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and includes one or more layer hypotheses. In this way, the
described techniques and systems can provide an accurate
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input to an autonomous-driving system or assisted-driving system
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GRID-BASED ROAD MODEL WITH
MULTIPLE LAYERS

BACKGROUND

To control a vehicle, road-perception systems can provide
vehicle-based systems with information about road condi-
tions, road geometry, and lane geometry. A variety of
vehicle-based systems that rely on these road-perception
systems exist, including as examples, Automatic Cruise
Control (ACC), Traffic-Jam Assist (TJA), Lane-Centering
Assist (LCA), and L.3/1.4 Autonomous Driving on Highways
(L3/1L4). Some safety regulations require such vehicle-based
systems, including [.3/[.4 systems, to generate road models
that can conceptualize or model multiple attributes of a
roadway. In addition, some safety standards require road
models to quantify an uncertainty associated with the road
model. Existing road-perception systems generally do not
provide information about multiple roadway attributes, if
any. These road-perception systems also tend to rely on
parametric methods (e.g., representing lane boundaries and
lane centers as polylines) that are often inaccurate, which
makes them unreliable for use in road modeling; further-
more, their uncertainty cannot be quantified. In addition,
even if sensor data is obtained from multiple different
sensors, some road-perception systems still cannot accu-
rately fuse the sensor data to build the road model, especially
if the sensor data from two sensors conflicts.

SUMMARY

This document describes techniques, apparatuses, and
systems for a grid-based road model with multiple layers.
For example, this document describes a road-perception
system configured to generate, for a roadway, a grid repre-
sentation that includes multiple cells. The road-perception
system uses data from multiple information sources to
generate a road model for the roadway. There are multiple
layers underlying the road model. Each layer represents a
roadway attribute of each cell in the grid. The road model
also includes layer hypotheses that indicate a potential
attribute state for the cells in each layer.

The road-perception system then determines mass values
associated with the layer hypotheses. The mass values
indicate confidence associated with the data contributing to
the respective layer hypotheses. The road-perception system
uses the mass values to determine belief parameters and
plausibility parameters associated with the layer hypotheses.
The belief parameter indicates confidence in the potential
attribute state for that cell, and the plausibility parameter
indicates a likelihood in the potential attribute state being
accurate for that cell. The road-perception system deter-
mines whether the belief parameters and the plausibility
parameters associated with the layer hypotheses satisfy a
respective threshold value. Depending on whether the belief
parameters and plausibility parameters of at least one layer
hypothesis satisfies the respective threshold value, an
autonomous-driving system or an assisted-driving system
can either use or not use the at least one layer hypothesis as
an input to operate the vehicle on the roadway.

This document also describes other operations of the
above-summarized systems, techniques, and apparatuses
and other methods set forth herein, as well as means for
performing these methods.

This Summary introduces simplified concepts for a grid-
based road model with multiple layers, which are further
described below in the Detailed Description and Drawings.
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This Summary is not intended to identify essential features
of the claimed subject matter, nor is it intended for use in
determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

The details of one or more aspects of a grid-based road
model with multiple layers are described in this document
with reference to the following figures. The same numbers
are used throughout the drawings to reference like features
and components:

FIG. 1 illustrates an example environment in which a
road-perception system generates a grid-based road model
with multiple layers;

FIG. 2 illustrates an example configuration of a road-
perception system that generates a grid-based road model
with multiple layers;

FIG. 3 illustrates an example architecture of a road-
perception system to generate a grid-based road model with
multiple layers;

FIG. 4 illustrates an example static grid generated by a
grid-based road model with multiple layers and from which
a road-perception system can determine lane-boundary
cells;

FIGS. 5A and 5B illustrate example lane sets that an input
processing module of a grid-based road model with multiple
layers can use to shift input evidence for determining mass
values for other layer hypotheses;

FIG. 6 illustrates an example lane set that an input
processing module of a grid-based road model with multiple
layers can use to determine mass values for lane-number
assignments; and

FIG. 7 illustrates a flowchart as an example process
performed by a road-perception system configured to gen-
erate a grid-based road model with multiple layers.

DETAILED DESCRIPTION
Overview

Road-perception systems can be an important technology
for assisted-driving and autonomous-driving systems. Some
vehicle-based systems (e.g., [.3/L4 systems) and some
safety standards (e.g., Safety of the Intended Functionality
(SOTIF) of a system (ISO/PAS 21448:2019 “Road
vehicles—Safety of the intended functionality”)) may
require a road-perception system not only to model a road-
way but also to quantify uncertainty in the model and
maintain one or more hypotheses.

Road models may be necessary for many features of
vehicle-based systems, including ACC, LCA, and L3/1.4
systems. For example, road modeling is critical for these
systems to understand the roadway environment, to plan
driving trajectories, and to control the vehicle. Some road-
perception systems define a roadway as any street, avenue,
road or roadway, expressway, highway, driveway, ramp,
alley, parking lot, garage, trail, or other path that can be
traversed by the vehicle. These systems generally define the
roadway as a set of parametric lanes (e.g., represented by a
set of polyline boundaries). As a result, the curvature of the
roadway is often not considered. These systems also gener-
ally provide an incomplete road model with only a single
layer or frame of discernment (FOD) and cannot fuse data
from different sources.

In contrast, this document describes road-perception tech-
niques to accurately model the roadway and elements
thereof as a grid of cells. This grid approach allows the
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described road-perception techniques to avoid inaccurate
lane assumptions associated with parametric representations
of lane boundaries. Roadway elements are represented as
one or more layer hypothesis for each cell. The described
road-perception techniques fuse information regarding the
roadway from multiple sources (e.g., camera systems, Lidar
systems, maps, radar systems, ultrasonics) to develop a
static grid with multiple layers. The multiple layers represent
different roadway attributes (e.g., cell category, lane-marker
type, lane-marker color, lane-number assignment, pave-
ment-marking type, road-sign type). The road-perception
techniques can also extract mass values from the informa-
tion sources to estimate belief and plausibility parameters
associated with each layer hypothesis. In this way, the
described road-perception techniques can provide critical
information about the roadway environment and the model
uncertainty to provide safe path planning and maneuver
control for vehicle-based systems.

This section describes just one example of how the
described techniques and systems can generate a grid-based
road model with multiple layers. This document describes
other examples and implementations.

Operating Environment

FIG. 1 illustrates an example environment 100 in which
a road-perception system 108 generates a grid-based road
model with multiple layers. In the depicted environment
100, the road-perception system 108 is mounted to, or
integrated within, a vehicle 102. The vehicle 102 can travel
on a roadway 120, which includes lanes 122 (e.g., a first lane
122-1 and a second lane 122-2). In this implementation, the
vehicle 102 is traveling in the first lane 122-1.

Although illustrated as a car, the vehicle 102 can represent
other motorized vehicles (e.g., a motorcycle, a bus, a tractor,
a semi-trailer truck, or construction equipment). In general,
manufacturers can mount the road-perception system 108 to
any moving platform that can travel on the roadway 120.

In the depicted implementation, a portion of the road-
perception system 108 is mounted into a rear-view mirror of
the vehicle 102 to have a field-of-view of the roadway 120.
The road-perception system 108 can project the field-of-
view from any exterior surface of the vehicle 102. For
example, vehicle manufacturers can integrate at least a part
of the road-perception system 108 into a side mirror, bum-
per, roof, or any other interior or exterior location where the
field-of-view includes the roadway 120. In general, vehicle
manufacturers can design the location of the road-perception
system 108 to provide a particular field-of-view that suffi-
ciently encompasses the roadway 120 on which the vehicle
102 may be traveling.

The vehicle 102 includes one or more sensors 104 to
provide input data to one or more processors (not illustrated
in FIG. 1) of the road-perception system 108. The sensors
104 can include a camera, a radar system, a global position-
ing system (GPS), a global navigation satellite system
(GNSS), a lidar system, or any combination thereof. A
camera can take still images or video of the roadway 120.
The radar system or a lidar system can use electromagnetic
signals to detect objects in the roadway 120 or features of the
roadway 120. A GPS or GNSS can determine the position or
heading of the vehicle 102. The vehicle 102 can include
additional sensors to provide input data to the road-percep-
tion system 108 regarding the roadway 120 and the lanes
122. The road-perception system 108 can also obtain input
data from external sources (e.g., nearby vehicles, nearby
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infrastructure, the internet) using vehicle-to-everything
(V2X) or cellular communication technology.

The vehicle 102 also includes a map 106. The map 106
can include a high-definition map or database providing
information about the roadway 120 and the lanes 122. The
map 106 can be stored in a memory of the road-perception
system 108 or memory of the vehicle 102, a map retrieved
from a map or navigation service in communication with the
road-perception system 108, or a map obtained from a
mobile phone or other device communicatively coupled to
the road-perception system 108.

The road-perception system 108 can use a fused-grid
module 110 and a layer module 112 to represent the roadway
120 as a grid-based road model. The road-perception system
108 represents attributes and elements of the roadway 120 in
terms of cells. In this way, the road-perception system 108
can provide a non-parametric representation of the roadway
120 without adopting assumptions about lane shapes. The
road-perception system 108 uses multiple frames of discern-
ment (FOD) to define and describe the possible states or
hypotheses for a specific attribute of the roadway 120. The
FODs can include at least two of the following: cell cat-
egory, lane number, lane-marker type, lane-marker color,
traffic signage, pavement marking, and lane type. The road-
perception system 108 can define additional FODs as
required by vehicle-based systems 114.

The fused-grid module 110 can use mass extraction
formulas to extract mass values from input data from the
sensors 104 and the map 106. The mass values indicate
confidence associated with the data. The fused-grid module
110 can then fuse data from various sources (e.g., the sensors
104, the map 106) to identify layer hypotheses for each cell.
A layer hypothesis identifies the probable values of each
FOD for each cell. The respective mass values can deter-
mine the uncertainty associated with the layer hypotheses.

The layer module 112 can determine, using respective
mass values, belief parameters, and plausibility parameters
associated with each layer hypothesis. The belief parameter
represents the evidence supporting a hypothesis (e.g., the
sum of mass values of the subset of the hypothesis) and
provides a lower bound. The belief parameter of a layer
hypothesis indicates the confidence of the road-perception
system 108 in a potential attribute state for that cell. The
plausibility parameter represents one minus the evidence not
supporting the hypothesis (e.g., one minus the sum of mass
values of the sets whose intersection with the hypothesis is
empty) and is an upper bound. The plausibility parameter
indicates a likelihood in the potential attribute state being
accurate for that cell. The value of the belief parameter and
the plausibility parameter can be different for each cell of a
layer hypothesis. This document describes the components
and operations of the road-perception system 108, including
the fused-grid module 110 and the layer module 112, in
greater detail with respect to FIGS. 2 and 3.

The vehicle 102 also includes one or more vehicle-based
systems 114 that can use data and the grid-based road model
from the road-perception system 108 to operate the vehicle
102 on the roadway 120. The vehicle-based systems 114 can
include an assisted-driving system 116 and an autonomous-
driving system 118 (e.g., an Automatic Cruise Control
(ACC) system, Traffic-Jam Assist (TJA) system, Lane-
Centering Assist (LCA) system, and L3/[.4 Autonomous
Driving on Highways (L3/L4) system). Generally, the
vehicle-based systems 114 can use the grid-based road
model provided by the road-perception system 108 to oper-
ate the vehicle and perform particular driving functions. For
example, the assisted-driving system 116 can provide auto-
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matic cruise control and monitor for the presence of an
object (as detected by another system on the vehicle 102) in
the first lane 122-1, in which the vehicle 102 is traveling. In
this example, the road-perception data from the road-per-
ception system 108 identifies the lanes 122. As another
example, the assisted-driving system 116 can provide alerts
when the vehicle 102 crosses a lane marker for the first lane
122-1.

The autonomous-driving system 118 may move the
vehicle 102 to a particular location on the roadway 120
while avoiding collisions with objects detected by other
systems (e.g., a radar system, a lidar system) on the vehicle
102. The road-perception data provided by the road-percep-
tion system 108 can provide information about the location
of the lanes 122 and uncertainty in the location of the lanes
122 to enable the autonomous-driving system 118 to per-
form a lane change or steer the vehicle 102.

FIG. 2 illustrates an example configuration of the road-
perception system 108 that generates the grid-based road
model with multiple layers. The road-perception system 108
can include one or more processors 202 and computer-
readable storage media (CRM) 204.

The processor 202 can include, as non-limiting examples,
a system-on-chip (SoC), an application processor (AP), a
central processing unit (CPU), or a graphics processing unit
(GPU). The processor 202 may be a single-core processor or
a multiple-core processor implemented with a homogenous
or heterogenous core structure. The processor 202 may
include a hardware-based processor implemented as hard-
ware-based logic, circuitry, processing cores, or the like. In
some aspects, functionalities of the processor 202 and other
components of the road-perception system 108 are provided
via an integrated processing, communication, and control
system (e.g., SoC), enabling various operations of the
vehicle 102. The processor 202 can generate road-percep-
tion data for the vehicle-based systems 114 based on the
grid-based road model of the road-perception system 108.

The CRM 204 described herein excludes propagating
signals. The CRM 204 may include any suitable memory or
storage device such as random-access memory (RAM),
static RAM (SRAM), dynamic RAM (DRAM), non-volatile
RAM (NVRAM), read-only memory (ROM), or Flash
memory useable to store device data (e.g., the maps 106) of
the road-perception system 108.

The processor 202 executes computer-executable instruc-
tions stored within the CRM 204. As an example, the
processor 202 can execute the fused-grid module 110 to
generate a grid-based road model of the roadway 120. The
fused-grid module 110 can generate the grid-based road
model using data from the map 106 stored in the CRM 204
or obtained from the sensors 104.

The fused-grid module 110 includes an input processing
module 206 and an evidence fusion module 208. The
processor 202 can execute the input processing module 206
to extract mass values associated with different input data.
For example, the input processing module 206 can use mass
extraction formulas to determine a respective mass value
associated with data from different sources (e.g., the sensors
104, the map 106). The mass values indicate the confidence
associated with the data contributing to layer hypotheses of
the grid-based road model. The input processing module 206
can also validate the input data.

The processor 202 can execute the evidence fusion mod-
ule 208 to update mass values associated with the input data
recursively. For example, the evidence fusion module 208
can compare data from one or more previous time instants
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with data from a current time instant to update a mass value
associated with the input data.

The layer module 112 can include an output processing
module 210. The output processing module 210 can estimate
belief parameters and plausibility parameters associated
with the one or more layer hypotheses of each cell. The
processor 202 can also execute the output processing mod-
ule 210 to validate the belief parameters and the plausibility
parameters.

The layer module 112 can also group, based on the
Dempster-Shafer Theory, the layer hypotheses into one or
more roadway hypotheses. The Dempster-Shafer Theory
provides a framework for reasoning about a set of layer
hypotheses subject to uncertainty. The Dempster-Shafer
Theory is a generalization of Bayesian probability theory
that accounts for lack of evidence or ignorance when esti-
mating the likelihood of a layer hypothesis being true. The
generation of the layer hypotheses and roadway hypotheses
is described in greater detail with respect to FIGS. 3 through
6.

The road-perception system 108 can also include com-
munication components 212, which include a sensor inter-
face 214 and a vehicle-based system interface 216. The
sensor interface 214 and the vehicle-based system interface
216 can transmit data over a communication bus of the
vehicle 102, for example, when the individual components
of the road-perception system 108 are integrated within the
vehicle 102 they may communicate over a wired or wireless
vehicle bus, for example, a controller based automotive
network (CAN).

The processor 202 can also receive, via the sensor inter-
face 214, measurement data from the one or more sensors
104 as input to the road-perception system 108. As an
example, the processor 202 can receive image data or video
data from a camera system via the sensor interface 214.
Similarly, the processor 202 can send, via the sensor inter-
face 214, configuration data or requests to the one or more
sensors 104.

The vehicle-based system interface 216 can transmit
road-perception data, including the grid-based road model,
to the vehicle-based systems 114 or another component of
the vehicle 102. In general, the road-perception data pro-
vided by the vehicle-based system interface 216 is in a
format usable by the vehicle-based systems 114. In some
implementations, the vehicle-based system interface 216 can
send information to the road-perception system 108, includ-
ing, as a non-limiting example, the speed or heading of the
vehicle 102. The road-perception system 108 can use this
information to configure itself appropriately. For example,
the road-perception system 108 can adjust, via the sensor
interface 214, a frame rate or scanning speed of one or more
sensors 104 based on the speed of the vehicle 102 to
maintain performance of the road-perception system 108
under varying driving conditions.

Operations of the fused-grid module 110, the layer mod-
ule 112, and their respective subcomponents are described in
greater detail with respect to FIGS. 3 through 7.

FIG. 3 illustrates an example architecture 300 of the
road-perception system 108 to generate a grid-based road
model 322 with multiple layers. The architecture 300 illus-
trates example components and functions of the fused-grid
module 110, the input processing module 206, the evidence
fusion module 208, the output processing module 210, and
the layer module 112 of FIG. 2. In other implementations,
the road-perception system 108 include additional or fewer
components and functions than those shown in FIG. 3.
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The architecture 300 illustrates example information
sources that are input to the fused-grid module 110. The
input sources can include a grid 302, lidar data 304, vision
data 306, vehicle-state data 308, and the map 106. Other
inputs can include radar data, ultrasonic data, data from
online sources, and data received via V2X communications.
The grid 302 provides a grid representation of the roadway
120 and can be a static occupancy grid and/or a dynamic
grid. The grid 302 can include the grid size, the grid
resolution, and cell-center coordinates. Each cell of the grid
302 can also indicate the velocity of the vehicle 102. The
lidar data 304 provides information about objects on the
roadway 120 and roadway features. The vision data 306 can
include still images or video of the roadway 120 and provide
information about lane boundaries, objects on the roadway
120, and other roadway features. The vehicle-state data 308
can provide information about the velocity, location, and
heading of the vehicle 102. The vehicle-state data 308 can be
provided by, for example, a steering sensor, a yaw-rate
sensor, a heading sensor, or a location sensor. The map 106
can provide information about the features of the roadway
120 and the lanes 122. The road-perception system 108 can
include additional (e.g., radar data) or fewer inputs to the
fused-grid module 110.

The output of the layer module 112 is the grid-based road
model 322. The grid-based road model 322 includes mul-
tiple layer hypotheses 324 for each layer or frame of
discernment defined by the road-perception system 108. The
grid-based road model 322 also includes cell values 326 that
indicate the respective belief parameters, plausibility param-
eters, and probabilities associated with the layer hypotheses
324.

A frame of discernment (FOD) is defined as a set of cell
values within a layer of the grid-based road model 322 that
describes possible states or hypotheses of a specific prob-
lem. In general, the elements in the FOD layers are mutually
exclusive and exhaustive. For example, a lane-number FOD
and a lane-marker-type FOD address different problems.
From a computation perspective, the number of layer
hypotheses 324 that need to be evaluated for each FOD
increases exponentially with the number of elements therein.
As a result, the described road-perception system 108
defines multiple FOD layers within the grid-based road
model 322 to minimize the computational expense for any
given layer.

The layer module 112 can generate multiple layer hypoth-
eses 324 for multiple FOD layers. For example, the grid-
based road model 322 can include seven FODs, including a
cell-category layer, lane-number layer, lane-marker-type
layer, lane-marker-color layer, traffic-sign layer, pavement-
marking layer, and lane-type layer. The layer module 112
can define additional or fewer FOD layers depending on the
needs of the vehicle-based systems 114, the driving envi-
ronment, or any other factors.

The cell-category layer describes the possible categories
of a cell within the grid-based road model 322. The cell-
category layer, Q, can be defined in Equation (1) as:

Qc~{LyL.5,0} M

where L, indicates a lane boundary, L_ indicates a lane
center, B, indicates a barrier, and O indicates an “other”
value.

The lane-number layer describes the possible lane-num-
ber assignment of a cell. The lane-number layer, Q; ,, can be
defined in Equation (2) as:

Q, {-1,0,1,2} @
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where -1 represents the left-adjacent lane, O represents the
current lane (e.g., ego lane) in which the vehicle 102 is
traveling, 1 represents the right-adjacent lane, and 2 repre-
sents other lanes.

The lane-marker-type layer describes the possible lane-
marker type associated with lane-boundary cells. The lane-
marker-type layer, Q,,,, can be defined in Equation (3) as:

3

where M, indicates a solid-line lane marker, M, .
indicates a double-line lane marker, M, indicates a dashed
lane marker (e.g., skip lines), My~ indicates a fat white
lane-marker, and M, indicates other type of lane marker.
Additional lane-marker types can be defined for other
regions and countries.

The lane-marker-color layer describes the possible lane-
marker color associated with lane-boundary cells. The lane-
marker-color layer, &, ., can be defined in Equation (4) as:

QMc:{ Cy’ Cys Co} (C))
where C, indicates a yellow color for the lane marker, C,;
indicates a white color, and C, indicates another color.
Additional lane-marker colors can be defined for other
regions and countries (e.g., a blue color for South Korea).

The traffic-sign layer describes the possible type of traffic
sign associated with a cell. The traffic-sign layer, €2, can be
defined in Equation (5) as:

QMT:{Msolid’Mdouble’Mdash’M WF’MO}

Q. ={TS,,TS,, . . ., TS,, NTS} )

where n is the number of possible traffic signs and NTS
denotes non-traffic signs. If the roadway 120 is a highway,
the possible traffic signs can include temporary traffic con-
trol signs, regulatory signs, guide signs, motorist services,
and recreation signs.

The pavement-marking layer describes the possible type
of pavement marking associated with a cell. The pavement-
marking layer, €2,,,, can be defined in Equation (6) as:

Qpa~{PM,PM,, . . ., PM,, NPM} 6

where m is the number of possible pavement markings and
NPM denotes non-pavement markings. The possible pave-
ment markings can include freeway entrances, exit mark-
ings, work-zone pavement markings, and HOV lane mark-
ings.

The lane-type layer describes the possible lane type
associated with a lane-number assignment. The lane-type
layer, Q; ,, can be defined in Equation (6) as:

Qrr={L,Lalalo} @]

where L, indicates a through lane, L, indicates a decel-
eration lane, L., indicates an acceleration lane, and L,
indicates other lane types.

Example operations of the fused-grid module 110 and the
layer module 112 to generate the grid-based road model 322
from the input data are now described. At function 310, the
input processing module 206 validates the input data,
including the grid 302, the lidar data 304, the vision data
306, the vehicle-state data 308, and the map 106. The input
processing module 206 can verity that an input use to model
a boundary provides a plausible shape for the boundary. For
example, on highways, a radius of curvature below 300 m is
of low plausibility. The input processing module 206 can
also compare various inputs to each other to verify whether
the inputs are consistent or include likely outliers. For
example, sensor inputs where lanes cross each other are not
plausible. As another example, on a type-one, limited-access
highway, a stop sign is implausible unless there is a con-
struction zone.
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At function 312, the input processing module 206 extracts
mass values for each type of input data. For example, the
input processing module 206 can extract the mass value,
my, ' for the current time instant, t. This document
describes the extraction of mass values for lane-number
assignments with respect to FIGS. 4 and 6.

The vision data 306 can directly provide information for
the lane-marker type layer. The input processing module 206
can determine the mass value for each type of lane marker
based on the sensor confidence in making the classification.
As a result, the mass value for each cell with coordinates (x,
y) is given by Equations (8) and (9):

AT, Vision (@,x ) =Parr( 0, (x,3)) (8)

©

where p indicates the classification confidence given by the
sensor (e.g., a camera sensor), o € Q, . and PEQ,, .

The input processing module 206 can also use the vision
data 306 to extract mass values associated with each pos-
sible traffic sign, pavement marking, and lane type. The
vision data 306 can indicate the type of traffic sign and
pavement marking. Similarly, the vision data 306 can
directly or indirectly provide the lane type. The input
processing module 206 can determine the mass value, m, for
each possible traffic sign, pavement marking, and lane type
based on the sensor confidence, p, in making the classifica-
tion. As a result, the mass value for each cell can be given
by Equations (10) through (12):

mMC,Vision((ﬁa(xxy)):pMC(ﬁa(xxy))

mTS,Vz‘sion(Y('xly)):p 7s(%,(%.)) (10)

Mpat, vision X&) Prad%:(%.7)) an

MLT, Vision Cry)=prCxp) (12)

where y € Qpq, X € Qppppand T E Q4.

In some implementations, the input processing module
206 can simplify the grid-based road model 322 and only
extract mass values for the two largest probabilities in the
vision data 306 for the traffic-sign layer and the pavement-
marking layer. In these implementations, the probabilities
with other cell categories are extracted to the “other” cat-
egory. As a result, the input processing module 206 can
extract mass values for three categories (or any other num-
ber of categories) for the traffic-sign and pavement-marking
layers.

As described above, the input from the grid 302 includes
grid size, grid resolution, and cell center coordinates. Each
cell of the grid 302 indicates the mass value for each layer
hypothesis 324 formed for the FOD layers. To distinguish
from the FOD layers of the grid-based road model 322, the
FOD layer for the grid 302 can be defined in Equation (13)
as:

©={E50,D0} 13)

where F indicates a free space, SO indicates a cell that is
statically occupied, and DO indicates a cell that is dynami-
cally occupied. Each cell of the grid 302 also indicates the
velocity V, which the input processing module 206 can use
for mass value extraction.

To reduce complexity, the input processing module 206
can convert the mass values provided by the grid 302 to
probability values using a pignistic transformation. The
input processing module 206 then has the following prob-
ability value for each cell available: p.(-), which indicates
the probability of a cell to be a free space; pg,o (+), which
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indicates the probability of a cell to be statically occupied;
and pp,(-) which indicates the probability of a cell to be
dynamically occupied.

The input processing module 206 can use the following
rules to design mapping functions based on the grid 302 and
the cell values therein. A cell with low velocity and high
statically-occupied probability is more likely to be a barrier.
A cell with high velocity and high dynamically-occupied
probability is more likely to be a lane center. A cell with high
free-space probability is more likely to be a lane boundary
if the nearby cell (e.g., 0.5 W,, where W, represents the lane
width) has a high velocity and high dynamically-occupied
probability.

Consider that the input processing module 206 defines
pAV) as a function of the velocity and having a relatively
small value if the velocity is large. The input processing
module 206 can also define p,(V) as a function of the
velocity and having a relatively small value if the velocity is
small. The function p(V) can be any distribution with a peak
at zero and a monotonic decay as a function of the velocity.
For example, the input processing module 206 can select the
function p,(V; a, B) as a Gamma distribution with shape
parameter o and scale parameter [. The input processing
module 206 can select the function p,(V) as a Gaussian
distribution with a mean value at an average roadway
velocity (e.g., 65 km/h) with a default standard deviation
(e.g., 8 km/h). The input processing module can tune the
parameters of p,(V) and p,(V) based on specific scenarios.
For different information sources, the input processing mod-
ule 206 can use different parameters for the decay function
depending on how much information should be retained
during the mass value extraction and fusion.

Based on the mapping rules for the grid 302, the input
processing module 206 can extract the mass value for a
barrier cell of the cell-category layer based on Equation
(14):

mch(Bm =DV (x3);0, BIxpsol®.y) (14)

where x is the central coordinate of the evaluation cell, V(x,
y) denotes the velocity of the evaluation cell, and o and f§ are
tuned based on the performance of the data.

The input processing module 206 can extract the mass
value for a lane center and a lane boundary using Equations
(15) and (16), respectively:

e plLe®y)Pu(VEy);0.B)xPpo(*.y) 15)

mC,DG(Lba(xxy)):maX(ph( VL7 00(VE. D )%pe(%,3)%D;
Oxp);0,B)) (16)
where max(a, b) denotes the maximum value of a and b,
X ~x+Acos 0,, ¥~=y+Asin 0,, X, =x+Acos 0,, §,=y+Asin 0,, A
is the total shifting distance, and 0, and 0, are the angle
shifting to left and right, respectively.

Similar to processing of the vision data 306, the input
processing module 206 assigns the mass value for other cell
values based on the summation, mg ™" ((X,y)), of the
mass value for the barrier layer hypothesis, m¢, 5(B,, (X,
y)), the lane-center layer hypothesis, m, (L., (%, ¥)), and
the lane-boundary layer hypothesis, m pa(Ls, (X, ¥)) . The
input processing module 206 can determine the mass value
for cells designated as other using Equation (17):

mch(O,(x,y)):1 —mchsum [(E3D)] (17)

In general, the map 106 is validated before processing by
the input processing module 206. The confidence of the map
accuracy is denoted as p,.,-(*) The map 106 can provide
information that is input to each of the different FODs. The
input processing module 206 can obtain the cell category
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Me () and lane assignment my, ,.,(*) using similar
equations. For marker type my;,., (') marker color
Mysear4p(c) traffic sign myg,.,»(1) pavement markings
Mpy,ar4-() and lane type myr,.,5(c) the input processing
module 206 can assign the mass value based on the confi-
dence associated with the map 106.

The input from the vision data 306 or the lidar data 304
includes polylines, or other parametric or non-parametric
models, indicating lane markers and edges of the roadway
120. The vision data 306 and the lidar data 304 can also
indicate semantic information for the lanes 122. The input
processing module 206 can use mapping functions to map
the vision data 306 or the lidar data 304 to the confidence of
a cell to be a specific category within the cell-category layer.
One mapping function provides that the cells that have an
intersection with a lane-marker polyline (e.g., y=¢(x)) are
more likely to be lane boundaries, L,. Another mapping
function provides that the cell towards the vehicle 102 with
a distance 0.5 W, from solid lane-marker cells to the cells
intersected by the lane marker are more likely to be lane-
center cells, L_. The input processing module 206 can assign
W, as the default lane width for a specific region (e.g., 3.66
meters in the United States) or based on the vision data 306.
For a dashed lane marker, the input processing module 206
can assign the cells both towards and away from the vehicle
102 within a certain distance (e.g., 0.5 W) as more likely to
be lane-center cells.

Based on these rules, the input processing module 206 can
define the belief-mass mapping function in Equation (18) as:

18)

where the standard deviation represents the half-width of the
lane marker (e.g., 0=0.075 m), (X, y) is the coordinate for a
cell, and p_((X, ¥)) is the confidence of the lane-marker point
(X, y), which is generally provided by the vision data 306.

If the lane marker is a solid lane marker on the right side
with distance A less than W, the input processing module
206 can shift the measurement point left as evidence for the
lane center as provided in Equation (19):

¢ vision Lin@,9) D (5 3)XD((%.3):%.5),07)

M prsionLes BINPAEDIXDIXY)R T ),07)

where x=x+Acos 6,, y=y+Asin 0,, X,=x+0.5 W, cos 6,, and
¥7y+0.5 W, sin 0,.

If the lane marker is a solid lane marker on the left side,
then the input processing module 206 can use Equation (20):

19

M prsionLes GINPAEYIXDIXPH(E,),07)

where x=x+Acos 0 , y=y+Asin 0,, X,=x+0.5 W, cos 0,, and
¥7y+0.5 W, sin 6,.

If there are two sets of lane markers available, then the
input processing module 206 can use Equation (21):

0)

¢ Vision LX) 7P (5 )xmax (D)3, 5,).07),
D)% ):07)

The vision data 306 can also provide information for the
edge and barrier categories. By using the edge and barrier
polyline, the input processing module 206 can similarly
obtain mass values for the barrier using Equation (22):

eay)

¢ Vision BaX )P L E YYD, (%,7).07) 22

The input processing module 206 can denote the sum of
the mass values for the lane-center category, lane-boundary
category, and barrier category based on the vision data 306
asm, .., "((X,y)). The mass value for a cell to be another
category state is represented by Equation (23):

e pisionl O EN=L=Mc prsion” " (%)) 23)
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At function 314, the evidence fusion module 208 updates
and fuses mass values for each cell of each layer. The
evidence fusion module 208 can use the Dempster-Shafer
fusion rule to fuse various data about a cell of a layer. The
data can include data from past measurements and data from
current sensor measurements. For past measurements, pre-
vious mass values are propagated via a decay function that
represents the decay in the information over time. If both
types of information are available, the evidence fusion
module 208 performs the fusion to update the mass values.

The evidence fusion module 208 can also use the Demp-
ster-Shafer fusion rule to fuse the information of various
hypotheses. The evidence fusion module 208 can first use
the Dempster-Shafer method to obtain, based on the mass
values for different sources, a fused mass value for a specific
hypothesis. The evidence fusion module 208 can compute
the mass values recursively. In this way, the evidence fusion
module 208 uses the previous mass value of specific layer
hypotheses and a decay function, using Equation (24):

Merrerd CH)=Mer popyd - G H) D pr p6' (6D
(mFT,Lidart(x:H)ea(mFT,Visiontgx:H)@mFTMAPt(x:

24
where subscript FT € {C, LA, LT, TS, PM, MT, MC}
denotes the fusion type and H is the layer hypothesis
corresponding to a different fusion type.

The evidence fusion module 208 can use Equations (25)
through (27) to perform Dempster-Shafer fusion of two
information sources and obtain a joint mass value m, ,:

mi(P) =0 (25)
1 26
mia(H) =mH) @mH) = t—% >, mBm(0) o
BNC=H#(
where
K=2pnc.an(B)my(C) (27)

and where the value (1-K) represents the normalization
coeflicient, K denotes the conflict between the evidence,
m, (-) and m,(*) represent the mass value corresponding to a
specific hypothesis for the first evidence and the second
evidence, respectively, and B and C are the layer hypotheses
determined by the FOD. If a single information source is
available, the evidence fusion module 208 need not perform
evidence fusion.

At function 316, the evidence fusion module 208 uses the
fused mass values to compute a probability for each cell of
each layer.

At function 318, the output processing module 210 com-
putes a belief parameter and a plausibility parameter for
each cell of each layer. The belief parameter bel(H) and the
plausibility parameterp/(H) are given by the Equations (28)

and (29), respectively:
bel(H)=2p pcp(B) (28)
PLlE)=Zgi5nm(B) (29

For a specific hypothesis, the probability is calculated via
the pignistic transformation. At function 320, the output
processing module 210 validates the belief parameters,
plausibility parameters, and the probability. For example,
the output processing module 210 can validate that the lane
width is within applicable standards (e.g., regional policies)
and is plausible. The output processing module 210 can also
validate that lanes do not cross each other, are of similar
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width, are consistent with splitting or merging signs, and are
concentric. Function 320 can be similar to the validation
checks performed at function 310.

The layer module 112 can output the layer hypotheses 324
as a structured array. Each structure within the array defines
a respective FOD layer. The layer module 112 can provide
a component in the structure in the following manner:

struct fused grid-based road modelLAYER{

struct Grid__Info

struct Layer_ Info

enumeration Layer_ Type
¥

The layer module 112 can also provide the grid informa-
tion and FOD layer information as a structure array. The
layer module 112 can define, using a unique cell_index for
each cell of the grid 302, the Grid_Info as:

struct Grid__Info{
Int[ ] Cell__index
float[ ] Cell__resolution
float[ ] Cell__coordinate
¥

The Layer_Info generally depends on the Layer_Type,
which is an enumerated type given by Equation (30):

Layer_Type €{Standalone_Layer, Reduced_Layer,

Shared_Layer} (30)

For the Standalone_layer, the layer module 112 can
define the Layer_Info as:

struct Standard_ Layer_ Info{
float[ ] belief_value
float[ ] plausibility_ value
float[ ] probability_ value

For the Reduced_Layer, the layer module 112 can define
the Layer_Info as:

struct Standard_ Layer_ Info{
enumeration[ | traffic_sign_ type / pavement _marking_ type

float[ ] belief value

float[ ] plausibility_ value

float[ ] probability_value
¥

For the Shared_Layer, the layer module 112 can define the
Layer_Info as:

struct Standard_ Layer_ Info{
float[ ]
enumeration| ]
enumeration| ]

}

lane__boundary
lane__marker_ type
lane__marker_ color

For both the Standalone_Layer and Shared_Layer, the
road-perception system 108 may assign cells with different
resolutions. For example, the road-perception system 108
can use a higher resolution for cells with lane-marker
evidence and a lower resolution for other cells.

The layer module 112 can exclusively use the cell for the
Standalone_Layer to represent the belief parameter, plausi-
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bility parameter, and probability parameter for the cell to be
a specific cell category. In contrast, the layer module 112 can
use a structure to concatenate the belief parameter, plausi-
bility parameter, and probability parameter for different road
elements (e.g., L,, €€Q, . and e€Q, ) for the cell for a
Shared_Layer. The Shared_Layer cells can be concatenated
because lane markers are associated with lane-boundary
cells (as opposed to the shoulder or lane center) and lane-
marker information and lane-boundary information are often
used together.

The layer module 112 can use a special case for eEQ, .
It can be inefficient for the layer module 112 to represent the
lane type for each cell using the Standalone_Layer because
the lane type is associated with the lane-number assignment,
which already exists, and the number of lane types is
relatively small. As a result, the layer module 112 can define
a dictionary associated with the lane assignment. An
example of the dictionary defined by the layer module 112
is provided in Table 1, where the Key is formed by “lane-
assignment number”+“lane type” and the Value is the prob-
ability parameter value of the lane to be a specific lane type.

TABLE 1

Key Value Key Value
LL p(1, L) -1L, p(-1, L)
1 L, p(1, Ly -1_L; p(-1, Ly
1L, p(1, Ly -LL, p(-1, Ly
0L, p(©, L) 2 L, P2, L)
0_Ls p(©, Ly 2 Lg p2, Ly
0L, p(0, L) 2 L, P2, L)

The layer representation for different outputs of the layer
module 112 for the grid-based road model 322 is summa-
rized in Table 2.

Layer Category Element € Data Format

Standalone_Layer € € {L,, B,, O}  Three Layers
Each layer uses
‘Standard_Layer_Info’ struct
Three Layers
Each layer uses
‘Standard_Layer_Info’ struct
Three Layers
Each layer uses
‘Standard_Layer_Info’ struct
Four Layers with a Dictionary
Each layer uses
‘Standard Layer Info’ struct
€ € L, Qs Qusc Three Layers
Each layer uses the
‘Lane_boundary_lane_marker ’
struct

Reduced_Layer €€ Qg

Reduced_Layer €E Qpir
Standalone_Layer

€€ Q. Qr

Shared_Layer

FIG. 4 illustrates an example static grid 400 generated by
a grid-based road model with multiple layers and for which
the road-perception system 108 can determine lane-bound-
ary cells 404. The road-perception system 108 can use the
static grid 400 to represent attributes of a roadway (e.g., the
roadway 120) on which the vehicle 102 is traveling. The
static grid 400 can include or be inclusive of the grid 302
described with respect to FIG. 3. The static grid 400 includes
multiple cells 402. In FIG. 4, the cells 402 are represented
as having uniform resolution. In other implementations, the
cells 402 can have a higher resolution in areas of interest
(e.g., lane boundaries, lane markers, lane centers).

The road-perception system 108 can extract mass values
for the static grid 400. As previously discussed, the input
processing module 206 can determine the mass value for a
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lane boundary 404 using Equation (16). The road-perception
system 108 can treat each cell 402 that is determined to
likely include the lane boundary 404 as a grayscale image.

The input processing module 206 can apply a Canny Edge
Detector, or other edge or object detector methods, on the
grayscale image to extract edges of the lane boundary 404.
The Canny Edge Detector generally includes the following
operations: noise reduction, gradient calculation, non-maxi-
mum suppression, double threshold analysis, and edge track-
ing by hysteresis. Because the Canny Edge Detection can be
sensitive to image noise, the input processing module 206
can perform noise reduction. The gradient calculation
involves determining the intensity change (e.g., probability
to be the lane boundary 404) in different directions. The
input processing module 206 can apply non-maximum sup-
pression to provide a thin edge to the lane boundary 404,
resulting in the cell with a maximum value in edge directions
being kept. The input processing module 206 can use the
double threshold to identify different kinds of cells 402, in
particular cells with a strong contribution to the edge, cells
with a weak contribution to the edge, and cells that are not
relevant to the edge. Edge-detection tracking by hysteresis is
used to identify real edges of the lane boundary 404 as an
output.

The input processing module 206 can then perform a
morphological closing operation to fill small gaps between
different cells for the lane boundary 404. The morphological
closing operation can include a dilation operation followed
by an erosion operation.

By comparing the position (v,) of the vehicle 102 with
edge information for the nearest row to the vehicle 102, the
input processing module 206 can define the cell correspond-
ing to the left lane boundary of the left adjacent lane C,, (0),
the left lane boundary of the ego lane C, (0), the right lane
boundary of the ego lane C, ,(0), and the right lane boundary
of the right adjacent lane C,,(0). In particular, the input
processing module 206 can define C, ,(0) as the cell 402 with
a maximum value for the edge in the range [v,—-W;, V.|,
where W, represents the lane width. The input processing
module 206 can define C, (0) as the cell 402 with a
maximum value for the edge in the range [v,, vo+W;]. The
input processing module 206 can define C,, ,(0) as the cell
402 with a maximum mass for the edge in the range [v,-2
W;, vo—=W;]. The input processing module 206 can define
C,.(0) as the cell 402 with a maximum mass for the edge
in the range [vo+W;, vo+2 W,].

These four cells are defined as initial cells. The input
processing module 206 can use these initial cells to initialize
four lane-boundary cell lists: C, ~{C. (0)}, C.,={C, (0)},
Cro1Cr (0}, and C,,, ={C,,, (0)} . By following the edge
line, the input processing module 206 can iteratively expand
the cell lists of the lane boundary 404 by iteratively append-
ing row by row, as illustrated in FIG. 4. For each cell, the
input processing module 206 can use the center coordinate
to represent the cell.

The input processing module 206 can then use the lane-
boundary cell lists as evidence to assign mass values to
different cells 402. The left ego lane cell list Ce,]l can be
shifted to the right along a curvature direction of the lane
boundary 404 with distance A=9, 29, . . ., nd, where A=W,.
For cells 402 that have a distance A to the cell C, (i), the
mass value is calculated by the input processing module 206
using Equation (31):

10 f0,@Y) P (Ca fiDXD ((,3); (Fe sV )07) G
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where X=X, /+Acos 0,, y=y, +Asin 0,, (X, ,, ¥, /) is the coor-
dinate of the cell C, (i), and p,,(the mass value of the cell
402 to be lane boundary 404.

The ambiguity of the ego lane to the left adjacent lane for
cells with A<0.5 W, is given by Equation (32):

me (=1,0),&¥)=1-m_,(0,(x.))
Similarly, the cell list of the left lane boundary of the ego
lane C,; can also be shifted to the left with distance A=W, .
The input processing module 206 can extract the mass value
using Equation (33):

(32)

me,l(l a(x:)’))zplb(Ce,l(i))XD((%)’)Q(’_(e,lye,l),cz) (33)

where x=x, +Acos0,, y=y, +Ason 0, (X, .Y, ) is the coor-
dinate of the cell C_ (i), and p,,(*) is the mass value of the
cell 402 to be lane boundary 404.

The ambiguity of the ego lane to the left adjacent lane for
cells with A<0.5 W, is given by Equation (34):

me ((=1,0),(xy)=1-m, (~1,(x.))

The cell list of the right lane boundary of the ego lane C, .
can be shifted to the right with distance A=9, 29, . . ., nd.
For cells 402 that have a distance A to the cell C,_ (i), the
mass value is calculated by the input processing module 206
using Equation (35):

(34)

e O Co ONXD(G Y Ve, ),07)

where x=x, +Acos 0, y=y,,+Asin 0, (X, y.,) is the
coordinate of the cell C, (i), and p,,(-) is the mass value of
the cell 402 to be lane boundary 404.

The ambiguity of the ego lane to the right adjacent lane
for cells with A<0.5 M; is given by Equation (36):

(3%)

e, ((0,1),(x3)=1-m,,,(0,(x3)) (36)

The cell list of the right ego lane C,, can be shifted to the
right with distance A=9, 29, . . ., nd. For cells 402 that have
a distance A to the cell C, (i), the mass value is calculated
by the input processing module 206 using Equation (37):

e (L)1 CopD)XD(05, 1) Re oY 1),07)

where x=X, +Acos 0,, y=y, +Asin 0, (X,,, ¥.,) is the
coordinate of the cell C, (i), and p,(-) is the mass value of
the cell 402 to be lane boundary 404.

The ambiguity of the ego lane to the right adjacent lane
for cells with A<0.5 W, is given by Equation (38):

(37

e (0,1, 3)=1-m, . (1,(x.))

Similar to the ego lane boundary cell lists, the input
processing module 206 can use the left adjacent lane bound-
ary cell list C,, ; as evidence to assign mass values for the
lane-number assignment -1 and 2. The right adjacent lane
boundary cell C,,, can be used as evidence to assign the
mass value for lane-number assignments 1 and 2.

The cell list of the left adjacent lane boundary C,, ; can be
shifted to the right with distance A=9, 9, . . . nd. For cells 402
that have a distance A to the cell C,, (i), the mass value is
calculated by the input processing module 206 using Equa-
tion (39):

(39)

mla,l(— 1, (x:)’)):Plb(cla,l(i))XD((x:)’) 5 (}la,lila,l) ,02)

where x=X,, +Acos 0,, y=y,, +Asin 0,, (X, Vu.,) is the

coordinate of the cell C,, ,(i), and p,,(")

is the mass value of the cell 402 to be lane boundary 404.
The ambiguity of the other lanes to the left adjacent lane

for cells with A<0.5 W, is given by Equation (40):

(39)

Mg ((=1,2),(%3)=1-my, (= 1,(x,)) (40)
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The cell list of the right adjacent lane boundary C,,, can
be shifted to the left with distance A=9, 29, . .., nd. For cells
402 that have a distance A to the cell C,, (i), the mass value
is calculated by the input processing module 206 using
Equation (41):

My (LX) Cra DXDIE ) KoY ) O

where x=X,, +Acos 0, y=y,, +Asin 0, (X,,,.Y,,,) is the
coordinate of the cell C, (i), and p,,(*) is the mass value of
the cell 402 to be lane boundary 404.

The ambiguity of the other lanes to the right adjacent lane
for cells with A<0.5 W, is given by Equation (42):

My ((1,2),(6.0)) 711, ,(1,(5,3))

Because multiple evidence sets (lane markers) can be
used to infer the lane assignment number, the input process-
ing module 206 can use the Dempster-Shafer fusion rule to
fuse the mass values for the static grid 400. The input
processing module 206 can normalize the mass value for
each cell 402. The input processing module 206 can use
Equations 43(a) through 43(g) to determine the mass values
for the cells 402:

@D

“42)

My, 56{0,%.¥)=m, (0,x))Pm, (0,(x.)) (432)
my 4 el LEY)=m, (LExy)Pm,, (1, () (43b)
My p{=1,EPM (- 1,x.3)Dmy, (- 1,(x.)) (43¢
mz.4p6((0,1),)=m,,((0,1),(x.)) (43d)
M4 pe((=1,0),6.9))=m. ((=1,0),(x.¥)) (43e)
M4 p6((=1,2),56.9)7M14,((=1,2),(x.) (431)
1.4 p6((1,2),E 1)), ((1,2) (%)) (439)

The input processing module 206 can assign other cells as
“2” with a mass value of 1. The above equations assume that
C.rr C.,. Cups C,,, are available for the roadway 120. If
there is no C,, , the input processing module 206 can reduce
the FOD to {0, 1, 2}. Similarly, if there is no C, , ., the input
processing module 206 can reduce the FOD to {-1, 0, 2}. If
both C,,, and C,,  are not available, the input processing
module 206 can reduce the FOD to {0, 2}. The static grid
400 generally does not provide information for lane-marker
type, lane-marker color, traffic signs, pavement markings, or
lane type.

FIGS. 5A and 5B illustrate example lane sets 500 and 550,
respectively, that the input processing module 206 of a
grid-based road model with multiple layers can use to shift
input evidence for determining mass values for other layer
hypotheses. For example, the input processing module 206
can shift the lane marker around a half-width of the lane to
provide evidence for the lane-center hypothesis. As a result,
the input processing module 206 can routinely concentri-
cally shift mass values left or right, depending on the
curvature of the lane 122.

FIG. 5A illustrates lateral shifting that can be used by the
input processing module 206. The lane set 500 includes lane
markers 502, 504, 506, 508, 510, and 512, which are
separated by a distance 518, d. The input processing module
206 can establish the coordinate system to be the same as a
coordinate system used for the vehicle 102. For example, an
x-axis 520 points forward from the vehicle 102 and a y-axis
522 points to the left.

The road-perception system 108 can determine whether
the curvature of the roadway 120 or the lanes 122 is greater
than a curvature threshold. If the curvature of the roadway
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120 or the lane 122 is relatively small or less than the
curvature threshold, the mass value from an original point
514 (e.g., a cell) can be directly shifted along the y-axis 522
to provide the mass value or evidence for a shifted point 516.
The coordinate of the original point 514 is denoted as (X, y).
The input processing module 206 can denote the coordinate
of the shifted point 516 as (X, ¥). In addition, the step size
of the shifting is denoted as & and a total shifting 524
distance is denoted as A (e.g., 206 as illustrated in FIG. 5A).
A dashed-dotted line 526 denotes possible shifting direc-
tions. Based on the coordinate system, the input processing
module 206 obtains the coordinate of the shifted point 516
from the original point 514 using Equation (44):

Ey)=Ey=A)
where “+” is used when the shifting direction is left an
is used when the shifting direction is right.

The original point 514 and the shifted point 516 have
intrinsic uncertainty. To describe the uncertainty, the input
processing module 206 can use the Gaussian distribution.
The uncertainty of a cell with coordinates (x, y) can be
calculated by the input processing module 206 using Equa-
tion (45):

(44)

ITER L)

45)
D((x, y); (%, 9), 07) =

LN G
Vno -

where o is the standard deviation of y.

FIG. 5B illustrates the concentric shifting that can be used
by the input processing module 206. The lane set 550
includes lane markers 552, 554, 556, 558, 560, and 562,
which are separated by the distance 518, d.

If the curvature of the roadway 120 or the lane 122 is
relatively large, the mass value from the original point 514
can be shifted along a curvature direction 566 to provide the
evidence for other cells. The input processing module 206
can use three points to determine the local curvature and
normal direction. In other implementations, the input pro-
cessing module 206 can use other methods to identify the
local curvature of the lane set 550. Based on the coordinate
system, the coordinate of the shifted point 516 from the
original point 514 is obtained using Equation (46)

(®P)=(x+Acos 8,y+Asin 6) (46)

where the angle 0 is defined as the angle between the x-axis
520 and the shifting direction. When the shifting direction is
right, the angle is 180<6<360°.

To describe the uncertainty of the shifted point 516, the
input processing module 206 can use the Gaussian distri-
bution. The uncertainty of a cell with coordinates (X, y) can
be calculated by the input processing module 206 using
Equation (47)

@7

1 2
D((x, y); (% 3), %) = Wexz{—;]
a

where 0 is the variance of the Gaussian distribution.

When the original point 514 is shifted to provide evidence
for other cells, it is possible that there may be multiple
original points available. The input processing module 206
can determine the mass value of a cell based on evidence
from multiple original points using the mean value of those
points.
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FIG. 6 illustrates an example lane set 600 that the input
processing module 206 of a grid-based road model with
multiple layers can use to determine mass values for lane-
number assignments. In particular, the input processing
module 206 can use lane-marker data (e.g., from the grid
302, the vision data 306, or the lidar data 304) and the
vehicle-state data 308 to determine mass values of the
lane-assignment layer Q; ,.

The input processing module 206 can compare the posi-
tion of the vehicle 102 to the vision data 306, which includes
lane-marker polylines, to obtain the relevant polylines. For
example, the polylines can include the left ego lane marker
602 (e.g., ¢, ) the polyline of the right ego lane marker 604
(e.g., ¢,,), the polyline of the left adjacent lane marker 606
(e.g., ¢;,,), and the polyline of the right adjacent lane marker
608 (e.g., ¢,,,). The input processing module 206 can
assume that the polyline of the right adjacent lane marker
¢y, 1s the same as the polyline of the left ego lane marker
602. The polyline of the right adjacent lane marker ¢, ; is
assumed to be the same as the polyline of the right ego lane
marker 604. The input processing module 206 can also
assume that the polylines are a function of y=¢(x).

The input processing module 206 can use the ego lane
markers as evidence to assign mass values for different cells.
The left ego lane marker point (X, .y, ;) can be used to
provide evidence for cells along the curvature direction to
the right. For cells with coordinate (x, y) which have a
distance (AsW,) to (X, ¥.,), the input processing module
206 can calculate the mass value using Equation (48):

me,l(o (X:Y)):Pc(@e,l:;e,l))XD((xx.V) 5 @e,lx;e,l)o'z)

where X=X, +Acos 0,, y=y, +Asin 0, and 9 is a parameter
that can be tuned. For the lane-number assignment, the
standard deviation o is set to the value of lane width W;. In
addition, the mapping function D ((%, y), (Xe,l,ye,1)) can be
any function with the peak in (X, ,, y, ;) and decreases with
the increasing of the distance to (X, y).

The ambiguity of the ego lane to the left-adjacent lane for
cells with distance A<0.5 W, to (X, y,,) is given by
Equation (49):

48)

e ((=1),(6.p))=1-m, (0,(x.))

Similarly, the input processing module 206 can use the
left ego lane marker point (X, .y, ) to provide evidence for
cells along the curvature direction to the left. For cells with
coordinate (x, y) which have a distance (A<W,)to (X, ¥..,),
the input processing module 206 can calculate the mass
value using Equation (50):

(49)

Mo 1Y)l Ke e IXD(EY); Ko 5V )O7)

where x=x, +A cos 0,, y=y, +Asin 0,.

The ambiguity of the ego lane to the left adjacent lane for
cells with distance A=0.5 W, to (X, ¥.,) is given by
Equation (51):

(0)

Mo (=1),D)=1-m, (-1,x.)) G

The input processing module 206 can use the right ego
lane marker point (x,,, y,,) to provide evidence for cells
along the curvature direction to the left. For cells with
coordinate (x, y) which have a distance of (AsW,) to (X, .
Y., the input processing module 206 can calculate the mass
value using Equation (52):

0 (0,59 ) P o T I e XD G oV ) 107)

where x=x, ,+Acos 0, y=y, +Asind,.

(2
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The ambiguity of the ego lane to the right adjacent lane
for cells with A<0.5 W, is given by Equation (53):

e (1,O),(x3)=1-m,,(0,(x.)) (3)

The input processing module 206 can use the right ego
lane marker point (X, ,, y,,) to provide evidence for cells
along the curvature direction to the right. For cells with
coordinate (x, y) which have a distance of (A=W ) to (x_,,

V.., the input processing module 206 can calculate the mass
value using Equation (54):

1 (L) AP e DXD (E3)E Y0, )07) (54

where x=x, +Acos 0,, y=y, +Asin 0,.
The ambiguity of the ego lane to the right adjacent lane
for cells with A<0.5 W, is given by Equation (55):

Mo (LO)FY)=1-m, (1)) (%)

Similar to the ego lane markers, the input processing
module 206 can use the left adjacent lane marker point (X, ;,
Vi..2) as evidence to assign mass values for the lane assign-
ment —1 and 2. The input processing module 206 can also
use the right adjacent lane marker point (X, ¥,,,) as
evidence to assign mass values for lane assignments 1 and
2.

The input processing module 206 can use the left adjacent
lane point (X, ;, ¥,, ) to provide evidence for cells along the
curvature direction to the right. For cells with coordinate (x,
y) which have a distance of (A=W ) to (X, ;. ¥,, ), the input
processing module 206 can calculate the mass value using
Equation (56):

mla,l(— 1 a(x:)’)):Pc(@la,lx ;Ia,l))XD((x:y);(;cla,lx;la,l)ao-z) (56)

where x=x,, +Acos 0,, y=y,, +Asin 0,.
The ambiguity of other lanes to the left adjacent lane for
cells with A<0.5 W, is given by Equation (57):

Mg (=1,2),59) =1 =1 1(=1,(%.3)) &7

The input processing module 206 can use the right
adjacent lane point (X,,, ,, ¥, ) to provide evidence for cells
along the curvature direction to the left. For cells with
coordinate (x, y) which have a distance of (A<W,) to (X,,,.,,

V,a,) the input processing module 206 can calculate the
mass value using Equation (58):

g f(LEINPARrir I DE ) Rt o ria )5 O (58)

where x=X,,, +Acos 0, y=y,, ,+Asin 0,.
The ambiguity of the other lanes to the right adjacent lane
for cells with A<0.5 WL is given by Equation (59):

My ((1,2), (697110, (1,(5,3)) (59

Because multiple evidence (lane markers) can be used to
infer the lane-assignment number, the evidence fusion mod-
ule 208 can use the Dempster-Shafer fusion rule to combine
the mass values for the vision data 306. The evidence fusion
module 208 can normalize the mass values before combin-
ing the mass values. The joint mass values can be calculated
using Equations (60a) through (60g):

My 4 prsion( 0%, 3))=e 1(0,(x3))Dm, ,(0,(x,3)) (60a)
My 4 prsion( LY =M (1x3)Dm, o ,(1,,3)) (60b)
My 4 prsion(~LEY) =M (= 1,(x9)Dm, 2 f-1,(5.3)) (60c)
My 4 pasionl (01,311 ((0,1),(%,3)) (60d)
My 4 pision{(=1,0),(63)) =, 1((=1,0),(x.)) (60e)
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My 4 pision((=1,2),63)) =1 1((=1,2),(x,)) (60f)
My 4 vision((1,2),(69))7,0 ((1,2),(5.3)) (60g)

The input processing module can assign cells without any
evidence as lane number category 2 with a mass value of 1.

EXAMPLE METHOD

FIG. 7 depicts an example flowchart as an example
process performed by a road-perception system configured
to generate a grid-based road model with multiple layers.
Flowchart 700 is shown as sets of operations (or acts)
performed, but not necessarily limited to the order or com-
binations in which the operations are shown herein. Further,
any of one or more of the operations may be repeated,
combined, or reorganized to provide other methods. In
portions of the following discussion, reference may be made
to the road-perception system 108 of FIGS. 1 through 6 and
entities detailed therein, reference to which is made for
example only. The techniques are not limited to performance
by one entity or multiple entities.

At 702, a grid representation of a roadway is generated by
a road-perception system of a vehicle. The grid representa-
tion includes multiple cells. For example, the road-percep-
tion system 108 of the vehicle 102 generates the grid 302 or
the static grid 400 of the roadway 120. The static grid 400
includes multiple cells 402.

At 704, a road model for the roadway is generated by the
road-perception system. The road model is based on data
from multiple information sources. The road model includes
at least two different layers that represent different respec-
tive roadway attributes of the multiple cells in the grid
representation of the roadway. For each cell of the multiple
cells in each layer of the different layers, the at least two
different layers include at least one respective layer hypoth-
esis that indicates a potential attribute for that cell. For
example, the road-perception system 108 generates, based
on data from multiple information sources, the grid-based
road model 322. The multiple information sources can
include the grid 302, the lidar data 304, the vision data 306,
the vehicle-state data 308, and the map 106. The grid-based
road model 322 includes at least two different FOD layers
that represent different respective attributes of the roadway
120. The FOD layers can include, for example, the cell-
category layer, the lane-number assignment layer, the lane-
marker type layer, lane-marker color layer, traffic-sign layer,
pavement-marking layer, and the lane-type layer. For each
cell 402 of' the grid 302 in each layer, the FOD layers include
at least one layer hypothesis 324. The layer hypotheses 324
indicate a potential attribute state for each cell of the
multiple cells.

At 706, respective mass values associated with each of the
at least one respective layer hypothesis are determined. The
respective mass values indicate confidence associated with
the data contributing to the at least one respective layer
hypothesis. For example, the road-perception system 108 or
the input processing module 206 can determine the mass
values associated with the layer hypotheses 324 for each cell
in the FOD layers.

At 708, belief parameters and plausibility parameters
associated with each of the at least one layer hypothesis are
determined. The belief parameter and the plausibility param-
eter are determined using at least one respective mass values
associated with the layer hypothesis. The belief parameter
indicates a confidence in the potential attribute state for that
cell. The plausibility parameter indicates a likelihood in the
potential attribute state being accurate for that cell. For
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example, the road-perception system 108 or the evidence
fusion module 208 can determine, using the mass values
associated with the layer hypotheses, the belief parameters
and the plausibility parameters associated with each layer
hypothesis 324.

At 710, it is determined whether the belief parameters and
the plausibility parameters associated with at least one layer
hypothesis satisfy a respective threshold value. For example,
the road-perception system 108 can determine whether the
belief parameters and the plausibility parameters associated
with the layer hypotheses are greater or less than a respective
threshold value.

At 712, responsive to determining that the belief param-
eters and the plausibility parameters of the at least one layer
hypothesis satisfy the respective threshold value, an autono-
mous-driving system or an assisted-driving system can
operate the vehicle on the roadway using the at least one
layer hypothesis as an input. For example, responsive to
determining that the belief parameters and the plausibility
parameters are greater than the respective threshold value,
the vehicle 102 can be operated by the autonomous-driving
system 118 or the assisted-driving system 116. The autono-
mous-driving system 118 or the assisted-driving system 116
can operate the vehicle 102 on the roadway 120 using the at
least one layer hypothesis as an input. Alternatively, the
road-perception system 108, responsive to determining that
at least one of the belief parameter or the plausibility
parameter is less than the respective threshold value, can
discontinue an operation of the vehicle 102 with the autono-
mous-driving system 118 or the assisted-driving system 116
and switch the operation of the vehicle 102 to control by a
driver.

EXAMPLES

In the following section, examples are provided.

Example 1: A method comprising: generating, by a road-
perception system of a vehicle, a grid representation of a
roadway, the grid representation including multiple cells;
generating, by the road-perception system and based on data
from multiple information sources, a road model for the
roadway, the road model including at least two different
layers that represent different respective roadway attributes
of the multiple cells in the grid representation of the road-
way, the at least two different layers including, for each cell
of the multiple cells in each layer of the different layers, at
least one respective layer hypothesis that indicates a poten-
tial attribute state for that cell; determining, by the road-
perception system, respective mass values associated with
each of the at least one respective layer hypothesis, the
respective mass values indicating confidence associated
with the data contributing to the at least one respective layer
hypothesis; determining, by the road-perception system and
using the respective mass values, belief parameters and
plausibility parameters associated with each of the at least
one respective layer hypothesis, the belief parameters indi-
cating a confidence in the potential attribute state for that
cell, the plausibility parameters indicating a likelihood in the
potential attribute state being accurate for that cell; deter-
mining whether the belief parameters and the plausibility
parameters associated with at least one layer hypothesis
satisty a respective threshold value; and responsive to deter-
mining that the belief parameters and the plausibility param-
eters associated with at least one layer hypothesis satisfy the
respective threshold value, using the at least one layer
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hypothesis as an input to an autonomous-driving system or
an assisted-driving system that operates the vehicle on the
roadway.

Example 2: The method of example 1, wherein the
multiple information sources include at least one of a lidar
system, a vision system, a camera system, a vehicle-state
system, a location sensor, a steering sensor, a yaw-rate
sensor, or a map.

Example 3: The method of example 1, wherein the
respective mass values are recursively updated based on the
data from the multiple information sources.

Example 4: The method of example 1, wherein determin-
ing the respective mass values associated with each of the at
least one respective layer hypothesis comprises fusing mul-
tiple mass values that contribute to each of the at least one
respective layer hypothesis using a Dempster-Shafer fusion
rule.

Example 5: The method of example 1, wherein the
multiple cells of the grid representation have a non-uniform
resolution.

Example 6: The method of example 1, wherein the at least
two different layers are defined by respective frames of
discernment (FODs), the respective FODs identifying
respective sets of possible layer hypotheses.

Example 7: The method of example 6, wherein the at least
two different layers include at least two of a cell-category
layer, a lane-number layer, a lane-marker-type layer, a
lane-marker-color layer, a traffic-sign layer, a pavement-
marking layer, or a lane-type layer.

Example 8: The method of example 7, wherein: the
cell-category layer includes at least two of a lane boundary,
a lane center, a barrier, or an other value; the lane-number
layer includes at least two of a left-adjacent lane, an ego
lane, a right-adjacent lane, or other lanes; the lane-marker-
type layer includes at least two of a solid-line lane marker,
a double-line lane marker, a dashed lane marker, a fat
lane-marker, or other lane-marker type; the lane-marker-
color layer includes at least two of yellow, white, or other
color; and the lane-type layer includes at least two of a
through lane, a deceleration lane, an acceleration lane, or
other lane type.

Example 9: The method of example 7, the method further
comprising: determining whether a curvature of the roadway
is greater than a curvature threshold; and responsive to
determining that the curvature of the roadway is greater than
the curvature threshold, shifting a mass value for an original
point along a y-axis normal to the vehicle to determine a
mass value at a shifted point; or responsive to determining
that the curvature of the roadway is less than the curvature
threshold, shifting the mass value for the original point along
a curvature direction to determine the mass value at the
shifted point.

Example 10: The method of example 1, the method
further comprising: subsequently determining whether the
belief parameters and the plausibility parameters associated
with at least one layer hypothesis satisfy the respective
threshold value; and responsive to subsequently determining
that the belief parameters or the plausibility parameters
associated with the at least one layer hypothesis do not
satisfy the respective threshold value, discontinuing another
operation of the vehicle with the autonomous-driving system
or the assisted-driving system.

Example 11: The method of example 1, the method
further comprising: subsequently determining whether the
belief parameters and the plausibility parameters associated
with at least one layer hypothesis satisfy the respective
threshold value; and responsive to subsequently determining
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that the belief parameters or the plausibility parameters
associated with the at least one layer hypothesis do not
satisfy the respective threshold value, switching another
operation of the vehicle to be controlled by a driver.

Example 12: The method of example 1, wherein the
autonomous-driving system or the assisted-driving system
comprises at least one of an automatic cruise control system,
a traffic-jam assist system, a lane-centering assist system, or
an [.3/L.4 autonomous driving on highways system.

Example 13: A computer-readable storage media com-
prising computer-executable instructions that, when
executed, cause a processor in a vehicle to: generate a grid
representation of a roadway, the grid representation includ-
ing multiple cells; generate, based on data from multiple
information sources, a road model for the roadway, the road
model including at least two different layers that represent
different respective roadway attributes of the multiple cells
in the grid representation of the roadway, the at least two
different layers including, for each cell of the multiple cells
in each layer of the different layers, at least one respective
layer hypothesis that indicates a potential attribute state for
that cell; determine respective mass values associated with
each of the at least one respective layer hypothesis, the
respective mass values indicating confidence associated
with the data contributing to the at least one respective layer
hypothesis; determine, using the respective mass values,
belief parameters and plausibility parameters associated
with each of the at least one respective layer hypothesis, the
belief parameters indicating a confidence in the potential
attribute state for that cell, the plausibility parameters indi-
cating a likelihood in the potential attribute state being
accurate for that cell; determine whether the belief param-
eters and the plausibility parameters associated with at least
one layer hypothesis satisty a respective threshold value;
and responsive to a determination that the belief parameters
and the plausibility parameters associated with at least one
layer hypothesis satisty the respective threshold value, use
the at least one layer hypothesis as an input to an autono-
mous-driving system or an assisted-driving system that
operates the vehicle on the roadway.

Example 14: The computer-readable storage media of
example 13, wherein the at least two different layers include
at least two of a cell-category layer, a lane-number layer, a
lane-marker-type layer, a lane-marker-color layer, a traffic-
sign layer, a pavement-marking layer, or a lane-type layer.

Example 15: The computer-readable storage media of
example 14, wherein: the cell-category layer includes at
least two of a lane boundary, a lane center, a barrier, or
another value; the lane-number layer includes at least two of
a left-adjacent lane, an ego lane, a right-adjacent lane, or
other lanes; the lane-marker-type layer includes at least two
of a solid-line lane marker, a double-line lane marker, a
dashed lane marker, a fat lane-marker, or other lane-marker
type; the lane-marker-color layer includes at least two of
yellow, white, or other color; and the lane-type layer
includes at least two of a through lane, a deceleration lane,
an acceleration lane, or other lane type.

Example 16: The computer-readable storage media of
example 14, the computer-readable storage media compris-
ing additional computer-executable instructions that, when
executed, cause the processor in a vehicle to: determine
whether a curvature of the roadway is greater than a curva-
ture threshold; and responsive to a determination that the
curvature of the roadway is greater than the curvature
threshold, shift a mass value for an original point along a
y-axis normal to the vehicle to determine a mass value at a
shifted point; or responsive to a determination that the
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curvature of the roadway is less than the curvature threshold,
shift the mass value for the original point along a curvature
direction to determine the mass value at the shifted point.

Example 17: The computer-readable storage media of
example 13, wherein the at least two different layers are
defined by respective frames of discernment (FODs), the
respective FODs identifying respective sets of possible layer
hypotheses.

Example 18: The computer-readable storage media of
example 13, wherein the multiple information sources
include at least one of a lidar system, a vision system, a
camera system, a vehicle-state system, a location sensor, a
steering sensor, a yaw-rate sensor, or a map.

Example 19: The computer-readable storage media of
example 13, wherein the respective mass values are recur-
sively updated based on the data from the multiple infor-
mation sources.

Example 20: The computer-readable storage media of
example 13, wherein a determination of the respective mass
values associated with each of the at least one respective
layer hypothesis comprises fusing multiple mass values that
contribute to each of the at least one respective layer
hypothesis using a Dempster-Shafer fusion rule.

CONCLUSION

While various embodiments of the disclosure are
described in the foregoing description and shown in the
drawings, it is to be understood that this disclosure is not
limited thereto but may be variously embodied to practice
within the scope of the following claims. From the foregoing
description, it will be apparent that various changes may be
made without departing from the spirit and scope of the
disclosure as defined by the following claims.

What is claimed is:

1. A method comprising:

generating, by a road-perception system of a vehicle, a

grid representation of a roadway, the grid representa-
tion including multiple cells;
generating, by the road-perception system and based on
data from multiple information sources, a road model
for the roadway, the road model including at least two
different layers that represent different respective road-
way attributes of the multiple cells in the grid repre-
sentation of the roadway, the at least two different
layers including, for each cell of the multiple cells in
each layer of the different layers, at least one respective
layer hypothesis that indicates a potential attribute state
for that cell;
determining, by the road-perception system, respective
mass values associated with each of the at least one
respective layer hypothesis, the respective mass values
indicating confidence associated with the data contrib-
uting to the at least one respective layer hypothesis;

determining, by the road-perception system and using the
respective mass values, belief parameters and plausi-
bility parameters associated with each of the at least
one respective layer hypothesis, the belief parameters
indicating a confidence in the potential attribute state
for that cell, the plausibility parameters indicating a
likelihood in the potential attribute state being accurate
for that cell;

determining whether the belief parameters and the plau-

sibility parameters associated with at least one layer

hypothesis satisfy a respective threshold value; and
responsive to determining that the belief parameters and

the plausibility parameters associated with at least one
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layer hypothesis satisfy the respective threshold value,
using the at least one layer hypothesis as an input to an
autonomous-driving system or an assisted-driving sys-
tem that operates the vehicle on the roadway.
2. The method of claim 1, wherein the multiple informa-
tion sources include at least one of a lidar system, a vision
system, a camera system, a vehicle-state system, a location
sensor, a steering sensor, a yaw-rate sensor, or a map.
3. The method of claim 1, wherein the respective mass
values are recursively updated based on the data from the
multiple information sources.
4. The method of claim 1, wherein determining the
respective mass values associated with each of the at least
one respective layer hypothesis comprises fusing multiple
mass values that contribute to each of the at least one
respective layer hypothesis using a Dempster-Shafer fusion
rule.
5. The method of claim 1, wherein the multiple cells of the
grid representation have a non-uniform resolution.
6. The method of claim 1, wherein the at least two
different layers are defined by respective frames of discern-
ment (FODs), the respective FODs identifying respective
sets of possible layer hypotheses.
7. The method of claim 6, wherein the at least two
different layers include at least two of a cell-category layer,
a lane-number layer, a lane-marker-type layer, a lane-
marker-color layer, a traffic-sign layer, a pavement-marking
layer, or a lane-type layer.
8. The method of claim 7, wherein:
the cell-category layer includes at least two of a lane
boundary, a lane center, a barrier, or an other value;

the lane-number layer includes at least two of a left-
adjacent lane, an ego lane, a right-adjacent lane, or
other lanes;

the lane-marker-type layer includes at least two of a

solid-line lane marker, a double-line lane marker, a
dashed lane marker, a fat lane-marker, or other lane-
marker type;

the lane-marker-color layer includes at least two of yel-

low, white, or other color; and

the lane-type layer includes at least two of a through lane,

a deceleration lane, an acceleration lane, or other lane
type.

9. The method of claim 7, the method further comprising:

determining whether a curvature of the roadway is greater

than a curvature threshold; and

responsive to determining that the curvature of the road-

way is greater than the curvature threshold, shifting a
mass value for an original point along a y-axis normal
to the vehicle to determine a mass value at a shifted
point; or

responsive to determining that the curvature of the road-

way is less than the curvature threshold, shifting the
mass value for the original point along a curvature
direction to determine the mass value at the shifted
point.

10. The method of claim 1, the method further compris-
ing:

subsequently determining whether the belief parameters

and the plausibility parameters associated with at least
one layer hypothesis satisfy the respective threshold
value; and

responsive to subsequently determining that the belief

parameters or the plausibility parameters associated
with the at least one layer hypothesis do not satisty the
respective threshold value, discontinuing another
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operation of the vehicle with the autonomous-driving
system or the assisted-driving system.

11. The method of claim 1, the method further compris-
ing:

subsequently determining whether the belief parameters

and the plausibility parameters associated with at least
one layer hypothesis satisfy the respective threshold
value; and

responsive to subsequently determining that the belief

parameters or the plausibility parameters associated
with the at least one layer hypothesis do not satisfy the
respective threshold value, switching another operation
of the vehicle to be controlled by a driver.

12. The method of claim 1, wherein the autonomous-
driving system or the assisted-driving system comprises at
least one of an automatic cruise control system, a traffic-jam
assist system, a lane-centering assist system, or an [.3/[.4
autonomous driving on highways system.

13. A computer-readable storage media comprising com-
puter-executable instructions that, when executed, cause a
processor in a vehicle to:

generate a grid representation of a roadway, the grid

representation including multiple cells;

generate, based on data from multiple information

sources, a road model for the roadway, the road model
including at least two different layers that represent
different respective roadway attributes of the multiple
cells in the grid representation of the roadway, the at
least two different layers including, for each cell of the
multiple cells in each layer of the different layers, at
least one respective layer hypothesis that indicates a
potential attribute state for that cell;

determine respective mass values associated with each of

the at least one respective layer hypothesis, the respec-

tive mass values indicating confidence associated with 3

the data contributing to the at least one respective layer
hypothesis;

determine, using the respective mass values, belief param-
eters and plausibility parameters associated with each
of'the at least one respective layer hypothesis, the belief
parameters indicating a confidence in the potential
attribute state for that cell, the plausibility parameters
indicating a likelihood in the potential attribute state
being accurate for that cell;

determine whether the belief parameters and the plausi-
bility parameters associated with at least one layer
hypothesis satisfy a respective threshold value; and

responsive to a determination that the belief parameters
and the plausibility parameters associated with at least
one layer hypothesis satisfy the respective threshold
value, use the at least one layer hypothesis as an input
to an autonomous-driving system or an assisted-driving
system that operates the vehicle on the roadway.

14. The computer-readable storage media of claim 13,

wherein the at least two different layers include at least two
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of a cell-category layer, a lane-number layer, a lane-marker-
type layer, a lane-marker-color layer, a traffic-sign layer, a
pavement-marking layer, or a lane-type layer.
15. The computer-readable storage media of claim 14,
wherein:
the cell-category layer includes at least two of a lane
boundary, a lane center, a barrier, or another value;

the lane-number layer includes at least two of a left-
adjacent lane, an ego lane, a right-adjacent lane, or
other lanes;

the lane-marker-type layer includes at least two of a

solid-line lane marker, a double-line lane marker, a
dashed lane marker, a fat lane-marker, or other lane-
marker type;

the lane-marker-color layer includes at least two of yel-

low, white, or other color; and

the lane-type layer includes at least two of a through lane,

a deceleration lane, an acceleration lane, or other lane
type.

16. The computer-readable storage media of claim 14, the
computer-readable storage media comprising additional
computer-executable instructions that, when executed, cause
the processor in a vehicle to:

determine whether a curvature of the roadway is greater

than a curvature threshold; and

responsive to a determination that the curvature of the

roadway is greater than the curvature threshold, shift a
mass value for an original point along a y-axis normal
to the vehicle to determine a mass value at a shifted
point; or

responsive to a determination that the curvature of the

roadway is less than the curvature threshold, shift the
mass value for the original point along a curvature
direction to determine the mass value at the shifted
point.

17. The computer-readable storage media of claim 13,
wherein the at least two different layers are defined by
respective frames of discernment (FODs), the respective
FODs identifying respective sets of possible layer hypoth-
eses.

18. The computer-readable storage media of claim 13,
wherein the multiple information sources include at least
one of a lidar system, a vision system, a camera system, a
vehicle-state system, a location sensor, a steering sensor, a
yaw-rate sensor, or a map.

19. The computer-readable storage media of claim 13,
wherein the respective mass values are recursively updated
based on the data from the multiple information sources.

20. The computer-readable storage media of claim 13,
wherein a determination of the respective mass values
associated with each of the at least one respective layer
hypothesis comprises fusing multiple mass values that con-
tribute to each of the at least one respective layer hypothesis
using a Dempster-Shafer fusion rule.
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