
US 20140359771 A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0359771 A1

Dash et al. (43) Pub. Date: Dec. 4, 2014

(54) CLUSTERING EVENT DATA BY MULTIPLE (52) U.S. Cl.
TIME DIMIENSIONS CPC H04L 63/1441 (2013.01); G06F 17/30705

(2013.01); G06F II/3476 (2013.01); G06F
(76) Inventors: that 2. itySt. 220 1/86 (2013.01) enting Tang, Sunnyvale,

Marylou Orayani, San Jose, CA (US) USPC .. 726/23

(21) Appl. No.: 14/359,261
(57) ABSTRACT

(22) PCT Filed: Jan. 26, 2012

(86). PCT No.: PCT/US2012/022.775

7.St. Mav 19, 2014 Systems and methods for processing log data are provided. A
(2), (4) Date: ay 19, set of data chunks is determined. Each data chunk is associ

Related U.S. Application Data ated with a set of events, which are grouped according to a
primary time dimension field of each event of the set of
events. A metadata structure is determined for each of the data
chunks. The metadata structure includes comprises a range of
the primary time dimension field of all of the events in the data
chunk and a range of a secondary time dimension field of all

(60) Provisional application No. 61/564.207, filed on Nov.
28, 2011.

Publication Classification

(51) Int. Cl. of the events in the data chunk. A subset of the data chunks is
H04L 29/06 (2006.01) selected. A data chunkassociated with at least one event of the
G06F II/34 (2006.01) plurality of events is generated according to the secondary
G06F 7/30 (2006.01) time dimension field of the at least one event.

300

Load Metadata Associated with a Chunk of a Plurality of Chunks 303 to Memory. Eachchunkincludes as of Events Which were/
Clustered Based on Time of receipt of the Event

Determine a Density Level of the Chunk Based on a Range of 1310
Time of Occurrence of the Events in Churk

L-315 ldentify the Chunk as One of dense, sparse, or Overlap

Raad Matadata Portion of Chunk

32s

density Threshold
Satisfied Stale Events

Yes

333

Start

disassemble Sparse andlor Overlapping Chunks into events

Sorting Each Event into a Group Based on the Time of
Occurrence of the Ewent

Cluster the Groups into a Plurality of Chunks, such that a density
Level of each Chunk is Balanced Among the Plurality of Chunks

End

333

337

Patent Application Publication Dec. 4, 2014 Sheet 1 of 7 US 2014/0359771 A1

DataSource(s)
110

Processed event(s)

LOgging User
System(s) Manage r(s) interface(s)

170 160

Clustering
Module
172

Online
archive(s)

150

FIG. 1

Dec. 4, 2014 Sheet 2 of 7 US 2014/0359771 A1 Patent Application Publication

L – – – – – – – – – – – –

|– ––

Patent Application Publication Dec. 4, 2014 Sheet 3 of 7 US 2014/0359771 A1

300

Load Metadata Associated with a Chunk of a Plurality of Chunks 305
to Memory, Each Chunk includes a Set of Events Which Were

Clustered Based on Time of Receipt of the Event

Determine a Density Level of the Chunk Based on a Range of 310
Time of Occurrence of the Events in Chunk

315
ldentify the Chunk as One of Dense, Sparse, or Overlap

Read Metadata Portion of Chunk

Sparse or Overlap?

Yes

Cluster Events from Sparse and/or Overlap Chunks According to
Time of Occurrence of the Event

Density Threshold
Satisfied or Stale Events?

330

Yes

Generate Chunk and Store
350

FIG. 3A

Patent Application Publication Dec. 4, 2014 Sheet 4 of 7 US 2014/0359771 A1

331

333
Disassemble Sparse and/or Overlapping Chunks into Events

Sorting Each Event into a Group Based on the Time of 335
OCCurrence of the Event

Cluster the Groups into a Plurality of Chunks, such that a Density 337
Level of Each Chunk is Balanced Among the Plurality of Chunks

End

FIG. 3B

Patent Application Publication Dec. 4, 2014 Sheet 5 of 7 US 2014/0359771 A1

400

405
Identify Events That Could Not Be Grouped in a Dense Chunk

A.10
Cluster the laentified Events Based on Time of Receipt

42O
Store the Chunk(s)

End

FIG. 4A

Patent Application Publication Dec. 4, 2014 Sheet 6 of 7 US 2014/0359771 A1

450

455
ldentify Metadata Search Terms Within Search Query

460
Search Chunks Table using Metadata Search Terms

Retrieve From Read-Optimized Storage and/or Write-Optimized 465
Storage Chunks that Satisfy Metadata Search Terms

470
Disassemble Retrieved Chunks into Events

A75
Evaluate Events Against Search Query

End

FIG. 4B

Patent Application Publication Dec. 4, 2014 Sheet 7 of 7 US 2014/0359771 A1

500

Computer
Readable

Storage Media
510

Clustering
Module 527

Computer
Readable

Storage Storage Media
Device Reader
508 512

Communications Processing Working Memory
System Acceleration 518
514

Operating System
520

Other Code
(Programs)

522

FIG. 5

US 2014/0359771 A1

CLUSTERING EVENT DATABY MULTIPLE
TIME DIMIENSIONS

I CROSS-REFERENCES

0001. This application claims priority from co-pending
U.S. Provisional Patent Application No. 61/564,207, filed
Nov. 28, 2011, titled “CLUSTERING OF EVENT DATABY
MULTIPLE TIME DIMENSIONS.” (Attorney Docket No.
82899659, which is hereby incorporated by reference, as if
set forth in full in this document, for all purposes. This appli
cation incorporates by reference in its entirety U.S. applica
tion Ser. No. 12/554,541, filed Sep. 4, 2009, titled “STOR
ING LOG DATA EFFICIENTLY WHILE SUPPORTING
QUERYING, and U.S. application Ser. No. 1 1/966,078,
filed Dec. 28, 2007, titled “STORING LOG DATA EFFI
CIENTLY WHILE SUPPORTING QUERYING TO ASSIST
IN COMPUTER NETWORK SECURITY

II. BACKGROUND

0002 The field of security information/event management
(SIM or SIEM) is generally concerned with 1) collecting data
from networks and networked devices that reflects network
activity and/or operation of the devices and 2) analyzing the
data to enhance security. For example, the data can be ana
lyzed to identify an attack on the network or a networked
device and determine which user or machine is responsible. If
the attack is ongoing, a countermeasure can be performed to
thwart the attack or mitigate the damage caused by the attack.
The data that is collected usually originates in a message
(such as an event, alert, or alarm) or an entry in a log file,
which is generated by a networked device. Typical networked
devices include firewalls, intrusion detection systems, and
SWCS.

0003. Each message or log file entry ("event') is stored for
future use. Stored events can be organized in a variety of
ways. Each organizational method has its own advantages
and disadvantages when it comes to writing event data,
searching event data, and deleting event data.

III. BRIEF DESCRIPTION OF THE DRAWINGS

0004. The present disclosure may be better understood
and its numerous features and advantages made apparent by
referencing the accompanying drawings.
0005 FIG. 1 is a topological block diagram of an environ
ment having an information/event management system in
accordance with an embodiment.

0006 FIG. 2 is a topological block diagram of a logging
system of an information/event management system in accor
dance with an embodiment.

0007 FIG. 3A is a process flow diagram for generating a
chunk of events based on event occurrence time inaccordance
with an embodiment.

0008 FIG. 3B is a process flow diagram for clustering
events into chunks based on event occurrence time in accor
dance with an embodiment.

0009 FIG. 4A is a process flow diagram for clustering
sparse event streams in accordance with an embodiment.
0010 FIG. 4B is a process flow diagram for querying in
accordance with an embodiment.

0011 FIG. 5 illustrates a computer system in which an
embodiment may be implemented.

Dec. 4, 2014

IV. DETAILED DESCRIPTION

0012 Event management systems are becoming signifi
cant components of the real-time event management systems.
Such systems can be used to gain valuable insights such as
real-time security status, network status, or market informa
tion.
0013 A logging system stores data, Such as security infor
mation/events, efficiently while Supporting querying for dif
ferent event attributes. The logging system may be a compo
nent of or can be used in conjunction with an event
management system or with other systems for further analy
sis of the logged data. Log data can be generated by various
Sources (including devices and applications), and can be in
any format. Log data is comprised of data instances called
“events” that are characterized by at least one time-based
attribute or dimension. An event can be, for example, an entry
in a log file, an entry in a syslog server, an alert, an alarm, a
network packet, an email, or a notification page.
0014 Time is a significant attribute of any logging system.
Typically, there are multiple time dimensions associated with
events. One dimension may be the time when the event actu
ally occurs (i.e., event occurrence time). Another dimension
may be the time when the event is actually received (i.e.,
receipt time) by the event processing system and/or logging
system.
0015 The disparity between the event occurrence time
(“et') and the receipt time (“rt') may be caused by various
conditions, for example, delays during transmission through
a network and failure of a node (e.g., agent) in the security
network for some period of time which prevented the down
node from sending events to a central logging system. Since
the events can be delayed or batched, the time dimensions can
be out of sync with each other. The disparity between et and
rt may be anywhere from seconds to days, where more severe
delay conditions are involved.
0016. Multiple indexes may be created for storing events,
for example an index for each time dimension. In the context
of events with two time dimensions, using this technique,
events are stored, for example in a datafile. A cluster index is
created by clustering the events along one of the time dimen
sions. More specifically, the cluster index is keyed to the time
dimension along which the events are clustered ("cluster
dimension'). A secondary index is created on the secondary
time dimension.

0017. Often times, queries that a user poses to the event
management system or to the logging system includes a time
dimension. Since there can be multiple time dimensions, the
user may query on all those dimensions. The use of multiple
indexes may be used to ensure query efficiency across the
multiple time dimensions.
0018. In many system deployments with a large volume of
events, however, building both the clustered index and the
secondary index is prohibitively expensive. The indexes
increase the amount of storage needed due to the size of the
indices for environments requiring storage of large data.
0019. Furthermore, there is significant maintenance over
head. For example, the clustered index is keyed on rt and the
secondary index is keyed on et. Each entry the clustered index
includes a unique identifier associated with a datafile that
stores the chunk and the location within the datafile where the
chunk is stored (e.g., as an offset). Each entry of the second
ary index includes a pointer or other reference to at least one
entry in the clustered index, since each event is associated

US 2014/0359771 A1

with both an event time and a receipt time. Maintaining the
integrity of these references can be processor and time inten
sive.
0020. Additionally, the searching operation on any dimen
sion other than the cluster dimension can be inefficient. For
example, where the clustered index is keyed on rt and the
secondary index is keyed on et, a query based on et may
involve searching on both indexes in order to identify all the
clusters that may include events with event times that match
the query. More specifically, the secondary index is searched
first, based on the et. The entries which satisfy this first search
are used to identify the relevant rt entries, since each entry in
the secondary index includes a reference to an entry in the
clustered index. After determining which rt's correspond to
the entries in the secondary index, the related entries in the
clustered index are accessed to identify the relevant chunks,
which are the chunks that could possibly contain events that
have event times that satisfy the query. Then, the identified
chunks are disassembled into their constituent events. Finally,
the et attribute of each of these events is searched to determine
which events satisfy the query.
0021. Such searching methodologies may lead to less than
optimal search performance. Where the events are chunked in
rt, queries on et are likely to involve the scan of large Subsets
of the chunks, especially where the chunks include events
with long ranges of event occurrence times. Many of the
chunks that are identified as potentially relevant for satisfying
the query may turn out to be irrelevant, i.e., by not including
elements that satisfy the query.
0022. In one embodiment, the scanning may be minimized
by clustering the data on multiple dimensions, e.g., clustering
on the rt for the entire set of event data, and also clustering on
the et, but on a subset of the event data. More specifically, the
ranges of et and rt of events in a chunk are minimized while
maximizing chunk size (i.e., number of events in a chunk).
0023. As described herein systems and methods for pro
cessing log data are provided. A set of data chunks is deter
mined. Each data chunk is associated with a set of events,
which are grouped according to a first time dimension field of
each event of the set of events. A metadata structure is deter
mined for each of the data chunks. The metadata structure
includes a range of the primary time dimension field of all of
the events in the data chunk and a range of a secondary time
dimension field of all of the events in the data chunk. A subset
of the data chunks is selected and disassembled into a plural
ity of events. A data chunk associated with at least one event
of the plurality of events is generated according to the sec
ondary time dimension field of the at least one event.
0024. A logging system includes an event receiver and a
storage manager. The event receiver receives log data, pro
cesses it, and outputs a row-based and/or column-based data
"chunk. The storage manager receives the data chunk and
stores it so that it can be queried. The receiver includes buffers
that store events and a metadata structure that stores informa
tion about the contents of the buffers.

0025. The metadata includes a unique identifier associated
with the receiver and the number of events in the buffers. For
a field of interest which is receipt time, the metadata includes
a minimum value and a maximum value that reflect the range
of values of that field overall of the events in the buffers. For
a field of interest which is event occurrence time, the metadata
includes a minimum value and a maximum value that reflect
the range of values of that field over a subset of the events in
the buffers. A chunk includes the metadata structure and a

Dec. 4, 2014

compressed version of the contents of the buffers. The portion
of the metadata structure that includes the receipt time ranges
acts as a search index (i.e., clusterindex) when querying event
data. The portion of the metadata structure that includes the
event occurrence time ranges acts as another search index
(i.e., secondary index) when querying event data. As such, if
a search is initiated on either time dimension, a lookup is
performed on the metadata and the events are searched effi
ciently and in a scalable manner. The logging system can be
used in conjunction with an information/event management
system.
0026 Information/Event Management Architecture
0027 FIG. 1 is a topological block diagram of an environ
ment having an information/event management system 100 in
accordance with an embodiment. System 100 includes data
source(s) 110. A data source 110 is a network node, which can
be a device or a software application. Data sources 110
include intrusion detection systems (IDSs), intrusion preven
tion systems (IPSs). Vulnerability assessment tools, firewalls,
anti-virus tools, anti-spam tools, encryption tools, application
audit logs, and physical Security logs. Event data may be
provided, for example, by alerts, alarms, network packets,
emails, or notification pages.
0028. Types of data sources 110 include security detection
and proxy systems, access and policy controls, core service
logs and log consolidators, network hardware, encryption
devices, and physical security. Typically, security detection
and proxy systems include IDSs, IPSs, multipurpose security
appliances, Vulnerability assessment and management, anti
virus, honeypots, threat response technology, and network
monitoring. Typical access and policy control systems
include access and identity management, virtual private net
works (VPNs), caching engines, firewalls, and security policy
management. Core service logs and log consolidators include
operating system logs, database audit logs, application logs,
log consolidators, web server logs, and management con
soles. Typical network hardware includes routers and
Switches. Typical encryption devices include data security
and integrity. Typical physical security systems include card
key readers, biometrics, burglar alarms, and fire alarms.
(0029. In the illustrated embodiment, the system 100
includes agent(s) 120, manager(s) 130, database(s) 140,
online archive(s) 150, user interface(s) 160, and logging sys
tem(s) 170. In some embodiments, these modules are com
bined in a single platform or distributed in two, three, or more
platforms (such as in FIG. 1). The use of this multi-tier archi
tecture Supports Scalability as a computer network or system
grOWS.
0030. An agent 120 provides an interface to a data source
110. Specifically, the agent 120 collects data ("raw events”)
from a data source 110, processes the data, and sends the
processed data (“events') to a manager 130. The agent 120
can operate anywhere. Such as at a separate device commu
nicating via a protocol such as simple network management
protocol (SNMP) traps, at a consolidation point within the
network, or at the data source 110. For example, if the data
source 110 is a software application, the agent 120 can be
co-hosted on the device that hosts the data source.
0031 Processing can include normalization, aggregation,
and filtering. For example, individual raw events are parsed
and normalized for use by the manager 130. Normalization
can involve normalizing values (such as severity, priority, and
time Zone) into a common format and/or normalizing a data
structure into a common schema. Events can be categorized

US 2014/0359771 A1

using a common, human-readable format. This format makes
it easier for users to understand the events and makes it easier
to analyze the events using filters, rules, reports, and data
monitors. In one embodiment, the common format is the
Common Event Format (CEF) log management standard.
0032) Aggregation and filtering reduce the volume of
events sent to the manager 130, which saves network band
width and storage space, increases the manager's efficiency
and accuracy, and reduces event processing time. The agent
120 sends events to the manager 130 in batches based on the
expiration of a time period or based on a threshold number of
events being reached.
0033. The agent 120 may also send commands to the data
Source 110 and/or execute commands on the local host, Such
as instructing a scanner to run a scan. These actions can be
executed manually or through automated actions from rules
and data monitors. Furthermore, the agent 120 may add infor
mation to the data that it has collected, such as by looking up
an Internet Protocol (IP) address and/or hostname in order to
resolve IP/hostname lookup at the manager 130, or by deter
mining timing-related data (e.g., event occurrence time, etc.).
0034. The agent 120 is configured via an associated con
figuration file (not shown). The agent 120 can include soft
ware module(s) including a normalizing component, a time
correction component, an aggregation component, a batching
component, a resolver component, a transport component,
and/or additional components. These components can be acti
vated and/or deactivated through appropriate commands in
the configuration file. During configuration, the agent 120 is
registered to a manager 130 and configured with characteris
tics based on its data source 110 and desired behavior. The
agent 120 is further configurable through both manual and
automated processes. For example, the manager 130 can send
to the agent 120 a command or configuration update.
0035. A manager 130 provides analysis capabilities, case
management workflow capabilities, and services capabilities.
Communications between the manager 130 and an agent 120
can be bi-directional (e.g., to enable the manager 130 to
transmit a command to the platform hosting the agent 120)
and encrypted. In some installations, the manager 130 can act
as a concentrator for multiple agents 120 and can forward
information to other managers 130 (e.g., managers deployed
at a corporate headquarters). To perform its tasks, the man
ager 130 uses a variety offilters, rules, reports, data monitors,
dashboards, and network models.
0036 Analysis can include detection, correlation, and
escalation. For example, the manager 130 cross-correlates the
events received from the agents 120 using a rules engine (not
shown), which evaluates each event with network model and
Vulnerability information to develop real-time threat summa
ries. Regarding case management, the manager 130 can
maintain reports regarding the status of security incidents and
their resolution. The manager 130 can also provide access to
a knowledge base.
0037. As events are received by the manager 130, the
events are stored in a database 140. Storing the events enables
them to be used later for analysis and reference. In one
embodiment, the database 140 is a database management
system (e.g., columnar, relational, hybrid, etc.).
0038 A user interacts with the manager 130 via a user
interface 160. The user interface 160 enables the user to
navigate the features and functions of the manager 130. A
single manager 130 can Support multiple user interface
instances. The features and functions that are available to the

Dec. 4, 2014

user can depend on the user's role and permissions and/or the
manager's configuration. In one embodiment, access control
lists enable multiple security professionals to use the same
manager 130 and database 140 but each professional has his
own views, correlation rules, alerts, reports, and knowledge
bases appropriate to his responsibilities. Communication
between the manager 130 and the user interface 160 is bi
directional and can be encrypted. The user interface 160 may
be used to receive queries to be executed on logged data.
0039. In one embodiment, a logging system 170 is an
event data storage appliance that is optimized for extremely
high event throughput. The logging system 170 stores events
(sometimes referred to as "log data'). Such as security events.
In one embodiment, the events are stored in compressed form.
However, the logging system 170 can retrieve these events on
demand and restore them to their original, unmodified form
for forensics-quality data. Multiple logging systems 170 can
work together to scale up to Support high Sustained input rates
when storing events. Event queries can be distributed across a
peer network of logging systems 170. A user can configure
the logging system 170 and provide queries via a user inter
face (not shown).
0040. The logging system 170 can receive both processed
events (e.g., events adhering to the Common Event Format)
and raw events. In one embodiment, raw events are received
directly from data sources 110 (such as Syslog messages and
log files), and processed events are received from agents 120
or managers 130. The logging system 170 can also send both
raw events and processed events. In one embodiment, raw
events are sent as syslog messages (to any device; not shown),
and processed events are sent to the manager 130.
0041. The logging system 170 includes an event clustering
module 172. The event clustering module 172 is configured to
receive event data in the form of chunks, which includes a
metadata structure and a compressed version of a set of
events. The set of events may be grouped by receipt time
(“rt'). In other words, the events can be thought of as being
clustered according to rt. The metadata structure may act as a
search index (e.g., cluster index) when querying event data.
The event clustering module 172 is configured to identify
chunks for further processing, and to cluster events from
those identified chunks according to the time of an events
occurrence (“et’). Chunks are generated for the re-clustered
events and are stored, for example in a read-optimized system
(“ROS). The logging system 170 will be further described
below with respect to FIG. 2.
0042. Through the above-described architecture, the sys
tem 100 can support a centralized or decentralized environ
ment. This is useful because an organization may want to
implement a single instance of the system 100 and use an
access control list to partition users. Alternatively, the orga
nization may choose to deploy separate systems 100 for each
of a number of groups and consolidate the results at a “mas
ter' level. Such a deployment can also achieve a “follow-the
Sun' arrangement where geographically dispersed peer
groups collaborate with each other by passing primary over
sight responsibility to the group currently working standard
business hours. Systems 100 can also be deployed in a corpo
rate hierarchy where business divisions work separately and
Support a rollup to a centralized management function.
0043. Event Data
0044 An example of the type of data stored in the data
storage system is event data. An event is an instance of data
collected and stored at the data storage system. The event may

US 2014/0359771 A1

be associated with or describe an activity or action that was
performed. In general, an event is generated once and does
not change afterwards. The event data includes event(s). The
event data may be comprised of log data, which can be gen
erated by various sources (including devices and applica
tions), and can be in any format. An event can be, for example,
an entry in a log file, an entry in a syslog server, an alert, an
alarm, a network packet, an email, a notification, etc.
0045. The event data may be correlated and analyzed to
identify network security threats. A security event is a type of
event and is any activity that can be analyzed to determine if
it is associated with a security threat. The activity may be
associated with a user, also referred to as an actor, to identify
the security threat and the cause of the security threat. Activi
ties may include logins, logouts, sending data over a network,
sending emails, accessing applications, reading or Writing
data, etc. A security threat includes activity determined to be
indicative of suspicious or inappropriate behavior, which may
be performed over a network or on systems connected to a
network. Common security threats, by way of example, are
user attempts to gain unauthorized access to confidential
information, such as Social security numbers, credit card
numbers, etc., over a network.
0046. The data sources for the events may include network
devices, applications or other types of data sources described
below operable to provide event data that may be used to
identify network security threats. Event data is data describ
ing events. Event data may be captured in logs or messages
generated by the data sources. For example, intrusion detec
tion systems (IDSs), intrusion prevention systems (IPSs).
Vulnerability assessment tools, firewalls, anti-virus tools,
anti-spam tools, and encryption tools may generate logs
describing activities performed by the source. Event data may
be provided, for example, by entries in a log file or a syslog
server, alerts, alarms, network packets, emails, or notification
pageS.
0047 Event data includes implicit meta-data and a mes
sage. Implicit meta-data can include information about the
device or application that generated the event, for example,
the device or application that generated the event (“event
source') and when the event was received from the event
source (“receipt time'). In one embodiment, the receipt time
is a date/time stamp, and the event source is a network end
point identifier (e.g., an IP address or Media Access Control
(MAC) address) and/or a description of the source, possibly
including information about the product’s vendor and Ver
sion. The time attributes, source information and other infor
mation is used to correlate events with a user and analyze
events for security threats. The time attributes may be further
used as keys to identify events that satisfy a query.
0048. The message represents what was received from the
event source and can be in any form (binary data, alphanu
meric data, etc.). In one embodiment, the message is free
form text that describes a noteworthy scenario or change. In
another embodiment, the message also includes explicit
meta-data. Explicit meta-data is obtained, for example, by
parsing the message. When an event source generates an
event, the event usually includes information that indicates
when the event occurred (“et'). The event occurrence time,
which is usually a date/time stamp, is an example of explicit
meta-data and is frequently used for analysis.
0049. In one embodiment, if an event does not include an
occurrence time, an implicit timestamp generated by an event
receiver when it was received the event (described below) is

Dec. 4, 2014

treated as the original occurrence timestamp. As an event is
processed and potentially forwarded through various sys
tems, each system may have an implicit notation of event
receipt time.
0050. In one embodiment, an event represents a data struc
ture that includes field(s), where eachfield can contain a value
(sometimes referred to as an “attribute”). If different events
include the same types of fields, then the events can be orga
nized in a table. Each row of the table would represent a
different event, and each column of the table would represent
a different field.

0051
0.052 FIG. 2 is a topological block diagram of a logging
system 200 of an information/event management system in
accordance with an embodiment. In the illustrated embodi
ment, the logging system 200 includes an event receiver 210,
a storage manager 220, and a communication mechanism
230. Although one event receiver 210 is shown for clarity, the
system 200 can Support a large number of concurrent sessions
with many event receivers 210. In one embodiment, each
event receiver 210 is associated with a unique identifier.
0053. The event receiver 210 receives log data 240, pro
cesses the log data 240, and outputs a data “chunk” 250. The
event data may be received in the form of a stream. Log data
may include events. The event receiver 210 includes a control
system 255, a set of buffers 260, and a metadata structure 265.
The control system 255 is communicatively coupled to the set
of buffer(s) 260 and the metadata structure 265. The control
system 255 controls operation of the event receiver 210, sepa
rates the log data into one or more events, and determines
when each event was received by the event receiver 210. The
control system 255 stores in the buffer 260 the events, and, for
each event, a time/date stamp that reflects when the event was
received, and also updates the metadata structure 265. The
control system 255 generates a data chunk 250 based on the
metadata structure 265 and the contents of the buffer 260,
which, as further described below, includes information
about events. In one embodiment, a chunk includes the meta
data structure 265 and a compressed version of the contents of
the buffer 260. Different chunks can have different sizes, and
a maximum size may be specified. A chunk is finally gener
ated, for example, when buffer 260 is full or when a particular
period of time (a “timeout window) has elapsed, during
which no events were received by buffer 260.
0054 Each buffer 260 stores information regarding one or
more events. The set of buffers 260 stores row-based chunks
and/or column-based chunks. In one embodiment, a buffers
size is fixed but the size itself is configurable. If different
events include the same types of fields, the events can be
organized in a table. Each row of the table may represent a
different event, and each column of the table may represent a
different field. In one embodiment, each buffer 260 is asso
ciated with a particular field and includes values from that
field (“attribute”) from one or more events. In another
embodiment, each buffer 260 also includes an identifier (“In
dexID) that indicates which field is associated with the
buffer.

0055 For example, assume that an event includes a field
called SourcePAddress whose value reflects the IP address of
the device that initiated the action represented by the event. A
buffer 260 associated with the SourcePAddress field would
contain one or more IP addresses (one IP address for each
event that was received and processed by the event receiver

Logging System Architecture

US 2014/0359771 A1

210 as part of the log data 240). The buffer 260 might also
contain an IndexID value of “100, which indicates the Sour
cePAddress field.

0056. In another embodiment, the set of buffers also
includes a ReceiptTime buffer that stores, for each event, a
time/date stamp that reflects when the event was received by
the event receiver 210.

0057 The metadata structure 265 stores metadata about
the contents of the set of buffers 260. In one embodiment, this
metadata includes the unique identifier associated with the
event receiver 210 that received the events, the number of
events in the set of buffers, and, for each of fields of interest
(e.g., receipt time, event occurrence time), a minimum value
and a maximum value that reflect the range of values (e.g.,
time range) of that field over all of the events in the set of
buffers. More specifically, the metadata of the chunk may
include, along with other information, start rt and end rt to
denote the start and end of the receipt time range. Further
more, the metadata may include start et and end et to denote
the start and end of the event occurrence time range. The
metadata structure 265 acts as an index (i.e., cluster index)
when querying event data.
0058. In one embodiment, receipt time (“rt”) is a field of
interest. In this embodiment, the metadata structure 265
stores a minimum value and a maximum value that reflect the
range of values of receipt times overall of the events in the set
of buffers. The minimum value ofrt is the receipt time for the
event in the set of buffers 260 that was received first. The
maximum value ofrt is the receipt time for the event in the set
of buffers 260 that was received last.

0059. Additionally, event occurrence time (“et') is also a
field of interest. In this embodiment, therefore, the metadata
structure 265 also stores a minimum value and a maximum
value that reflect the range of values of event occurrence times
overall of the events in the set of buffers. The minimum value
ofetis the event occurrence time for the eventinall events that
occurred first. The maximum value of et is the event occur
rence time for the event in all events that occurred last.

0060. The storage manager 220 receives data chunk(s) 250
and stores them so that it can be queried. In one embodiment,
storage manager 220 operates in a streaming manner to
reduce the memory overhead. The storage manager 220
includes a control system 270, a datafiles table 275, a chunks
table 280, a set of datafiles 285 in a write-optimized system
(“WOS) 283, and a set of datafiles 286 in a read-optimized
system (“ROS) 284. The WOS 283 may be any one of a
row-based storage system, column-based storage system, or a
hybrid row/column storage system. Likewise, the ROS 284
may be any one of a row-based storage system, column-based
storage system, or a hybrid row/column storage system. The
control system 270 is communicatively coupled to the data
files table 275, the chunks table 280, and the sets of datafiles
285 and datafiles 286.

0061 The control system 270 controls operation of the
storage manager 220 and includes a clustering module 276.
Clustering module 276 is configured to determine event data
in the form of chunks, which includes events clustered
according to receipt time (“rt”) of the event. This event data is
accessed via WOS 283. The event clustering module 276 is
further configured to identify sparse or overlapping chunks,
and cluster events from those identified chunks according to
an event time of occurrence (“et”). Chunks 252 are generated
for the re-clustered events and are stored in ROS 284.

Dec. 4, 2014

0062. The datafiles table 275 stores information about the
sets of datafiles 285 and datafiles 286. In one embodiment,
each entry in the datafiles table 275 represents one datafile
285 or one datafile 286 for which space has been allocated,
and the entry includes a unique identifier associated with the
datafile and the location of the datafile (e.g., a file system, a
path therein, and a file name). A datafile 285 and datafile 286
listed in the datafiles table 275 may or may not contain data
(e.g., chunks 250). The datafiles table 275 is stored, for
example, in a database (not shown). In one embodiment,
datafiles 285 and datafiles 286 are allocated before being
needed. In this embodiment, a list of these pre-allocated data
files 285 and datafiles 286 (called a “free list”) is maintained.
The datafiles table 275 may include multiple tables, for
example having a table associated with datafiles 285 and
another table associated with datafiles 286.

0063. The chunks table 280 stores and maintains informa
tion about the chunk(s) 250 and chunks 252 that are stored in
the storage manager 220 (specifically, stored in the datafile(s)
285 and datafile(s) 286). In one embodiment, this information
includes, for each chunk 250 and chunk 252, the metadata
stored in the chunk and the location of the chunk (e.g., the
unique identifier associated with the datafile that stores the
chunk and the location within the datafile where the chunk is
stored (e.g., as an offset)). The chunks table 280 is stored, for
example, in a database (not shown). The chunks table 280
may include multiple tables, for example having a table asso
ciated with datafiles 285 and another table associated with
datafiles 286.

0064. A datafile 285 stores multiple chunks 250. In one
embodiment, all datafiles are the same size (e.g., 1 gigabyte)
and are organized in time order. A datafile 286 stores multiple
chunks 252. In one embodiment, all datafiles are organized in
time order, where datafiles 285 are organized in order by
receipt time and datafiles 286 are organized in order by event
occurrence time. The datafile 285 and datafile 286 are stored,
for example, on a raw disk or in a data storage system such as
a file system (not shown).
0065. The communication mechanism 230 communica
tively couples the event receiver 210 and the storage manager
220. In one embodiment, the communication mechanism 230
includes a partially-public or wholly-public network such as
the Internet. In other embodiments, the communication
mechanism 230 includes a private network or one or more
distinct or logical private networks (e.g., virtual private net
works or local area networks). Communication links to and
from the communication mechanism 230 can be wired or
wireless (e.g., terrestrial- or satellite-based transceivers). In
one embodiment, the communication mechanism 230 is a
packet-switched network such as an IP-based wide or metro
politan area network that uses the Ethernet protocol.
0066. In another embodiment, the communication mecha
nism 230 is local to a single computer system (e.g., ifa portion
of the event receiver 210 and a portion of the storage manager
220 are executing on the same device). In this embodiment,
the communication mechanism 230 is implemented, for
example, through a local, Software-only loopback device. For
example, the data is copied to various locations in memory,
and communication occurs via an API.

0067. In yet another embodiment, the communication
mechanism 230 is local to a single process (e.g., ifa portion of
the event receiver 210 and a portion of the storage manager
220 are executing on the same device and in the same pro

US 2014/0359771 A1

cess). In this embodiment, the communication mechanism
230 is implemented, for example, through shared memory
and/or pointers thereto.
0068 Checkpoints
0069. To ensure reliability, the storage manager 220 pro
cesses the events in batches (e.g., 1000 chunks) and creates
checkpoints after processing each chunk batch. The fre
quency at which the checkpoints are created is configurable.
A checkpoint can be thought of as a marker which indicates
that the data up to a particular point in time has been pro
cessed. In the occurrence of a system crash, the system can
resume processing the data from the point in time after the
marker was set.

0070
0071 FIG. 3A is a process flow diagram for generating a
chunk of events based on event occurrence time inaccordance
with an embodiment. The depicted process flow 300 may be
carried out by execution of sequences of executable instruc
tions. In another embodiment, various portions of the process
flow 300 are carried out by components of an information/
event management system, an arrangement of hardware
logic, e.g., an Application-Specific Integrated Circuit
(ASIC), etc. For example, blocks of process flow 300 may be
performed by execution of sequences of executable instruc
tions in a clustering module of the information/event man
agement System.
0072 Events are clustered along multiple time dimen
sions, and an index is maintained for each of the relevant time
dimensions. In one embodiment, all events are clustered
along a primary time dimension, and a Subset of those events
are re-clustered along a secondary time dimension. The
events that are re-clustered are those which were a part of a
cluster (along the primary time dimension) that does not have
minimized ranges for the relevant time dimensions and/or
maximized chunk size. As used herein, chunk size refers to
the number of events in a chunk.

0073. In one embodiment, events are clustered by time of
receipt (“rt'), which is the primary time dimension, and the
resulting chunks are saved in a write-optimized store. The
secondary time dimension may be event occurrence time
(“et”). As described below, steps 305-315 describe the pro
cess of determining the density level of chunks. The density
level is used to identify the subset of events for re-clustering,
i.e., clustering according to the secondary time dimension.
Determining the density level may be performed offline after
the chunk is generated, received, or stored (e.g., in a datafile).
Alternatively, density levels are determined in a streaming
manner as they are received.
0074 At step 305, metadata associated with a chunk is
read, for example, to memory. The metadata of the chunk
includes, along with other information, start rt, end rt, start
et and end et to denote the start and end time ranges of the
events grouped in the particular chunk. Each chunk includes
a set of events which were clustered based on the associated
receipt time. The associated metadata may be stored in the
chunk and thus is extracted from the chunk. The metadata
may be extracted when the chunk is generated, received, or
after the chunk has been stored (e.g., in a datafile). In another
embodiment, the metadata is stored separately from the data
file and is retrieved, for example, from a chunks table. As
previously described, the metadata structure acts as an index.
As such, the metadata structure associated with each cluster
may include an index for the range of receipt times of the

Clustering Based on Event Occurrence Time

Dec. 4, 2014

chunk (clustered by receipt time) and another index for the
range of event occurrence times for the same chunk.
(0075. At step 310, a density level of the chunk is deter
mined, based on a range of event occurrence times of the
events in the chunk. The range of event occurrence times is
determined from the associated metadata. The density level
may be determined by dividing the total number of events in
the chunk by the range of event occurrence times, for
example:

number of events in chunk
density =
ensity (end et - startet)

0076. At step 315, the chunk is identified, for example as
being one of a dense, sparse, or overlap chunk, for example,
using a tag.
0077. A dense chunk is one in which the et range is rela
tively short. The et range may be measured against a dense
time range threshold. For a dense chunk, the events need not
be shuffled into new chunks.

0078. A sparse chunk is one in which the et range is rela
tively long. The et range may be measured against a sparse
time range threshold. In other words, the chunk is sparse with
respect to et, and therefore needs to be merged into other
chunks. The sparse time range threshold is greater than the
dense time range threshold.
0079 An overlap chunk is one in which the et range of a
dense chunk overlaps with the et range of a sparse chunk. In
other words, an overlap chunk is a dense chunk which over
laps (in et time range) with a sparse chunk, and as Such, can be
optimized by the re-clustering process. The manner in which
overlap chunks are optimized is further described below.
0080. To tag these chunks efficiently, an interval tree may
be used. The intervals are built on start et, end et the event
occurrence time ranges for all the chunks. The interval trees
allow fast lookup of range intersections (i.e., O(log n) time),
and as such, the tagging process is quite efficient. The tag may
be maintained in memory, or alternatively, may be stored on
disk. In another embodiment, the chunk is tagged with the raw
density level and is characterized as being one of dense,
sparse, or overlap later during the re-clustering process.
I0081. The subset of chunks for re-clustering are then
selected. At step 320, the metadata portion of the chunk is
read from storage (e.g., write-optimized storage (“WOS),
into memory. In one embodiment, the chunks are readin order
of start et for the range of event occurrence times for the
chunk, Such that the chunks having events with the earlier
start event occurrence times are read first.

I0082. At step 325, it is determined whether the chunk is
either a sparse chunk or an overlap chunk. If the chunk is
neither sparse nor overlap, it is determined the chunk is a
dense chunk. As previously discussed, the events in a dense
chunk need not be shuffled, and as such, processing ends.
0083. On the other hand, where the chunk is found to be
either a sparse or overlap chunk, processing continues to step
330, where events from sparse and/or overlap chunks are
re-clustered or otherwise clustered according to time of
occurrence of the events. Clustering according to the primary
and secondary time dimensions minimizes both the ranges of
et and rt of the chunks. Re-clustering is further described with
respect to FIG. 3B. Processing then continues back to step
320, where the metadata portion of another chunk is read.

US 2014/0359771 A1

0084. At any time during the re-clustering process, it is
determined whether a density threshold has been satisfied or
stale events are detected, at step 340.
0085. The density threshold ensures that the chunks that
are created as a part of the re-clustering process are optimized
by minimizing the et range. The density threshold may be
configurable. Where the density of any new chunk-in-forma
tion is greater than the density threshold, it is determined
there are enough events in the chunk. At step 350, a new
chunk is generated and all events in the newly-generated
chunk are saved in a read-optimized storage (“ROS) and
removed from memory.
I0086 During the re-clustering process, there may be some
events that are not clustered with other events, for example,
based on Some incongruity with the event occurrence times.
Therefore, it is possible to have events which can stay in
memory for a long time, without actually getting written to
the read-optimized store. These events may be stale events. To
reduce the memory overhead, Stale events may be grouped
into N chunks, where the number N is configurable. These
chunks are stored in ROS, and cleared from memory.
0087. As such, the detection of stale events is another
trigger for generating and storing a chunk in the ROS and
removing all events in the chunk from memory. A stale event
is an event that has an event occurrence time that is less than
(or earlier in time from) the start event occurrence time of a
current chunk. As previously described, chunks are read in
ascending order of the starting event occurrence time in the
range of event occurrence times. The current chunk is the
latest chunk to be read. Stale events are removed from
memory since there cannot be any events with event occur
rence time less than the start event occurrence time of a
current chunk, as chunks are read in order of the starting event
occurrence time. In one embodiment, the stale events are
grouped together in a chunk and stored. The stale event chunk
is created, for example, when the chunk size meets a threshold
(e.g., 5000 stale events).
0088. If neither the density threshold has been satisfied nor
stale events are detected, no additional steps are taken and the
re-clustering process continues. On the other hand, if either
condition is satisfied, a chunk is generated and saved in Stor
age, for example a read-optimized storage (“ROS), at step
350. The metadata associated with the newly-generated
chunk is updated, for example, to reflect the range of receipt
time values and event occurrence time values over all the
events in the chunk.

0089. One or more structures may store information about
the chunks that are stored in both the write-optimized storage
and the read-optimized storage. When a new chunk is gener
ated, the associated metadata and location of the chunk in the
read-optimized storage is maintained. For example, a chunks
table may be updated to include information of a newly
generated chunk. Specifically, an entry in the chunks table
may be added. The entry includes the metadata associated
with the new chunk (including range ofrt and range of et) and
the location of the chunk (e.g., the unique identifier associated
with the ROS datafile that stores the chunk and the location
within the datafile where the chunk is stored (e.g., as an
offset)).
0090. In one embodiment, the entries of the original chunk
are maintained. Alternatively, these entries may be removed
from the chunks table and from disk, for example, if all of the
information in the original chunks are exactly replicated from

Dec. 4, 2014

the original chunk. As used herein, an original chunk is one
that has events grouped by the primary time dimension.
0091. The events may be clustered and/or re-clustered in
real-time, thereby avoiding expensive I/Os that would be
otherwise introduced by loading the events in an offline man
ner and Subsequently clustering. Furthermore, clustering
based on multiple dimensions may improve query perfor
mance for any database management system (e.g., row-ori
ented, column-oriented, etc.) with temporal data attributes.
0092. Furthermore, the size of the newly-generated
chunks may be kept as close as possible to the original chunk
sizes, being neither too large nor too small. For example, a
dense chunk will fall within the range of a max chunk size
threshold (e.g., 50,000 events) and a minimum chunk size
threshold (e.g., 5000 events). Generating too small chunks
will create a large amount of metadata information, and there
will be a small number of event for each metadata entry.
Having more chunks and thereby more metadata entries will
increase the size of the metadata store, which may involve
more disk, processor, and time for management. Further
more, the larger metadata store will increase the time taken to
read entries therein during query time.
0093. A delayed event is one that transfers through the
network slowly and is delayed when finally received. A
batched event is one that that is purposefully delayed prior to
being transmitted (e.g., events are collected and sent as a
batch every 10 minutes). Batched, delayed, or otherwise late
events can be stored and queried efficiently. Since the re
clustering process creates chunks which have events grouped
by event occurrence time, the batched or delayed events can
be merged in a chunk along with other events with nearby
event occurrence times. As a result, these type of late events
can be quickly queried using the chunk's metadata.
0094 FIG. 3B is a process flow diagram for clustering
events into chunks based on a event occurrence time in accor
dance with an embodiment. The depicted process flow 331
may be carried out by execution of sequences of executable
instructions. In another embodiment, various portions of the
process flow 331 are carried out by components of an infor
mation/event management system, an arrangement of hard
ware logic, e.g., an Application-Specific Integrated Circuit
(ASIC), etc. For example, blocks of process flow 331 may be
performed by execution of sequences of executable instruc
tions in a clustering module of the information/event man
agement System.
0.095. In one embodiment, a subset of chunks have been
identified for re-clustering. Clustering may be performed on a
secondary time dimension, such as an event occurrence time.
The chunks that were identified for re-clustering (e.g., sparse
and/or overlapping chunks) are read, for example from a
write-optimized storage (“WOS), into memory. At step 333,
the sparse and/or overlapping chunks are disassembled into
their constituent events. In other words, the events in the
identified chunks are read into memory.
0096. At step 335, each event is sorted into a group, based
on the time of occurrence of the event. Each group is associ
ated with a specified et time range (e.g., one minute ranges).
By placing the events in these groups, the memory overhead
and the management tasks for creating balanced chunks may
be reduced.
0097. At step 337, the groups are clustered into a plurality
of chunks, such that a density level of each chunk is balanced
among the plurality of chunks. For example, an augmented
red-black tree structure may be implemented to generate the

US 2014/0359771 A1

balanced chunks. Each group, as opposed to each individual
event, may be implemented as a node in the tree, which
reduces overhead and management.
0098. Each node in the augmented tree may maintain the
density of the events in its sub-trees. The density of a node is
the number of events in the sub-tree divided by the difference
between the maximum event occurrence time in the sub-tree
and the maximum event occurrence time in the Subtree, for
example:

number of events in subtrees
node density =

maxsh & minish et

0099. These density values are maintained as events are
added or removed and the tree is rebalanced. When the tree is
Sufficiently balanced, the optimized chunks are created and
stored in the read-optimized storage. As such, both the ranges
of et and rt of the newly-generated chunks are minimized,
while the chunk size is maximized.
0100 For overlap chunks in particular, the events in a
sparse chunk that overlap with the events in a dense chunk are
merged with the events in the dense? overlap chunk. As a result
of the merge, the dense chunk becomes denser. Stated another
way, the events in the sparse chunk which overlap with the
dense chunk are identified. These events are merged, by event
occurrence time, with the dense chunk.
0101 FIG. 4A is a process flow diagram for clustering
sparse event streams in accordance with an embodiment. The
depicted process flow 400 may be carried out by execution of
sequences of executable instructions. In another embodi
ment, various portions of the process flow 400 are carried out
by components of an information/event management system,
an arrangement of hardware logic, e.g., an Application-Spe
cific Integrated Circuit (ASIC), etc. For example, blocks of
process flow 400 may be performed by execution of
sequences of executable instructions in a clustering module of
the information/event management system.
0102 At step 405, the events that could not be grouped in
a dense chunkare identified. At step 410, the identified events
are clustered into chunks, for example based on time of
receipt of the event. Since these chunks do not satisfy the
minimum density threshold, they are sparse chunks. The
metadata associated with the newly-generated chunk is
updated, for example, to reflect the range of receipt time
values and event occurrence time values overall the events in
the chunk. In another embodiment, the events are grouped
into a chunk to satisfy a minimum density parameter (S). For
example, a number of events from memory are grouped into
a chunk when the chunk satisfies the minimum density
threshold S, and are stored in ROS.
0103) At step 420, the chunks are stored, for example in a
read-optimized storage (“ROS). All events in the chunk are
removed from memory. A chunks table is updated to include
information of a newly-generated chunk. Specifically, an
entry in the chunks table may be added. The entry includes the
metadata associated with the new chunk (including range ofrt
and range of et) and the location of the chunk (e.g., the unique
identifier associated with the ROS datafile that stores the
chunk and the location within the datafile where the chunk is
stored (e.g., as an offset)).
0104. The minimum density threshold ensures that the
target chunks will have at least S density. This may prevent an

Dec. 4, 2014

adversary from creating a sparse event stream that can possi
bly create large numbers of sparse chunks.
0105. As such, the generated chunks are more dense. For a
normally distributed event stream, denser chunks create
fewer splits, hence improving query performance.
0106 Querying/Data Retrieval
0.107 After a chunk has been stored in a datafile, such as
datafile 285 or datafile 286, the events within the chunk can be
queried. A query is represented as an expression that can be
evaluated against an event. The expression includes one or
more search terms. In one embodiment, the query process
occurs in multiple phases. The first phase identifies which
data chunks (if any) could contain an event that satisfies the
query. The second phase disassembles the identified chunks
into their constituent events. The third phase identifies which
of these events (if any) satisfy the query. The first phase
thereby acts as a “rough cut for identifying which data
chunks (and their events) should be investigated further and
which data chunks (and their events) should be ignored.
0108. In the first phase, search terms within the query are
identified that concern information that was contained in the
metadata as stored in the chunks table 280. This metadata
information includes, for each field of interest, a minimum
value and a maximum value that together reflect the range of
values of that field over multiple events in the same data
chunk. Recall, the chunks table 280 stores the metadata infor
mation for chunks in both the write-optimized storage and the
read-optimized storage. When new chunks were created as a
part of the re-clustering process, the metadata associated with
those new chunks was also stored in the chunks table 280.
Thus, in order to search the events, the “metadata search
terms are used to search the chunks table 280. This will yield
which chunks (if any) could contain an event that satisfies the
metadata search terms. In this way, a search can be con
strained based on particular values (or ranges of values) for
fields of interest (since these values are stored in the metadata
in the chunks table 280), including both receive time and the
event occurrence time.
0109 Because “field of interest metadata is expressed as
a range of values, the fact that a chunk satisfies a metadata
search term does not necessarily mean that the chunk contains
an event that satisfies the metadata search term. For example,
if the metadata search term is a field value of event occurrence
time of 3:10 PM and the chunk contains events whose event
occurrence times are3:05PM and 3:15PM, respectively, then
3:10 PM will fall within the range, and the chunk will be
identified as satisfying the metadata search term. However,
the chunk may not contain an event with a field value of 10.
(That is why the query occurs in two phases.) What is always
true, however, is that if a chunk could contain an event that
satisfied the search term, then that chunk will be identified as
satisfying the search term.
0110. In the second phase, the identified chunks are dis
assembled into their constituent events. If the event portion of
a chunk includes a compressed version of the events, then the
event portion is decompressed before it is divided into its
constituent events.
0111. In the third phase, each event is compared with the
complete set of search terms in order to determine whether the
event satisfies the search terms. In one embodiment (not
shown), the events are analyzed in a particular order. For
example, the events are analyzed based on their event receipt
time. Analyzing the events in aparticular order and appending
matching events to the search results means that the events in

US 2014/0359771 A1

the search results will already be in that particular order. No
sorting of the events is involved.
0112 The search may be performed on events that are
stored in chunks 250. However, the logging system 170 may
contain additional events in the event receiver 210 (e.g.,
within the set of buffers 260) that have not yet been stored in
a chunk. In one embodiment, the search will not be performed
on these events. In one embodiment, before the process is
initiated, the set of buffers 260 are flushed so that the events
will be sent to the storage manager 220 and stored in a chunk.
This way, when the search is executed, the events that were
formerly in the set of buffers will be searched also. In another
embodiment, a separate search is executed on the event
receiver 210 using the contents of the metadata structure 265
and the set of buffers 260, similar to the search described
above. This way, all events will be searched, whether they are
stored in the storage manager 220 or in the event receiver 210.
0113 FIG. 4B is a process flow diagram for querying in
accordance with an embodiment. The depicted process flow
450 may be carried out by execution of sequences of execut
able instructions. In another embodiment, various portions of
the process flow 450 are carried out by components of an
information/event management system, an arrangement of
hardware logic, e.g., an Application-Specific Integrated Cir
cuit (ASIC), etc. For example, blocks of process flow 450
may be performed by execution of sequences of executable
instructions in a clustering module of the information/event
management System.
0114. A search query may be received. The search query
includes one or more search terms. Any metadata search
terms (within the received search query) are identified at step
455. For example, the search term is with respect to a time
dimension, Such as event occurrence time or time of receipt.
In one embodiment, both of these time dimensions are “fields
of interest, and thus have value ranges stored in the metadata
portions of any chunks in the WOS 283 and/or ROS 284 and
in the chunks table 280.
0115. At step 460, a chunks table is searched using the
metadata search terms. Recall that each entry in the chunks
table 280 corresponds to a chunk 250, and an entry includes
the metadata stored in the chunk and the physical location of
the chunk in either a write-optimized store or a read-opti
mized store. The identified metadata search terms are used to
search the metadata portion of the chunks table 280.
0116. At step 465, the chunks that satisfy the metadata
search terms are retrieved from the read-optimized storage
(“ROS) and/or the write-optimized storage (“WOS) using
the location of the chunk, which was stored in the chunks
table.
0117. The retrieved chunks are disassembled 470 into
their constituent events. At step 475, each event is evaluated
against the search query in order to determine whether the
event satisfies the query. If an event satisfies the query, it is
included in the search results.
0118 For example, one common type of search term
includes a timestamp field (e.g., Event Receipt, Event Occur
rence) and a period of time (e.g., a start time and an end time).
The search query may specify: select count() from events
where A=X, B=Y, and where Event Occurrence is between
Monday 12:00 AM and Tuesday 12:00 AM. Assume the
attribute A is in ROS, but the attribute B is not.
0119. In operation, the metadata search term (i.e., event
occurrence range) is identified, as described in step 455. At
step 460, the event occurrence range is used to search the

Dec. 4, 2014

chunks table, which includes an index keyed on the event
occurrence range. The entries that satisfy the metadata search
term are identified. As previously discussed, each entry
includes the location of the chunk (e.g., the unique identifier
associated with the datafile that stores the chunk and the
location within the datafile where the chunk is stored (e.g., as
an offset)). The datafiles may be either in ROS or WOS. In one
embodiment, it is determined which parts of the query can be
satisfied by the ROS alone. For all others, the WOS is
accessed, for example, after reducing the time range as
needed.
I0120 Since the ROS can be queried more efficiently than
the WOS, the ROS is searched first. The chunks table may be
referenced to identify and retrieve from the ROS datafiles all
chunks that satisfy the event occurrence time range, as
described at step 465.
I0121. The retrieved ROS chunks (from the ROS datafiles)
are then disassembled into their constituent events. The
search query is evaluated on these events, as described at step
475. In particular, the events are scanned quickly to identify
which satisfy the condition A=X.
0.122 To reduce the metadata search term time range, and
therefore provide enhanced search performance, the subset of
the range of the ROS chunks that satisfied the condition A=X
is determined. For example, these ROS chunks may have an
event occurrence time range of Monday 12:00 AM Monday
1:00 PM, and Monday 4:00 PM. Tuesday 12:00 AM. The
search term time range may be reduced to event occurrence
time of Monday 1:01 PM Monday 4:00 PM, to cover the
gap in the total time range in the search query. As such, the
range of event occurrence times that are searched are signifi
cantly Smaller than in the original search query.
I0123. In a recursive manner, the chunks table may be
referenced again, this time to identify all WOS chunks that
satisfy the reduced event occurrence time range, as described
at step 460. The chunks table may be referenced to identify
and retrieve from the WOS datafiles all chunks that satisfy the
reduced event occurrence time range, as described at Step
465. The retrieved ROS chunks (from the ROS datafiles) are
then disassembled into their constituent events, as described
at step 470. The search query is evaluated on these events, as
described at step 475. In particular, the events are scanned
quickly to identify which satisfy the condition B=Y.
0.124 FIG. 5 illustrates a computer system in which an
embodiment may be implemented. The system 500 may be
used to implement any of the computer systems described
above. The computer system 500 is shown comprising hard
ware elements that may be electrically coupled via a bus 524.
The hardware elements may include at least one central pro
cessing unit (CPU) 502, at least one input device 504, and at
least one output device 506. The computer system 500 may
also include at least one storage device 508. By way of
example, the storage device 508 can include devices such as
disk drives, optical storage devices, solid-state storage device
Such as a random access memory (RAM) and/or a read
only memory (“ROM), which can be programmable, flash
updateable and/or the like.
0.125. The computer system 500 may additionally include
a computer-readable storage media reader 512, a communi
cations system 514 (e.g., a modem, a network card (wireless
or wired), an infra-red communication device, etc.), and
working memory 518, which may include RAM and ROM
devices as described above. In some embodiments, the com
puter system 500 may also include a processing acceleration

US 2014/0359771 A1

unit 516, which can include a digital signal processor (DSP),
a special-purpose processor, and/or the like.
0126 The computer-readable storage media reader 512
can further be connected to a computer-readable storage
medium 510, together (and in combination with storage
device 508 in one embodiment) comprehensively represent
ing remote, local, fixed, and/or removable storage devices
plus any tangible non-transitory storage media, for tempo
rarily and/or more permanently containing, storing, transmit
ting, and retrieving computer-readable information (e.g.,
instructions and data). Computer-readable storage medium
510 may be non-transitory such as hardware storage devices
(e.g., RAM, ROM, EPROM (erasable programmable ROM),
EEPROM (electrically erasable programmable ROM), hard
drives, and flash memory). The communications system 514
may permit data to be exchanged with the network and/or any
other computer described above with respect to the system
500. Computer-readable storage medium 510 includes a clus
tering module 527.
0127. The computer system 500 may also comprise soft
ware elements, which are machine readable instructions,
shown as being currently located within a working memory
518, including an operating system 520 and/or other code
522. Such as an application program (which may be a client
application, Web browser, mid-tier application, etc.). It
should be appreciated that alternate embodiments of a com
puter system 500 may have numerous variations from that
described above. For example, customized hardware might
also be used and/or particular elements might be imple
mented in hardware, Software (including portable Software,
Such as applets), or both. Further, connection to other com
puting devices such as network input/output devices may be
employed.
0128. The specification and drawings are, accordingly, to
be regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made.
0129. Each feature disclosed in this specification (includ
ing any accompanying claims, abstract and drawings), may
be replaced by alternative features serving the same, equiva
lent or similar purpose, unless expressly stated otherwise.
Thus, unless expressly stated otherwise, each feature dis
closed is one example of a generic series of equivalent or
similar features.

What is claimed is:
1. A method for processing log data, the method compris

ing:
determining, by a computing device, a set of data chunks,

each data chunk includes a set of events clustered
according to a primary time dimension field of each
event of the set of events;

for each data chunk of the set of data chunks, determining
a metadata structure that comprises a range of the pri
mary time dimension field of all of the events in the data
chunk and a range of a secondary time dimension field of
all of the events in the data chunk;

Selecting a Subset of the data chunks;
disassembling the Subset of data chunks into a plurality of

events; and
generating a data chunk including at least one event of the

plurality of events, the event is clustered in the data
chunk according to the secondary time dimension field
of the at least one event.

Dec. 4, 2014

2. The method of claim 1, wherein the range of the primary
time dimension field comprises minimum value of the pri
mary time dimension field of all of the events in the data
chunk and a maximum value of the primary time dimension
field of all of the events in the data chunk, and wherein the
range of the secondary time dimension field comprises a
minimum value of the secondary time dimension field of all
of the events in the data chunk and a maximum value of the
secondary time dimension field of all of the events in the data
chunk.

3. The method of claim 1, wherein selecting the subset
comprises: for each data chunk in the set of data chunks,

determining a density level of the chunk; and
determining, based on the density level of the chunk, the

Subset comprises the data chunk if the data chunk is a
sparse chunk or a dense chunk.

4. The method of claim 3, wherein determining the density
level comprises:

determining a number of events associated with the chunk;
and

dividing the number of events by a range of the secondary
time dimension field of the events of the chunk.

5. The method of claim 3, further comprising:
comparing a range of the secondary time dimension field of

the chunk to a dense time range threshold;
determining the chunk is a dense chunk if the range meets

the dense time range threshold;
comparing the range of the secondary time dimension field

of the chunk to a sparse time range threshold; and
determining the chunk is a sparse chunk if the range meets

the sparse time range threshold.
6. The method of claim 5, further comprising:
comparing the range of the secondary time dimension field

of the chunk to a range of the secondary time dimension
field of the sparse chunk; and

determining the chunk is an overlap chunk if the range of
the chunk overlaps with the range of the sparse chunk.

7. The method of claim 1, wherein a plurality of data
chunks are generated, and wherein the density level of the
data chunk is balanced among the plurality of generated data
chunks.

8. The method of claim 1, wherein the primary time dimen
sion field is an event receipt time.

9. The method of claim 1, wherein the secondary time
dimension field is an event occurrence time.

10. The method of claim 1, further comprising:
storing the generated chunk in a datafile in a read-opti

mized store; and
updating the metadata structure to include information

about the generated chunk.
11. The method of claim 1, wherein the metadata structure

further comprises a location of each chunk of the set of
chunks in a write-optimized store, and a location of the gen
erated chunk in a read-optimized store.

12. The method of claim 1, further comprising:
receiving a search query that includes a set of search terms;
identifying at least one search term, from the set of search

terms, that concerns event time information that is con
tained in the metadata structure; and

searching the metadata structure by comparing the identi
fied search term to the minimum value of the primary
time dimension field and to the minimum value of the
secondary time dimension field.

US 2014/0359771 A1

13. The method of claim 12, further comprising:
identifying a data chunk that satisfies the search terms; and
retrieving the identified data chunk from a read-optimized

StOre.

14. A system for processing log data, comprising:
a receiving module to generate a set of data chunks, each

data chunk includes a set of events clustered according
to a primary time dimension field of each event of the set
of events;

a chunks table to maintain, for each data chunk of the set of
data chunks, a metadata structure that comprises a range
of the primary time dimension field of all of the events in
the data chunk and a range of a secondary time dimen
sion field of all of the events in the data chunk;

a read-optimized store to store the set of data chunks;
a write-optimized store; and
a clustering module to select a Subset of the data chunks,

and generate a data chunk using events of the Subset,
wherein the events of the Subset are grouped according
to the secondary time dimension field.

Dec. 4, 2014

15. A non-transitory computer-readable medium storing a
plurality of instructions to control a data processor to process
log data, the plurality of instructions comprising instructions
that cause the data processor to:

determine a set of data chunks, each data chunk includes a
set of events clustered according to a primary time
dimension field of each event of the set of events;

for each data chunk of the set of data chunks, determine a
metadata structure that comprises a range of the primary
time dimension field of all of the events in the data chunk
and a range of a secondary time dimension field of all of
the events in the data chunk;

select a Subset of the data chunks;
disassemble the subset of data chunks into a plurality of

events; and
generate a data chunk including at least one event of the

plurality of events clustered in the data chunk according
to the secondary time dimension field of the at least one
event.

