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57 ABSTRACT
A system and method are provided. The system includes a
processor. The processor is configured to generate a
response map for an image, using a four stage convolutional
structure. The processor is further configured to generate a
plurality of landmark points for the image based on the
response map, using a shape basis neural network. The
processor is additionally configured to generate an optimal
shape for the image based on the plurality of landmark
points for the image and the response map, using a point
deformation neural network. A recognition system config-

Int. CL ured to identify the image based on the generated optimal
GO6K 9/62 (2006.01) shape to generate a recognition result of the image. The
GO6N 3/08 (2006.01) processor is also configured to operate a hardware-based
GO6N 3/04 (2006.01) machine based on the recognition result.
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DEEP DEFORMATION NETWORK FOR
OBJECT LANDMARK LOCALIZATION

RELATED APPLICATION INFORMATION

[0001] This application claims priority to U.S. Provisional
Patent Application Ser. No. 62/306,894 filed on Mar. 11,
2016, incorporated herein by reference in its entirety.

BACKGROUND
[0002] Technical Field
[0003] The present invention generally relates to computer

vision and more particularly to object pose estimation.
[0004] Description of the Related Art

[0005] Object pose estimation is the key to solve many
fundamental problems in computer vision, such as object
recognition, human tracking, facial image analysis, etc. The
pose estimation problem covers a wide range of types, i.e.,
human body pose estimation, head pose estimation, etc. It
has drawn the attention of researchers, which have devel-
oped numerous methods. Due to the non-linearity of the
pose variation and the specificity of each pose type, the
problem is still extensively under investigation. Yet there are
seldom methods that can handle more than one type of pose
estimation problem.

[0006] Two of the mostly developed pose estimation prob-
lems are facial landmark localization and human body pose
estimation. Head pose estimation is considered near-rigid
because it is determined by the holistic movement of the
head. However, when required to localize more finely
defined key features, e.g., key positions of eye corners and
mouth, the problem becomes non-linear because the key
positions’ movement relies on not only the head movement
but also the local deformation caused by the non-linear
facial skin and expressions. Human body pose estimation is
a typical non-linear deformation problem because the body
parts are articulated from each other. The movement of a part
is rigid. But, when parts are connected as a holistic shape,
the body movement is highly nonlinear because each part’s
movement is not consistent with others and the articulation
causes folding of the parts.

SUMMARY

[0007] According to an aspect of the present principles, a
method for using a convolutional neural network is provided
that is performed on a processor. The method includes the
processor generating a response map for an image, using a
four stage convolutional structure. The method further
includes the processor generating a plurality of landmark
points for the image based on the response map, using a
shape basis neural network. The method also includes the
processor generating an optimal shape for the image based
on the plurality of landmark points for the image and the
response map, using a point deformation neural network.
The method additionally includes a recognition system
identifying the image based on the generated optimal shape
to generate a recognition result of the image. The method
also includes operating a hardware-based machine based on
the recognition result.

[0008] According to another aspect of the present prin-
ciples, a system is provided. The system includes a proces-
sor. The processor is configured to generate a response map
for an image, using a four stage convolutional structure. The
processor is further configured to generate a plurality of
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landmark points for the image based on the response map,
using a shape basis neural network. The processor is addi-
tionally configured to generate an optimal shape for the
image based on the plurality of landmark points for the
image and the response map, using a point deformation
neural network. A recognition system configured to identify
the image based on the generated optimal shape to generate
a recognition result of the image. The processor is also
configured to operate a hardware-based machine based on
the recognition result.

[0009] According to yet another aspect of the present
principles, a processor configuration is provided. The system
includes a processor. The processor is configured to generate
a response map for an image, using a four stage convolu-
tional structure. The processor is further configured to
generate a plurality of landmark points for the image based
on the response map, using a shape basis neural network.
The processor is additionally configured to generate an
optimal shape for the image based on the plurality of
landmark points for the image and the response map, using
a point deformation neural network. The processor is also
configured to operate a hardware-based machine based on a
recognition result obtained from a recognition system con-
figured to identify the image based on the generated optimal
shape to generate the recognition result of the image.
[0010] These and other features and advantages will
become apparent from the following detailed description of
illustrative embodiments thereof, which is to be read in
connection with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

[0011] The disclosure will provide details in the following
description of preferred embodiments with reference to the
following figures wherein:

[0012] FIG. 1 is a block diagram illustrating a high-level
convolutional neural network system, in accordance with an
embodiment of the present invention;

[0013] FIG. 2 is a block diagram illustrating a system, in
accordance with an embodiment of the present invention;
[0014] FIG. 3 is schematic illustrating convolutional neu-
ral network system communications, in accordance with an
embodiment of the present invention;

[0015] FIG. 4 is a block diagram illustrating a computer
system, in accordance with an embodiment of the present
invention; and

[0016] FIG. 5 is a flow diagram illustrating a method for
estimating object poses, in accordance with an embodiment
of the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

[0017] Though facial landmark localization and human
body pose estimation are very challenging because of the
high non-linearity, there are many successful methods to
effectively deal with the specificity of the problems. In face
landmark localization, Active Shape Models (ASM) decom-
pose the shape space into a linear combination of the shape
basis, which largely reduce the dimension of the non-linear
deformation. However, the linear combination is a low-rank
approximation, which loses large local non-linear informa-
tion. The accuracy of the ASM is further improved by Active
Appearance Models (AAM) and Constrained Local Models
(CLM), which consider not only the holistic shape constraint
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but also the appearance constraint. The appearance feature is
object-dependent. In other words, the appearance feature
designed for one pose estimation task cannot be utilized in
other pose estimation tasks. For example, the shape-indexed
feature and local binary feature are designed based on the
specificity of the facial appearance. The body articulation
points do not show the feature pattern which appears in the
facial appearance, i.e., eye corners (corner pattern), face
profile (line pattern), etc.

[0018] On the other hand, in body pose estimation, articu-
lation shows the specificity which do not appear in other
pose problems. For instance, eyes are always below the
eyebrows. But the ankle is allowed to be higher than the leg.
The early work is based on the pictorial structure, which is
further developed as the deformable part model (DPM). The
DPM defines the geometric connection among the body
parts and applies the graphical model to jointly localize all
the parts.

[0019] Not until the DPM was successfully applied to face
landmark localization did the researchers find the DPM was
a general hand-crafted model for pose problems. The per-
formance of the DPM is highly correlated with the appear-
ance features while the efficiency of graphical model infer-
ence depends on the specific geometric connection.

[0020] Recently, the Convolutional Neural Network
(CNN) has shown strong power in feature representation.
There are many CNN based works in both face landmark
localization and human body pose estimation. Most of these
methods focus on dealing with the feature map, which is
generated from the CNN structure. By carefully designing
the CNN structure and combining part-based models or
graphical models, the performance has shown significant
advantages over the previous methods. However, the
manipulation of the feature maps not only increases the
training and testing complexity but also hard-codes the
geometric connectivity. A CNN based spatial transformer
network shows that the geometric transformation can be
incorporated with the CNN structure. To save the training
and testing of the additional part-based models or graphical
models, we intend to use an end-to-end CNN framework
which does not bother the feature map and incorporates the
geometric transformation into the network.

[0021] A Deep Deformation Network (DDN) can be used
to investigate the general pose estimation problem. Our
assumption is the shapes or landmarks for each pose type
share one shape space. Decomposing the shape space with
a low-rank constraint largely reduce the representation com-
plexity, in which we finely designed a Shape Basis Network
(SBN) to provide a good initialization. Another assumption
is that an arbitrary shape could be mapped with a uniformly
initialized shape under specific constraints, i.e., rigid con-
straint, affine constraint, etc. We use a Point Deformation
Network (PDN) to achieve the geometric transformation.
For the specificity of each pose estimation task, e.g., the
specific landmark annotation, the network implicitly learns
the information from both the convolutional layers and the
loss function layers. We evaluate our general framework on
three pose estimation tasks: the facial landmark localization;
human body pose estimation; and bird pose estimation.
[0022] The facial landmark localization, human body pose
estimation, and bird pose estimation each have their own use
today. The facial landmark localization can be used in facial
recognition and emotion recognition applications. This
could allow law enforcement to find a person of interest
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from a security camera image taken during a crime, it could
assist a social media application to select ads to display to a
user based on the emotions expressed in a picture uploaded
to the social media site, or it could be used to unlock a
locked door based on the identity of a person trying to access
the door. The bird pose estimation can be used in bird
species recognition.

[0023] The human body pose estimation has a multitude of
applications. It can be used by personal care robots that can
be deployed in assisted living homes. Human detection and
pose estimation with high accuracy can be used to safeguard
the residents of the assisted living home. For example, poses
indicative of a health crises such as being unconscious can
be detected and a notification of the same provided in order
to get timely assistance to persons in need. Avatar animation
is one such example where human pose helps in developing
animation. Intelligent driver assisting system can use the
human body pose estimation to both detect the position of
the driver, for drowsy driver detection, and detect pedestri-
ans near the road ahead of the vehicle to offer avoidance
alerts to the driver when a pedestrian is entering the road-
way. Other applications include Physical therapy, study of
cognitive brain development of young children, video sur-
veillance, animal tracking and behavior understanding to
preserve endangered species, sign language detection,
advanced human computer interaction, and markerless
motion capturing.

[0024] A DDN can efficiently and accurately localize
object key points. The overall network structure is mainly
composed by three components: (1) to extract discriminative
visual features, the VGGNet is modified to contain fewer
convolutional stages for generating a higher-resolution
response map; (2) to approximately localize the landmark, a
novel Shape Basis Network (SBN) combines a set of shape
bases using the weights generated from the convolutional
features; (3) these coarse landmarks are refined in a Point
Deformation Network (PDN) using a TPS transformation.
The whole network is trained end-to-end.

[0025] We adopt the well-known VGG-16 for feature
extraction because of its state-of-the-arts performance in
various tasks. Similar to most of the localization algorithms,
our network takes a region of interest cropped by an object
detector as the input. Following a common setup, we use
100-by-100 resolution for facial landmark localization and
200-by-200 for body and bird pose estimation. Compared to
classification and detection task, localizing landmarks accu-
rately requires the extraction of much finer information
about image details. Therefore, we chopped off the last stage
in the original 5-stage VGG-16 network and use the first four
convolutional stages. In addition, we found from the experi-
ments that the pooling layer actually introduces noise since
the task is to accurately localize the key positions. Although
the pooling layers generate shifting-invariant features, the
features for the localization task should be shift-sensitive.
Based on this observation, we remove all pooling layers in
the network. As a result, given any image of 100-by-100
resolution, the four-stage convolutional layers can generate
a 7-by-7 response map of 512 channels denoted as x.
[0026] The size of the response map is determined by the
input image size and the defined network structure. The 512
channels is from the VGGNet, from which the number of
channels show the optimal performance by setting it to 512.
[0027] A 7-by-7 response map is generated by sending the
input image of 100-by-100 into our defined deep deforma-
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tion network (DDN). There are 16 layers defined for the
DDN. After each layer, there is an output. The 512x7x7 blob
is the output of the 10th layer. Essentially, the output of each
layer is a tensor. 512 is the number of channels. Inside each
channel, the filtered image size is 7-by-7.

[0028] Suppose that we are given a set of training images
X={(x, ), ...}, where xeR ¢ denotes the low-level feature
extracted by the convolutional layers. Fach image is anno-
tated with n 2-D landmarks, i.e., y=[y', ..., y" |["eR *". To
predict the landmark positions, most of the previous works
have a direct mapping between the CNN features x and the
ground-truth landmarks y. Despite its success on various
tasks, learning a vanilla regressor has two limitations: (1) a
single linear model is not powerful enough to model the
large shape variation such as human body, although cascade
regression can largely improve the performance, a proper
initialization is still crucial to get a good solution; (2) given
limited data, the learning of a large-capacity model has a
higher risk of being over-fitting because of the lack of
certain geometrical constraint.

[0029] To address the limitation of traditional regression-
based methods, we use a Shape Basis Network (SBN) to
predict the best possible object shape that lie in a low-rank
manifold defined by the training samples. This step plays
two important roles in the whole framework: (1) it provides
a good initialization that is close to the ground-truth land-
mark for the PDN in the next step; (2) it regularizes the
learning by introducing a constraint on the global geometry
of the predicted landmarks.

[0030] Inspired by previous work on the ASM for face
alignment, we took a simple robust, parametric model based
on the Principal Component Analysis (PCA). More specifi-
cally, the SBN predicts the shape y ~[y.', . .. y.” ]7eR *" as,

Vs =7+ Qf (ws, %), M

Xs

where yeR ?” is the mean shape of all the training images.
The columns of QeR #* store the top-k orthogonal basis
computed by PCA. We choose k to preserve 99% energy of
the covariance matrix, 2 (y-y)(y-y)”. f(w,, X)=x, is a non-
linear mapping that takes the CNN feature x as input and
generates the basis weight xR * as output. The mapping
f(w,, x) is represented by concatenating two fully connected
layers, where the first layer encodes each input as a 1024-D
vector, which is further reduced to the dimension of k by the
second fully connected layer. The parameter of this mapping
is denoted as w,.

[0031] We jointly train the SBN with other network com-
ponents in an end-to-end manner. During the backward
propagation, given the partial gradient over y, as Vy eR ",
we can compute the partial gradient over x, as Q’Vy eR *.
We then propagate this gradient back to update the param-
eters for the fully connected layers (w,) as well as the lower
convolutional layers.

[0032] It is difficult to train the whole network from
scratch. Therefore, we take the idea of Curriculum Learning
by firstly pre-training the SBN in a simpler task without the
consideration of the PDN. Given the PCA shape model (y
and Q) and a set of training images (x), we pre-train the SBN
for the optimal embedding of x=f(w,, x), such that the
Euclidean distance between the prediction and the ground-
truth (y) can be minimized, i.e.,
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min F= ||y = (7 +Qx) I +A11x 113, @

where A is the regularization factor which penalizes the
coeflicients with large 1, norm. To approach Equation 2, we
calculate the gradient of the loss F over x; as,

aF o €)
Fa = M 2000 - (7 + Ox),
Xs

which is then back-propagated to update the parameters of
the fully connected layers (w,) and the lower convolutional
layers.

[0033] The Shape Basis Network applies the powerful
CNN to generate the embedding coefficient x,. With certain
loss of accuracy in prediction because of low rank trunca-
tion, the SBN is designed to provide a good initialization for
the refinement procedure, which is the Point Deformation
Network in the following section. Moreover, since the
articulation in pose estimation problems bring in large
non-linear distortion, introducing the SBN largely reduces
the complexity of shape transformation for the Point Trans-
form Network as long as the SBN covers all types of shape
variations.

[0034] Given the input feature x, the SBN generates the
object landmark y; as a linear combination of pre-defined
shape bases. As discussed before, this prediction may be
inaccurate because it is limited by the linear regression
model. To handle more challenging pose variation, the Point
Deformation Network (PDN) is used to deform the initial
shape (y,) using Thin-Plate-Spline (TPS) transformation to
best match with ground-truth (y).

[0035] Incomputer graphics and computer vision, the TPS
transformation has been widely used for modeling non-
linear transformation between two sets of points. The Spatial
Transformer Network (STN) can learn various geometrical
transformations (including TPS) for image classification in
a weakly supervised manner. Though applying a similar
deformation principal, our PDN is significantly different
from the STN in three aspects: First, the STN aims at
warping the entire input image or feature map for its
following tasks; Second, our PDN is a more general frame-
work, which accepts not only input images but also land-
marks or control points; Third, warping the dense 2D images
or feature maps is more spatially constrained, while warping
on sparse landmarks is largely more flexible and thus could
achieve better performance.

[0036] A TPS transformation consists of two parts, an
affine transformation and a nonlinear one. The affine trans-
formation is defined by a matrix DeR 2** while the nonlinear
transformation is parameterized by m control points C=[c,,
..., ¢, ]JeR > with the corresponding coefficients U=[u,,
... u,JeR ™ Fixing the control points to form 10-by-10
grids (i.e., m=100). The TPS transformation for any 2-D
point zeR ? can be defined as:

gD, U}, 9= D2+ Y wig(llz=cillp), @
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where 7=[z",1]7eR ® denotes the coordinate z in the homo-
geneous form. One benefit of using the TPS is that the Radial
Basis Function (RBF), ¢(d)=d* log d, is parameter-free.
[0037] Unlike most of the previous works where the TPS
transformation was used in an unsupervised manner, we
learn a mapping to drive the TPS in a data-driven way. Given
the convolutional feature x and the initial landmarks Y =
[v.}, ...,y ]eR > provided by the SBN, the PDN seeks
a non-linear mapping fp(wp,x):{D, U} that generates the
optimal TPS transformation {D, U} in order to match the
ground-truth Y=[y*, . . ., y"]eR #*”. Similar to the SBN, this
mapping f,(w,, x) is achieved by concatenating two fully
connected layers, which generate a 1024-D intermediate
representation. The PDN optimizes:

n )
min Z 1y = g(fpwp, x), YD1 +7 f 1925113 4y,
Yp

i=1

where Vg is the second order derivative of transformation
g with respect to y,’. The weight v is a trade-off between the
transformation error and the bending energy. Substituting
Equation 4 into the Equation 5 yields an equivalent but more
concise objective,

ming = || ¥ - DY, — UD |3 +ytr(USSTUT), (6
Yp

where each element of the RBF kernel ®eR ™" computes
q)iJ:q)(”ysl_Ci”)'

[0038] Optimizing Equation 6 over the TPS parameters D
and U can be solved in a closed form. In our case, however,
these two parameters are generated by the non-linear map-
ping 1,(w,, x) given the image feature x on-the-fly. There-
fore, instead of computing its optimal solution, we optimize
Bquation 5 over w,, using stochastic gradient descent, where
we first compute the gradients over the TPS parameters as,

de T e M

and then back-propagate them to update the mapping param-
eter w,. Because the whole network is trained jointly, we
need to calculate the gradient with respect to the input shape
y, (i.e., output of STN) as,

8 8
. - DT — - 1)As + T (@ T O+ TV - 1, ®
¥s

where D, is the first two columns of affine matrix D, in which
D is decomposed as D=[D,,D,] according to the structure
[s%, 1775 @'=[¢'G5, ¢,), - - ., §'(5, ¢,,)] is the element-wise
derivative with respect to shape s-As=y-D [s7, 17]"-du.

[0039] One of the main difficulties in training the PDN
comes from the over-fitting of the non-linear mapping 1,(w,,,
x). This is because the number of parameters in w,, is much
larger than the amount of information we can get from each
mini-batch. For instance, in the face alignment problem on

Sep. 14, 2017

Labeled Faces in the Wild (LFW), we have few labeled
landmarks (7) for each image but a large number (100) of
control points to manipulate. One common solution is to
increase the regularization weight y. However, a large vy
could reduce the flexibility of the TPS transformation for
handling highly non-rigid pose variations such as human
body. We therefore control the point grid regularization
method to further constrain the deformation.

[0040] For each training image, we estimate the optimal
TPS transformation (D and U) from the mean shape y to the
ground truth y offline. Then this TPS transformation is
applied on the m control points ceR? to obtain their
transformed location y '=g({D, U}, c,)eR 2. By doing this,

we synthesized m additional landmarks Y =y !, ..., y.” e

R 2*™ with their original positions C=[c,, . . ., ¢, JeR **".

We therefore defined an additional loss over Y,
€.=plY~D.C-U | +otr(U 227U, ©

where the terms C, D_, U_ and ®_ are defined in a similar
way as in Equation 6. By incorporating €_ into the original
loss €, we gain additional information from m points, which
help to reduce the overfitting risk and improve the overall
performance. The typical value for y is between 0.5 and 2,
while p and o are between 0.1 and 1. Since the landmark loss
and control point loss share the same form, the update of the
network also shares the same form as in Equation 7 and
Equation 8.

[0041] The system is composed by three steps: the con-
volutional layers for extracting features x, the SBN for
computing the intermediate landmarks y,, and the PDN for
generating the final position y,,. Our network can be trained
from scratch in an end-to-end manner. However, recent work
has shown that a proper initialization is vital in training a
deep learning model. The Curriculum Learning is accom-
plished by decomposing the joint task into two simpler ones
and pre-training the SBN and the PDN separately. To
pre-train the SBN, we directly minimize Equation 3 without
the PDN part. For convolutional layers, we initialized their
weights as in the original VGG16 model because the knowl-
edge learned from the ImageNet datasets can benefit our
task. During the pre-training process, we first fix the con-
volutional weights and update the fully connected layers of
the SBN only. When the error is not decreasing after 10
epochs, the network is relaxed to update both the convolu-
tional layers and the fully connected layers. To pre-train the
PDN. we drop the SBN component from the network and
replace the input y, with the mean shape y. Similarly, we
fixed the convolutional weights like the SBN pre-training
process and train the fully connected layers in the PDN only.
After 10 epochs, we then train both the convolutional layers
and the fully connected layers together.

[0042] After pre-training the SBN and the PDN separately,
we then combine them in a joint network, where the SBN
provides shape input y, to the PDN. The loss error is
generated at the end of the PDN and is back-propagated to
update the fully connected and the convolutional layers.
With both pre-trained networks, we firstly update the
weights of the PDN and fix the weights of the SBN. Then the
weights from the SBN is relaxed and the entire network is
updated jointly. As we have discussed in the previous
section, to prevent overfitting, a 2-loss objective function is
introduced in Equation 9. From the training data, mapping
from initialized landmarks to the ground truth annotation,
we calculate the TPS transform of each set of initialized
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landmarks to their ground truth landmarks offline. Then we
apply the same TPS transform on the control points, which
are uniformly sampled across the images, to obtain the
transformed control points. In this way, we generate another
set of training data. All the training procedures introduced
above are applied on the newly generated training data.
Once the control point based network is trained, we directly
apply the landmark based training data on the network and
penalize both the loss from control points and the loss from
landmarks. The reason why the landmark based training data
is not directly applied is that, once the network is trained
based on the sparse landmark annotation, the overfitting is
hard to be regularized. In contrast, initially applying the
dense control point training data prevents the network from
being overfitting. Then adding on the landmark constraint
refines the network to be more specific to the localization
task.

[0043] The training for each specific task, i.e., face local-
ization, human body pose estimation, should be indepen-
dent. The annotations for different tasks may be largely
different. The image appearance also varies a lot from one
task to another. For instance, the human face images share
a face-centric layout, while the human body layout is more
variant. The bodies may appear with all types of gestures,
i.e. lay down, upside down, folding, which is much more
than the facial gestures. Thus, the filters inside the convo-
Iutional layers may have much different responses. Though
different tasks need independent training, we propose a
general uniform CNN structure to explore the commonality
across the pose estimation or landmark localization prob-
lems.

[0044] The Deep Deformable Network (DDN) can be used
on many different pose estimations, including: facial land-
mark localization, human body pose estimation, and bird
key-point prediction. Localizing facial landmarks is a fun-
damental step in facial image analysis. However, the prob-
lem is still challenging due to the large variability in pose
and appearance, and the existence of occlusions in real-
world face images. Compared to faces, the human body has
a much larger degree of freedom to deform in space.
Because of the high non-rigidity, human body pose estima-
tion is much more challenging. The method uses a neural
network structure. The difference is, we incorporate the body
structure inference into the network. For instance, the Shape
Basis Network constructs a flexible body structure estima-
tion. Moreover, the Point Deformation Network firstly
refines the body landmark positions. All the modules are
integrated into an end-to-end network both for training and
testing. The bird key-point prediction is even different from
the human body pose estimation. Some spatial shift of the
landmarks does not violate the landmark definition. In this
sense, the bird landmark localization task is more challeng-
ing due to the uncertainty.

[0045] The end-to-end Deep Deformation Network gen-
erally deals with several independent pose estimation tasks,
i.e. human pose estimation, face landmark localization, and
bird pose estimation. Benefited from the CNN feature rep-
resentation, we build up the Shape Basis Network for
directly mapping from the features to the landmark trans-
formation without bothering the feature maps. The SBN
provides a fast and good initialization for the Point Defor-
mation Network. Then the PDN applies the similar mapping
from the CNN features to another point transformation to
further refine the initialization from the SBN. In contrast to
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the DPM, the overall DDN structure incorporates neither
handcrafted feature nor part-based connections, which saves
on complex configurations for training and testing. The
end-to-end Deep Deformation Network can facilitate differ-
ent pose estimation tasks and achieve advantageous perfor-
mance compared to other state-of-the-arts for all pose esti-
mation tasks.

[0046] Embodiments described herein may be entirely
hardware, entirely software or including both hardware and
software elements. In a preferred embodiment, the present
invention is implemented in software, which includes but is
not limited to firmware, resident software, microcode, etc.
[0047] Embodiments may include a computer program
product accessible from a computer-usable or computer-
readable medium providing program code for use by or in
connection with a computer or any instruction execution
system. A computer-usable or computer readable medium
may include any apparatus that stores, communicates,
propagates, or transports the program for use by or in
connection with the instruction execution system, apparatus,
or device. The medium can be magnetic, optical, electronic,
electromagnetic, infrared, or semiconductor system (or
apparatus or device) or a propagation medium. The medium
may include a computer-readable storage medium such as a
semiconductor or solid state memory, magnetic tape, a
removable computer diskette, a random access memory
(RAM), a read-only memory (ROM), a rigid magnetic disk
and an optical disk, etc.

[0048] Each computer program may be tangibly stored in
a machine-readable storage media or device (e.g., program
memory or magnetic disk) readable by a general or special
purpose programmable computer, for configuring and con-
trolling operation of a computer when the storage media or
device is read by the computer to perform the procedures
described herein. The inventive system may also be consid-
ered to be embodied in a computer-readable storage
medium, configured with a computer program, where the
storage medium so configured causes a computer to operate
in a specific and predefined manner to perform the functions
described herein.

[0049] A data processing system suitable for storing and/
or executing program code may include at least one proces-
sor coupled directly or indirectly to memory elements
through a system bus. The memory elements can include
local memory employed during actual execution of the
program code, bulk storage, and cache memories which
provide temporary storage of at least some program code to
reduce the number of times code is retrieved from bulk
storage during execution. Input/output or /O devices (in-
cluding but not limited to keyboards, displays, pointing
devices, etc.) may be coupled to the system either directly or
through intervening I/O controllers.

[0050] Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers
or storage devices through intervening private or public
networks. Modems, cable modem and Ethernet cards are just
a few of the currently available types of network adapters.
[0051] Referring now in detail to the figures in which like
numerals represent the same or similar elements and initially
to FIG. 1, a convolutional neural network system 100 is
illustratively shown. The convolutional neural network sys-
tem 100 includes a four stage convolutional structure 110. In
one embodiment, the four stage convolutional structure 110
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is comprised of hardware. The four stage convolutional
structure 110 generates a response map from an image that
is used by a shape basis neural network 120. In one
embodiment, the shape basis neural network 120 is com-
prised of hardware. The shape basis neural network 120 uses
the response map to generate a set of landmark points used
by a point deformation neural network 140. In one embodi-
ment, the point deformation neural network 140 is com-
prised of hardware. The point deformation neural network
140 uses the response map and the set of landmark points to
generate an optimal shape of the image.

[0052] Referring now to FIG. 2, a system 200 is illustra-
tively shown. The system 200 has an image 210. The image
210 enters the four stage convolutional structure 220. The
four stage convolutional structure 220 has four stages. In one
embodiment, Stage 1 221 of the four stages may have a
plurality of C&R 64’s (hereafter “C&R 64) 222 and a
plurality of C&R Stride’s (hereafter “C&R Stride™) 223. The
C&R 64 222 may have a plurality of convolution layers and
a plurality of rectified linear unit layers. The image 210 may
be processed in the C&R 64 222 of stage 1 221 before the
results are passed into the C&R Stride 223. The C&R Stride
223 may shift the pixels in the results. The pixel shift may
be a stride by 2.

[0053] In another embodiment, Stage 2 224 of the four
stages may have a plurality of C&R 128’s (hereafter “C&R
128) 225 and a plurality of C&R Stride’s (hereafter “C&R
Stride”) 223. The C&R 128 225 may have a plurality of
convolution layers and a plurality of rectified linear unit
layers. The results from stage 1 221 may be processed in the
C&R 128 225 of stage 2 224 before the results are passed
into the C&R Stride 223. The C&R Stride 223 may shift the
pixels in the results. The pixel shift may be a stride by 2.
[0054] Inyet another embodiment, Stage 3 226 of the four
stages may have a plurality of C&R 256’s (hereafter “C&R
2567) 227 and a plurality of C&R Stride’s (hereafter “C&R
Stride”) 223. The C&R 256 227 may have a plurality of
convolution layers and a plurality of rectified linear unit
layers. The results from stage 2 224 may be processed
multiple times in the plurality of C&R 256’s 227 of stage 3
226 before the results are passed into the C&R Stride 223.
The C&R Stride 223 may shift the pixels in the results. The
pixel shift may be a stride by 2.

[0055] In one more embodiment, Stage 4 228 of the four
stages may have a plurality of C&R 512’s (hereafter “C&R
5127) 229 and a plurality of C&R Stride’s (hereafter “C&R
Stride”) 223. The C&R 512 229 may have a plurality of
convolution layers and a plurality of rectified linear unit
layers. The results from stage 3 226 may be processed
multiple times in the plurality of C&R 512’s 229 of stage 4
228 before the results are passed into the C&R Stride 223.
The C&R Stride 223 may shift the pixels in the results. The
pixel shift may be a stride by 2.

[0056] The four stage convolutional structure 220 gener-
ates a response map. In one embodiment, the response map
may be a 7-by-7 response map of 512 channels. The
response map is processed by the shape basis neural network
230. In one embodiment, the shape basis neural network
may have a pre-defined shape bases 238. In another embodi-
ment, the shape basis neural network 230 may have one or
more fully connected layers (hereafter “fully connected
layer”) 234. A fully connected layer 234 may generate a first
vector from the response map. Another fully connected layer
234 may generate a second vector from the first vector. In yet
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another embodiment, the shape basis neural network 230
may take the inner product of the second vector and the
pre-defined shape bases 238 to generate a plurality of
landmark points.

[0057] The plurality of landmark points are processed by
the point deformation neural network 240. In one embodi-
ment, the point deformation neural network 240 may have a
one or more fully connected layers (hereafter “fully con-
nected layer”) 234. A fully connected layer 234 may gen-
erate a third vector from the response map. Another fully
connected layer 234 may generate a fourth vector from the
third vector. In another embodiment, the point deformation
neural network 240 may have a thin-plate-spline transform
245. The point deformation neural network 240 may gen-
erate an optimal shape from the fourth vector and the
plurality of landmark points with the thin-plate-spline trans-
form 245.

[0058] The optimal shape from the image is processed by
a recognition system 250. In one embodiment, the recogni-
tion system 250 may have a pre-defined user recognition
database 255. The recognition system 250 may use the
optimal shape and the pre-defined user recognition database
255 to generate a recognition result for the image. The
recognition system may send a signal to a hardware-based
machine 360 based on the recognition results. In one
embodiment, the hardware-based machine may comprise an
electronic lock 365. The signal sent to the hardware-based
machine 360 based on the recognition results may unlock
the electronic lock 365.

[0059] Referring now to FIG. 3, a network interface 300
provides for the convolutional neural network system 350 to
interact with other hardware remotely. The convolutional
neural network system 350 can communicate with a server
320 or a plurality of servers 330 through a network 310. The
convolutional neural network system 350 can get an image
340 to process through the network 310.

[0060] Referring to FIG. 4, an exemplary computer system
400 is shown which may represent a node in a neural
network, in accordance with an embodiment of the present
invention. The computer system 400 includes at least one
processor (CPU) 405 operatively coupled to other compo-
nents via a system bus 402. A cache 406, a Read Only
Memory (ROM) 408, a Random Access Memory (RAM)
410, an input/output (I/O) adapter 420, a sound adapter 430,
a network adapter 440, a user interface adapter 450, and a
display adapter 460, are operatively coupled to the system
bus 402.

[0061] A first storage device 422 and a second storage
device 424 are operatively coupled to system bus 402 by the
1/O adapter 420. The storage devices 422 and 424 can be any
of a disk storage device (e.g., a magnetic or optical disk
storage device), a solid state magnetic device, and so forth.
The storage devices 422 and 424 can be the same type of
storage device or different types of storage devices.

[0062] A speaker 432 may be operatively coupled to
system bus 402 by the sound adapter 430. A transceiver 445
is operatively coupled to system bus 402 by network adapter
440. A display device 462 is operatively coupled to system
bus 402 by display adapter 460.

[0063] A first user input device 452, a second user input
device 454, and a third user input device 456 are operatively
coupled to system bus 402 by user interface adapter 450. The
user input devices 452, 454, and 456 can be any of a sensor,
a keyboard, a mouse, a keypad, a joystick, an image capture
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device, a motion sensing device, a power measurement
device, a microphone, a device incorporating the function-
ality of at least two of the preceding devices, and so forth.
Of course, other types of input devices can also be used,
while maintaining the spirit of the present invention. The
user input devices 452, 454, and 456 can be the same type
of user input device or different types of user input devices.
The user input devices 452, 454, and 456 are used to input
and output information to and from system 400.

[0064] Of course, the computer system 400 may also
include other elements (not shown), as readily contemplated
by one of skill in the art, as well as omit certain elements.
For example, various other input devices and/or output
devices can be included in computer system 400, depending
upon the particular implementation of the same, as readily
understood by one of ordinary skill in the art. For example,
various types of wireless and/or wired input and/or output
devices can be used. Moreover, additional processors, con-
trollers, memories, and so forth, in various configurations
can also be utilized as readily appreciated by one of ordinary
skill in the art. These and other variations of the computer
system 400 are readily contemplated by one of ordinary skill
in the art given the teachings of the present invention
provided herein.

[0065] Referring to FIG. 5, a flow chart for a method 500
of estimating object poses is illustratively shown, in accor-
dance with an embodiment of the present invention. In block
510, generate, by a processor with a four stage convolutional
structure, a response map for an image. In block 520,
generate, by the processor using a shape basis neural net-
work, a plurality of landmark points for the image based on
the response map. In block 530, generate, by the processor
using a point deformation neural network, an optimal shape
for the image based on the plurality of landmarks for the
image and the response map. In block 540, identify, by a
recognition system, the image based on the generated opti-
mal shape to generate a recognition result of the image. In
block 550, operate a hardware-based machine based on the
recognition result.

[0066] The foregoing is to be understood as being in every
respect illustrative and exemplary, but not restrictive, and
the scope of the invention disclosed herein is not to be
determined from the Detailed Description, but rather from
the claims as interpreted according to the full breadth
permitted by the patent laws. It is to be understood that the
embodiments shown and described herein are only illustra-
tive of the principles of the present invention and that those
skilled in the art may implement various modifications
without departing from the scope and spirit of the invention.
Those skilled in the art could implement various other
feature combinations without departing from the scope and
spirit of the invention. Having thus described aspects of the
invention, with the details and particularity required by the
patent laws, what is claimed and desired protected by Letters
Patent is set forth in the appended claims.

What is claimed is:
1. A method for using a convolutional neural network
comprising:
generating, by a processor using a four stage convolu-
tional structure, a response map for an image;

generating, by the processor using a shape basis neural
network, a plurality of landmark points for the image
based on the response map;
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generating, by the processor using a point deformation
neural network, an optimal shape for the image based
on the plurality of landmark points for the image and
the response map;

identifying, by a recognition system, the image based on

the generated optimal shape to generate a recognition
result of the image; and

operating a hardware-based machine based on the recog-

nition result.

2. The method as recited in claim 1, wherein the point
deformation neural network applies a non-linear transfor-
mation to the plurality of landmark points for the image.

3. The method as recited in claim 1, wherein the four stage
convolutional structure comprises a plurality of convolu-
tional layers and a plurality of rectified linear unit layers.

4. The method as recited in claim 1, wherein the response
map is a 7-by-7 response map of 512 channels.

5. The method as recited in claim 1, wherein the point
deformation neural network deforms the plurality of land-
marks for the image using a Thin-Plate-Spline (TPS) trans-
formation.

6. The method as recited in claim 5, wherein the defor-
mation of the plurality of landmark points for the image is
constrained by controlling a point grid regularization
method.

7. The method as recited in claim 1, wherein the shape
basis neural network applies a constraint on a global geom-
etry of the plurality of landmarks for the image.

8. The method as recited in claim 1, wherein the shape
basis neural network and the point deformation neural
network are trained jointly with the same plurality of
images.

9. The method as recited in claim 1, wherein the plurality
of landmark points for the image comprises a linear com-
bination of pre-defined shape bases.

10. The method as recited in claim 1, wherein the shape
basis neural network applies a non-linear transformation to
the response map.

11. The method as recited in claim 1, wherein the recog-
nition system is included in a security system that captured
the image.

12. The method as recited in claim 1, wherein operating
the hardware-based machine based on the recognition result
comprises actuating an unlock mechanism of a lock to grant,
to a user depicted and recognized in the image, access to an
item selected from the group consisting of a device and a
facility.

13. The method as recited in claim 1, wherein operating
the hardware-based machine based on the recognition result
comprises stopping the hardware-based machine to mitigate
a risk posed to a user by the hardware-based machine.

14. A non-transitory article of manufacture tangibly
embodying a computer readable program which when
executed causes a computer to perform the steps of claim 1.

15. A system comprising:

a processor, configured to:

generate a response map for an image, using a four
stage convolutional structure;

generate a plurality of landmark points for the image
based on the response map, using a shape basis
neural network; and
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generate an optimal shape for the image based on the
plurality of landmark points for the image and the
response map, using a point deformation neural
network; and

a recognition system configured to identify the image
based on the generated optimal shape to generate a
recognition result of the image,

wherein the processor is further configured to operate a
hardware-based machine based on the recognition
result.

16. The system as recited in claim 15, wherein the point
deformation neural network applies a non-linear transfor-
mation to the plurality of landmark points for the image.

17. The system as recited in claim 15, wherein the four
stage convolutional structure comprises a plurality of con-
volutional layers and a plurality of rectified linear unit
layers.

18. The system as recited in claim 15, wherein the point
deformation neural network deforms the plurality of land-
marks for the image using a Thin-Plate-Spline (TPS) trans-
formation.
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19. The system as recited in claim 15, wherein the shape
basis neural network applies a constraint on a global geom-
etry of the plurality of landmarks for the image.

20. The system as recited in claim 15, wherein the
plurality of landmark points for the image comprises a linear
combination of pre-defined shape bases.

21. A processor configuration comprising:

a processor, configured to:

generate a response map for an image, using a four
stage convolutional structure;

generate a plurality of landmark points for the image
based on the response map, using a shape basis
neural network; and

generate an optimal shape for the image based on the
plurality of landmark points for the image and the
response map, using a point deformation neural
network; and

operate a hardware-based machine based on a recog-
nition result obtained from a recognition system
configured to identify the image based on the gen-
erated optimal shape to generate the recognition
result of the image.
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