US 20240104191A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2024/0104191 A1

Duplys

(43) Pub. Date:

Mar. 28, 2024

(54)

METHOD FOR IDENTIFYING POTENTIAL
DATA EXFILTRATION ATTACKS IN AT
LEAST ONE SOFTWARE PACKAGE

(71) Applicant: Robert Bosch GmbH, Stuttgart (DE)
(72) Inventor: Paulius Duplys, Markgroeningen (DE)
(21) Appl. No.: 18/469,672
(22) Filed: Sep. 19, 2023
(30) Foreign Application Priority Data
Sep. 28,2022 (DE) .ccoocevereennee 10 2022 210 264.9
compiter
SOMpUSET
orogram T 1 @

/

20

Publication Classification

(51) Int. CL
GOGF 21/51 (2006.01)
GOGF 8/71 (2006.01)
(52) US.CL
CPC oo GOGF 21/51 (2013.01); GOGF 8/71
(2013.01); GO6F 2221/033 (2013.01)
(57) ABSTRACT

A method for identifying potential data exfiltration attacks in
at least one software package. The method includes: tracking
at least one change to the software package; and detecting a
manipulation suitable for data exfiltration on the changed

software package.

software package

100

frack at least on

ACKEGE

fe3
changes on the softwar

e 201

grovide detaction of a
rnanipulation

e 202

prevention

e 203

Patent Application Publication Mar. 28, 2024 Sheet 1 of 2 US 2024/0104191 A1

200

{ software package

~400

‘1
rack at least ong
hange on the SoRWAarShames 2@1
ackage

provide detection of a
manipulation e 2@2
compiiter
w
computar .
orogran . 1 g prevention N— 2@3

\
pit

Patent Application Publication Mar. 28, 2024 Sheet 2 of 2 US 2024/0104191 A1
Fig. 2
200

1 2 3 4 3 6

HRS NS NS N B

inspection inspection inspsction inspection inspection policy
method methed method mathod methed

\/

aggregator

210

200

202 7

))

detection prevention
policy

preventicn

203

US 2024/0104191 Al

METHOD FOR IDENTIFYING POTENTIAL
DATA EXFILTRATION ATTACKS IN AT
LEAST ONE SOFTWARE PACKAGE

CROSS REFERENCE

[0001] The present application claims the benefit under 35
U.S.C. § 119 of German Patent Application No. DE 10 2022
210 264.9 filed on Sep. 28, 2022, which is expressly
incorporated herein by reference in its entirety.

FIELD

[0002] The present invention relates to the testing of
software packages in order to protect against data exfiltra-
tion attacks. The present invention also relates to a computer
program and to a device for data processing.

BACKGROUND INFORMATION

[0003] Data exfiltration attacks are a serious risk when
using publicly available software packages. It regularly
becomes apparent that attacks on the software supply chain
(software supply chain attacks) have been made in which
conventional software packages, e.g. Python, PHP, Ruby or
Rust packages, have been manipulated in order to extract
sensitive information from the system of the developer or
user.

[0004] Manipulation of software packages can result in
data exfiltration. This means that sensitive data such as
developer environment variables, which can comprise login
data and keys, are transmitted to an external server. In the
case of the data exfiltration attacks identified to date, all the
environment variables have been collected and sent to an
external server, often during the initialization of the manipu-
lated software packages.

[0005] Checking the security of an application by audit-
ing, validation, and pentesting is thus often no longer
sufficient to identify and prevent data exfiltration attacks.
This is aggravated by the fact that any external dependence
in the form of a software package used by the application
can carry the risk of data exfiltration. In general, but espe-
cially in safety-critical applications, for example in software
for devices (firmware) such as domestic appliances or
robots, particular precautions are desired to avoid such
attacks.

SUMMARY

[0006] The present invention provides a method, a com-
puter program, and a device for identifying potential data
exfiltration attaches in at least one software package. Further
features and details of the present invention will become
apparent from the disclosure herein. Here, features and
details which are described in connection with the method
according to the present invention also apply, of course, in
connection with the computer program according to the
present invention and the device according to the present
invention, and vice versa in each case, so that, with regard
to the disclosure, individual aspects of the present invention
always refer or can refer to one another.

[0007] The method serves to identify potential attacks in
the field of information technology, specifically to identify
potential data exfiltration attacks in at least one software
package. In this context, “potential” means that the data
exfiltration attacks may not yet have taken place and can be
prevented by the method according to the present invention.

Mar. 28, 2024

Of course, it also means that an attack that has possibly
already taken place is identified and then countermeasures
can be taken on the basis of the identification. It can also
mean that only a probability and/or risk of a data exfiltration
attack is identified.

[0008] In a method according to an example embodiment
of the present invention, the following steps can be carried
out, preferably in an automated manner and/or by a com-
puter and/or successively and/or repeatedly and/or continu-
ously:

[0009] tracking at least one change to the software
package, preferably a change to a code of the software
package and/or an update of the software package, for
example using a version history of the software pack-
age and/or triggered by the publication of an update of
the software package, and

[0010] detecting a manipulation suitable for data exfil-
tration on the changed software package, preferably in
order to identify the potential data exfiltration attack
using the detected manipulation.

[0011] This has the advantage that potential data exfiltra-
tion attacks can be identified and possibly even prevented in
good time. The method according to the present invention
offers the possibility of using a combination of continuous
tracking, detection and possibly prevention of such attacks
during the entire lifecycle of a software package. Further-
more, it is possible for finely graduated control to be carried
out using policies for identification and prevention strate-
gies.

[0012] The method according to the present invention may
be used, for example, as a preceding step before distribution
of the software package to at least one device (“rollout™).
The device on which the changed software package is used
is, for example, a domestic appliance or a robot or a vehicle
or a control device for a machine or the like. The changed
software package is preferably updated software and thus
represents a new software version. However, it is assumed
that the change may potentially also comprise a malicious
manipulation in addition to the update.

[0013] According to a further step, in response to the
detection of the manipulation, prevention (i.e., prevention of
the data exfiltration attack) can also be carried out, which
comprises at least one suitable preventative measure in order
to prevent the data exfiltration attack. This can comprise, for
example, prevention of the rollout, that is to say the distri-
bution of the software package to the at least one device.
[0014] An underlying consideration of the present inven-
tion is that, in the case of data exfiltration attacks, a version
history of the affected software package often shows anoma-
lies. For example, it may be the case that a software package
has no longer been updated for several years and suddenly
appears with a new version. Such anomalies can be detected
by monitoring version management as part of the tracking.
[0015] The method according to the present invention
serves, in particular, for the automated identification and/or
prevention of potential data exfiltration attacks in external
software packages, e.g., in software packages that are pro-
vided with package management systems such as pip, npm,
gem or the like.

[0016] A further advantage can be achieved within the
scope of the present invention if the performance of the
tracking comprises at least the following step in order to
identify the at least one change in the software package in
the form of a source code change:

US 2024/0104191 Al

[0017] identifying the at least one change using version
management for the software package, preferably using
a version history of the version management, wherein
for this purpose the version management is accessed
via a network, in particular the Internet.
[0018] For example, GitHub is a network-based service
for software development project version management. Via
such services, changes in the code of the software package
after updates are transparently traceable.
[0019] Furthermore, it can be provided within the scope of
an example embodiment of the present invention for the
detection to comprise at least two of the following inspec-
tion methods:

[0020] a signature-based inspection, in which the
changed software package is searched for at least one
code pattern (also called a signature), wherein the at
least one code pattern can be specific to data exfiltra-
tion,

[0021] a dynamic inspection, in which different ver-
sions of the software package are executed and the
executions are compared with one another,

[0022] a manifest-based inspection, in which the
changed software package is examined using a pre-
defined manifest, wherein the manifest can comprise a
list of permitted functions and/or permitted outgoing
connections of the software package,

[0023] an outlier detection, in which a trained model
such as at least one artificial neural network is used for
detecting the manipulation,

[0024] a model-based inspection, in which the software
package is executed and the execution can be examined
using a predefined model, wherein preferably a detec-
tion result of the detection indicates the manipulation,
preferably by a statement of the probability of the
presence of the manipulation and/or of the suitability
for data exfiltration.

[0025] The method according to the present invention is
advantageously flexible, expandable, and tool- and method-
agnostic, i.e. other identification methods can be used or
added to the inspection methods described above without
problems.

[0026] The particular execution of the software package
can be carried out, for example, by at least one data
processing device and/or an operating system provided
thereon and/or an interpreter, for example on a web server
and/or in a sandbox. A sandbox can refer to an isolated
region in an operating system and/or a software environment
and/or an IT environment and/or in the data processing
device, within which each measure has no effect on the
external environment. This can be, for example, a separate
operating system and/or a virtual system. Software with the
software package is shielded from the rest of the system,
virtually placed in the sandbox, in which it cannot cause any
damage and the effects of the software can be recorded.
[0027] In addition, it is possible within the scope of an
example embodiment of the present invention for at least
one signature-based inspection to be carried out during the
detection, which signature-based inspection can comprise at
least the following steps:

[0028] providing at least one code pattern, in particular
a signature, which is specific to data exfiltration and for
this purpose has been predefined manually, for
example, and preferably characterizes functions and/or

Mar. 28, 2024

further software packages that are suitable for initiating
an outgoing network connection,

[0029] searching a source text of the changed software
package for the at least one code pattern,

[0030] determining a detection result on the basis of a
result of the search.

[0031] This may have the advantage that a problematic
manipulation of the software package can be identified with
high reliability by means of such signatures, which are
known for malicious behavior.

[0032] Furthermore, according to an example embodiment
of the present invention, it can be provided for at least one
dynamic inspection to be carried out during the detection,
which dynamic inspection comprises at least the following
steps:

[0033] selecting at least two different, in particular
successive or random, versions of the changed software
package, preferably on the basis of the version man-
agement system,

[0034] executing the different versions, preferably in a
sandbox environment,

[0035] capturing a behavior of the executions of the
versions, wherein the behavior preferably comprises
the generation of outgoing network connections,

[0036] comparing the captured behavior of the different
versions with one another,

[0037] determining a detection result on the basis of the
comparison.

[0038] The execution can comprise, for example, an
execution of software for which the software package is
used together with further software packages. It is possible
that unexpected network connections and/or network con-
nections that are not typical for the software package are
established in the process. This behavior can then be iden-
tified as malicious behavior, which indicates a manipulation
suitable for data exfiltration.

[0039] A further advantage within the scope of an example
embodiment of the present invention can be achieved if at
least one manifest-based inspection is carried out during the
detection, which manifest-based inspection comprises at
least the following steps:

[0040] providing a predefined manifest that comprises a
list of permitted functions and/or permitted outgoing
connections of the changed software package, prefer-
ably in the form of a text-based file and/or structured
file such as XML (Extensible Markup Language), yaml
or JSON (JavaScript Object Notation), wherein the
manifest can be machine-readable,

[0041] checking the changed software package on the
basis of the provided manifest, wherein the check
comprises a static analysis, in particular a comparison
of the source text with the manifest, and/or a dynamic
analysis, preferably a comparison of a captured behav-
ior of an execution of the changed software package
with the manifest,

[0042] determining a detection result on the basis of the
check.
[0043] In order to capture the behavior, the software

package can be executed in a sandbox, for example, and the
behavior can be recorded. The manifest can, for example,
have been manually predefined beforehand and thus corre-
spond to a predetermined specification of the behavior of the
software package.

US 2024/0104191 Al

[0044] According to an example embodiment of the pres-
ent invention, it is also possible for at least one outlier
detection to be carried out during the detection, which
outlier detection comprises at least the following steps:

[0045] training a model, in particular a classifier and/or
at least one artificial neural network, on the basis of
different versions of the software package,

[0046] using the trained model with the changed soft-
ware package as input for the trained model,

[0047] determining a detection result on the basis of an
output of the trained model.

[0048] In this case, different versions of the software
package can thus be used as training data for the training in
order to enable a detection of the manipulation based on
machine learning.

[0049] According to an advantageous development of the
present invention, it can be provided for at least one model-
based inspection to be carried out during the detection,
which model-based inspection comprises at least the fol-
lowing steps:

[0050] providing a model for the software package,

[0051] executing the changed software package, pref-
erably in a sandbox environment,

[0052] capturing a behavior of the executed software
package, wherein the behavior preferably comprises
the generation of outgoing network connections,

[0053] comparing the captured behavior with the pro-
vided model,

[0054] determining a detection result on the basis of the
comparison.

[0055] The model can, for example, model a behavior of
the software package, in particular with regard to the out-
going network connections, but possibly also with regard to
other criteria such as processor and storage utilization or
reaction time. The model can be an executable model, for
example an executable version of the software package,
optionally also implemented in a different programming
language or on a different abstraction layer, for example as
a pure behavior model. Also, the model can comprise a
collection of unit tests that include the expected output for
each input. Alternatively or additionally, the model can also
contain descriptions of the expected side effects during
execution of the software package. For example, the model
can contain a textual description (or any structured notation)
of which outgoing connections are produced or which
execution time or which power consumption (e.g., as a
comparison/relation between individual methods of the soft-
ware package examined) is to be expected for the functions
of the software package. A reliable detection can thus be
carried out by defining the desired behavior on the basis of
a model.

[0056] It is also possible for a prevention to be initiated
after the performance of the detection, in which prevention
at least one of the following steps is carried out:

[0057] recalling an update of the software package for
a target system on which the software package is used
or is intended for use,

[0058] deactivating the target system,

[0059] restricting operation of the target system.
[0060] The target system is, for example, the device
already described above on which the software package is
distributed.

[0061] The present invention also relates to a computer
program, in particular a computer program product, com-

Mar. 28, 2024

prising commands which, when the computer program is
executed by a computer, cause the computer to carry out the
method according to the present invention. The computer
program according to the present invention thus brings with
it the same advantages as have been described in detail with
reference to a method according to the present invention.
[0062] For example, a data processing device which
executes the computer program can be provided as the
computer. The computer can have at least one processor for
executing the computer program. A non-volatile data
memory can also be provided, in which the computer
program is stored and from which the computer program can
be read by the processor for execution.

[0063] The present invention can also relate to a com-
puter-readable storage medium which comprises the com-
puter program according to the present invention. The
storage medium is designed, for example, as a data store
such as a hard drive and/or a non-volatile memory and/or a
memory card. The storage medium can be integrated into the
computer, for example.

[0064] The present invention also relates to a device for
data processing, preferably a computer, which is designed to
carry out the method according to the present invention.
[0065] Furthermore, the method according to the present
invention can also be carried out as a computer-implemented
method.

[0066] Further advantages, features and details of the
present invention will become apparent from the following
description, in which exemplary embodiments of the present
invention are described in detail with reference to the
figures. The features mentioned in the description can be
essential to the present invention in each case individually or
in any combination.

BRIEF DESCRIPTION OF THE DRAWINGS

[0067] FIG. 1 shows an exemplary embodiment of a
method and of a computer program and of a device, accord-
ing to the present invention.

[0068] FIG. 2 shows further details of a method according
to exemplary embodiments of the present invention.
[0069] FIG. 3 shows further details of a method according
to exemplary embodiments of the present invention.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

[0070] In the following figures, identical reference signs
are also used for the same technical features of different
embodiments.

[0071] FIG. 1 shows a method 200 according to one
possible variant, wherein the method 200 can be used to
identify potential data exfiltration attacks in at least one
software package 100. In this case, the method according to
a first method step 201 can comprise tracking at least one
change on the software package 100. According to a second
method step 202, detection of a manipulation suitable for
data exfiltration on the changed software package 100 can be
provided.

[0072] Furthermore, a computer program 20 can be pro-
vided which comprises commands that, when the computer
program 20 is executed by a computer 10, cause the com-
puter to carry out the method 200 according to the present
invention. The computer is, for example, a device 10 for data

US 2024/0104191 Al

processing which is accordingly designed to carry out the
method 200 according to the present invention.

[0073] According to the method 200 according to the
present invention, it can be provided for the development of
a software package 100, i.e. in particular the code changes
from version to version or from commit to commit, to be
tracked during the entire lifecycle of the software package
100. Furthermore, a multi-inspection approach can be used
to identify code that is (potentially) used for data exfiltration.
In the context of the present invention, a multi-inspection
approach is understood to mean that multiple inspection
methods are used in combination. In addition, automatic or
semi-automatic preventive measures can be initiated on the
basis of a “policy” 6 defined for certain target systems or
target packages.

[0074] FIG. 1 shows an exemplary sequence of the
method 200. The superordinate steps of tracking 201, detec-
tion 202 and prevention 203 are shown. The arrow from
detection 202 to tracking 201 indicates that the method 200
can be a continuous process, which can be made available,
for example, in a development environment and/or as a
service. For example, the method 200 can be initiated
automatically, e.g. by an automatic time-based execution
such as by means of a cron daemon.

[0075] A task of the detection 202 to identify such source
code changes that are outliers compared with the previous,
regular source code changes can be considered to be super-
ordinate. The reason for this is that malicious code that can
be used for data exfiltration is different from the benign code
in the particular software package 100. In order to identify
such outliers reliably and automatically, the tracking 201 can
precede the detection 202, in which a version control sys-
tem, also referred to as version management, for example a
Git repository, is automatically accessed. In a version con-
trol system, the source code of the target software package
is usually hosted, and the option is provided of obtaining
information about the newly added versions of the software
package 100 and/or commits. Modern version control sys-
tems provide such functions, and access to code repositories
is regularly available for open-source software packages
100.

[0076] The detection 202 can serve to identify (poten-
tially) malicious code, i.e., code that is (or could be) used for
data exfiltration. The detection 202 advantageously takes
place with the aid of a multi-inspection approach, which is
shown schematically in FIG. 2. Multiple detector modules
can each provide specialized inspection methods and are
applied to the software package 100 to be tested. The results
of the detector modules can subsequently be used as input
for an aggregator module 210 (referred to as aggregator for
short). Furthermore, the aggregator module 210 uses the
policy 6 as a further input. This policy 6 is used to control
the behavior of the aggregator 210.

[0077] The detection 202 uses, for example, a plurality of
the detector modules that can use statistical methods and/or
machine learning algorithms. In many cases, these methods
200 do not provide a clear result (for example, when the
value of a statistical qualifier with the range [0,1] is between
0.3 and 0.7). To handle such cases, the policy 6 can include
an instruction that the identification of a (potentially) mali-
cious code is reported only when at least two of the
inspection methods have detected a malicious code.

[0078] The detection 202 can use a combination of two or
more of the inspection methods or detector modules (either

Mar. 28, 2024

by implementing only these inspection methods or by acti-
vation thereof in the policy 6). FIG. 2 shows, by way of
example, five inspection methods 1, 2, 3, 4 and 5.

[0079] The signature-based inspection 1 can be designed
to search for specific code patterns that are known for the
data extraction. For example, for Python, these can be the
use of socket, requests, urllib or other software packages that
enable an outgoing network connection to be established.
For this purpose, code patterns that have already been
identified in malicious software packages can also be
included. This inspection method uses the knowledge that
most software packages 100 (for example, ctx for the
manipulation of dictionaries) do not require outgoing con-
nections.

[0080] The dynamic inspection 2 can first use two suc-
cessive versions (i.e., possibly also commits) v_1, v_28 of
the software package 100 to be examined, install both
versions in a sandbox environment (for example, a Docker
container), execute them, and compare their behavior with
respect to the outgoing connections that these versions
attempt to create. If v_2 (a higher version or later commit)
attempts to create (more) outgoing connections than v_18,
this indicates a data exfiltration attempt. This can thus be
detected as a manipulation suitable for data exfiltration.
[0081] Alternatively or additionally, the dynamic inspec-
tion 2 can be applied to two random versions or commits (in
order to increase the identification rate). As a further pos-
sibility, the execution of v_1, v_2 during the dynamic
inspection 2 can be monitored for other suspicious events as
outgoing network connections (for example, the creation of
a publicly accessible file or the opening/exposure of a port
on the target system) or for metrics indicative of a side-
channel leak (for example, data-dependent current consump-
tion, data-dependent time delays, or the use of cryptographic
routines or accelerators).

[0082] The manifest-based inspection 3 can use a manifest
provided by the manufacturers of the software package 100
to be examined. The manifest includes, for example, a
machine-readable yaml or json file for the software package
100. The manifest contains a list of the (possible) outgoing
connections and, if such connections are used, information
about the expected, i.e., benign, use. For example, the
manifest can contain information about which functions of
the software package 100 to be checked are expected to
establish outgoing network connections, and which libraries
or modules are used by these functions. After reading and
processing the manifest, the manifest-based inspection 3
checks the software package 100 against this manifest, either
with static (for example, grep, regular expressions, extrac-
tion of information from AST, etc.) or dynamic (for
example, using a sandbox+call trace) analysis. The inventive
concept behind this inspection method is that malicious code
must be added for data exfiltration and would not be
included in such a manifest. (This naturally assumes that the
manifest itself is not compromised, but this is easy to check
if a version control system is used, since all changes to the
manifest would be immediately visible). Optionally, the
manifest can contain a list of all functions that are to be
expected in the software package 100 examined.

[0083] The outlier detection 4 can use individual commits
or groups of commits (depending on how many changes
were made in a single commit) to train a machine (or
statistical) classifier how benign changes to the code of the
software package 100 to be tested typically look. Subse-

US 2024/0104191 Al

quently, the trained classifier can be used for a particular
commit (or version) of the software package 100 to deter-
mine whether it is an outlier, i.e. whether unusual code
changes have been made in this commit or this version. The
inventive concept behind this inspection method is that,
especially in the case of mature software packages 100,
benign code changes are generally aimed at adding functions
consistent with the technical purpose of software package
100. Thus, benign code changes are generally the extension
or the refactoring of existing functions or the addition of
functions that are similar to those already implemented. A
trained model such as a classifier can be particularly suitable
for also detecting such manipulations.

[0084] Furthermore, the model-based inspection 5 can use
as input a model of the software package 100 to be tested,
initialize this software package 100 in a sandbox environ-
ment, and check whether the actual software package 100
behaves identically to the model. The model can either be an
executable model, for example an executable version of the
software package 100 (possibly implemented in a different
programming language or on a different abstraction layer,
for example as a pure behavior model) or a collection of, for
example, docstrings or unit tests that contain the expected
output for each input. Alternatively or additionally, the
model can also contain descriptions of the expected side
effects. For example, the model can contain a textual
description (or any structured notation) of which outgoing
connections are produced or which execution time or which
power consumption (e.g. as a comparison/relation between
individual methods of the software package 100 examined)
is to be expected for the functions of the software package
100. Optionally, a static analysis of the software package
100 to be tested can be carried out (since it is assumed that
the source code of the software package 100 is available) in
order to check whether the model actually describes all the
functions contained in the software package 100.

[0085] FIG. 3 shows that the prevention 203 can use the
results of the detection 202 and the prevention policy 7 as
input. If a (potentially) malicious code was discovered in the
software package 100 examined, the prevention 203 initiates
a reaction according to the predefined policy 7. The reaction
can, for example, consist in recalling the update of the
connected target system. Alternatively, depending on the
actuator capabilities of the target system, the prevention
policy 7 can be more fine-grained and only cause a rollback
or, for example, a deactivation of the target system (or
putting the target system into a restricted operating mode).
[0086] The above description of the embodiments
describes the present invention exclusively in the context of
examples. Of course, individual features of the embodi-
ments, provided they make technical sense, can be freely
combined with one another without departing from the
scope of the present invention.

What is claimed is:

1. A method for identifying potential data exfiltration
attacks in at least one software package, comprising the
following steps:

tracking at least one change to the software package; and

detecting a manipulation suitable for data exfiltration on

the changed software package.

2. The method according to claim 1, wherein the tracking
includes at least the following step in order to identify the at
least one change in the software package in the form of a
source code change:

Mar. 28, 2024

identifying the at least one change using version manage-
ment for the software package, using a version history
of the version management, wherein for the identifying,
the version management is accessed via a network
including the Internet.

3. The method according to claim 1, wherein the detecting

includes at least two of the following inspection methods:

a signature-based inspection, in which the changed soft-
ware package is searched for at least one code pattern,
wherein the at least one code pattern is specific to data
exfiltration,

a dynamic inspection, in which different versions of the
software package are executed and the executions are
compared with one another,

a manifest-based inspection, in which the changed soft-
ware package is examined using a predefined manifest,
wherein the manifest includes a list of permitted func-
tions and/or permitted outgoing connections of the
software package,

an outlier detection, in which a trained model is used for
detecting the manipulation,

a model-based inspection, in which the software package
is executed and the execution is examined using a
predefined model;

wherein a detection result of the detecting indicates the
manipulation, by a statement of a probability of the
presence of the manipulation and/or of a suitability for
data exfiltration.

4. The method according to claim 1, wherein at least one
signature-based inspection is carried out during the detect-
ing, the signature-based inspection including at least the
following steps:

providing at least one code pattern which is specific to
data exfiltration and preferably characterizes functions
and/or further software packages that are suitable for
initiating an outgoing network connection,

searching a source text of the changed software package
for the at least one code pattern,

determining a detection result based on a result of the
searching.

5. The method according to claim 1, wherein at least one
dynamic inspection is carried out during the detecting, the
dynamic inspection including at least the following steps:

selecting at least two different, successive or random,
versions of the changed software package,

executing the different versions in a sandbox environ-
ment,

capturing a behavior of the executions of the different
versions, wherein the behavior includes generation of
outgoing network connections,

comparing the captured behavior of the different versions
with one another,

determining a detection result based on the comparing.

6. The method according to claim 1, wherein at least one
manifest-based inspection is carried out during the detect-
ing, the manifest-based inspection including at least the
following steps:

providing a predefined manifest that includes a list of
permitted functions and/or permitted outgoing connec-
tions of the changed software package, wherein the
manifest is machine-readable,

checking the changed software package based on the
provided manifest, wherein the checking includes: a
static analysis including a comparison of source text

US 2024/0104191 Al

with the manifest, and/or a dynamic analysis including

a comparison of a captured behavior of an execution of

the changed software package with the manifest,
determining a detection result based on the checking.

7. The method according to claim 1, wherein at least one
outlier detection is carried out during the detecting, the
outlier detection including at least the following steps:

training a model including a classifier and/or artificial

neural network, based on different versions of the
software package,

using the trained model with the changed software pack-

age as input for the trained model,

determining a detection result based on an output of the

trained model.

8. The method according to claim 1, wherein at least one
model-based inspection is carried out during the detecting,
the model-based inspection including at least the following
steps:

providing a model for the software package,

executing the changed software package in a sandbox

environment,

capturing a behavior of the executed software package,

wherein the behavior includes generation of outgoing
network connections,

comparing the captured behavior with the provided

model,

determining a detection result based on the comparison.

Mar. 28, 2024

9. The method according to claim 1, wherein a prevention
is initiated after performing of the detecting, the prevention
including at least one of the following steps:

recalling an update of the software package for a target

system on which the software package is used or is
intended for use,

deactivating the target system,
restricting operation of the target system.

10. A non-transitory computer-readable medium on which
is stored a computer program including commands for
identifying potential data exfiltration attacks in at least one
software package, the commands, when executed by a
computer, causing the computer to perform the following
steps:

tracking at least one change to the software package; and

detecting a manipulation suitable for data exfiltration on
the changed software package.

11. A device configured for data processing for identifying
potential data exfiltration attacks in at least one software
package, the device configured to:

track at least one change to the software package; and

detect a manipulation suitable for data exfiltration on the
changed software package.

#* #* #* #* #*

