US 20180260531A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2018/0260531 Al

Nori et al.

(54) TRAINING RANDOM DECISION TREES

(71)

(72)

@
(22)

(1)

FOR SENSOR DATA PROCESSING

43) Pub. Date: Sep. 13, 2018
(52) U.S. CL
CPC ... GOGF 19/3437 (2013.01); GO6F 19/321

(2013.01); GO6N 99/005 (2013.01)

Applicant: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

Inventors: Aditya Vithal Nori, Cambridge (GB);

(57) ABSTRACT

Antonio Criminisi, Cambridge (GB);
Siddharth Ancha, Toronto (CA); Loic
Le Folgoc, Cambridge (GB)

Appl. No.: 15/456,468

Filed: Mar. 10, 2017

Publication Classification

Int. CL.
GO6F 19/00
GO6N 99/00

(2006.01)
(2006.01)

100

’

108
110

120

A method of training a random decision tree to give
improved generalization ability is described. At a split node
of'the random decision tree a plurality of training sensor data
elements available at the split node are divided into a tuning
set and a validation set. A plurality of models is formed using
the tuning set, each model using different values of param-
eters of the split node. Performance of the models at splitting
the validation set between left and right child nodes of the
split node is computed and used to select one of the models.

104
102 BODY PART
CLASSIFICATION /
JOINT POSITION FROM
DEPTH DEPTH IMAGES
IMAGES
106~ GESTURE

RECOGNITION

114

’ :

AUDIO SPEEC PHONEME ANALYSIS

CAPTURE

116~ SPEECH RECOGNITION

~ | mroruaTion
118 RETRIEVAL
122
124
MEDICAL AUTOMATIC ORGAN

IMAGES DETECTION

Patent Application Publication Sep. 13,2018 Sheet 1 of 7 US 2018/0260531 A1

100
104
102 BODY PART
CLASSIFICATION /
JOINT POSITION FROM
DEPTH DEPTH IMAGES
IMAGES
106~ GESTURE
RECOGNITION
108
114
112
AUDIO SPEEC PHONEME ANALYSIS
CAPTURE
1167~ SPEECH RECOGNITION
120
INFORMATION
1187 RETRIEVAL
122
124
MEDICAL AUTOMATIC ORGAN
IMAGES DETECTION

FIG. 1

US 2018/0260531 A1l

Sep. 13,2018 Sheet 2 of 7

Patent Application Publication

¢ 9ld

sayoyed
Bujures

r4%4 [AVTA 002

Patent Application Publication Sep. 13,2018 Sheet 3 of 7 US 2018/0260531 A1

ACCESS TRAINING DATA EXAMPLES
AT SPLIT NODE 300

COMPUTE TUNING SET AND VALIDATION SET
302

COMPUTE PLURALITY OF MODELS,
USING TUNING SET 304

COMPARE PERFORMANCE OF MODELS ON
VALIDATION SET 306

SELECT MODEL AND STORE SPLIT NODE
PARAMETERS 308

FIG. 3

Patent Application Publication Sep. 13,2018 Sheet 4 of 7 US 2018/0260531 A1

RECEIVE TRAINING DATA j~ 400
Y
SELECT NUMBER OF TREES IN DECISION FOREST ~ 402
Y
SELECT A TREE FROM FOREST ~ 404
Y
GO TO ROOT NODE OF TREE |~ 406
Y
COMPUTE VALIDATION AND TUNING TRAINING SET ~ 408
Y
COMPUTE MODELS USING TUNING SET ~ 410
Y
APPLY SPLIT NODE PARAMETERS OF EACH MODEL TO 412
VALIDATION SET
Y
SELECT MODEL WITH PARAMETERS OPTIMIZING CRITERIA P~ 414

418
SET CURRENT NODE AS SPLIT NODE [\ 420 | SET CURRENT NODE AS LEAF NODE
PERFORM BINARY TEST ON
ELEMENTS AT CURRENT NODE p~_ 422 J
USING PARAMETERS 426
FOR EACH CHILD NODE, WAIT FOR ALL BRANCHES TO
RECURSIVELY EXECUTE BLOCKS COMPLETE RECURSION
410 TO 422 FOR SUBSET OF I\.424 J
ELEMENTS DIRECTED TO THE
RESPECTIVE CHILD NODE
ACCUMULATE VALIDATION DATA AT LEAF NODES I~ 428
STORE REPRESENTATION OF ACCUMULATED DATA ~ 430
434
TERMINATE
< YES MORE TREES IN FOREST? O
TRAINING

FIG. 4

Patent Application Publication

Sep. 13,2018 Sheet 5 of 7 US 2018/0260531 A1l

TRAIN TREE TO SPECIFIED DEPTH
500

A4

MOVE FROM LEAF NODES IN BACKWARD PASS

TOWARDS ROOT

202

PRUNE NODES ON BASIS OF PERFORMANCE ON

VALIDATION SET

504

TRAIN TREE TO NEXT SPECIFIED DEPTH
506

508

STORE TREE
510

FIG. 5

Patent Application Publication Sep. 13,2018 Sheet 6 of 7 US 2018/0260531 A1

600
RECEIVE UNSEEN SENSOR DATA ad
v
SELECT AN ELEMENT FROM UNSEEN 602
SENSOR DATA L~
N
604
SELECT A TREE FROM FOREST L~
A4
606
PUSH ELEMENT THROUGH TREE TO LEAF NODE | ~_
A
608
STORE DATA FOR ELEMENT ON THIS TREE ~/
MORE TREES IN FOREST
612
< MORE ELEMENTS?
Y
614
AGGREGATE DATA —~/
VN
616
OUTPUT PREDICTIONS ~

FIG. 6

Patent Application Publication Sep. 13,2018 Sheet 7 of 7 US 2018/0260531 A1
702 704
H
CAPTURE DISPLAY
DEVICE DEVICE
INPUT | oos OUTPUT [~ 708
INTERFACE INTERFACE
B "\
710 700
OPERATING APPLICATION
SYSTEM SOFTWARE [
12 MEMORY 14
PROCESSOR
TRAINING PREDICTION 794
Loaic LOGIC —
116 718 —
DATA
STORE
120

INPUT INTERFACE

COMMUNICATION

FIG.

706 INTERFACE 722
USER INPUT
DEVICE
726

US 2018/0260531 Al

TRAINING RANDOM DECISION TREES
FOR SENSOR DATA PROCESSING

BACKGROUND

[0001] Machine learning technology using random deci-
sion trees and random decision forests, which are collections
of random decision trees, is used for a variety of tasks such
as gesture recognition, object recognition, automatic organ
detection, speech recognition, calculating positions of
human body joints from depth images, and other tasks. The
random decision trees are trained using training examples
comprising labeled sensor data during a training phase.
During a test phase, sensor data which has not previously
been available to the random decision tree or forest is
processed using the trained tree or forest. The trained tree or
forest computes, from a new sensor data example during the
test phase, a prediction such as a predicted class of the new
sensor data example, or a predicted regressed value. This is
useful for many applications such as semantic image seg-
mentation, face recognition, medical image analysis, speech
recognition, gesture detection and other applications.
[0002] Random decision trees and forests are complex and
time consuming to train. Also, the training process often
results in over fitting whereby the resulting trained random
decision tree or forest performs well on new examples which
are similar to examples used during training, but is unable to
cope well with examples which are dissimilar to those used
during training. Such machine learning systems may have
limited accuracy and/or generalization ability. Generaliza-
tion ability is being able to accurately perform the task in
question even for examples which are dissimilar to those
used during training.

[0003] Large numbers of training examples are typically
used to train random decision trees or random decision
forests in order to carry out classification tasks such as
human body part classification from depth images or gesture
recognition from human skeletal data, or regression tasks
such as joint position estimation from depth images. The
training process is typically time consuming and resource
intensive.

[0004] The embodiments described below are not limited
to implementations which solve any or all of the disadvan-
tages of known systems for training random decision trees or
forests.

SUMMARY

[0005] The following presents a simplified summary of the
disclosure in order to provide a basic understanding to the
reader. This summary is not intended to identify key features
or essential features of the claimed subject matter nor is it
intended to be used to limit the scope of the claimed subject
matter. Its sole purpose is to present a selection of concepts
disclosed herein in a simplified form as a prelude to the more
detailed description that is presented later.

[0006] A method of training a random decision tree to give
improved generalization ability is described. At a split node
of'the random decision tree a plurality of training sensor data
elements available at the split node are divided into a tuning
set and a validation set. A plurality of models is formed using
the tuning set, each model using different values of param-
eters of the split node. Performance of the models at splitting
the validation set between left and right child nodes of the
split node is computed and used to select one of the models.

Sep. 13,2018

[0007] Many of the attendant features will be more readily
appreciated as the same becomes better understood by
reference to the following detailed description considered in
connection with the accompanying drawings.

DESCRIPTION OF THE DRAWINGS

[0008] The present description will be better understood
from the following detailed description read in light of the
accompanying drawings, wherein:

[0009] FIG. 1 is a schematic diagram of a plurality of
different systems in which a machine learning system with
random decision trees/forests is used;

[0010] FIG. 2 is a schematic diagram of a random decision
tree used to classify image patches from two photographs as
belonging to grass, cow or sheep classes;

[0011] FIG. 3 is a flow diagram of a method of learning
split node parameters during training of a random decision
tree;

[0012] FIG. 4 is a flow diagram of a method of training a
random decision forest;

[0013] FIG. 5 is a flow diagram of a method of training
and pruning a random decision tree;

[0014] FIG. 6 is a flow diagram of a method of using a
trained random decision forest at test time;

[0015] FIG. 7 illustrates an exemplary computing-based
device in which embodiments of a random decision tree
and/or a training logic for training the random decision tree
is implemented.

[0016] Like reference numerals are used to designate like
parts in the accompanying drawings.

DETAILED DESCRIPTION

[0017] The detailed description provided below in con-
nection with the appended drawings is intended as a descrip-
tion of the present examples and is not intended to represent
the only forms in which the present example are constructed
or utilized. The description sets forth the functions of the
example and the sequence of operations for constructing and
operating the example. However, the same or equivalent
functions and sequences may be accomplished by different
examples.

[0018] A machine learning system is a computer-imple-
mented apparatus which is able to learn from examples
either during an online training process or through offline
training by updating data structures using update procedures
in the light of the examples.

[0019] Various examples are described herein which
improve the generalization ability of random decision trees/
forests especially in applications where little training data is
available. For example, medical image processing is one
such application since few medical images are available
which have been labeled by medical professionals and it is
very difficult to generate accurate training data synthetically.
Having said that, the examples described herein are useful to
improve generalization ability of random decision trees/
forest for many applications.

[0020] One approach to dealing with overfitting is to use
many randomized random decision trees in a forest and to
aggregate the results from the trees in the forest. This helps
to give generalization ability. However, there are many
applications where it is not practical to use large forest sizes
because of limited processing and memory resources and/or
because of the need to reduce latency at test time (since for

US 2018/0260531 Al

larger forests there are more nodes to traverse at test time).
One such application domain is medical image segmentation
which typically requires large trees to be grown such as trees
of depth 20 to 30 layers and with millions of nodes. Due to
computational constraints few such trees can be trained (a
few dozen at most) so that model averaging across random-
ized trees is insufficient to balance tree overfitting. The
examples described herein enable generalization to be
achieved even where relatively few training examples are
available and/or where large forest sizes are not practical.
[0021] It is recognized herein that overfitting often occurs
when random decision trees are allowed to grow during
training in a manner which is not appropriately controlled.
Various examples described herein with reference to FIG. 5
teach a principled method for controlling capacity of a
random decision forest in order to achieve good generaliza-
tion ability.

[0022] The present technology may be implemented in a
variety of different types of application as now described
with reference to FIG. 1. In the examples of FIG. 1 a
machine learning system using random decision trees/for-
ests is used for classification or regression and where
parameters used at the split nodes of the trees are learnt
during training in a manner which improves generalization
ability. This gives better accuracy as compared with previ-
ous systems using random decision trees/forests trained in a
conventional manner. In addition, the number of decision
trees within a forest may be reduced whilst retaining good
generalization ability. This reduces the amount of memory
needed to store the trained random decision forest and it also
reduces the number of nodes to be traversed at test time, so
reducing test time latency.

[0023] FIG. 1 is a schematic diagram of a plurality of
systems in which a machine learning system with random
decision trees/forests is used. For example, a body part
classification or joint position detection system 104 operat-
ing on depth images 102. The depth images may be from a
natural user interface of a game device as illustrated at 100
or may be from other sources. The body part classification
or joint position information may be used to calculate
gesture recognition 106.

[0024] In another example, a person 108 with a smart
phone 110 sends an audio recording of his or her captured
speech 112 over a communications network to a machine
learning system 114 that carries out phoneme analysis. The
phonemes are input to a speech recognition system 116
which uses random decision trees/forests. The speech rec-
ognition results are used for information retrieval 118. The
information retrieval results may be returned to the smart
phone 110.

[0025] In another example medical images 122 from a
computerized tomography (CT) scanner 120, magnetic reso-
nance imaging (MRI) apparatus or other device are used for
automatic organ detection 124. Each medical image may
comprise many millions of voxels so that the scale of
processing involved is significant.

[0026] A random decision tree comprises a root node, a
plurality of split nodes and a plurality of leaf nodes. The root
node is connected to the split nodes in a hierarchical
structure, so that there are layers of split nodes, with each
split node branching into a maximum of two nodes and
where the terminal nodes are referred to as leaf nodes. Each
split node has associated split node parameters. Values of
split node parameters are learnt during training. The param-

Sep. 13,2018

eters specify types of features to be used and thresholds
associated with a binary test. During training, labeled train-
ing data accumulates at the leaf nodes and is stored in an
aggregated form.

[0027] Inthe case of image processing, image elements of
an image may be pushed through a trained random decision
tree in a process whereby a decision is made at each split
node. The decision may be made according to characteristics
of the image element and characteristics of test image
elements displaced therefrom by spatial offsets specified by
the parameters at the split node. At a split node the image
element proceeds to the next level of the tree down a branch
chosen according to the results of the decision. This process
continues until a leaf node is reached and distributions of
labeled image elements which were accumulated at the leaf
node during training are retrieved and used to compute a
prediction such as a predicted label for the test image
element.

[0028] Other types of examples may be used rather than
images. For example, phonemes from a speech recognition
pre-processing system, or skeletal data produced by a sys-
tem which estimates skeletal positions of humans or animals
from images. In this case test examples are pushed through
the random decision tree. A decision is made at each split
node according to characteristics of the test example and of
a split function having parameter values specified at the split
node.

[0029] The examples comprise sensor data, such as
images, or features calculated from sensor data, such as
phonemes or skeletal features.

[0030] An ensemble of random decision trees may be
trained and is referred to collectively as a random decision
forest. At test time, image elements (or other test examples)
are input to the trained forest to find a leaf node of each tree.
Data accumulated at those leaf nodes during training may
then be accessed and aggregated to give a predicted regres-
sion or classification output. Due to the use of random
selection of possible candidates for the split node parameters
during the training phase, each tree in the forest has different
parameter values and different accumulated data at the leaf
nodes. By aggregating the results across trees of the forest
improved accuracy and generalization ability is found.
[0031] FIG. 2 is a schematic diagram of a random decision
tree used to classify image patches from two photographs as
belonging to grass, cow or sheep classes. This example
illustrates how values of parameters of split functions used
at the split nodes influence pathways of sensor data through
the random decision tree at test time and so influence the
predictions computed.

[0032] A photograph of a cow 200 standing in a grassy
field is represented schematically in FIG. 2. A photograph of
a sheep 206 sitting in a different grassy field is also repre-
sented schematically in FIG. 2. Four image patches 202,
204, 208, 210 are taken from the photographs and are input
to a trained random decision tree for classification as belong-
ing to grass, cow or sheep classes. The image patches have
different color, intensity and texture from one another. The
image patch 202 from the grass in the cow photograph is a
different from the image patch 208 from the grass in the
sheep photograph.

[0033] The image patches are input to a root node 214 of
the random decision tree as indicated at 212. A parameter-
ized split function at the root node is applied to the image
patches and results in the sheep patch 210 from the sheep

US 2018/0260531 Al

photograph and the grass patch 202 from the cow photo-
graph being input to node 220 as indicated at 216. The cow
patch 204 and the grass patch 210 from the sheep photo-
graph are input to node 222 as indicated at 218. FIG. 2 shows
a histogram at each of the split nodes. These are normalized
histograms of the training labels reaching these nodes.
[0034] Parameterized split functions at each of split nodes
220 and 222 are applied. Suppose the split node parameter
values are such that this results in the sheep patch from the
sheep photograph reaching node 232 as indicated at 224 and
the grass patch from the cow photograph reaching node 234
as indicated at 226. The grass patch from the sheep photo-
graph reaches node 236 as indicated. The cow patch reaches
node 238 as indicated. Thus the values of the parameters of
the split functions are important for determining pathways of
the sensor data through the random decision forest. The
values of the parameters of the split functions are learnt
during training where training images patches are used
which are labeled according to whether they depict sheep,
cow or grass. In various examples a cross-validation process
is used at the individual split nodes to facilitate learning the
split node parameters in a manner which gives generaliza-
tion ability. If over-fitting occurs, the random decision forest
of FIG. 2 may be presented with a grass image patch which
is dissimilar to that of patches 202 and 208 and due to
overfitting, the random decision forest is unable to classify
the incoming patch as depicting grass. More detail about the
cross validation process used at the split nodes during
training is now given with reference to FIG. 3.

[0035] During a training process (explained below with
reference to FIG. 4) for training a random decision tree, the
process passes each split node of the tree and assigns values
to split node parameters at that split node. The flow diagram
of FIG. 3 is concerned with the process of assigning values
to the split node parameters at an individual split node.
Training data examples have reached the split node during
the training process (as explained below with reference to
FIG. 4) and these are accessed 300. The training data
examples are sensor data items which are labeled with
ground truth labels, such as body organ classes or other
labels. A tuning set and a validation set is computed 302
from the accessed training examples. This is done by ran-
domly dividing the training data examples into two disjoint
sets, a tuning set and a validation set. The tuning set and the
validation set comprise a plurality of training examples and
are not the empty set.

[0036] Using the tuning set, a plurality of models are
computed 304. Each model is a set of values of the split node
parameters for the split node. For example, indicators of
which features are to be used and what values of thresholds
are to be used in a binary test performed at the split node.
The models may be computed by randomly selecting sets of
values of the split node parameters and comparing perfor-
mance of these sets of values at splitting the tuning data
between the left and right child nodes of the split node. The
performance may be measured using any suitable metric
such as information gain, variance reduction, Gini entropy,
or the ‘two-ing’ criterion. Combinations of one or more of:
the information gain, variance reduction, Gini entropy or the
two-ing criterion may be used. The top n performing models
are selected and retained for use in the rest of the process of
FIG. 3.

[0037] The method proceeds to compare 306 the perfor-
mance of the selected models at splitting the validation set

Sep. 13,2018

between the left and right child nodes of the split node. The
performance is assessed using any suitable metric such as
information gain, variance reduction, Gini entropy, or the
‘two-ing’ criterion. Combinations of one or more of: the
information gain, variance reduction, Gini entropy or the
two-ing criterion may be used. One of the models is selected
and stored for use as the split node parameters for the node.
The process of FIG. 3 repeats for other split nodes of the
random decision tree.

[0038] Information gain can be computed by calculating
the entropy of the training examples at the split node minus
a weighted sum of the entropy of the training examples
which reach the left and right child nodes.

[0039] Gini entropy is a measure of how often a randomly
chosen element from the training data would be incorrectly
labeled if it was randomly labeled according to the distri-
bution of labels in the subset.

[0040] FIG. 4 is a flow diagram of a computer-imple-
mented method of training a random decision forest and
where the process of FIG. 3 is part of the process of FIG. 4.
Training data is accessed 400 such as medical images which
have labels indicating which body organs they depict,
speech signals which have labels indicating which pho-
nemes they encode, depth images which have labels indi-
cating which gestures they depict, or other training data.
[0041] The number of decision trees to be used in a
random decision forest is selected 402. A random decision
forest is a collection of deterministic decision trees. Deci-
sion trees can be used in classification or regression algo-
rithms, but can suffer from over-fitting, i.e. poor generaliza-
tion. However, an ensemble of many randomly trained
decision trees (a random forest) yields improved general-
ization. During the training process, the number of trees is
fixed.

[0042] A decision tree from the decision forest is selected
404 and the root node is selected 406. A validation set and
a tuning set are computed 408 as described above with
reference to operation 302 of FIG. 3.

[0043] Using the tuning set, a plurality of models are
computed 410. The models are computed as described with
reference to operation 304 of FIG. 3. Each model comprises
values of split node parameters for use by a binary test
performed at the node. For example, in the case of images,
the parameters may include types of features and values of
distances. The features may be characteristics of image
elements to be compared between a reference image element
and probe image elements offset from the reference image
element by the distances. The parameters may include
values of thresholds used in the comparison process. In the
case of audio signals the parameters may also include
thresholds, features and distances.

[0044] Then, every model is applied 412 to the validation
set. For each combination, criteria (also referred to as
objectives) are calculated. In an example, the calculated
criteria comprise the information gain (also known as the
relative entropy). The combination of parameters that opti-
mize the criteria (such as maximizing the information gain)
is selected 414 and stored at the current node for future use.
As an alternative to information gain, other criteria can be
used, such as variance reduction, Gini entropy, or the
‘two-ing’ criterion or others.

[0045] It is then determined 416 whether the value for the
calculated criteria is less than (or greater than) a threshold.
If the value for the calculated criteria is less than the

US 2018/0260531 Al

threshold, then this indicates that further expansion of the
tree does not provide significant benefit. This gives rise to
asymmetrical trees which naturally stop growing when no
further nodes are beneficial. In such cases, the current node
is set 418 as a leaf node. Similarly, the current depth of the
tree is determined (i.e. how many levels of nodes are
between the root node and the current node). If this is greater
than a predefined maximum value, then the current node is
set 418 as a leaf node. Each leaf node has sensor data
training examples which accumulate at that leaf node during
the training process as described below.

[0046] It is also possible to use another stopping criterion
in combination with those already mentioned. For example,
to assess the number of example sensor data elements that
reach the leaf. If there are too few examples (compared with
a threshold for example) then the process may be arranged
to stop to avoid overfitting. However, it is not essential to use
this stopping criterion.

[0047] Ifthe value for the calculated criteria is greater than
or equal to the threshold, and the tree depth is less than the
maximum value, then the current node is set 420 as a split
node. As the current node is a split node, it has child nodes,
and the process then moves to training these child nodes.
Each child node is trained using a subset of the training
sensor data elements at the current node. The subset of
sensor data elements sent to a child node is determined using
the parameters that optimized the criteria. These parameters
are used in the binary test, and the binary test performed 422
on all sensor data elements at the current node. The sensor
data elements that pass the binary test form a first subset sent
to a first child node, and the sensor data elements that fail the
binary test form a second subset sent to a second child node.
[0048] For each of the child nodes, the process as outlined
in blocks 410 to 422 of FIG. 4 are recursively executed 424
for the subset of sensor data elements directed to the
respective child node. In other words, for each child node,
new models are generated from the tuning set 410, applied
412 to the validation set of sensor data elements, parameters
optimizing the criteria selected 414, and the type of node
(split or leaf) determined 416. If it is a leaf node, then the
current branch of recursion ceases. If it is a split node, binary
tests are performed 422 to determine further subsets of
sensor data elements and another branch of recursion starts.
Therefore, this process recursively moves through the tree,
training each node until leaf nodes are reached at each
branch. As leaf nodes are reached, the process waits 426
until the nodes in all branches have been trained. Note that,
in other examples, the same functionality can be attained
using alternative techniques to recursion.

[0049] Once all the nodes in the tree have been trained to
determine the parameters for the binary test optimizing the
criteria at each split node, and leaf nodes have been selected
to terminate each branch, then sensor data training examples
may be accumulated 428 at the leaf nodes of the tree. This
is the training level and so particular sensor data elements
which reach a given leaf node have specified labels known
from the ground truth training data. A representation of the
accumulated labels may be stored 430 using various differ-
ent methods. Optionally sampling may be used to select
sensor data examples to be accumulated and stored in order
to maintain a low memory footprint. For example, reservoir
sampling may be used whereby a fixed maximum sized
sample of sensor data examples is taken. Selection may be
random or in any other manner.

Sep. 13,2018

[0050] Once the accumulated examples have been stored
it is determined 432 whether more trees are present in the
decision forest (in the case that a forest is being trained). If
so, then the next tree in the decision forest is selected, and
the process repeats. If all the trees in the forest have been
trained, and no others remain, then the training process is
complete and the process terminates 434.

[0051] Therefore, as a result of the training process, one or
more decision trees are trained using training sensor data
elements. Each tree comprises a plurality of split nodes
storing optimized test parameters, and leaf nodes storing
associated predictions. Due to the random generation of
parameters from a limited subset used at each node, the trees
of the forest are distinct (i.e. different) from each other.

[0052] FIG. 5 is a flow diagram of a method of pruning a
random decision tree which is used in conjunction with the
methods of FIGS. 3 and 4. This method provides a prin-
cipled way to grow and prune a random decision tree which
facilitates generalization ability. A random decision tree is
trained 500 to a specified depth. A pruning process then
moves 502 from the leaf nodes in a backward pass towards
the root. At each split node, the performance of that node on
the validation set as computed during the training process of
FIGS. 3 and 4 is looked up and the node is pruned on the
basis of that performance. For example, if the information
gain was below a specified threshold the node is pruned.
Once the backward pruning pass is complete, the method
proceeds to train the random decision tree to a next specified
depth 506. The method repeats from operation 502 unless a
decision to end 508 is taken in which case the tree is stored
510. The decision to end is based on a fixed number of
iterations or other criteria.

[0053] FIG. 6 is a flow diagram of a test time method, of
using a trained random decision forest, which has been
trained as described herein, to compute a prediction. For
example, to recognize a body organ in a medical image, to
detect a gesture in a depth image or for other tasks.

[0054] Firstly, an unseen sensor data item such as an audio
file, image, video or other sensor data item is received 600.
Note that the unseen sensor data item can be pre-processed
to an extent, for example, in the case of an image to identify
foreground regions, which reduces the number of image
elements to be processed by the decision forest. However,
pre-processing to identify foreground regions is not essen-
tial.

[0055] A sensor data element is selected 602 such as an
image element or element of an audio signal. A trained
decision tree from the decision forest is also selected 604.
The selected sensor data element is pushed 606 through the
selected decision tree such that it is tested against the trained
parameters at a split node, and then passed to the appropriate
child in dependence on the outcome of the test, and the
process repeated until the sensor data element reaches a leaf
node. Once the sensor data element reaches a leaf node, the
accumulated training examples associated with this leaf
node (from the training process) are stored 608 for this
sensor data element.

[0056] Ifitis determined 610 that there are more decision
trees in the forest, then a new decision tree is selected 604,
the sensor data element pushed 606 through the tree and the
accumulated leaf node data stored 608. This is repeated until
it has been performed for all the decision trees in the forest.
Note that the process for pushing a sensor data element

US 2018/0260531 Al

through the plurality of trees in the decision forest can also
be performed in parallel, instead of in sequence as shown in
FIG. 6.

[0057] It is then determined 612 whether further unana-
lyzed sensor data elements are present in the unseen sensor
data item, and if so another sensor data element is selected
and the process repeated. Once all the sensor data elements
in the unseen sensor data item have been analyzed, then the
leaf node data from the indexed leaf nodes is looked up and
aggregated 614 in order to compute one or more predictions
relating to the sensor data item. The predictions 616 are
output or stored.

[0058] The examples described herein use random deci-
sion trees and random decision forests. It is also possible to
have some of the split nodes of the random decision trees
merged to create directed acyclic graphs and form jungles of
these directed acyclic graphs.

[0059] It is also possible to implement the random deci-
sion trees and forests described herein within a cascaded
architecture with a cascade of random decision forests/trees.
A cascade of random decision forests comprises one or more
levels where output of an earlier level is used as input to a
subsequent level and where a level comprises at least one
random decision forest. A cascade of random decision trees
(as opposed to forests) comprises one or more levels where
output of an earlier level is used as input to a subsequent
level and where a level comprises at least one random
decision tree. In a cascade of random decision forests (or a
cascade of random decision trees) the original input data is
optionally available to subsequent layers. In the case where
the subsequent layer(s) have more than one random decision
tree/forest the individual random decision trees or forests
may be trained using clustered training data. Clustered
training data is training data that is divided into clusters,
each cluster holding related data. In this way a random
decision tree/forest trained using a cluster of data becomes
specialized with respect to that cluster of data, as compared
with other random decision trees/forests trained with other
clusters of training data.

[0060] Using a cascade of random decision trees/forests
brings reduced computation at test time as compared with an
equivalent random decision tree/forest which is not cas-
caded. This is because fewer nodes are traversed when the
sensor data elements are processed by the cascade of random
decision forests.

[0061] FIG. 7 illustrates various components of an exem-
plary computing-based device 700 which may be imple-
mented as any form of'a computing and/or electronic device,
and in which embodiments of random decision trees/forests
with improved generalization ability may be implemented
for medical image analysis, gesture recognition, speech
processing and other purposes.

[0062] Computing-based device 700 comprises one or
more processors 724 which may be microprocessors, con-
trollers, graphics processing units, parallel processing units,
or any other suitable type of processors for processing
computing executable instructions to control the operation
of the device in order to compute predictions from sensor
data items, and/or train random decision trees or forests. In
some examples, for example where a system on a chip
architecture is used, the processors 724 may include one or
more fixed function blocks (also referred to as accelerators)
which implement a part of the method of making predictions
from sensor data items in hardware (rather than software or
firmware).

Sep. 13,2018

[0063] The computing-based device 700 comprises one or
more input interfaces 706 arranged to receive and process
input from one or more devices, such as user input devices
(e.g. capture device 702, a game controller, a keyboard
and/or a mouse). This user input may be used to control
software applications or games executed on the computing
device 700.

[0064] The computing-based device 700 also comprises
an output interface 708 arranged to output display informa-
tion to a display device 704 which can be separate from or
integral to the computing device 700. The display informa-
tion may provide a graphical user interface. In an example,
the display device 704 may also act as the user input device
if it is a touch sensitive display device. The output interface
may also output data to devices other than the display
device, e.g. a locally connected printing device.

[0065] The computer executable instructions may be pro-
vided using any computer-readable media that is accessible
by computing based device 700. Computer-readable media
may include, for example, computer storage media such as
memory 710 and communications media. Computer storage
media, such as memory 710, includes volatile and non-
volatile, removable and non-removable media implemented
in any method or technology for storage of information such
as computer readable instructions, data structures, program
modules or other data. Computer storage media includes, but
is not limited to, RAM, ROM, EPROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital
versatile disks (DVD) or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other non-transmission
medium that can be used to store information for access by
a computing device. In contrast, communication media may
embody computer readable instructions, data structures,
program modules, or other data in a modulated data signal,
such as a carrier wave, or other transport mechanism. As
defined herein, computer storage media does not include
communication media. Therefore, a computer storage
medium should not be interpreted to be a propagating signal
per se. Although the computer storage media (memory 710)
is shown within the computing-based device 700 it will be
appreciated that the storage may be distributed or located
remotely and accessed via a network or other communica-
tion link (e.g. using communication interface 722).

[0066] Platform software comprising an operating system
712 or any other suitable platform software may be provided
at the computing device 700 to enable application software
714 to be executed on the device. Other software that can be
executed on the computing device 700 includes: tree training
logic 716 (see for example, FIGS. 3-5 and description
above); prediction logic 718 (see for example FIG. 6 and
description above). A data store 720 is provided to store data
such as sensor data, split node parameters, intermediate
function results, tree training parameters, probability distri-
butions, classification labels, regression objectives, classifi-
cation objectives, and other data.

[0067] Alternatively or in addition to the other examples
described herein, examples include any combination of the
following:

[0068] A computer-implemented method of training a
random decision tree comprising:

at a split node of the random decision tree;

dividing, using a processor, a plurality of training sensor
data elements available at the split node, into a tuning set and
a validation set;

US 2018/0260531 Al

forming, using the tuning set, a plurality of models each
model using different values of parameters of the split node;

computing performance of the models at splitting the vali-
dation set between left and right child nodes of the split
node; and

selecting one of the models on the basis of the computed
performance and storing the parameters of the selected
model in association with the split node.

[0069] The parameters of the selected model are stored in
association with the split node and become part of a trained
random decision tree created using the method. The method
repeats for each split node of the decision tree so that the
parameters of each split node are learnt and stored. As a
result of using the tuning and validation sets as claimed a
trained random decision tree is produced which has good
generalization performance. The selection of a model at a
split node is made on the basis of the computed perfor-
mance, for example, by selecting the model with the best
performance or a high ranking performance. Various differ-
ent performance metrics may be used as mentioned in the
paragraph immediately below.

[0070] The method described above comprising using the
random decision tree to classify image elements of an image
by passing the image elements through the random decision
tree according to results of a test performed at the split node
using the selected model.

[0071] The method described above comprising comput-
ing the performance using any one or more of: information
gain, variance reduction, Gini entropy, or the ‘two-ing’
criterion.

[0072] The method described above comprising training
the random decision tree to a specified depth and pruning
split nodes of the random decision tree on the basis of the
computed performance.

[0073] The method described above comprising iteratively
training the random decision tree to a specified depth and
pruning the split nodes on the basis of the computed per-
formance.

[0074] The method described above wherein a random
division is used to divide the plurality of training sensor data
elements available at the split node into the tuning set and
the validation set.

[0075] The method described above which is repeated for
a plurality of split nodes of the random decision tree.

[0076] The method described above comprising forming
the plurality of models from the tuning set by randomly
selecting combinations of values of the parameters and
assessing performance of the models used at the split node
to divide the tuning set.

[0077] The method described above comprising comput-
ing the performance using any one or more of: information
gain, variance reduction, Gini entropy, or the ‘two-ing’
criterion.

[0078] The method described above which is carried out
for each of a plurality of random decision trees which
together form a random decision forest.

[0079] The method described above wherein the sensor
data elements are elements of a medical image and wherein
the method is for training the random decision tree to detect
body organs in medical images.

Sep. 13,2018

[0080] A training system for training a random decision
tree comprising:

a memory storing a random decision tree;

a processor arranged to, at a split node of the random
decision tree:

divide a plurality of training sensor data elements available
at the split node, into a tuning set and a validation set;
form, using the tuning set, a plurality of models each model
using different values of parameters of the split node;
compute performance of the models at splitting the valida-
tion set between left and right child nodes of the split node;
and

select one of the models on the basis of the computed
performance and store the parameters of the selected model
in association with the split node in the memory.

[0081] The training system described above wherein the
processor is arranged to compute the performance using any
one or more of: information gain, variance reduction, Gini
entropy, or the ‘two-ing’ criterion.

[0082] The training system described above wherein the
processor is arranged to train the random decision tree to a
specified depth and prune split nodes of the random decision
tree on the basis of the computed performance

[0083] The training system described above wherein the
processor is arranged to iteratively training the random
decision tree to a specified depth and prune the split nodes
on the basis of the computed performance.

[0084] The training system described above wherein the
processor is arranged to compute a random division to
divide the plurality of training sensor data elements avail-
able at the split node into the tuning set and the validation
set.

[0085] The training system described above which oper-
ates for a plurality of split nodes of the random decision tree.
[0086] The training system described above wherein the
processor is arranged to form the plurality of models from
the tuning set by randomly selecting combinations of values
of the parameters and assessing performance of the models
used at the split node to divide the tuning set.

[0087] The training system described above wherein the
processor is arranged to compute the performance using any
one or more of: information gain, variance reduction, Gini
entropy, or the ‘two-ing’ criterion.

[0088] The training system described above which is
arranged to train each of a plurality of random decision trees
which together form a random decision forest.

[0089] A machine learning system comprising:

a memory storing a random decision tree comprising a root
node, a plurality of split nodes, and a plurality of leaf nodes,
the split nodes having parameter values;

wherein the parameter values of the split nodes have been
obtained by:

dividing a plurality of training examples available at the split
node, into a tuning set and a validation set;

forming, using the tuning set, a plurality of models each
model using different values of parameters of the split node;
and

selecting one of the models by on the basis of performance
of the models at splitting the validation set between left and
right child nodes of the split node.

[0090] In an example there is a machine learning system
comprising a random decision tree and with means for, at a
split node of the random decision tree,

US 2018/0260531 Al

[0091] dividing a plurality of training sensor data elements
available at the split node, into a tuning set and a validation
set;

[0092] forming, using the tuning set, a plurality of models
each model using different values of parameters of the split
node;

[0093] computing performance of the models at splitting
the validation set between left and right child nodes of the
split node; and

[0094] selecting one of the models on the basis of the
computed performance and storing the parameters of the
selected model in association with the split node.

[0095] For example, the means for dividing, forming,
computing, selecting and storing comprises the training
logic of FIG. 7 when encoded to carry out the operations of
any of FIGS. 3 to 5.

[0096] A computer-implemented method at an image pro-
cessing system comprising:

accessing a plurality of training images;

storing a random decision tree at a memory of the image
processing system;

[0097] at a split node of the random decision tree:
[0098] dividing, using a processor, a plurality of elements
of the training images which have flowed through the
random decision tree to the split node, into a tuning set and
a validation set;

[0099] forming, using the tuning set, a plurality of models
each model using different values of parameters of the split
node;

[0100] computing performance of the models at splitting
the validation set between left and right child nodes of the
split node; and

[0101] selecting one of the models on the basis of the
computed performance and storing the parameters of the
selected model in association with the split node.

[0102] An image processing system comprising:
[0103] a memory storing a random decision tree;
[0104] a processor arranged to, at a split node of the

random decision tree:

[0105] divide a plurality of training image elements
available at the split node, into a tuning set and a
validation set;

[0106] form, using the tuning set, a plurality of models
each model using different values of parameters of the
split node;

[0107] compute performance of the models at splitting
the validation set between left and right child nodes of
the split node; and

[0108] select one of the models on the basis of the
computed performance and store the parameters of the
selected model in association with the split node in the
memory.

[0109] An image processing system comprising:

a memory storing a random decision tree comprising a root
node, a plurality of split nodes, and a plurality of leaf nodes,
the split nodes having parameter values;

wherein the parameter values of the split nodes have been
obtained by:

[0110] dividing a plurality of training image eclements
available at the split node, into a tuning set and a validation
set;

[0111] forming, using the tuning set, a plurality of models
each model using different values of parameters of the split
node; and

Sep. 13,2018

[0112] selecting one of the models by on the basis of
performance of the models at splitting the validation set
between left and right child nodes of the split node.

[0113] The term ‘computer’ or ‘computing-based device’
is used herein to refer to any device with processing capa-
bility such that it executes instructions. Those skilled in the
art will realize that such processing capabilities are incor-
porated into many different devices and therefore the terms
‘computer’ and ‘computing-based device’ each include per-
sonal computers (PCs), servers, mobile telephones (includ-
ing smart phones), tablet computers, set-top boxes, media
players, games consoles, personal digital assistants, wear-
able computers, and many other devices.

[0114] The methods described herein are performed, in
some examples, by software in machine readable form on a
tangible storage medium e.g. in the form of a computer
program comprising computer program code means adapted
to perform all the operations of one or more of the methods
described herein when the program is run on a computer and
where the computer program may be embodied on a com-
puter readable medium. The software is suitable for execu-
tion on a parallel processor or a serial processor such that the
method operations may be carried out in any suitable order,
or simultaneously.

[0115] This acknowledges that software is a valuable,
separately tradable commodity. It is intended to encompass
software, which runs on or controls “dumb” or standard
hardware, to carry out the desired functions. It is also
intended to encompass software which “describes” or
defines the configuration of hardware, such as HDL (hard-
ware description language) software, as is used for designing
silicon chips, or for configuring universal programmable
chips, to carry out desired functions.

[0116] Those skilled in the art will realize that storage
devices utilized to store program instructions are optionally
distributed across a network. For example, a remote com-
puter is able to store an example of the process described as
software. A local or terminal computer is able to access the
remote computer and download a part or all of the software
to run the program. Alternatively, the local computer may
download pieces of the software as needed, or execute some
software instructions at the local terminal and some at the
remote computer (or computer network). Those skilled in
the art will also realize that by utilizing conventional tech-
niques known to those skilled in the art that all, or a portion
of the software instructions may be carried out by a dedi-
cated circuit, such as a digital signal processor (DSP),
programmable logic array, or the like.

[0117] Any range or device value given herein may be
extended or altered without losing the effect sought, as will
be apparent to the skilled person.

[0118] Although the subject matter has been described in
language specific to structural features and/or methodologi-
cal acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the
specific features or acts described above. Rather, the specific
features and acts described above are disclosed as example
forms of implementing the claims.

[0119] It will be understood that the benefits and advan-
tages described above may relate to one embodiment or may
relate to several embodiments. The embodiments are not
limited to those that solve any or all of the stated problems
or those that have any or all of the stated benefits and

US 2018/0260531 Al

advantages. It will further be understood that reference to
‘an’ item refers to one or more of those items.

[0120] The operations of the methods described herein
may be carried out in any suitable order, or simultaneously
where appropriate. Additionally, individual blocks may be
deleted from any of the methods without departing from the
scope of the subject matter described herein. Aspects of any
of the examples described above may be combined with
aspects of any of the other examples described to form
further examples without losing the effect sought.

[0121] The term ‘comprising’ is used herein to mean
including the method blocks or elements identified, but that
such blocks or elements do not comprise an exclusive list
and a method or apparatus may contain additional blocks or
elements.

[0122] The term ‘subset’ is used herein to refer to a proper
subset such that a subset of a set does not comprise all the
elements of the set (i.e. at least one of the elements of the set
is missing from the subset).

[0123] It will be understood that the above description is
given by way of example only and that various modifica-
tions may be made by those skilled in the art. The above
specification, examples and data provide a complete descrip-
tion of the structure and use of exemplary embodiments.
Although various embodiments have been described above
with a certain degree of particularity, or with reference to
one or more individual embodiments, those skilled in the art
could make numerous alterations to the disclosed embodi-
ments without departing from the scope of this specification.

1. A computer-implemented method of training a random
decision tree comprising:

at a split node of the random decision tree:

dividing, using a processor, a plurality of training sensor

data elements available at the split node, into a tuning
set and a validation set;

forming, using the tuning set, a plurality of models each

model using different values of parameters of the split
node;

computing performance of the models at splitting the

validation set between left and right child nodes of the
split node; and

selecting one of the models on the basis of the computed

performance and storing the parameters of the selected
model in association with the split node.

2. The method of claim 1 comprising using the random
decision tree to classify image elements of an image by
passing the image clements through the random decision
tree according to results of a test performed at the split node
using the selected model.

3. The method of claim 1 comprising computing the
performance using any one or more of: information gain,
variance reduction, Gini entropy, or the ‘two-ing’ criterion.

4. The method of claim 1 comprising training the random
decision tree to a specified depth and pruning split nodes of
the random decision tree on the basis of the computed
performance.

5. The method of claim 4 comprising iteratively training
the random decision tree to a specified depth and pruning the
split nodes on the basis of the computed performance.

6. The method of claim 1 wherein a random division is
used to divide the plurality of training sensor data elements
available at the split node into the tuning set and the
validation set.

Sep. 13,2018

7. The method of claim 1 which is repeated for a plurality
of split nodes of the random decision tree.

8. The method of claim 1 comprising forming the plurality
of models from the tuning set by randomly selecting com-
binations of values of the parameters and assessing perfor-
mance of the models used at the split node to divide the
tuning set.

9. The method of claim 8 comprising computing the
performance using any one or more of: information gain,
variance reduction, Gini entropy, or the ‘two-ing’ criterion.

10. The method of claim 1 which is carried out for each
of a plurality of random decision trees which together form
a random decision forest.

11. The method of claim 1 wherein the sensor data
elements are elements of a medical image and wherein the
method is for training the random decision tree to detect
body organs in medical images.

12. A training system for training a random decision tree
comprising:

a memory storing a random decision tree;

a processor arranged to, at a split node of the random

decision tree:

divide a plurality of training sensor data elements
available at the split node, into a tuning set and a
validation set;

form, using the tuning set, a plurality of models each
model using different values of parameters of the
split node;

computing performance of the models at splitting the
validation set between left and right child nodes of
the split node; and

select one of the models on the basis of the computed
performance and store the parameters of the selected
model in association with the split node in the
memory.

13. The training system of claim 12 wherein the processor
is arranged to compute the performance using any one or
more of: information gain, variance reduction, Gini entropy,
or the ‘two-ing’ criterion.

14. The training system of claim 12 wherein the processor
is arranged to train the random decision tree to a specified
depth and prune split nodes of the random decision tree on
the basis of the computed performance

15. The training system of claim 14 wherein the processor
is arranged to iteratively training the random decision tree to
a specified depth and prune the split nodes on the basis of the
computed performance.

16. The training system of claim 12 wherein the processor
is arranged to compute a random division to divide the
plurality of training sensor data elements available at the
split node into the tuning set and the validation set.

17. The training system of claim 12 wherein the processor
is arranged to form the plurality of models from the tuning
set by randomly selecting combinations of values of the
parameters and assessing performance of the models used at
the split node to divide the tuning set.

18. The training system of claim 12 wherein the processor
is arranged to compute the performance using any one or
more of: information gain, variance reduction, Gini entropy,
or the ‘two-ing’ criterion.

19. The training system of claim 12 which is arranged to
train each of a plurality of random decision trees which
together form a random decision forest.

US 2018/0260531 Al

20. A machine learning system comprising:

a memory storing a random decision tree comprising a
root node, a plurality of split nodes, and a plurality of
leaf nodes, the split nodes having parameter values;

wherein the parameter values of the split nodes have been
obtained by:
dividing a plurality of training examples available at

the split node, into a tuning set and a validation set;
forming, using the tuning set, a plurality of models each
model using different values of parameters of the
split node; and
selecting one of the models by on the basis of perfor-
mance of the models at splitting the validation set
between left and right child nodes of the split node.

#* #* #* #* #*

Sep. 13,2018

