 104 of the system 100 include storage arrays such as
VNX® and Symmetrix VMAX®, both also commercially
available from EMC Corporation. A variety of other storage
products may be utilized to implement at least a portion of
a front-end or back-end file system.

[0042] The data mover modules 106 are adapted for
communication with front-end file system 102, possibly via
HSM APIs of the type noted above. For example, a given
one of the data mover modules 106 may be configured to
control movement of data between the front-end file system
102 and the back-end file system 104 responsive to infor-
mation received via a corresponding one of the HSM APIs.
[0043] The movement of data may include, for example,
movement of data between at least one of the OSS tiers and
one or more of the scale-out NAS cluster tiers, and may
additionally or alternatively involve movement of data
between multiple OSS tiers or between multiple scale-out
NAS cluster tiers.

[0044] The different storage tiers in a given set of multiple
storage tiers in this embodiment illustratively comprise
different types of storage devices having different perfor-
mance characteristics. For example, each of a plurality of
OSS servers of a given one of the OSS tiers is illustratively
configured to interface with a corresponding OST in the
form of a flash storage device, and each of the scale-out NAS
nodes of a given one of the scale-out NAS storage tiers
comprises a disk storage device.

[0045] The flash storage devices of the given OSS tier are
generally significantly faster in terms of read and write
access times than the disk storage devices of the given
scale-out NAS cluster tier. The flash storage devices are
therefore considered “fast” devices in this embodiment

US 2018/0260398 Al

relative to the “slow” disk storage devices. Accordingly, the
hierarchical storage management may be characterized in
the present embodiment as having a “fast” storage tier 112
and a “slow” storage tier 114, where “fast” and “slow” in this
context are relative terms and not intended to denote any
particular absolute performance level. However, numerous
alternative tiering arrangements may be used, including
arrangements with three or more tiers each providing a
different level of performance. The particular storage
devices used in a given storage tier may be varied in other
embodiments, and multiple distinct storage device types
may be used within a single storage tier.

[0046] The flash storage devices may be implemented, by
way of example, using respective flash Peripheral Compo-
nent Interconnect Express (PCle) cards or other types of
memory cards installed in a computer or other processing
device that implements the corresponding OSS. Numerous
alternative arrangements are possible. Also, a variety of
other types of non-volatile or volatile memory in any
combination may be used in place of the flash storage
devices. Examples of alternatives to flash storage devices
that may be used as respective OSTs or as other types of
storage system elements in other embodiments of the inven-
tion include non-volatile memories such as magnetic ran-
dom access memory (MRAM) and phase change random
access memory (PC-RAM).

[0047] The flash storage devices of the given OSS tier
generally provide higher performance than the disk storage
devices of the given scale-out NAS cluster tier but the disk
storage devices generally provide higher capacity at lower
cost than the flash storage devices. The exemplary tiering
arrangement using one or more OSS tiers and one or more
scale-out NAS cluster tiers therefore makes it possible to
dynamically balance the conflicting requirements of storage
capacity and IO throughput, thereby avoiding situations in
which either performance is less than optimal or the costs of
implementing the system become excessive. Arrangements
of'this type can provide further acceleration of IO operations
in the system 100, leading to enhanced system performance
relative to conventional arrangements, while additionally or
alternatively providing an ability to achieve particular levels
of performance at lower cost.

[0048] Also, such an arrangement allows the system 100
to obtain the performance advantages of an OSS storage tier
as well as the storage capacity and cost benefits associated
with use of scale-out network attached storage. Accordingly,
implementation of scale-out network attached storage is
facilitated in supercomputers and other complex computing
environments that utilize Lustre file systems.

[0049] Inthe FIG. 1 embodiment, as in other embodiments
described herein, an OSS tier is also referred to as a “fast”
storage tier and a scale-out NAS cluster tier is also referred
to as a “slow” storage tier. Again, the terms “fast” and
“slow” in this context are relative terms and should not be
construed as requiring any particular absolute performance
levels.

[0050] These particular tiering arrangements should be
considered exemplary only, and numerous alternative
arrangements of storage tiers may be utilized in providing
the one or more front-end tiers 112 of the front-end file
system 102 and the one or more back-end tiers 114 of the
back-end file system 104 in other embodiments. For
example, additional or alternative storage tiers may be

Sep. 13,2018

implemented between the front-end file system 102 and the
HPC system 107 utilizing one or more burst buffer appli-
ances.

[0051] A given such burst buffer appliance is generally
configured to accelerate IO operations between the compute
nodes 108 and the front-end file system 102 by storing
associated data in its burst buffers. The term “burst buffer
appliance” as used herein is intended to be broadly con-
strued, so as to encompass any network appliance or other
arrangement of hardware and associated software or firm-
ware that collectively provides multiple burst buffers imple-
mented using high-speed storage devices.

[0052] Thus, a burst buffer appliance may be viewed as
providing a high-speed memory that serves as a buffer
between the compute nodes 108 of the HPC system 107 and
the front-end file system 102, for storing bursts of data
associated with different types of 10 operations.

[0053] Other embodiments may include multiple burst
buffer appliances, with each such appliance adapted for
coupling between at least a portion of the front-end file
system 102 and one or more compute nodes 108 of the HPC
system 107.

[0054] In still further embodiments, one or more burst
buffer appliances may be incorporated into the front-end file
system 102 itself and utilized to implement at least a portion
of the one or more front-end storage tiers 112.

[0055] It is also to be appreciated that the use of OSS tiers
and scale-out NAS cluster tiers is not a requirement, and
numerous additional or alternative file systems can be used
in implementing at least portions of one or more of the
front-end file system 102 and the back-end file system 104.
For example, file systems such as Hadoop Distributed File
System (HDFS), General Parallel File System (GPFS),
Network File System (NFS), PanFS and numerous others
can be used, possibly in combination with a Lustre file
system or other types of object stores such as EMC ATMOS
or Ceph. Various other combinations of these and other file
systems can also be used in other embodiments.

[0056] In the present embodiment, the front-end file sys-
tem 102, the back-end file system 104 and the data mover
modules 106 collectively provide an exemplary implemen-
tation of what is more generally referred to herein as a
cluster file system. As indicated above, portions of a cluster
file system may be implemented as a distributed file system
such as HDFS, a parallel file system such as GPFS or as a
combination of a Lustre file system with HDFS, GPFS or
other parallel or distributed file systems. The term “cluster
file system” as used herein is therefore intended to be
broadly construed, so as to encompass a wide variety of
different file systems that can be shared by clusters of
compute nodes, as well as various combinations of such file
systems.

[0057] As mentioned previously, although only a single
back-end file system is shown in the FIG. 1 embodiment,
other embodiments may include multiple back-end file sys-
tems with the data mover modules 106 being configured to
control movement of data between the front-end file system
and each of the back-end file systems, possibly responsive to
information received via HSM APIs. For example, the
multiple back-end file systems may comprise one or more
object stores and one or more scale-out NAS clusters.
[0058] The HPC system 107 may comprise, for example,
a supercomputer. Such an HPC system is an example of
what is more generally referred to herein as a “computer

US 2018/0260398 Al

system.” Each of the compute nodes 108 may comprise or
otherwise correspond to one or more clients of the informa-
tion processing system 100.

[0059] Accordingly, one or more clients may be imple-
mented as respective components of each of the compute
nodes 108. The term “client” as used herein is therefore
intended to be broadly construed, so as to encompass, for
example, a compute node or a component thereof. Such a
component may be implemented in software, and therefore
a “client” as the term is utilized herein may comprise a
software component associated with one of the compute
nodes 108 of the HPC system 107.

[0060] The data mover modules 106 may be configured to
control movement of data between the storage tiers 112 and
114 of the respective front-end and back-end file systems
102 and 104 in order to facilitate achievement of desired
levels of performance by the clients.

[0061] The data mover modules 106 are illustratively
shown as being implemented externally to the HPC system
107 in the present embodiment, but in other embodiments
can be implemented at least in part on the compute nodes
108.

[0062] Numerous other types and arrangements of cluster
file systems and computer systems may be used in other
embodiments of the invention.

[0063] Although some embodiments utilize one or more
burst buffer appliances in the front-end file system 102, or
coupled between the front-end file system 102 and the
compute nodes 108 of the HPC system 107, use of burst
buffer appliances is optional and may be eliminated in other
embodiments.

[0064] As indicated above, the data mover modules 106
control movement of data between storage tiers of the
front-end and back-end file systems 102 and 104, taking into
account current operating conditions and other factors, pos-
sibly based at least in part on information received via HSM
APIs of the front-end file system 102.

[0065] Data movement determinations made by the data
mover modules 106 are illustratively performed in coopera-
tion with one or more job schedulers of the information
processing system 100. For example, data movement deter-
minations can be made at least in part utilizing a job
scheduler of the system 100 responsive to 10 requests
received in the job scheduler from one or more applications
running on the compute nodes 108. Such 10 requests and
other similar requests referred to herein may be configured,
for example, in accordance with standard portable operating
system interface (POSIX) system calls. Data movement
determinations can be implemented differently for each of a
plurality of processing jobs, thereby effectively allowing
dynamic data migration on a per-job basis.

[0066] The data mover modules 106 can also be config-
ured to update stored metadata responsive to movement of
data between the storage tiers 112 and 114.

[0067] The data mover modules 106 in some embodi-
ments each comprise a plurality of server nodes that are
synchronized with one another utilizing a message passing
interface (MPI) protocol. The server nodes can be imple-
mented using the compute nodes 108, or other arrangements
of one or more processing devices, including, for example,
one or more processing devices that are each coupled to the
front-end file system 102, the back-end file system 104 and
the HPC system 107. A data mover module arrangement of
this type is considered an example of an embodiment in

Sep. 13,2018

which the data mover module is arranged between the
front-end and back-end file systems. In other words, addi-
tional coupling or other association of a given one of the data
mover modules 106 with the HPC system 107 does not
prevent the data mover module from being effectively
arranged between the front-end file system 102 and the
back-end file system 104.

[0068] One or more of the data mover modules 106 in
some embodiments are each configured to split a given file
received from the front-end file system 102 into multiple
smaller files for storage in the back-end file system 104 and
to associate with each of the smaller files a corresponding
file extension from a designated namespace so as to permit
the given file to be reconstructed upon retrieval of the
smaller files from the back-end file system 104. Such
file-splitting effectively allows a Lustre-based implementa-
tion of the front-end file system 102 to utilize Isilon®
platform nodes or other types of scale-out NAS clusters as
HSM targets, thereby providing enhanced flexibility in stor-
age tiering and a better balance between performance and
cost in the information processing system 100.

[0069] This is in contrast to conventional practice, where
scale-out NAS clusters that have file size limitations often
cannot be used as a Lustre file system HSM target, because
the Lustre file system often has file sizes well above the file
size limitations of the scale-out NAS clusters. For example,
some Isilon® platform nodes have file size limits of only 4
terabytes (TB), while Lustre file systems often store files
with sizes on the order of 10-50 TB or more.

[0070] Accordingly, under this conventional practice, it is
not possible to utilize Isilon® platform nodes as HSM
targets of a Lustre file system. Embodiments of the present
invention advantageously overcome this significant defi-
ciency of conventional practice, thereby allowing Isilon®
platform nodes, other scale-out NAS cluster nodes and other
types of back-end file systems to be used as HSM targets.
[0071] Similar advantages are obtained using alternative
implementations of the data mover modules 106. For
example, in other embodiments, each data mover module is
implemented at least in part utilizing a virtual layer of a
parallel log-structured file system (PLFS). In such an
embodiment, the virtual layer may comprise PLFS middle-
ware configured to migrate files between the front-end and
back-end file systems.

[0072] Although the data mover modules 106 are illustra-
tively shown as being separate from the file systems 102 and
104 in the figure, components such as the PLFS middleware
may be implemented using the OSSs of the OSS tiers as well
as scale-out NAS nodes of the scale-out NAS cluster tiers.
For example, each of the sets of storage tiers 112 and 114
may be viewed as implementing a corresponding virtual
layer of PLFS functionality within the cluster file system of
the information processing system 100.

[0073] A given such PLFS virtual layer represents at least
a portion of what is more generally referred to herein as a
virtual file system. It should be understood that other types
of virtual file systems can be used to implement at least a
portion of the data mover modules 106 in other embodi-
ments.

[0074] Additional details regarding PLFS can be found in
J. Bent et al., “PLFS: A Checkpoint Filesystem for Parallel
Applications,” ACM/IEEE Conference on High Perfor-
mance Computing Networking, Storage and Analysis, SC09,
Portland, Oreg., Nov. 14-20, 2009, pp. 1-12, which is

US 2018/0260398 Al

incorporated by reference herein. It is to be appreciated,
however, that PLFS is not a requirement of any particular
embodiment.

[0075] Communications between the various elements of
system 100 may take place over one or more networks.
These networks can illustratively include, for example, a
global computer network such as the Internet, a wide area
network (WAN), a local area network (LAN), a satellite
network, a telephone or cable network, a cellular network, a
wireless network implemented using a wireless protocol
such as WiFi or WIMAX, or various portions or combina-
tions of these and other types of communication networks.
[0076] At least portions of the front-end file system 102,
the back-end file system 104, the data mover modules 106
and the HPC system 107 comprising compute nodes 108
may be implemented using one or more processing plat-
forms, examples of which will be described in greater detail
below in conjunction with FIGS. 6 and 7. A given such
processing platform comprises at least one processing
device comprising a processor coupled to a memory, and the
processing device may be implemented at least in part
utilizing one or more virtual machines.

[0077] Although shown in FIG. 1 as being separate from
the front-end file system 102, back-end file system 104 and
compute nodes 108, the data mover modules 106 in other
embodiments may be implemented at least in part within one
or more of these system elements. It is also to be appreciated
that a given embodiment of the information processing
system 100 may include multiple instances of one or more
of the front-end file system 102, the back-end file system
104, the set of data mover modules 106 and the HPC system
107 comprising the set of N compute nodes 108, although
only a single instance of each of these elements is shown in
the system diagram for clarity and simplicity of illustration.
[0078] It should be understood that the particular sets of
modules and other components implemented in the system
100 as illustrated in FIG. 1 are presented by way of example
only. In other embodiments, only subsets of these compo-
nents, or additional or alternative sets of components, may
be used, and such components may exhibit alternative
functionality and configurations.

[0079] The operation of the information processing sys-
tem 100 will now be described in further detail with refer-
ence to the flow diagram of FIG. 2. The process as shown
includes steps 200 through 206, and is suitable for use in the
system 100 but is more generally applicable to other systems
comprising one or more data mover modules arranged
between a front-end file system and a back-end file system.
[0080] In step 200, data mover modules are configured for
arrangement between a front-end file system and a back-end
file system. With reference to the FIG. 1 embodiment, the
data mover modules 106 are implemented between the
front-end file system 102 and the back-end file system 104.
The data mover modules 106 in the FIG. 1 embodiment are
not shown as being directly coupled to the HPC system 107.
However, in other embodiments, the data mover modules are
implemented at least in part on the compute nodes 108
themselves, for example, using PLFS clients running on
respective ones of the compute nodes.

[0081] In step 202, a quota manager associated with at
least a given one of the data mover modules is configured.
In the FIG. 1 embodiment, the HSM quota manager 116 is
configured for management of both back-end user quotas
and archive directory quotas, although in other embodi-

Sep. 13,2018

ments, for example, the quota manager 116 may be config-
ured to manage only back-end user quotas or only archive
directory quotas.

[0082] In step 204, the quota manager establishes user
quotas identifying corresponding portions of the back-end
file system available to respective users. These are the
above-noted back-end user quotas. In the FIG. 1 embodi-
ment, the users may correspond to respective ones of the
compute nodes 108 of the HPC 107. The quota manager 116
establishes these quotas, possibly based at least in part on
one or more policies obtained from a policy engine coupled
to or otherwise associated with the quota manager 116. As
indicated above, the quota manager 116 can be imple-
mented, for example, internally to one or more of the data
mover modules 106.

[0083] In step 206, archiving of data between the front-
end file system and the back-end file system is controlled
based at least in part on the established user quotas. For
example, in the FIG. 1 embodiment, the archiving of data is
controlled based at least in part on the established user
quotas, with the data mover modules 106 enforcing the
respective user quotas for their corresponding users. More-
over, the archive directories 118 of the front-end file system
102 are configured for respective ones of the users, and
controlling archiving in step 206 further comprises archiving
a given file from the front-end file system 102 in the
back-end file system 104 responsive to a link to that file
being stored in a corresponding one of the archive directo-
ries 118 of the front-end file system 102.

[0084] As indicated previously, in conjunction with the
movement of data between one or more storage tiers 112 of
the front-end file system 102 and one or more storage tiers
114 of the back-end file system 104, a given one of the data
mover modules 106 may split a given file received from the
front-end file system 102 into multiple smaller files for
storage in the back-end file system 104. For example, such
splitting may be necessary due to file size restrictions in the
nodes of the scale-out NAS cluster tiers of the back-end file
system 104.

[0085] If a given file from the front-end file system 102 is
split for storage in the back-end file system 104, the par-
ticular one of the data mover modules 106 controlling that
movement associates with each of the smaller files a corre-
sponding file extension from a designated namespace so as
to permit the given file to be reconstructed upon retrieval of
the smaller files from the back-end file system 104.

[0086] Similar splitting arrangements may be applied to
file segments representing respective portions of a given file.
For example, a given file may be stored in an OSS tier as
multiple segments with each segment residing in a different
OST of the OSS tier. The segments in such an arrangement
may each be split for storage in the nodes of a scale-out NAS
cluster tier, again depending on the segment size relative to
the file size restrictions associated with the scale-out NAS
nodes.

[0087] Also, in conjunction with splitting of files or file
segments, one or more metadata files are also generated and
stored in the back-end file system 104. For example, a given
metadata file may indicate the manner in which split files or
split file segments are distributed across multiple nodes of a
given scale-out NAS cluster tier.

[0088] It should be noted that file segments and sub-
segments are intended to fall within the general term “file”

US 2018/0260398 Al

as broadly used herein. Such segments and sub-segments are
identified by unique file names using file extensions from a
designated namespace.

[0089] The manner in which a given file is stored across
the nodes of the scale-out NAS cluster tier will generally
depend upon the file size. For example, in an arrangement in
which the given file is stored as multiple file segments across
respective multiple OSTs of an OSS tier, the layout of the file
segments over the OSTs can be preserved in the back-end
file system 104 if the sizes of the file segments are less than
or equal to the maximum file size permitted in the nodes of
a scale-out NAS cluster tier.

[0090] A round robin distribution of the file segments
across the scale-out NAS cluster nodes can be used. Thus,
for example, if there are three scale-out NAS cluster nodes
A, B and C and six file segments denoted SF0, SF1, SF2,
SF3, SF4 and SF5, file segments SF0 and SF3 are stored on
scale-out NAS cluster node A, file segments SF1 and SF4
are stored on scale-out NAS cluster node B, and file seg-
ments SF2 and SF5 are stored on scale-out NAS cluster node
C, in accordance with the round robin distribution. The file
layout is reflected in metadata stored in a corresponding
metadata file which may be archived within the back-end file
system. Other types of distributions of file segments can be
used in other embodiments.

[0091] If the file segments stored on the respective Lustre
OSTs are larger than the maximum file size permitted in the
nodes of the scale-out NAS cluster tier, the file segments can
each be split into two or more sub-segments that satisfy the
file size limitations of the scale-out NAS cluster nodes.
Again, round robin distribution or other types of distribution
can be used in storing the sub-segments over the scale-out
NAS cluster nodes.

[0092] It was noted above that data stored in the file
systems 102 and 104 is migrated between multiple storage
tiers as necessary to facilitate achievement of desired per-
formance levels. For example, in the FIG. 1 embodiment,
the data mover modules 106 may migrate data between
multiple storage tiers of the front-end and back-end file
systems in order to achieve desired levels of 10 performance
responsive to requests received from one or more clients.
Data migration and other data movement determinations
may be based at least in part on monitoring of current levels
of performance within the system 100. Such monitoring in
the FIG. 1 embodiment is assumed to be performed under
the direction of the front-end file system 102 and may
involve the use of sensors of a sensor network, or various
other types of monitoring arrangements. The particular types
of operating conditions and other factors that are monitored
can be varied depending upon the needs of a given imple-
mentation.

[0093] The movement of a given data file, data object or
other set of data between first and second storage tiers may
be controlled at least in part based on information provided
by a client running on or otherwise associated with a
corresponding compute node.

[0094] When PLFS is used to implement the data mover
modules 106, each data mover module illustratively com-
prises PLFS middleware including multiple synchronization
daemons associated with respective OSSs of at least one of
the storage tiers. A given such synchronization daemon is
triggered by at least one of a read operation and a write
operation associated with a client comprising an application
running on a corresponding compute node.

Sep. 13,2018

[0095] Metadata associated with moved data is updated to
reflect the movement between storage tiers. In the FIG. 1
embodiment, the updating of such metadata is assumed to be
performed at least in part under the control of the data mover
modules 106.

[0096] If the desired levels of performance have not been
achieved, the manner in which the data is stored across the
storage tiers 112 and 114 can be altered. In the context of the
FIG. 1 embodiment, this generally involves the data mover
modules 106 executing an alternative storage arrangement,
possibly responsive to information received via HSM APIs,
so as to facilitate achievement of the desired levels of
performance in the system 100.

[0097] If the desired levels have been achieved, the data
mover modules 106 continue to control the flow of data
between the front-end and back-end file systems. The above-
noted determination as to whether or not desired levels of
performance have been achieved is then repeated periodi-
cally and further adjustment of the manner in which the data
are distributed over the storage tiers 112 and 114 is made by
the data mover modules 106 as needed, possibly in response
to changing operating conditions and other factors.

[0098] The particular processing operations and other sys-
tem functionality described in conjunction with the flow
diagram of FIG. 2 are presented by way of illustrative
example only, and should not be construed as limiting the
scope of the invention in any way. Alternative embodiments
can use other types of processing operations involving one
or more data mover modules arranged between a front-end
file system and a back-end file system. For example, the
ordering of the process steps may be varied in other embodi-
ments, or certain steps may be performed concurrently with
one another rather than serially. Also, one or more of the
process steps may be repeated periodically for different
processing applications, or performed in parallel with one
another.

[0099] Itis to be appreciated that functionality such as that
described in conjunction with the flow diagram of FIG. 2 can
be implemented at least in part in the form of one or more
software programs stored in memory and executed by a
processor of a processing device such as a computer or
server. As will be described below, a memory or other
storage device having executable program code of one or
more software programs embodied therein is an example of
what is more generally referred to herein as a “processor-
readable storage medium.”

[0100] Other illustrative embodiments will now be
described in more detail with reference to FIGS. 3, 4 and 5.
[0101] FIG. 3 shows another information processing sys-
tem 300. The information processing system 300 includes a
cluster file system, with the cluster file system being imple-
mented using a front-end file system 302, a back-end file
system 304, and a plurality of data mover modules 306-1,
306-2, . .. 306-N arranged between the front-end file system
302 and the back-end file system 304. The cluster file system
is shared by a plurality of compute nodes 308. There is
assumed to be a one-to-one association between respective
ones of the compute nodes 308 and respective ones of the
data mover modules 306, although this assumption need not
apply in other embodiments. Accordingly, compute nodes
308-1, 308-2, . . . 308-N are associated with respective users
denoted User 1, User 2, . . . User N, and movement of the
data of those users is controlled by the respective data mover
modules 306-1, 306-2, . . . 306-N.

US 2018/0260398 Al

[0102] Each of the data mover modules 306 in this
embodiment more particularly comprises a set of parallel
data mover (PDM) servers as indicated in the figure. An
HSM quota manager 316 is implemented within a particular
one of the data mover modules 306, namely, the first data
mover module 306-1, although it could additionally or
alternatively have been implemented at least in part in one
or more other ones of the data mover modules 306. For
example, different portions of a given distributed implemen-
tation of the quota manager 316 may be implemented in
respective ones of the data mover modules 306, such that the
data mover modules 306 collectively provide the full func-
tionality of the quota manager 316. The quota manager 316
may be implemented at least in part using, for example, a
database associated with the set of PDM servers of the data
mover module 306-1.

[0103] The data mover modules 306 are configured to
control archiving of data between the front-end file system
302 and the back-end file system 304 for respective ones of
the N users based at least in part on respective user quotas
that are established by the quota manager 316, where these
back-end user quotas identify corresponding portions 315 of
the back-end file system 304 available to those users. More
particularly, in this embodiment the back-end file system
includes portions 315-1, 315-2, . . . 315-N that are currently
available to respective ones of the N users. These portions
are identified by respective back-end user quotas denoted
Userl-Available-HSM-Quota, User2-Available-HSM-
Quota, . . . UserN-Available-HSM-Quota, and are also
referred to as Pool 1, Pool 2, . . . Pool N, respectively. The
data mover modules 306 enforce the respective back-end
user quotas established by the quota manager 316 for the
respective users.

[0104] The front-end file system 302 in the present
embodiment comprises a plurality of archive directories
318-1, 318-2, . . . 318-N configured for respective ones of
the N users. The quota manager 316 in the present embodi-
ment not only establishes the above-noted back-end user
quotas, but also establishes archive directory quotas for
respective ones of the archive directories 318. The archive
directories 318 are more particularly denoted as /dirl, /dir2,
. .. /dirN, and have respective archive directory quotas
denoted as Userl-Quota, User2-Quota, . . . UserN-Quota.
The archive directories 318 store respective links linkl,
link2, . . . linkN to respective files denoted filel, file2, . . .
fileN. The archive directories 318 further include respective
additional files denoted fool, foo2, . . . fooN.

[0105] There are also a number of scratch files templ,
temp2, . . . tempN stored in the front-end file system 302 but
not stored in respective ones of the archive directories 318.
Also, there are no links to the scratch files stored in the
archive directories 318. These scratch files are examples of
what are more generally referred to herein as temporary
files.

[0106] The data mover modules 306 are configured to
archive a given file from the front-end file system 302 in the
back-end file system 304 responsive to a link to that file
being stored in a corresponding one of the archive directo-
ries 318 of the front-end file system 302. Thus, in the FIG.
3 embodiment, the files filel, file2, . . . fileN that have
respective links linkl, link2, . . . linkN stored in the
respective archive directories 318 will be archived by the
data mover modules 306 into the appropriate portions 315 of
the back-end file system 304.

Sep. 13,2018

[0107] Additional files can be archived in the back-end file
system 304 by placing the files themselves in the archive
directories 318. For example, additional files fool, foo2, . .
. fooN are stored in respective ones of the archive directories
318 and thereby configured for archiving by the respective
data mover modules 306 in the appropriate portions 315 of
the back-end file system 304.

[0108] As indicated elsewhere herein, such an arrange-
ment is beneficial in that it provides a high degree of control
over the particular types of files from the front-end file
system 302 that are archived in the back-end file system 304.
[0109] For example, archiving of the scratch files templ,
temp2, . . . tempN from the front-end file system 302 in the
back-end file system 304 is effectively prevented in the
present embodiment by preventing storage of those files or
links to those files in the archive directories 318. This
ensures that scratch files and other temporary files are not
unnecessarily archived in a manner that would otherwise
consume excessive amounts of the assigned portions 315 of
the back-end file system 304.

[0110] The quota manager 316 can proactively adjust the
back-end user quotas and the archive directory quotas in
accordance with one or more specified policies. For
example, if it is determined that one or more of the users
have a need for an increase in their respective back-end user
quotas, the quota manager 316 can interact with the back-
end file system 304 via PDM servers of the data mover
modules 306 to implemented the desired quota changes.
[0111] Referring now to FIG. 4, an information processing
system 400 comprises a front-end file system 402 illustra-
tively implemented as a Lustre file system, a back-end file
system 404 illustratively implemented as an Isilon® cluster
comprising multiple X400 nodes, and a plurality of data
mover modules 406 illustratively implemented as respective
PDMs arranged between the front-end file system 402 and
the back-end file system 404. Exemplary directories in the
back-end file system 404 include directories denoted /IFS/
Templ/ and /IFS/Grau.cfg/, where IFS denotes Isilon® file
system.

[0112] The system 400 further comprises an InfiniBand
(IB) switch 410 supporting communication between the
front-end file system 402 and the data mover modules 406
over respective IB connections, and a 10 Gigabit (Gb)
switch supporting communication between the data mover
modules 406 and the back-end file system 404 over respec-
tive 10 Gb connections. The data mover modules 406 are
also coupled to a PDM IP multicast private network 416, and
to a 1 Gb management network 418. The front-end file
system 402 can also communicate via D3 switch 410 with a
Robin Hood policy engine (PE) 422 utilizing PHP code. The
PE 422 has an associated user interface 424 for providing
user access to policy configuration and selection functions,
and is also coupled to the 1 Gb management network 418.
[0113] Although not explicitly shown in FIG. 4, an HSM
quota manager is assumed to be implemented in a particular
one of the data mover modules 406, and to operate substan-
tially in the manner previously described. For example, such
a quota manager is illustratively configured to manage both
back-end user quotas and archive directory quotas for
respective users. The quota manager interacts with the PE
422 to determine appropriate policies for establishment and
adjustment of these quotas.

[0114] Referring now to FIG. 5, an information processing
system 500 comprises a front-end file system 502 illustra-

US 2018/0260398 Al

tively implemented as a parallel file system (PFS), multiple
back-end file systems 504-1, 504-2, 504-3 and 504-4, and a
plurality of data mover modules 506 illustratively imple-
mented as respective PDMs arranged between the front-end
file system 502 and the back-end file systems 504. The
multiple back-end file systems 504-1, 504-2, 504-3 and
504-4 are illustratively implemented as comprising an Isi-
lon® cluster comprising multiple nodes, ViPR® Software-
Defined Storage (SDS) also commercially available from
EMC Corporation, an object store, and a tape system,
respectively. Numerous alternative arrangements of one or
more back-end file systems can be used in other embodi-
ments. The front-end file system configuration can also be
varied, as indicated previously.

[0115] The system 500 further comprises an HSM quota
manager 516 which, like the quota manager referred to in the
context of FIG. 4, is assumed to operate in a manner similar
to quota managers 116 and 316 of FIGS. 1 and 3.

[0116] The data mover modules 506 communicate with
the front-end file system 502 and certain ones of the back-
end file systems 504 via POSIX interfaces 525 and 526. The
data mover modules 506 communicate with other ones of
the back-end file systems via one or more RESTful inter-
faces 527. More particularly, the data mover modules 506
communicate with the back-end file systems 504-1 and
504-4 via the POSIX interfaces 526 and communicate with
the back-end file systems 504-2 and 504-3 via the RESTful
interfaces 527. In communicating with the back-end file
system 504-2, the RESTful interfaces 527 communicate
with plugin modules 528 and 529. In communicating with
the back-end file system 504-4, the POSIX interfaces 526
communicate with a disk cache 530.

[0117] The quota manager 516 in the present embodiment
is part of a system component 540 that is illustratively
implemented externally to the data mover modules 506 and
further incorporates a policy engine 542.

[0118] It should be understood that the particular front-end
and back-end file system arrangements and other system
components as illustrated FIGS. 3, 4 and 5 are presented by
way of illustrative example only, and should not be con-
strued as limiting in any way. The embodiments of FIGS. 3,
4 and 5 may be viewed as exemplary arrangements in which
data mover modules are implemented as respective parallel
data movers each controlling movement of data between
front-end and back-end file systems, possibly based on
information received via corresponding HSM APIs.

[0119] The disclosed arrangements can be used to con-
struct a high-performance cluster file system using any
desired arrangement of front-end and back-end file systems.
Moreover, the use of data mover modules arranged between
a front-end file system and a back-end file system signifi-
cantly expands the number and type of HSM targets that
may be used, thereby substantially improving system flex-
ibility.

[0120] Advantageously, the use of a quota manager as
disclosed herein in association with a plurality of data mover
modules facilitates the provision of optimal HSM with
selective archiving of files in a back-end file system. This
helps to ensure that the allocated portions of the back-end
file system are appropriately sized for their respective users,
while also avoiding unnecessary archiving of scratch files or
other temporary files that would otherwise waste archive
space in the back-end file system. The allocated portions of
the back-end file system can grow or shrink as needed to

Sep. 13,2018

accommodate the changing requirements of the respective
users. For example, the quota manager can proactively
recommend increases or decreases in the archive space
allocated to respective users, therefore ensuring that there
will always be adequate space to archive desired application
files.

[0121] Illustrative embodiments disclosed herein also
make it possible to dynamically balance the conflicting
requirements of storage capacity and 1O throughput, thereby
avoiding situations in which either performance is less than
optimal or the costs of implementing the system become
excessive. Arrangements of this type can provide further
acceleration of 10 operations in the system 100, leading to
enhanced system performance relative to conventional
arrangements, while additionally or alternatively providing
an ability to achieve particular levels of performance at
lower cost.

[0122] Tt is to be appreciated that the particular file system
and processing device arrangements and associated storage
functionality illustrated in FIGS. 1-5 are exemplary only,
and numerous other arrangements may be used in other
embodiments.

[0123] For example, the disclosed techniques may be
adapted in a straightforward manner for providing efficient
access to data distributed over more than two distinct types
of storage tiers, including a wide variety of storage tiers
other than the OSS tiers and scale-out NAS cluster tiers
described in conjunction with the FIG. 1 embodiment.

[0124] It was noted above that portions of the information
processing system 100 may be implemented using one or
more processing platforms. Illustrative embodiments of such
platforms will now be described in greater detail. Although
described in the context of system 100, these platforms may
also be used to implement at least portions of the informa-
tion processing systems of FIGS. 3, 4 and 5, as well as other
information processing systems in other embodiments of the
invention.

[0125] As shown in FIG. 6, portions of the information
processing system 100 may comprise cloud infrastructure
600. The cloud infrastructure 600 comprises virtual
machines (VMs) 602-1, 602-2, . . . 602-L implemented using
a hypervisor 604. The hypervisor 604 runs on physical
infrastructure 605. The cloud infrastructure 600 further
comprises sets of applications 610-1, 610-2, . . . 610-L
running on respective ones of the virtual machines 602-1,
602-2, . . . 602-L under the control of the hypervisor 604.

[0126] Although only a single hypervisor 604 is shown in
the embodiment of FIG. 6, the system 100 may of course
include multiple hypervisors each providing a set of virtual
machines using at least one underlying physical machine.
Different sets of virtual machines provided by one or more
hypervisors may be utilized in configuring multiple
instances of a burst buffer appliance or other component of
the system 100.

[0127] An example of a commercially available hypervi-
sor platform that may be used to implement hypervisor 604
and possibly other portions of the information processing
system 100 in one or more embodiments of the invention is
the VMware® vSphere® which may have an associated
virtual infrastructure management system such as the
VMware® vCenter™. The underlying physical machines
may comprise one or more distributed processing platforms
that include storage products, such as the above-noted

US 2018/0260398 Al

VNX® and Symmetrix VMAX®. A variety of other storage
products may be utilized to implement at least a portion of
the system 100.

[0128] One or more of the processing modules or other
components of system 100 may therefore each run on a
computer, server, storage device or other processing plat-
form element. A given such element may be viewed as an
example of what is more generally referred to herein as a
“processing device.” The cloud infrastructure 600 shown in
FIG. 6 may represent at least a portion of one processing
platform. Another example of such a processing platform is
processing platform 700 shown in FIG. 7.

[0129] The processing platform 700 in this embodiment
comprises a portion of system 100 and includes a plurality
of processing devices, denoted 702-1, 702-2, 702-3, . . .
702-K, which communicate with one another over a network
704.

[0130] The network 704 may comprise any type of net-
work, including by way of example a global computer
network such as the Internet, a WAN, a LAN, a satellite
network, a telephone or cable network, a cellular network, a
wireless network such as a WiFi or WiMAX network, or
various portions or combinations of these and other types of
networks.

[0131] The processing device 702-1 in the processing
platform 700 comprises a processor 710 coupled to a
memory 712.

[0132] The processor 710 may comprise a miCroprocessor,
a microcontroller, an application-specific integrated circuit
(ASIC), a field-programmable gate array (FPGA) or other
type of processing circuitry, as well as portions or combi-
nations of such circuitry elements.

[0133] The memory 712 may comprise random access
memory (RAM), read-only memory (ROM) or other types
of memory, in any combination. The memory 712 and other
memories disclosed herein should be viewed as illustrative
examples of what are more generally referred to as “pro-
cessor-readable storage media” storing executable program
code of one or more software programs.

[0134] Articles of manufacture comprising such proces-
sor-readable storage media are considered embodiments of
the present invention. A given such article of manufacture
may comprise, for example, a storage device such as a
storage disk, a storage array or an integrated circuit con-
taining memory. The term “article of manufacture” as used
herein should be understood to exclude transitory, propa-
gating signals.

[0135] Also included in the processing device 702-1 is
network interface circuitry 714, which is used to interface
the processing device with the network 704 and other system
components, and may comprise conventional transceivers.
[0136] The other processing devices 702 of the processing
platform 700 are assumed to be configured in a manner
similar to that shown for processing device 702-1 in the
figure.

[0137] Again, the particular processing platform 700
shown in the figure is presented by way of example only, and
system 100 may include additional or alternative processing
platforms, as well as numerous distinct processing platforms
in any combination, with each such platform comprising one
or more computers, servers, storage devices or other pro-
cessing devices.

[0138] It should therefore be understood that in other
embodiments different arrangements of additional or alter-

Sep. 13,2018

native elements may be used. At least a subset of these
elements may be collectively implemented on a common
processing platform, or each such element may be imple-
mented on a separate processing platform.

[0139] Also, numerous other arrangements of computers,
servers, storage devices or other components are possible in
the information processing system 100. Such components
can communicate with other elements of the information
processing system 100 over any type of network or other
communication media.

[0140] As indicated previously, components of a data
mover module or an associated front-end or back-end file
system as disclosed herein can be implemented at least in
part in the form of one or more software programs stored in
memory and executed by a processor of a processing device
such as one of the virtual machines 602 or one of the
processing devices 702. For example, the data mover mod-
ules 106 and the HSM quota manager 116 in the FIG. 1
embodiment are illustratively implemented at least in part in
the form of software.

[0141] It should again be emphasized that the above-
described embodiments of the invention are presented for
purposes of illustration only. Many variations and other
alternative embodiments may be used. For example, the
disclosed techniques are applicable to a wide variety of other
types of information processing systems, file systems and
computer systems that can benefit from the enhanced flex-
ibility provided in hierarchical storage management. Also,
the particular configurations of system and device elements
shown in FIGS. 1 and 3-7 can be varied in other embodi-
ments. Thus, for example, the particular type of front-end
file systems, data mover modules, quota managers and
back-end file systems deployed in a given embodiment and
their respective configurations may be varied. Moreover, the
various assumptions made above in the course of describing
the illustrative embodiments should also be viewed as
exemplary rather than as requirements or limitations of the
invention. Numerous other alternative embodiments within
the scope of the appended claims will be readily apparent to
those skilled in the art.

What is claimed is:

1. An apparatus comprising:

a front-end file system;

a back-end file system;

a plurality of data mover modules arranged between the

front-end and back-end file systems;

a quota manager associated with at least a given one of the

plurality of data mover modules;
wherein the data mover modules are configured to control
archiving of data between the front-end file system and
the back-end file system for respective users based at
least in part on respective user quotas established by the
quota manager and identifying corresponding portions
of the back-end file system available to said users;

wherein the apparatus is implemented using at least one
processing device comprising a processor coupled to a
memory.

2. The apparatus of claim 1 wherein the front-end file
system comprises a plurality of archive directories config-
ured for respective ones of said users.

3. The apparatus of claim 2 wherein the data mover
modules are configured to archive a given file from the
front-end file system in the back-end file system responsive

US 2018/0260398 Al

to a link to that file being stored in a corresponding one of
the archive directories of the front-end file system.

4. The apparatus of claim 2 wherein archiving of tempo-
rary files from the front-end file system in the back-end file
system is prevented by preventing storage of the temporary
files or links to the temporary files in the archive directories.

5. The apparatus of claim 2 wherein the quota manager is
further configured to establish archive directory quotas for
respective ones of the archive directories and to proactively
recommend changes to the archive directory quotas based on
current sizes of the archive directories relative to the estab-
lished archive directory quotas.

6. The apparatus of claim 5 wherein said archive direc-
tories include the respective archive directory quotas.

7. The apparatus of claim 1 wherein the quota manager
has an associated policy engine providing one or more
policies for use by the quota manager in establishing the user
quotas identifying corresponding portions of the back-end
file system available to said users.

8. The apparatus of claim 1 wherein the quota manager is
implemented internally to a given one of the data mover
modules.

9. The apparatus of claim 1 wherein the data mover
modules enforce the respective user quotas for their corre-
sponding users.

10. The apparatus of claim 1 further comprising a plural-
ity of back-end file systems with the data mover modules
being configured to control archiving of data between the
front-end file system and each of the back-end file systems
responsive to user quotas established by the quota manager
for each of the back-end file systems.

11. The apparatus of claim 1 wherein the front-end file
system and back-end file system are associated with respec-
tive different sets of one or more hierarchical storage tiers
for use in hierarchical storage management.

12. The apparatus of claim 1 further comprising a plural-
ity of compute nodes coupled to the front-end file system
and wherein the data mover modules are implemented at
least in part utilizing software running on respective ones of
the compute nodes.

13. The apparatus of claim 1 wherein a given one of the
data mover modules comprises a plurality of server nodes
that are synchronized with one another utilizing a message
passing interface (MPI) protocol.

14. The apparatus of claim 1 wherein the data mover
modules are implemented at least in part utilizing a virtual
layer of a parallel log-structured file system (PLFS) and
wherein the virtual layer comprises PLFS middleware con-
figured to migrate files between the front-end and back-end
file systems.

15. The apparatus of claim 1 wherein the front-end file
system comprises a hierarchical storage management appli-

Sep. 13,2018

cation programming interface and wherein the data mover
modules are configured to control movement of data
between the front-end file system and the back-end file
system responsive to information received via the hierarchi-
cal storage management application programming interface.

16. A processing platform comprising the apparatus of
claim 1.

17. A method comprising:

configuring a plurality of data mover modules for arrange-

ment between a front-end file system and a back-end
file system;

configuring a quota manager associated with at least a

given one of the plurality of data mover modules;
establishing via the quota manager a plurality of user
quotas identifying corresponding portions of the back-
end file system available to respective users; and
controlling archiving of data between the front-end file
system and the back-end file system based at least in
part on the established user quotas;
wherein the configuring, establishing and controlling are
implemented using at least one processing device com-
prising a processor coupled to a memory.

18. The method of claim 17 wherein the front-end file
system comprises a plurality of archive directories config-
ured for respective ones of said users and controlling
archiving further comprises archiving a given file from the
front-end file system in the back-end file system responsive
to a link to that file being stored in a corresponding one of
the archive directories of the front-end file system.

19. An article of manufacture comprising a processor-
readable storage medium having stored therein program
code of one or more software programs, wherein the pro-
gram code when executed by said at least one processing
device causes the method of claim 17 to be performed.

20. An information processing system comprising:

a computer system comprising a plurality of compute

nodes; and

a cluster file system coupled to the computer system, the

cluster file system comprising:

a front-end file system;

a back-end file system;

a plurality of data mover modules arranged between the

front-end and back-end file systems;

a quota manager associated with at least a given one of the

plurality of data mover modules;

wherein the data mover modules are configured to control

archiving of data between the front-end file system and
the back-end file system for respective users based at
least in part on respective user quotas established by the
quota manager and identifying corresponding portions
of the back-end file system available to said users.

#* #* #* #* #*

