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GNSS-RECEIVER INTERFERENCE
DETECTION USING DEEP LEARNING

BACKGROUND

Technical Field

[0001] The present disclosure generally relates to mitiga-
tion of radio frequency (RF) interference in global satellite
system (GNSS) receivers. The present disclosure more par-
ticularly relates to using neural networks for classification of
radio frequency (RF) interference environments experienced
by GNSS receivers.

Description of Related Art

[0002] A fundamental and crucial step in dealing with
radio frequency (RF) interference experienced by a global
navigation satellite system (GNSS) receiver is the ability to
detect interference in a consistent and accurate way. If
interference is reported by the detector when there is no
actual interference, the receiver would attempt to estimate
the interference parameters of non-existent interference and
would apply a mitigation method when none is needed
thereby causing unnecessary performance degradation. Con-
versely, if interference is present but it is not detected, the
receiver will not apply any mitigation method and will
operate in a degraded fashion or simply not operate at all,
depending on the severity of the interference.

[0003] Prior techniques of addressing GNSS receiver
interference have utilized two algorithms for interference
detection: spectral analysis and statistical analysis. Spectral
analysis can be well suited for detection of in-band (IB)
interference, i.e., interference which frequency components
are within the passband of the RF section (“deck™), while
statistical analysis can be well suited for detection of out-
of-band (OOB) interference, i.e., interference which fre-
quency components are outside the RF deck passband.
Variants and refinements of these methods can be used—
albeit with not inconsiderable effort and individualized
algorithmic construction—to correctly detect interference
corner cases.

[0004] A significant drawback of such approaches is the
two detection algorithms (spectral and statistical analysis)
must be concurrently running, possibly along with their
variants, leading to complexity in terms of operating them
and making sure that their concurrent use does not result in
conflicting detection outcomes. These algorithms are often
referred to as rule-based methods because they follow
explicit steps described by the algorithms to achieve the
desired detection performance.

[0005] Using such prior techniques, when a new type of
interference is to be recognized at the GNSS receiver, that
type of interference must first be characterized and then a
new detector (e.g., a variant of the spectral or statistical
algorithms) would need to be devised specifically for that
newly characterized interference. This new detector would
then need to be operated in addition to the previous two
algorithms and their variants/refinements. Overall, this
makes the detection more complex, harder to maintain, and
more complex to ensure correct performance, not to mention
the significant work involved in devising the new detection
algorithm.
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SUMMARY

[0006] An aspect of the present disclosure is directed to
classification of interference for GNSS receivers, e.g., GPS,
GLONASS, and the like. One or more neural networks are
utilized to classify RF signal data received by a GNSS
receiver. The classification associates the RF signal data
with an RF environment. Appropriate interference mitiga-
tion techniques can be implemented by the receiver based on
the classification.

[0007] An aspect of the present disclosure is directed to a
GNSS processor architecture for processing GNSS receiver
signal data, the processing architecture including: a proces-
sor; and a memory unit in communication with the processor
via a communication infrastructure (e.g., bus) and storing
processor-readable instructions; wherein, when executed by
the processor, the processor-readable instructions cause the
processor to: receive RF signal data associated with a class
of RF environment; provide the RF signal data to a neural
network for classification of the RF signal data as belonging
to a pre-defined type of RF environment; using the neural
network, classify the RF signal data as belonging to a
pre-defined type of RF environment; and apply an interfer-
ence mitigation technique corresponding to the type of RF
environment that has been classified.

[0008] For the GNSS processor architecture, the neural
network can include or be composed of an artificial neural
network (ANN). For the GNSS processor architecture, the
neural network can include or be composed of a convolu-
tional neural network (CNN). For the GNSS processor
architecture, the RF signal data can be classified as belong-
ing to one of three RF environments, no interference,
in-band interference, and out-of-band interference. For the
GNSS processor architecture, the neural network can
include a first layer used to process input images, e.g., power
spectral density (PSD) images. Such PSD images may be
(but are not necessarily) configured in a 128x128 pixels
format. For the GNSS processor architecture, when the
neural network includes a CNN, the CNN can include eight
convolutional layers configured to process the PSD images.

[0009] When a CNN is used for the GNSS processor
architecture, a 6x6 kernel can be used for feature extraction
using max pooling. When a CNN is used for the GNSS
processor architecture, a last convolution layer can be con-
nected to a fully-connected layer with 32 neurons. For the
GNSS processor architecture, the neural network can
include an output layer having three (3) neurons configured
to output classification determinations of one of three inter-
ference environments, using a soft max activation function.
For the GNSS processor architecture, the neural network can
include or be composed of a recurrent neural network
(RNN). Such a RNN can include or be composed of a Long
Short-Term Memory (LSTM) RNN. For the GNSS proces-
sor architecture, the neural network can include or be
composed of an autoencoder. For the GNSS processor
architecture, the neural network can include or be composed
of a Restricted Boltzmann Machine (RBM).

[0010] These, as well as other components, steps, features,
objects, benefits, and advantages, will now become clear
from a review of the following detailed description of
illustrative embodiments, the accompanying drawings, and
the claims.
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BRIEF DESCRIPTION OF DRAWINGS

[0011] The drawings are of illustrative embodiments.
They do not illustrate all embodiments. Other embodiments
may be used in addition or instead. Details that may be
apparent or unnecessary may be omitted to save space or for
more effective illustration. Some embodiments may be prac-
ticed with additional components or steps and/or without all
of the components or steps that are illustrated. When the
same numeral appears in different drawings, it refers to the
same or like components or steps.

[0012] FIG. 1 depicts a diagram of an example of a
convolutional neural network (CNN) architecture embodi-
ment of the present disclosure.

[0013] FIG. 2 depicts a diagram of an implemented inter-
ference classification and verification system in accordance
with the present disclosure.

[0014] FIG. 3 depicts a diagram of an example of an
artificial neural network (ANN) architecture embodiment of
the present disclosure.

[0015] FIG. 4 depicts a block diagram of an example of a
method of detecting and classifying interference in accor-
dance with the present disclosure.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

[0016] Illustrative embodiments are now described. Other
embodiments may be used in addition or instead. Details that
may be apparent or unnecessary may be omitted to save
space or for a more effective presentation. Some embodi-
ments may be practiced with additional components or steps
and/or without all of the components or steps that are
described.

[0017] An aspect of the present disclosure is directed to
distinguishing different types of RF environments seen by a
GNSS receiver as different classes of interference, and then
using a neural network to classify interference at the receiver
into one or more of these RF environment classes (and
thereby detect interference at the receiver). For example, an
interference-free RF environment can be considered a class
to be detected just like an RF environment with interference.
Interference environments can be further classified into
in-band (IB) of out-of-band (OOB) interference. Some
classes can then be split to create new classes, e.g., weak 1B
and strong 1B interference. Once all types of interference—
or, interference environments—have been identified, the
neural network can be used to classify them when experi-
enced by a GNSS receiver. Such a neural network is trained
and validated using the data associated with defined or
pre-defined classes of RF interference experienced by a
GNSS receiver.

[0018] The data that are associated with the interference
classes can be of any receiver metric that well characterizes
the classes, e.g., PSD, carrier-to-noise ratio (C/No), pseudo-
noise tracking error, estimated positioning error, etc. Once
trained to the required performance level, the neural network
is used in a prediction mode where receiver input metrics
can then be processed, with the neural network outputting
results for each of the classes. The class with the highest
output metric is then selected (classified) as the detected RF
environment. In the situation where a new type of interfer-
ence needs to be supported, this new type of interference is
characterized (e.g., PSD with that new type of interference),
the associated data is created, and then the neural network is
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re-trained/re-tuned against that new data and the data of all
previously known interference types. This is in contrast with
prior rule-based algorithms for which characterization of the
new interference requires creation of a new rule, i.e., cre-
ation of a new detector algorithm, representing a significant
undertaking.

[0019] An aspect of the present disclosure is directed to
using artificial neural networks (which may variously be
referred to as “ANNs,” “NNs,” or “neural networks™) for the
classification and detection of interference in or by GNSS
receivers. A neural network, or group of neural networks, is
utilized as a detector that is capable of detecting any type of
interference, instead of relying on several rule-based algo-
rithms (e.g., spectral analysis, statistical analysis, and their
variants). A neural network can perform interference detec-
tion by classification based on one or more characteristics.
For example, a neural network can classify a type of
interference from power spectral densities (PSD) values
directly. Suitable types of neural networks that may be used
within the scope of the present disclosure include, but are
not limited to, ANNSs, convolutional neural networks
(“CNNs”), and recurrent neural networks (“RNNs”), among
others. FIG. 1 depicts a diagram of an example of an ANN
architecture 100 embodiment of the present disclosure. As
shown, ANN 100 includes a number of input images, e.g.,
power spectral densities (PSDs) of GNSS signals received at
a receiver. The pixel values of one or more input images are
provided to an input layer of a fully-connected section that
also has an output layer and a number (N) of hidden layers.
[0020] In exemplary embodiments, convolutional neural
networks (CNNs) can be used as detector. Working as image
classifiers, CNNs can use PSDs as images. By virtue of
processing images, CNNs have the advantage that they can
readily be used for visual aid such as highlighting the zone
of the spectrum where interference is located. FIG. 1 depicts
a diagram of an example of a CNN architecture 200 in
accordance with the present disclosure.

[0021] As shown in FIG. 1, CNN 100 includes an input
image 110, e.g., a PSD (as shown), a convolutional and
pooling section 120 with a number of convolutional and
pooling layers 120(1-M), a fully-connected section 130 with
a number of fully connected layers 130 (1-N), and an output
140 section. The output section includes a number of nodes,
e.g., three, for classification. In exemplary embodiments, a
Softmax function may be used for the classification. The
convolutional and pooling section 120 can include one or
more convolutional layers and one or more pooling layers.
A convolutional layer can be cascaded with another convo-
Iutional layer or a pooling layer. Similarly, a pooling layer
can be cascaded with a convolutional layer or a pooling layer
or may be connected to a fully-connected layer, e.g., of the
fully-connected section 130.

[0022] In operation of CNN 100, the convolutional and
pooling section 120 implements a convolutional 2D filter
(kernel) for feature extraction of an input, e.g., input PSD
image. Max pooling reduces the spatial size of the con-
volved feature(s). After the convolution and pooling opera-
tions are performed by the convolution and pooling section,
the fully-connected section 130 is used to learn non-linear
combinations of the features (e.g., high-level features) that
are represented by the output of the convolution and pooling
section 120. A flattening layer can be used for some appli-
cations for the fully-connected section 130. The output
section 140 receives the output of the fully-connected sec-
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tion 130 and then classifies the input images, e.g., PSDs,
accordingly. As a preliminary step, one or more appropriate
data sets can be utilized for training and validation purposes
for the CNN 100.

[0023] The CNN 100 may have any type of suitable CNN
configuration, e.g., LeNet, AlexNet, VGG, VGGNet,
Googl.eNet, ResNet, ZFNet, XCeption CNN, Inception v3
or v4, or the like. In some applications, a dilated convolution
2D filter may be used, e.g., to reduce computation costs or
accommodate a certain computation performance level. In
some applications, valid padding or same padding may be
used for the convolution layer(s), e.g., when it is desired to
increase or keep same the dimensionality of an input image.
In exemplary embodiments, different types of neural net-
works can be combined, e.g., T cascaded, for detection. For
example, an ANN can be followed by a CNN if some
refinements are needed or desired, etc.

[0024] FIG. 2 depicts a diagram of an implemented inter-
ference classification and verification system 200 in accor-
dance with the present disclosure. The system 200 includes
a GNSS receiver 210, connected to an antenna 220 and a
personal computer (PC) 230. A signal generator 222 was
used to add various noise and signal profiles to simulate
different RF environments for classification. The prototype
embodiment 200 was implemented using a main Python
script 232 resident on PC 230. The PC 230 also implemented
NovAtel Connect™ as a graphic user interface (GUI).
NovAtel Connect™ is a windows-based GUI that allows a
user to access a NovAtel receiver’s many features without
the need to use a terminal emulator or to write special
software and allows the user to easily communicate and
configure the receiver via serial port, USB or ethernet
connection using a PC running the Windows 7 or Windows
10 operating system. The Python script 232 consisted of a
block configured for retrieving power spectral density (PSD)
logs from a receiver (NovAtel OEM?7 receiver) and per-
forming detection of three classes of radio-frequency (RF)
environments: no interference, in-band (IB) interference and
out-of-band (OOB) interference all in real-time.

[0025] For the implemented prototype embodiment, a first
layer was used to input power spectral density (PSD)
images, which were in a 128x128 pixels format. Eight (8)
convolutional layers then were used to process the images,
using a 6x6 kernel (window filter) for feature extraction
using max pooling. The last convolution layer then was
connected to a fully-connected layer with 32 neurons, which
used the ReLLU activation function. An output layer of three
(3) neurons then was used to output classification determi-
nations of one of three interference environments, using a
soft max activation function.

[0026] For training purposes, 26500 PSD images were
used; 14000 were used for validation. The PSD images were
labeled with the following labels: (i) type of interference, (ii)
frequency, (iii) power level, and (iv) bandwidth of interfer-
ence. An accuracy of detection of 98.80% was obtained
during the off-line validation of the deep learning-based
interference detector against captured PSD logs.

[0027] FIG. 3 depicts a diagram of an example of an ANN
architecture 300 in accordance with an alternate embodi-
ment of the present disclosure. As shown, ANN 300 receives
and processes a number of input images 310(1-N), e.g.,
power spectral densities (PSDs) of GNSS signals received at
or by a GNSS receiver. ANN 300 includes a fully-connected
section 320 having a number (M) of fully-connected layers
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in a deep learning configuration. The fully-connected sec-
tion 320 includes a number (M-2) of hidden layers and
provides an output classification 330.

[0028] In operation, one or more input images, e.g., PSDs,
are provided to the input layer of the fully-connected section
320 and then are processed by the number (M-2) of hidden
layers. The last layer of the fully-connected section 320
performs classification of the input images, e.g., by using a
Softmax activation function, determining which class the
input image is most likely to be associated with.

[0029] FIG. 4 depicts a block diagram of an example of an
interference detection and classification method 400, in
accordance with the present disclosure. For method 400, RF
signal data can be received by a receiver, with the RF signal
data being associated with a type or class of RF environ-
ment, as shown at 402. Non-limiting examples of such types
or classes of RF environments include but are not limited to
(1) interference-free, (ii) in-band (IB) interference, and (iii)
out-of-band (OOB) interference. The RF signal data can be
provided to a neural network, e.g., CNN 100 of FIG. 1, for
classification of the data as belonging to a pre-defined type
of RF environment, as shown at 404.

[0030] Continuing with the description of method 400,
using the neural network, the type of RF environment of or
associated with the RF signal data can be classified, as
shown at 406. One or more mitigation techniques, e.g.,
application of a particular filter, can then be applied to the
RF signal data or subsequent data based on or corresponding
to the classification of the RF environment, as shown at 408.
Exemplary mitigation techniques include, but are not limited
to, implementing suitable filters, and/or applying controlled
radiation pattern antenna (e.g., null-forming) for any type of
interference but more so for interference that are at the same
frequency as GNSS signals. Hyperparameters of the neural
network can be tuned or optimized—at the training stage—
for improved accuracy and/or computational efficiency, as
shown at 410.

[0031] One of skill in the art will understand that each
block or step shown and described for FIG. 4 can be
implemented in suitable code as computer-readable instruc-
tions resident or stored in suitable memory, e.g., within
GNSS receiver 310 of FIG. 3. The instructions can be
implemented by a suitable processor, e.g., resident in GNSS
receiver 310, that is/are connected to the memory, and when
executed by the processor cause the processor to perform the
functions shown and described for FIG. 4.

[0032] As noted above, hyperparameter tuning (hyperpa-
rameter optimization) of the deep-learning based detector
may be employed to lead to higher detection accuracy. For
a CNN, any suitably-sized filters or kernels (e.g., 2-by-2,
3-by-2, 3-by-3, 4-by-2, 4-by-3, 4-by-4, etc.) may be used for
striding (kernel size). Any suitable pooling technique can be
used, e.g., max pooling or average pooling can be used. Max
pooling was used for the implemented embodiment and may
be preferable for noise filtering. Any suitable cost (loss)
function can be used, e.g., quadratic cost (a/k/a, mean
squared error or MSE, maximum likelihood, or sum-squared
error), cross-entropy cost, exponential cost, Hellinger dis-
tance, Kullback-Leibler divergence, etc.

[0033] Any suitable activation function can be used, e.g.,
rectified linear unit (ReLU), Softmax, etc. In exemplary
embodiments, RelLU is used. Any suitable optimization
(solver) algorithm can be used for a neural network. For
example, various types of gradient descent algorithms can
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be used. In exemplary embodiments, a stochastic gradient
descent (SGD) algorithm can be used. Hyperparameters that
can be optimized in SGD include learning rate, momentum,
decay, and Nesterov (which takes the value true or false
depending on whether one wants to apply Nesterov momen-
tum). Alternatively, or in conjunction, a root mean squared
optimizer such as a root mean squared propagation
(RMSProp) optimizer can be used. For some applications,
an adaptive moment estimation (Adam) optimizer can be
used.

[0034] Unless otherwise indicated, the neural networks
and classification methods that have been discussed herein
are implemented with a specially-configured computer sys-
tem, e.g., a GNSS receiver, specifically configured to per-
form the functions that have been described herein for the
component. Each computer system includes one or more
processors, tangible memories (e.g., random access memo-
ries (RAMs), read-only memories (ROMs), and/or program-
mable read only memories (PROMS)), tangible storage
devices (e.g., hard disk drives, CD/DVD drives, and/or flash
memories), system buses, video processing components,
network communication components, input/output ports,
and/or user interface devices (e.g., keyboards, pointing
devices, displays, microphones, sound reproduction sys-
tems, and/or touch screens).

[0035] Each computer system for the neural network(s)
and classification method(s) may be or include a desktop
computer or a portable computer, such as a laptop computer,
a notebook computer, a tablet computer, a PDA, a smart-
phone, or part of a larger system, such a vehicle, appliance,
and/or telephone system. Each computer system for the
neural network(s) and classification may include one or
more computers at the same or different locations. When at
different locations, the computers may be configured to
communicate with one another through a wired and/or
wireless network communication system.

[0036] Each computer system may include software (e.g.,
one or more operating systems, device drivers, application
programs, and/or communication programs). When software
is included, the software includes programming instructions
and may include associated data and libraries. When
included, the programming instructions are configured to
implement one or more algorithms that implement one or
more of the functions of the computer system, as recited
herein. The description of each function that is performed by
each computer system also constitutes a description of the
algorithm(s) that performs that function.

[0037] The software may be stored on or in one or more
non-transitory, tangible storage devices, such as one or more
hard disk drives, CDs, DVDs, and/or flash memories. The
software may be in source code and/or object code format.
Associated data may be stored in any type of volatile and/or
non-volatile memory. The software may be loaded into a
non-transitory memory and executed by one or more pro-
Cessors.

[0038] The components, steps, features, objects, benefits,
and advantages that have been discussed are merely illus-
trative. None of them, nor the discussions relating to them,
are intended to limit the scope of protection in any way.
Numerous other embodiments are also contemplated. These
include embodiments that have fewer, additional, and/or
different components, steps, features, objects, benefits, and/
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or advantages. These also include embodiments in which the
components and/or steps are arranged and/or ordered dif-
ferently.

[0039] For example, while the above description has been
provided in the context of using CNNs and ANNs, other
types of neural networks such as recurrent neural networks
(RNNs) and Restricted Boltzmann Machines (RBMs) can be
used within the scope of the present disclosure, as one
skilled in the art will appreciate.

[0040] The Long Short-Term Memory (LSTM) variant or
type of Recurrent Neural Network (RNN) can be used in the
context of the present disclosure. An LSTM unit in RNN is
composed of four main elements; the memory cell and three
logistic gates (Read, Write and Forget gates). Manipulating
these gates gives the RNN the ability to remember what it
needs and forgets what is no longer useful for predicting a
sequence. By stacking layers to create hierarchical feature
representation of the input data which then feeds as input to
the second layer, the next LSTM will blend the new input
into its own internal state to produce an output. Stacking
LSTM hidden layers will make the model deeper and allow
for greater model complexity and probably leading to more
accurate result.

[0041] RNNs can be used to detect certain types of time-
varying interference such as sweeping interference in which
frequency center changes over time i.e. successive PDS
images show interference at different frequencies. Such
sequence of frequencies could be detected by an RNN as its
memory elements makes it suitable to store past information
about PDSs that follow a certain pattern.

[0042] Another aspect of the present disclosure includes
the use of unsupervised learning algorithms including
Restricted Boltzmann Machines (RBMs) and autoencoders.
[0043] RBMSs work well with unlabeled data such as
images, videos and audio files. The weights of the neural
network are adjusted in such a way that the RBM can extract
the relationships among the input features and then deter-
mines which features are relevant to achieve the expected
results. After training, the network will have the ability to
reconstruct the input image. RBMs learn from data and
“autoencode” their own structure in a stochastic way for
more efficient dimensionality reduction which make them
work better than the popular Autoencoders or the Principal
Component Analysis (PCA) methods.

[0044] Once detection has been performed, e.g., by an
RBM, another NN can be used to determine more param-
eters of the interference source such as frequency center,
bandwidth, power, etc. For example, once an interference
source has been detected (i.e., image classified) as in band
(IB) by the detection NN, the estimation NN (e.g., provided
by an NN used for regression) can be used to localize the
interference within the image which means that the NN can
estimate parameters such as center frequency, bandwidth,
power level, etc. Most of these parameters are discrete (e.g.,
center frequency can take any values between 1550 MHz to
1590 MHz) so they do not lend themselves to being grouped
into classes for detection hence the use of an regression NN
(called estimation NN) for performing estimation after
detection has been declared by the detection NN. Another
reason for using two separate NNs, a detection NN and an
estimation NN, is because for some classes such as strong
out-of-band interference (OOB), PSDs are distorted in such
way that it is not possible to estimate parameters such as
center frequency and bandwidth. In that situation the esti-
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mation NN should not attempt to perform estimation if the
detection NN detects such class.

[0045] Unless otherwise stated, all measurements, values,
ratings, positions, magnitudes, sizes, and other specifica-
tions that are set forth in this specification, including in the
claims that follow, are approximate, not exact. They are
intended to have a reasonable range that is consistent with
the functions to which they relate and with what is custom-
ary in the art to which they pertain. The phrase “means for”
when used in a claim is intended to and should be interpreted
to embrace the corresponding structures and materials that
have been described and their equivalents. Similarly, the
phrase “step for” when used in a claim is intended to and
should be interpreted to embrace the corresponding acts that
have been described and their equivalents. The absence of
these phrases from a claim means that the claim is not
intended to and should not be interpreted to be limited to
these corresponding structures, materials, or acts, or to their
equivalents.

[0046] The scope of protection is limited solely by the
claims that now follow. That scope is intended and should be
interpreted to be as broad as is consistent with the ordinary
meaning of the language that is used in the claims when
interpreted in light of this specification and the prosecution
history that follows, except where specific meanings have
been set forth, and to encompass all structural and functional
equivalents.

[0047] Relational terms such as “first” and “second” and
the like may be used solely to distinguish one entity or action
from another, without necessarily requiring or implying any
actual relationship or order between them. The terms “com-
prises,” “comprising,” and any other variation thereof when
used in connection with a list of elements in the specification
or claims are intended to indicate that the list is not exclusive
and that other elements may be included. Similarly, an
element proceeded by an “a” or an “an” does not, without
further constraints, preclude the existence of additional
elements of the identical type. The abstract is provided to
help the reader quickly ascertain the nature of the technical
disclosure. It is submitted with the understanding that it will
not be used to interpret or limit the scope or meaning of the
claims. In addition, various features in the foregoing detailed
description are grouped together in various embodiments to
streamline the disclosure. This method of disclosure should
not be interpreted as requiring claimed embodiments to
require more features than are expressly recited in each
claim. Rather, as the following claims reflect, inventive
subject matter lies in less than all features of a single
disclosed embodiment. Thus, the following claims are
hereby incorporated into the detailed description, with each
claim standing on its own as separately claimed subject
matter.

What is claimed is:

1. A GNSS processor architecture for processing GNSS
receiver signal data, the processing architecture comprising:
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a processor; and
a memory unit in communication with the processor via
a communication infrastructure and configured to store
processor-readable instructions;
wherein, when executed by the processor, the proces-
sor-readable instructions cause the processor to:
receive RF signal data associated with a class of RF
environment;
provide the RF signal data to a neural network for
classification of the RF signal data as belonging to a
pre-defined type of RF environment;
using the neural network, classify the RF signal data as
belonging to a pre-defined type of RF environment;
and
apply an interference mitigation technique correspond-
ing to the type of RF environment that has been
classified.

2. The GNSS processor architecture of claim 1, wherein
the neural network comprises an artificial neural network
(ANN).

3. The GNSS processor architecture of claim 1, wherein
the neural network comprises a convolutional neural net-
work (CNN).

4. The GNSS processor architecture of claim 1, wherein
the RF signal data is classified as belonging to one of three
RF environments, no interference, in-band interference, and
out-of-band interference.

5. The GNSS processor architecture of claim 1, wherein
the neural network comprises a first layer used to input
power spectral density (PSD) images.

6. The GNSS processor architecture of claim 5, wherein
the PSD images are configured in a 128x128 pixels format.

7. The GNSS processor architecture of claim 5, wherein
the neural network comprises eight convolutional layers
configured to process the PSD images.

8. The GNSS processor architecture of claim 7, wherein
a 6x6 kernel is used for feature extraction using max
pooling.

9. The GNSS processor architecture of claim 7, wherein
a last convolution layer is connected to a fully-connected
layer with 32 neurons.

10. The GNSS processor architecture of claim 9, wherein
the neural network comprises an output layer of three (3)
neurons configured to output classification determinations of
one of three interference environments, using a soft max
activation function.

11. The GNSS processor architecture of claim 1, wherein
the neural network comprises a recurrent neural network
(RNN).

12. The GNSS processor architecture of claim 11, wherein
the RNN comprises a Long Short-Term Memory (LSTM)
RNN.

13. The GNSS processor architecture of claim 1, wherein
the neural network comprises an autoencoder.

14. The GNSS processor architecture of claim 1, wherein
the neural network comprises a Restricted Boltzmann
Machine (RBM).



