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(57) ABSTRACT

This patent proposal document provides a complete robot
hand control scheme using myoelectric intention estimation
of the human being using the kernel Principal Component
Analysis Algorithm (kPCA). The robot hand system
includes a biometric EMG sensor system, a robot hand
including with multiple fingers, a controller connected with
the biometric EMG sensor system, and a robot hand. The
controller acquires the biometric EMG signal by means of a
biometric sensor system, estimates myoelectric motion
intention by applying the kernel principal component analy-
sis (kPCA) algorithm using a kernel function, and delivers
a control command corresponding to the estimated motion
intention of the user to the robot hand.
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METHOD FOR ESTIMATING INTENTION
USING UNSUPERVISED LEARNING

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of Korean Pat-
ent Application No. 10-2021-0098062, filed on Jul. 26,
2021, which application is hereby incorporated herein by
reference.

TECHNICAL FIELD

[0002] The present disclosure relates to technologies for
estimating an intention using unsupervised learning.

BACKGROUND

[0003] Electromyography (EMG) is a technology for
obtaining important information associated with muscle
contraction when muscles generate a force. A technology
using EMG may estimate a myoelectric signal of a human
being intention when the human body makes voluntary
movement. For example, a robot hand technology estimates
an intention of human motion and may move a robot hand
by means of the estimated result. A simultaneous and
proportional control (SPC) algorithm is an example of a
solution used for interaction with such a robot hand.

[0004] Contemporary methods in intention estimation are
based on supervised learning as one of the technologies of
analyzing an intention of motion. Supervised learning is a
method for estimating an intention based on correlations
between input and output values. And supervised learning
generally uses classification, logistic regression, a support
vector machine, and neural networks, etc.

SUMMARY

[0005] Because a classification scheme is able to recog-
nize only previously specified classes, this method has
disadvantages of unnatural estimation of simultaneous acti-
vation and has difficulty in performing proportional estima-
tion. Therefore, an unsupervised scheme may be unsuitable
to output an SPC command to a robot hand. For example,
when a robot hand technology according to supervised
learning has difficulty accurately recognizing separate finger
motions, it may fail to accurately estimate a motion intention
of a patient who is a hand amputee deprived of his fingers.
[0006] To overcome a disadvantage of unnatural motion,
an estimation method based on supervised learning needs
additional hardware such as a load cell or a force sensor.
However, such hardware equipment may be unsuitable in
terms of compatibility for a hand amputee as he/she would
not be able to interact with these sensors using his/her
fingers.

[0007] Furthermore, because a complex algorithm should
be executed to estimate a motion intention of a human body,
a robot hand system should use an online analysis to analyze
an EMG signal. In this case, usability and portability of the
robot hand system may be degraded.

[0008] Embodiments of the present disclosure can solve
problems occurring in the prior art while advantages
achieved by the prior art are maintained intact.

[0009] An embodiment of the present disclosure provides
a method for estimating an intention depending on unsuper-
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vised learning to supplement a disadvantage of estimating an
intention based on supervised learning based on the classi-
fication scheme.

[0010] The technical problems to be solved by embodi-
ments of the present disclosure are not limited to the
aforementioned problems, and any other technical problems
not mentioned herein will be clearly understood from the
following description by those skilled in the art to which the
present disclosure pertains.

[0011] According to an embodiment of the present disclo-
sure, a robot hand system may include a biometric sensor
system, a robot hand including a plurality of fingers, and a
controller connected with the biometric sensor system and
the robot hand. The controller may be configured to obtain
a biometric signal by means of the biometric sensor system,
estimate a motion intention by applying a kernel principal
component analysis (kPCA) to which at least one kernel
function is applied to the biometric signal, and deliver a
control command corresponding to the estimated motion
intention to the robot hand.

[0012] According to another embodiment of the present
disclosure, an operation system of a robot hand system may
include obtaining a biometric signal, estimating a motion
intention by applying a kPCA to which at least one kernel
function is applied to the biometric signal, and operating a
robot hand in response to the estimated motion intention.
[0013] According to another embodiment of the present
disclosure, a non-transitory computer-readable storage
medium may store a program for performing steps including
obtaining a biometric signal, estimating a motion intention
by applying a kPCA to which at least one kernel function is
applied to the biometric signal, and operating a robot hand
in response to the estimated motion intention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] The above and other objects, features and advan-
tages of embodiments of the present disclosure will be more
apparent from the following detailed description taken in
conjunction with the accompanying drawings, in which:
[0015] FIG. 1 illustrates a robot hand system according to
various embodiments;

[0016] FIG. 2 illustrates a block diagram of a robot hand
system according to various embodiments;

[0017] FIG. 3 illustrates a function of a human body for
hand motion according to various embodiments;

[0018] FIG. 4 illustrates an optional flowchart for moving
a robot hand depending on an estimated motion intention
according to various embodiments;

[0019] FIG. 5 illustrates an optional flowchart for learning
a mapping function according to various embodiments;
[0020] FIG. 6 illustrates an operational flowchart for esti-
mating a motion intention according to various embodi-
ments;

[0021] FIG. 7 illustrates a block diagram of a biometric
sensor system according to various embodiments;

[0022] FIG. 8 illustrates an operational block diagram for
recording an EMG signal according to various embodi-
ments;

[0023] FIG. 9 illustrates an operational block diagram for
calculating motion according to various embodiments;
[0024] FIG. 10 illustrates an operational block diagram for
delivering a control command to a robot hand according to
various embodiments;



US 2023/0021447 Al

[0025] FIGS. 11A, 11B, 11C, and 11D illustrate an algo-
rithm for estimating a motion intention for each finger
according to various embodiments;

[0026] FIGS. 12A, 12B, 12C, and 12D illustrate graphs
illustrating the result of estimating a motion intention
according to various embodiments; and

[0027] FIGS. 13A and 13B illustrate motion of a robot
hand according to various embodiments.

[0028] With regard to description of drawings, the same or
similar denotations may be used for the same or similar
components.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

[0029] Hereinafter, various embodiments of the disclosure
will be described with reference to the accompanying draw-
ings. However, it should be understood that this is not
intended to limit the present disclosure to specific imple-
mentation forms and the present disclosure includes various
modifications, equivalents, and/or alternatives of embodi-
ments of the present disclosure.

[0030] It should be appreciated that various embodiments
of the present disclosure and the terms used therein are not
intended to limit the technological features set forth herein
to particular embodiments and include various changes,
equivalents, or replacements for a corresponding embodi-
ment. With regards to the description of the drawings,
similar reference numerals may be used to refer to similar or
related elements. It is to be understood that a singular form
of'a noun corresponding to an item may include one or more
of the things, unless the relevant context clearly indicates
otherwise. As used herein, each of the expressions “A or B,”
“at least one of A and B,” “at least one of A or B,” “A, B,
or C,” “at least one of A, B, and C,” and “at least one of A,
B, or C,” may include any and all combinations of one or
more of the items listed together with a corresponding
expression among the expressions. Such terms as “lst” and
“2nd,” or “first” and “second” may be used to simply
distinguish a corresponding component from another, and do
not limit the components in other aspects (e.g., importance
or order). It is to be understood that if any (e.g., a first)
component is referred to, with or without the term “opera-
tively” or “communicatively”, as “coupled with,” “coupled
t0,” “connected with,” or “connected to” another (e.g., a
second) component, it means that the element may be
coupled with the other element directly (e.g., wired), wire-
lessly, or via a third component.

[0031] As used herein, the term “module” used in various
embodiments of the present disclosure may include a unit
implemented in hardware, software, or firmware, and may
be interchangeably used with other terms, such as “logic,”
“logic block,” “part,” or “circuitry”. A module may be an
integral part, or a minimum unit or portion thereof, adapted
to perform one or more functions. For example, according to
an embodiment, the module may be implemented in a form
of an application-specific integrated circuit (ASIC).

[0032] Various embodiments of the present disclosure
may be implemented as software (e.g., a program) including
instructions that are stored in a machine-readable storage
medium (e.g., an internal memory or an external memory).
For example, the machine may invoke at least one of one or
more instructions stored in the storage medium and may
execute the invoked instruction. This allows the machine to
be operated to perform at least one function according to the
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at least one instruction invoked. The one or more instruc-
tions may include a code generated by a compiler or a code
executable by an interpreter. The machine-readable storage
medium may be provided in the form of a non-transitory
storage medium. Here, the term “non-transitory” simply
means that the storage medium is a tangible device and does
not include a signal (e.g., an electromagnetic wave), but this
term does not differentiate between where data is semi-
permanently stored in the storage medium and where data is
temporarily stored in the storage medium.

[0033] According to an embodiment, a method according
to various embodiments of the disclosure may be included
and provided in a computer program product. The computer
program product may be traded as a product between a seller
and a buyer. The computer program product may be distrib-
uted in the form of a machine-readable storage medium
(e.g., compact disc read only memory (CD-ROM)), or be
distributed (e.g., downloaded or uploaded) online via an
application store (e.g., PlayStore™), or between two user
devices (e.g., smart phones) directly. If distributed online, at
least part of the computer program product may be tempo-
rarily generated or at least temporarily stored in the
machine-readable storage medium, such as memory of the
manufacturer’s server, a server of the application store, or a
relay server.

[0034] According to various embodiments, each compo-
nent (e.g., a module or a program) of the above-described
components may include a single entity or multiple entities.
According to various embodiments, one or more of the
above-described components may be omitted, or one or
more other components may be added. Alternatively or
additionally, a plurality of components (e.g., modules or
programs) may be integrated into a single component. In
such a case, the integrated component may still perform one
or more functions of each of the plurality of components in
the same or similar manner as they are performed by a
corresponding one of the plurality of components before the
integration. According to various embodiments, operations
performed by the module, the program, or another compo-
nent may be carried out sequentially, in parallel, repeatedly,
or heuristically, or one or more of the operations may be
executed in a different order or omitted, or one or more other
operations may be added.

[0035] FIG. 1 illustrates a robot hand system according to
various embodiments.

[0036] Referring to FIG. 1, the robot hand system may
include a biometric sensor 10, a control device 20, a robot
hand 30, and a display device 40. FIG. 1 illustrates an
embodiment in which respective components of the robot
hand system are separately present, but the robot hand
system may be present as one integrated module.

[0037] The biometric sensor 10 may be configured to
measure a biometric signal. The biometric signal may be, for
example, an electromyography (EMG) signal indicating
motion of a muscle of a user. In this case, the biometric
sensor 10 may be an EMG sensor including EMG elec-
trodes. The EMG sensor may measure, for example, an
EMG signal through a specified number of channels (e.g., 8
channels). The EMG electrodes may be made of silver. To
efficiently detect separate finger motion of the user, the EMG
electrodes may be suitably arranged on a body of the user.
For example, the EMG electrodes may be attached to an arm
of the user. A target muscle for obtaining an EMG signal
associated with motion of a finger may be a flexor pollicis
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longus muscle and an abductor pollicis longus muscle for a
thumb, flexor digitorum superficialis for an index finger,
flexor carpi radialis and palmaris longus for a middle finger,
and flexor digitorum profundus for a ring finger.

[0038] The control device 20 may process and analyze the
biometric signal obtained by means of the biometric sensor
10 to estimate a motion intention of a hand of the user. To
estimate a motion intention by means of unsupervised
learning, the control device 20 may apply a non-linear kernel
principal component analysis (PCA) using at least one
kernel function to the biometric signal. The control device
20 may generate a control command for operating the robot
hand 30 depending on the estimated motion intention. A
configuration of estimating a motion intention and a con-
figuration of generating a control command may be an
integrated configuration or separate configurations. The con-
trol device 20 may be a hardware device such as a central
processing unit (CPU) or a processor, and may be a storage
medium which stores instructions such as a program and an
application.

[0039] The robot hand 30 may operate to be substantially
the same as a hand of the user depending on the control
command transmitted from the control device 20. For
example, as shown in reference numerals 1 and 2, the robot
hand 30 may fold or unfold some of fingers to be the same
as the hand of the user. In the description below, a shape and
an operation of the robot hand 30 having four fingers (e.g.,
a thumb, an index finger, a middle finger, and a ring finger)
are shown for convenience of description, but the robot hand
30 may have substantially the same shape as the hand of the
user.

[0040] The display device 40 may output, for example, the
estimated motion intention in a visual form to provide the
user with feedback. For example, the display device 40 may
provide feedback in the form of a graph, a table, or other
graphic user interfaces (GUIs). According to an embodi-
ment, the robot hand system may not include the display
device 40.

[0041] FIG. 2 illustrates a block diagram of a robot hand
system according to various embodiments.

[0042] Referring to FIG. 2, a robot hand system 100 may
include a biometric sensor system 110, a controller 120, a
robot hand 130, and an output device 140. The component
with the same name as the component shown in FIG. 1
among the respective components shown in FIG. 2 may
perform the same or similar function, and a duplicated
described thereof will be omitted.

[0043] The controller 120 (e.g., a control device 20 of
FIG. 1) may be connected with the biometric sensor system
110, the robot hand 130, and the output device 140 to
perform the overall operation of the robot hand system 100.
The controller 120 may include a data analysis device 122
and a robot controller 124. The data analysis device 122 may
estimate a motion intention for each of fingers of a user
based on unsupervised learning. The robot controller 124
may generate a control command such that the robot hand
130 may move depending on the estimated motion intention.
For example, the robot controller 124 may generate the
control command based on a proportional, integral, deriva-
tive (PID) position control algorithm.

[0044] The output device 140 may provide visual feed-
back on the estimated motion intention like a display device
40 of FIG. 1. In another embodiment, the output device 140
may further output at least one of a sound or vibration.
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[0045] FIG. 3 illustrates a function of a human body for
hand motion according to various embodiments.

[0046] Control of the human hand may be composed of a
complex neural network moving from a brain 310 to a
separate finger. An efferent command may go down through
a central nervous system 320 from the brain 310 by means
of a synaptic system. The neural network may have a
multi-layer structure where all layers make up one unit. The
central nervous system 320 may deliver a command, deliv-
ered from the brain 310, to a muscular system to control a
finger, and a motion command may be intended by the brain
310. Such an intention may be divided into efferent com-
mands delivered to an interstitial nervous system. The
command may move through a spinal cord 330 to control a
separate muscle (motor unit 340 or muscle activation 350) of
an arm which moves each finger (hand motion 360). A
combination of muscles forming muscle synergies may be
divided into a plurality of layers causing finger motion. A
robot hand system 100 of FIG. 2 according to embodiments
may implement a multilayer architecture for simultaneous
and proportional control (SPC) using a kernel PCA to which
a kernel function is applied to imitate the structure of the
human body and estimate a motion intention.

[0047] FIG. 4 illustrates an optional flowchart for moving
a robot hand depending on an estimated motion intention
according to various embodiments. Operations included in
operational flowcharts below, including FIG. 4, may be
implemented by a robot hand system 100 of FIG. 2 or may
be implemented by each component (e.g., a controller 120 of
FIG. 2) included in the robot hand system 100.

[0048] Referring to FIG. 4, in operation 410, the robot
hand system 100 may obtain a biometric signal. For
example, a biometric sensor system 110 of FIG. 2 may
measure a plurality of EMG signals over a specified number
of channels (e.g., 8 channels).

[0049] In operation 420, the robot hand system 100 may
estimate a motion intention by applying a kPCA to which at
least one kernel function is applied to the biometric signal.
A PCA algorithm may be used to dimensionally reduce the
number of feature points in a dataset. The kPCA algorithm
may further include a kernel trick to distinguish a dataset
pattern before applying the PCA, and the robot hand system
100 may perform non-linear mapping of feature points of the
dataset by means of the kernel trick. To enhance accuracy of
classifying the dataset, the robot hand system 100 may use
a kPCA algorithm to which at least one kernel function is
applied.

[0050] Foran EMG signal, because the kPCA algorithm to
which the kernel function is applied does not provide output
data in a learning process and provides only information
about a moving finger, it may be used as an unsupervised
learning scheme. Furthermore, by means of the kPCA
algorithm to which the kernel function is applied, the robot
hand system 100 may detect a non-linear characteristic of a
muscle motion pattern, may maximally follow an efferent
command structure of the human body composed of mul-
tiple layers of complex structures, and may know muscle
synergies associated with motion of each of fingers. Fur-
thermore, the applying of the kernel function capable of
non-linearly increasing a dimension of the dataset may
concentrate on an activated degree of freedom (DOF) while
suppressing estimation of a deactivated DOF. Unsupervised
learning (or semi-unsupervised learning) based on the kPCA
algorithm to which the kernel function is applied may
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calculate (or evaluate) a mapping function for each of a
plurality of fingers. Thus, the robot hand system 100 may
obtain a mapping function of each of fingers for real-time
implementation without an output value and may determine
motion of each of the fingers by means of EMG measure-
ment of a patient with part of a finger amputated.

[0051] In operation 430, the robot hand system 100 may
operate a robot hand 130 of FIG. 2 in response to the
estimated motion intention. For example, a controller 120 of
FIG. 2 may generate a control command according to the
estimation motion intention and may deliver the generated
control command to the robot hand 130.

[0052] In operation 440, the robot hand system 100 may
output feedback on the estimated motion intention through
an output device 140 of FIG. 2. In an embodiment, the robot
hand system 100 may omit operation 440.

[0053] The kernel matrix evaluations may be processed
through learning mapping functions and for calculating real
time motion. Hereinafter, the kernel function evaluated for
learning mapping function may be referred to as a first
kernel matrix, and the kernel function evaluated for calcu-
lating real time motion may be referred to as a second kernel
matrix henceforth.

[0054] FIG. 5 illustrates an optional flowchart for learning
a mapping function according to various embodiments.

[0055] Referring to FIG. 5, in operation 510, a robot hand
system 100 of FIG. 2 may obtain a biometric signal for
learning. For example, a dataset ‘X’ of an EMG signal
obtained through 8 channels (8 electrodes) A, B, C, D, E, F,
G, and H may be represented as Xe R”“, T may represent a
time sample of the measured record, and d may represent the
number of dimensions (i.e., § dimensions).

[0056] In operation 520, a robot hand system 100 may
calculate a first kernel matrix ‘K’ for the obtained biometric
signal. The kernel matrix ‘K’ may be calculated based on at
least one kernel matrix. For example, when a hyperbolic
tangent function is used as a kernel function, the first kernel
matrix ‘K’ may be represented as Ke R”7=tan h(XxX"). For
another example, when a polynomial function is used, the
first kernel matrix ‘K’ may be represented as Ke R”7=Xx
X”. For another example, when a Gaussian function is used
as a kernel function, the first kernel matrix ‘K’ may be
represented as Ke R*7=e=*¥725) and Y and b may be
selected in a learning step.

[0057] Because the first kernel matrix ‘K’ is not centered,
in operation 530, the robot hand system 100 may center the
first kernel matrix ‘K’. For example, the centered first kernel
matrix K__,,,..., may be calculated as Equation 1 below.

X -k 1 X 1 N 1 Equation 1
centered = T® T® T2®

(%) indicates text missing or illegible when filed

[0058] In Equation 1 above, 1, may refer to a matrix with
a TxT size.

[0059] In operation 540, the robot hand system 100 may
calculate an eigenvector ‘P’ for the centered first kernel
matrix. The eigenvector ‘P’ may refer to a principal com-
ponent of the centered first kernel matrix. In an embodiment,
the robot hand system 100 may calculate the eigenvector ‘P’
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using a single value decomposition (SVD) algorithm. The
eigenvector ‘P’ may be represented as P=Eigenvector(K
rered), where Pe RT7,

[0060] In operation 550, the robot hand system 100 may
calculate a mapping function ‘U’. There may be a need to
select an eigenvector maximizing variance of the first kernel
matrix to calculate a mapping function of each of the fingers,
and such an eigenvector may be referred to as a principal
component of a dataset. Thus, the robot hand system 100
may select a first column of the eigenvector ‘P’ to calculate
the mapping function U (or a mapping matrix U). The
mapping function U may be represented as U=P(:,1), where
UeR™!. The learned mapping function may be used to
estimate a motion intention corresponding to a subsequently
obtained biometric signal.

[0061] In an embodiment, the robot hand system 100 may
normalize a component of the eigenvector using the square
root of an eigenvalue A to finally calculate a mapping
function of a specific finger. For example, a mapping func-
tion U,,,,., of a thumb may be calculated as Equation 2
below.

Umumb:[ull\bq”z/\ln cee Mn/\/E]T

[0062] In the same manner, the robot hand system 100
may calculate a mapping function of each of an index finger,
a middle finger, a ring finger, and a pinky finger.

[0063] FIG. 6 illustrates an operational flowchart for esti-
mating a motion intention according to various embodi-
ments. Operations shown in FIG. 6 illustrate an example of
an operation (e.g., operation 420 of FIG. 4) of estimating a
motion intention in real time using a mapping function
learned by the process of FIG. 5.

[0064] Referring to FIG. 6, in operation 610, a robot hand
system 100 of FIG. 2 may obtain a biometric signal. For
example, a dataset ‘Z’ of an EMG signal for a thumb may be
represented as Ze R™“, t may denote the number of time
samples, and d may denote the number of dimensions (e.g.,
d=8 when the number of EMG channels is 8).

[0065] In operation 620, the robot hand system 100 may
calculate a second kernel matrix K_ for the biometric signal.
The second kernel matrix K, may be calculated from a
dataset ‘X’ obtained in operation 510 of FIG. 5 and the
dataset ‘Z’ obtained in operation 610. For example, when a
hyperbolic tangent function is used as a kernel function, the
second kernel function K, may be calculated based on
Equation 3 below.

cen”

Equation 2

K =tan h(ZxX")=tan h([ZxX,ZxX, . . . ZxX.]) Equation 3

[0066] For another example, when a polynomial function
is used, the second kernel matrix Kz may be calculated
based on Equation 4 below.

K =ZxX"=[ZxX,ZxX5 . . . ZxX,] Equation 4

[0067] Forexample, when a Gaussian function is used, the
second kernel matrix Kz may be calculated based on Equa-
tion 5 below.

K= vzxifizxal . z-xiyrn Equation 5

[0068] In Equation 5 above, Z, X, and K_ may be the same
in size as each other.

[0069] In operation 630, the robot hand system 100 may
center the second kernel matrix K. For example, the cen-
tered second kernel matrix K , may be calculated by
means of Equation 6 below.

centere
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1 1 1 Equation 6
Keenterea = Kz — ;@K - ;@ +5®
"

(® indicates text missing or illegible when filed

[0070] 1,,,, may denote the matrix having a specified size
n or m, n may be T, and m may be t.

[0071] In operation 640, the robot hand system 100 may
estimate a motion intention based on the mapping function
and the centered second kernel matrix. For example, an
output value Y,,,.., indicating a motion intention for a
thumb may be calculated by multiplication of the mapping
function U,,,,,, for the thumb and the centered second
kernel matrix K_,,,.,..,- Using the same principle, each of
output values Y,,.zo00 Y niaarer Y ying> and Y, indicating a
motion intention for each of an index finger, a middle finger,
a ring finger, or a pinky finger may be calculated.

[0072] FIG. 7 illustrates a block diagram of a biometric
sensor system 110 according to various embodiments.
[0073] Referring to FIG. 7, the biometric sensor system
110 may include a reference electrode 720 to which a
reference voltage (e.g., 1.65 V) is supplied through a refer-
ence voltage providing device 730, as well as an EMG
electrode 710 made of silver. An instrumentation amplifier
740 may amplify a signal received through the EMG elec-
trode 710 by a specified gain (e.g., 100 dB). A filter 750 may
be, for example, a 3rd-order band pass filter (BPF). The filter
750 may filter the signal at a specified frequency (e.g., 16.3
Hz to 613 Hz). A power supply 760 may supply a specified
power (e.g., 3.3 V) to a biometric sensor system 110 of FIG.
2 in a single direction. A gain controller 770 may adjust the
filtered signal to a specified gain value (e.g., 20 dB). A data
collection device 780 may collect data (e.g., a dataset) for
the signal, the gain value of which is adjusted.

[0074] FIG. 8 illustrates an operational block diagram for
recording an EMG signal according to various embodi-
ments.

[0075] Referring to FIG. 8, a data analysis device 122 of
FIG. 2 may obtain a raw EMG signal. The data analysis
device 122 may perform frequency filtering three times
using band stop filters (BSFs). Each of the BSFs may be a
3rd- or 8th-order filter. The respective BSFs may support
different frequency bands. For example, the data analysis
device 122 may perform filtering at a frequency of 58 Hz to
62 Hz, a frequency of 178 Hz to 182 Hz, and a frequency of
50 Hz to 150 Hz. The data analysis device 122 may obtain
an absolute value of the signal by means of the filtering. The
data analysis device 122 may cut off the signal at a specified
frequency (e.g., 1.5 Hz) by means of a low pass filter (LPF)
envelope detector and may record a subsequent signal.
[0076] FIG. 9 illustrates an operational block diagram for
calculating motion according to various embodiments.
[0077] Referring to FIG. 9, in learning (901) a mapping
function, a data analysis device 122 of FIG. 2 may calculate
a first kernel matrix based on a recorded signal and may
center the calculated first kernel matrix. The data analysis
device 122 may learn the mapping function by applying a
kPCA algorithm to the centered first kernel matrix. In
calculating (902) motion, the data analysis device 122 may
obtain a recorded signal, may calculate a second kernel
matrix based on the obtained signal, and may center the
calculated second kernel matrix. The data analysis device
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122 may calculate the motion by implementing the learned
mapping function to the centered second kernel matrix.
[0078] FIG. 10 illustrates an operational block diagram for
delivering a control command to a robot hand according to
various embodiments.

[0079] Referring to FIG. 10, a biometric sensor system
110 of FIG. 2 may obtain an EMG signal and may filter a
signal. A data analysis device 122 of FIG. 2 may estimate a
motion intention by applying a kPCA algorithm to which at
least one kernel function is applied to the filtered signal. A
robot controller 124 of FIG. 2 may generate a control
command of a robot hand 130 of FIG. 2 by applying a
moving average filter to a value indicating the motion
intention. The robot hand 130 may operate depending on the
generated control command.

[0080] FIGS. 11A to 11D illustrate an algorithm for esti-
mating a motion intention for each finger according to
various embodiments. FIGS. 11A to 11D illustrate a
response of a kPCA model corresponding to a thumb, an
index finger, a middle finger, and a ring finger with respect
to the same biometric signal. When the ring finger moves, an
estimation value 0.1132 for the ring finger may be shown to
be higher than estimation values for the other fingers.
[0081] FIG. 12A to 12D illustrate graphs illustrating the
result of estimating a motion intention according to various
embodiments. FIG. 12A illustrates an estimation result when
a hyperbolic tangent function is used as a kernel function.
FIG. 12B illustrates an estimation result when a polynomial
function is used as a kernel function. FIG. 12C illustrates an
estimation result when a Gaussian is used as a kernel
function. Furthermore, a top left graph 1201, 1205, or 1209
on each drawing illustrates a result when a thumb moves. A
top right graph 1202, 1206, or 1210 on each drawing
illustrates a result when an index finger moves. A bottom left
graph 1203, 1207, or 1211 on each drawing illustrates a
result when a middle finger moves. A bottom right graph
1204, 1208, or 1212 on each drawing illustrates a result
when a ring finger moves.

[0082] FIGS. 13A and 13B illustrate motion of a robot
hand according to various embodiments.

[0083] FIG. 13A illustrates motion of a robot hand 130 of
FIG. 2, when one finger moves. FIG. 13B illustrates motion
of the robot hand 130, when at least two or more fingers
move. Because a robot hand system 100 of FIG. 2 is able to
accurately estimate a motion intention for each finger of a
user, it may operate a finger included in the robot hand 130
in response to one or more finger motion.

[0084] According to embodiments disclosed in the present
disclosure, the robot hand system may more accurately
estimate a motion intention of a user’s hand for moving a
robot hand.

[0085] According to embodiments disclosed in the present
disclosure, the robot hand system may derive an estimation
result optimized for SPC control for the robot hand, without
the necessity of describing the amount of a proportional
force generated in a learning process.

[0086] According to embodiments disclosed in the present
disclosure, the robot hand system may use a better control
command for a separate finger using a PCA algorithm.
[0087] According to embodiments disclosed in the present
disclosure, the robot hand system may more efficiently
identify a motion intention of the user with part of a finger
amputated and may move the robot hand.
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[0088] According to embodiments disclosed in the present
disclosure, the robot hand system may analyze an EMG
signal by means of an offline analysis.

[0089] In addition, various effects ascertained directly or
indirectly through embodiments of the present disclosure
may be provided.

[0090] Hereinabove, although the present disclosure has
been described with reference to exemplary embodiments
and the accompanying drawings, the present disclosure is
not limited thereto, but may be variously modified and
altered by those skilled in the art to which the present
disclosure pertains without departing from the spirit and
scope of the present disclosure claimed in the following
claims.

What is claimed is:

1. A robot hand system, the system comprising:

a biometric sensor system;

a robot hand including a plurality of fingers; and

a controller connected with the biometric sensor system

and the robot hand, wherein the controller is configured

to:

obtain a biometric signal using the biometric sensor
system,

estimate a motion intention by applying a kernel prin-
cipal component analysis to which at least one kernel
function is applied to the biometric signal; and

deliver a control command corresponding to the esti-
mated motion intention to the robot hand.

2. The system of claim 1, further comprising an output
device, wherein the controller is configured to output a
graphic user interface indicating the estimated motion inten-
tion through the output device.

3. The system of claim 1, wherein the controller is
configured to:

calculate a first kernel matrix for a recorded biometric

signal using the at least one kernel function;

center the first kernel matrix;

calculate an eigenvector for the first kernel matrix; and

learn a mapping function based on the eigenvector.

4. The system of claim 3, wherein the controller is
configured to:

calculate a second kernel matrix for the biometric signal

using the at least one kernel function;

center the second kernel matrix; and

estimate the motion intention based on the learned map-

ping function and the centered second kernel matrix.

5. The system of claim 1, wherein the biometric sensor
system comprises:

a plurality of electrodes configured to receive a signal;

an instrumentation amplifier configured to measure and

amplify the received signal;

a filter configured to filter the amplified signal at a

specified frequency band;

a gain controller configured to adjust a gain of the filtered

signal to a specified value; and

a data collection device configured to collect data for the

biometric signal from the signal, the gain of which is
adjusted.

6. The system of claim 1, wherein the controller is
configured to generate the control command by applying a
moving average filter to the estimated motion intention.
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7. A method of operating a robot hand system, the method
comprising:
obtaining a biometric signal;
estimating a motion intention by applying a kernel prin-
cipal component analysis to which at least one kernel
function is applied to the biometric signal; and

operating a robot hand in response to the estimated
motion intention.

8. The method of claim 7, further comprising outputting
a graphic user interface indicating the estimated motion
intention.

9. The method of claim 7, further comprising:

calculating a first kernel matrix for a recorded biometric

signal based on the at least one kernel function;
centering the first kernel matrix;

calculating an eigenvector for the first kernel matrix; and

learning a mapping function based on the eigenvector.

10. The method of claim 9, further comprising:

calculating a second kernel matrix for the biometric signal

based on the at least one kernel function;

centering the second kernel matrix; and

estimating the motion intention based on the learned

mapping function and the centered second kernel
matrix.

11. The method of claim 7, wherein the robot hand
includes a plurality of fingers.

12. The method of claim 7, further comprising:

receiving a signal;

measuring and amplifying the received signal;

filtering the amplified signal at a specified frequency

band;

adjusting a gain of the filtered signal to a specified value;

and

collecting data for the biometric signal from the signal,

the gain of which is adjusted.
13. The method of claim 7, further comprising generating
a control command by applying a moving average filter to
the estimated motion intention.
14. A non-transitory computer-readable storage medium
on which a program is stored, the program comprising
instructions for performing steps of:
obtaining a biometric signal;
estimating a motion intention by applying a kernel prin-
cipal component analysis to which at least one kernel
function is applied to the biometric signal; and

operating a robot hand in response to the estimated
motion intention.

15. The non-transitory computer-readable storage
medium of claim 14, wherein the program further comprises
instructions for outputting a graphic user interface indicating
the estimated motion intention.

16. The non-transitory computer-readable storage
medium of claim 14, wherein the program further comprises
instructions for:

calculating a first kernel matrix for a recorded biometric

signal based on the at least one kernel function;
centering the first kernel matrix;

calculating an eigenvector for the first kernel matrix; and

learning a mapping function based on the eigenvector.

17. The non-transitory computer-readable storage
medium of claim 16, wherein the program further comprises
instructions for:

calculating a second kernel matrix for the biometric signal

based on the at least one kernel function;
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centering the second kernel matrix; and

estimating the motion intention based on the learned
mapping function and the centered second kernel
matrix.

18. The non-transitory computer-readable storage
medium of claim 14, wherein the program further comprises
instructions for:

receiving a signal;

measuring and amplifying the received signal;

filtering the amplified signal at a specified frequency

band;

adjusting a gain of the filtered signal to a specified value;

and

collecting data for the biometric signal from the signal,

the gain of which is adjusted.

19. The non-transitory computer-readable storage
medium of claim 14, wherein the program further comprises
instructions for generating a control command by applying
a moving average filter to the estimated motion intention.

#* #* #* #* #*
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