a2 United States Patent

Porzio et al.

US011983073B2

US 11,983,073 B2
May 14, 2024

(10) Patent No.:
45) Date of Patent:

(54) HARDWARE RESET MANAGEMENT FOR
UNIVERSAL FLASH STORAGE

(71) Applicant: Micron Technology, Inc., Boise, ID
(US)

(72) Inventors: Luca Porzio, Casalnuovo (IT);
Ferdinando Pascale, Ottaviano (IT);
Roberto Izzi, Caserta (IT); Marco
Onorato, Villasanta (IT); Erminio Di
Martino, Quarto (IT)

(73) Assignee: Micron Technology, Inc., Boise, ID
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 111 days.

(21) Appl. No.: 17/874,952

(22) Filed: Jul. 27, 2022

(65) Prior Publication Data
US 2024/0036977 Al Feb. 1, 2024

(51) Imt.CL
GO6F 15/177 (2006.01)
GO6F 124 (2006.01)
GO6F 9/00 (2006.01)
GO6F 9/4401 (2018.01)
GO6F 11/14 (2006.01)

(52) US. CL
CPC GO6F 11/1417 (2013.01); GO6F 1/24

(2013.01); GOGF 9/4405 (2013.01)

Initiate First Phase of

Boot-Up Procedure

Receive First Reset
Comman

Perform First Reset
Operation

Initiate Second Phase
of Boot-Up Procedure

Determine Likelihood
r—»| of Receiving a Second
Reset Command | \, 430

Is Second
Reset
Likely?

Is
Second Reset
Command
Received?

(58) Field of Classification Search
CPC ... GOG6F 11/1417; GO6F 1/24; GO6F 9/4405
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

11,194,587 B2* 12/2021 Leeccoviininne GOG6F 9/4401
2019/0188083 Al* 6/2019 Cho GO6F 11/1441
2021/0004241 Al* 1/2021 Banik GOG6F 9/4406
2022/0284105 Al* 9/2022 Krishnegowda GOG6F 3/0679
2023/0069752 Al* 3/2023 IzzZi .o GOG6F 3/0679
2023/0195474 Al* 6/2023 Basso GO6F 12/0882

713/2

* cited by examiner

Primary Examiner — Xuxing Chen
(74) Attorney, Agent, or Firm — Holland & Hart LLP

(57) ABSTRACT

Methods, systems, and devices for hardware reset manage-
ment for universal flash storage (UFS) are described. A UFS
device may initiate a boot-up procedure that includes mul-
tiple phases. The UFS device may perform a first reset
operation to reset one or more circuits based on receiving a
first reset command during a first phase. The UFS device
perform a second phase and may initiate a portion of a
second reset operation to reset the one or more circuits
during the second phase based on a likelihood that a second
reset command is to be received. The UFS device may
receive the second reset command during the second phase
after initiating the portion of the second reset operation. The
UFS device may initiate a second portion of the second reset
operation based on receiving the second reset command and
initiating the portion of the second reset operation.

25 Claims, 6 Drawing Sheets

Initiate First Portion

of the Second Reset \
Operation 450

Monitor for Second
Reset command
455

Receive Second Reset

command 460

Tnitiate Second
Portion of the Second
Reset Operation

465

Initiate Third Phase of
Boot-Up Procedure

470

Initiate Full Second
Reset Operation

Initiate Third Phase of

Boot-Up Procedure 480

e 400

U.S. Patent May 14, 2024 Sheet 1 of 6 US 11,983,073 B2

Host System 105

Host System Controller 106

A

Memory System 110

Y

Memory System Controller 115

Local Memory 120

A A
A 4 v
Memory Device 130-a Memory Device 130-b
Local Controller Local Controller
135-a 135-b

FIG. 1

U.S. Patent May 14, 2024 Sheet 2 of 6 US 11,983,073 B2

Memory System 210

Memory System
Controller 215
" puer L
L Quee 1~ 265
A
Y
Bus 235
A A A
A 4 Y Y
Interface Buffer Storage
Host 220 225 Controller
System [], 230
o o Cfb Cﬁ =
ICmd Queue: 250 250 Storage :
L —— L, Queve
e -
260 270
Memory
Devices
240

FIG. 2

US 11,983,073 B2

Sheet 3 of 6

May 14, 2024

U.S. Patent

00¢
™

¢ DId

swrL

GZ€ puelwio)) 1989y

0LE 9-06¢ 213 q-0¢¢ Sy B-05¢
SPUBUWOT) [oUISH WMd Spuewiwion) TgX NWMd Spuelilion "1dd NWMd
|
sope | | | ooE ToFE 73 TORE
dn-ueg _ peoT dn-ues j00¢g dn-1meg
Jury _ [PuIay Jury S40 Aqury
I
_
............ I T
“ TaX
_ 0ds 19X
_
[PuIod] 19X 1dd

~

333

0T¢

qIe
AHd N

0r¢
20189

S4N

S0¢
ndo

U.S. Patent

Power On

Initiate First Phase of

:

Receive First Reset
Command

:

Perform First Reset
Operation

,

Initiate Second Phase

'

Determine Likelihood

Reset Command

Is Second
Reset
Likely?

440

Is
Second Reset

May 14, 2024

Boot-Up Procedure \ 410

\ 415

\ 420

of Boot-Up Procedure \ 05

—»| of Receiving a Second \
4

Sheet 4 of 6

US 11,983,073 B2

Initiate First Portion
of the Second Reset
Operation

\ 450

I

Monitor for Second
Reset command

.

\ 455

Receive Second Reset
command

\ 460

'

Initiate Second
Portion of the Second
Reset Operation

\ 465

:

Initiate Third Phase of
Boot-Up Procedure

\ 470

Initiate Full Second
Reset Operation

\ 475

'

Initiate Third Phase of
Boot-Up Procedure

\ 480

Command
Received?

445

FIG.

N

400

U.S. Patent

May 14, 2024

Sheet 5 of 6

AN

Boot-Up Initiation Component [«—>| |«—> PBL Reset Component
525 530
XBI, Reset Component > s Threshold Identification
Component
535 540
Flag State Requesting PN B PR Flag State Reception
Component RS B D Component
545 550
Boot LUN Identification <«—>| [—>»| Reset Reception Component
Component
555 560
Reset Command Monitoring |, I |, .| Successful Reset Indication
Component D I D Component
565 570
Kernel Reset Component > > Threshold Configuration
Component
575 -\ /- 580

/

520

FIG. 5

*\ 500

US 11,983,073 B2

U.S. Patent May 14, 2024 Sheet 6 of 6 US 11,983,073 B2

Initiate a boot-up procedure for a host system associated
with a memory system, the boot-up procedure comprising
a first phase, a second phase, and a third phase \ 605

Y

Perform a first reset operation to reset one or more
circuits of the memory system based on receiving a first
reset command during the first phase of the boot-up \
procedure 610

Y

Initiate a portion of a second reset operation to reset the
one or more circuits of the memory system during the
second phase of the boot-up procedure based on a
likelihood that a second reset command is to be received \ 615

after performing the first reset operation

Y

Receive the second reset command during the second
phase of the boot-up procedure after initiating the portion
of the second reset operation \ 620

‘\ 600

FIG. 6

US 11,983,073 B2

1

HARDWARE RESET MANAGEMENT FOR
UNIVERSAL FLASH STORAGE

FIELD OF TECHNOLOGY

The following relates to one or more systems for memory,
including hardware reset management for universal flash
storage.

BACKGROUND

Memory devices are widely used to store information in
various electronic devices such as computers, user devices,
wireless communication devices, cameras, digital displays,
and the like. Information is stored by programming memory
cells within a memory device to various states. For example,
binary memory cells may be programmed to one of two
supported states, often corresponding to a logic 1 or a logic
0. In some examples, a single memory cell may support
more than two possible states, any one of which may be
stored by the memory cell. To access information stored by
a memory device, a component may read (e.g., sense, detect,
retrieve, identify, determine, evaluate) the state of one or
more memory cells within the memory device. To store
information, a component may write (e.g., program, set,
assign) one or more memory cells within the memory device
to corresponding states.

Various types of memory devices exist, including mag-
netic hard disks, random access memory (RAM), read-only
memory (ROM), dynamic RAM (DRAM), synchronous
dynamic RAM (SDRAM), static RAM (SRAM), ferroelec-
tric RAM (FeRAM), magnetic RAM (MRAM), resistive
RAM (RRAM), flash memory, phase change memory
(PCM), 3-dimensional cross-point memory (3D cross point),
not-or (NOR) and not-and (NAND) memory devices, and
others. Memory devices may be described in terms of
volatile configurations or non-volatile configurations. Vola-
tile memory cells (e.g., DRAM) may lose their programmed
states over time unless they are periodically refreshed by an
external power source. Non-volatile memory cells (e.g.,
NAND) may maintain their programmed states for extended
periods of time even in the absence of an external power
source.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example of a system that supports
hardware reset management for universal flash storage
(UFS) in accordance with examples as disclosed herein.

FIG. 2 illustrates an example of a system that supports
hardware reset management for UFS in accordance with
examples as disclosed herein.

FIG. 3 illustrates an example of a timing diagram that
supports hardware reset management for UFS in accordance
with examples as disclosed herein.

FIG. 4 illustrates an example of a process flow that
supports hardware reset management for UFS in accordance
with examples as disclosed herein.

FIG. 5 shows a block diagram of a memory system that
supports hardware reset management for UFS in accordance
with examples as disclosed herein.

FIG. 6 shows a flowchart illustrating a method or methods
that support hardware reset management for UFS in accor-
dance with examples as disclosed herein.

DETAILED DESCRIPTION

A device (e.g., a universal flash storage (UFS) device)
may include systems that employ memory devices, such as

10

15

20

25

35

40

45

50

55

60

65

2

a NOT-AND (NAND) device, that aid in one or more
services performed by the systems. However, in some
examples, a delay between powering on the systems (e.g.,
due to the UFS device being started) and other systems of
the device coming online (e.g., safety systems, which may
include a back-up camera or parking camera for vehicle
implementations) may occur due at least in part to latency
from the NAND device during a boot-up procedure. Accord-
ingly, reducing the duration of the boot-up procedure (e.g.,
by reducing latency associated with the NAND device) may
reduce latency from powering the system to the other
systems being fully operational.

Techniques are described herein that reduce the duration
of the boot-up procedure. For instance, a boot-up procedure
may be characterized by multiple phases (e.g., a preliminary
boot loader (PBL) phase, an eXtended boot loader (XBL)
phase, and a kernel boot loader phase), where each phase of
the boot-up procedure may be preceded by a hardware reset
of one or more components of the system. In some
examples, one or more operations associated with a respec-
tive phase may be conducted before the UFS device may
perform a requested reset command. As such, the UFS
device may reduce a time between receiving the reset
command and performing the reset operation by identifying
a likelihood of at what time a reset command may be
received. If the UFS device determines that the likelihood of
receiving the reset command satisfies one or more condi-
tions, the memory system of the UFS device may preemp-
tively begin to conclude operations of a given phase and
prepare to receive the reset command. Some examples of
identifying the likelihood may include identifying a duration
since receiving a last reset command, identifying a quantity
of contents accessed since a last access command, identify-
ing that an initialization flag (e.g., a fDevicelnit flag) has not
been set, identifying that a boot logic unit number (BOOT
LUN) of the memory system has been accessed and read, or
any combination thereof. By preemptively closing one or
more operations of a phase based on identifying a likelihood
of receiving a reset command for the respective phase, the
UFS device may reduce the latency associated with the UFS
boot-up procedure.

Features of the disclosure are initially described in the
context of systems, devices, and circuits with reference to
FIGS. 1 and 2. Features of the disclosure are described in the
context of timing diagrams and process flows with reference
to FIGS. 3 and 4. These and other features of the disclosure
are further illustrated by and described in the context of an
apparatus diagram and flowchart that relate to hardware
reset management for UFS with reference to FIGS. 5 and 6.

FIG. 1 illustrates an example of a system 100 that
supports hardware reset management for UFS in accordance
with examples as disclosed herein. The system 100 includes
a host system 105 coupled with a memory system 110.

A memory system 110 may be or include any device or
collection of devices, where the device or collection of
devices includes at least one memory array. For example, a
memory system 110 may be or include a UFS device, an
embedded Multi-Media Controller (eMMC) device, a flash
device, a universal serial bus (USB) flash device, a secure
digital (SD) card, a solid-state drive (SSD), a hard disk drive
(HDD), a dual in-line memory module (DIMM), a small
outline DIMM (SO-DIMM), or a non-volatile DIMM
(NVDIMM), among other possibilities.

The system 100 may be included in a computing device
such as a desktop computer, a laptop computer, a network
server, a mobile device, a vehicle (e.g., airplane, drone, train,
automobile, or other conveyance), an Internet of Things

US 11,983,073 B2

3

(IoT) enabled device, an embedded computer (e.g., one
included in a vehicle, industrial equipment, or a networked
commercial device), or any other computing device that
includes memory and a processing device.

The system 100 may include a host system 105, which
may be coupled with the memory system 110. In some
examples, this coupling may include an interface with a host
system controller 106, which may be an example of a
controller or control component configured to cause the host
system 105 to perform various operations in accordance
with examples as described herein. The host system 105 may
include one or more devices and, in some cases, may include
a processor chipset and a software stack executed by the
processor chipset. For example, the host system 105 may
include an application configured for communicating with
the memory system 110 or a device therein. The processor
chipset may include one or more cores, one or more caches
(e.g., memory local to or included in the host system 105),
a memory controller (e.g., NVDIMM controller), and a
storage protocol controller (e.g., peripheral component inter-
connect express (PCle) controller, serial advanced technol-
ogy attachment (SATA) controller). The host system 105
may use the memory system 110, for example, to write data
to the memory system 110 and read data from the memory
system 110. Although one memory system 110 is shown in
FIG. 1, the host system 105 may be coupled with any
quantity of memory systems 110.

The host system 105 may be coupled with the memory
system 110 via at least one physical host interface. The host
system 105 and the memory system 110 may, in some cases,
be configured to communicate via a physical host interface
using an associated protocol (e.g., to exchange or otherwise
communicate control, address, data, and other signals
between the memory system 110 and the host system 105).
Examples of a physical host interface may include, but are
not limited to, a SATA interface, a UFS interface, an eMMC
interface, a PCle interface, a USB interface, a Fiber Channel
interface, a Small Computer System Interface (SCSI), a
Serial Attached SCSI (SAS), a Double Data Rate (DDR)
interface, a DIMM interface (e.g., DIMM socket interface
that supports DDR), an Open NAND Flash Interface
(ONFI), and a Low Power Double Data Rate (LPDDR)
interface. In some examples, one or more such interfaces
may be included in or otherwise supported between a host
system controller 106 of the host system 105 and a memory
system controller 115 of the memory system 110. In some
examples, the host system 105 may be coupled with the
memory system 110 (e.g., the host system controller 106
may be coupled with the memory system controller 115) via
a respective physical host interface for each memory device
130 included in the memory system 110, or via a respective
physical host interface for each type of memory device 130
included in the memory system 110.

The memory system 110 may include a memory system
controller 115 and one or more memory devices 130. A
memory device 130 may include one or more memory
arrays of any type of memory cells (e.g., non-volatile
memory cells, volatile memory cells, or any combination
thereof). Although two memory devices 130-a and 130-5 are
shown in the example of FIG. 1, the memory system 110
may include any quantity of memory devices 130. Further,
if the memory system 110 includes more than one memory
device 130, different memory devices 130 within the
memory system 110 may include the same or different types
of memory cells.

The memory system controller 115 may be coupled with
and communicate with the host system 105 (e.g., via the

10

20

25

30

35

40

45

50

55

60

65

4

physical host interface) and may be an example of a con-
troller or control component configured to cause the memory
system 110 to perform various operations in accordance with
examples as described herein. The memory system control-
ler 115 may also be coupled with and communicate with
memory devices 130 to perform operations such as reading
data, writing data, erasing data, or refreshing data at a
memory device 130—among other such operations—which
may generically be referred to as access operations. In some
cases, the memory system controller 115 may receive com-
mands from the host system 105 and communicate with one
or more memory devices 130 to execute such commands
(e.g., at memory arrays within the one or more memory
devices 130). For example, the memory system controller
115 may receive commands or operations from the host
system 105 and may convert the commands or operations
into instructions or appropriate commands to achieve the
desired access of the memory devices 130. In some cases,
the memory system controller 115 may exchange data with
the host system 105 and with one or more memory devices
130 (e.g., in response to or otherwise in association with
commands from the host system 105). For example, the
memory system controller 115 may convert responses (e.g.,
data packets or other signals) associated with the memory
devices 130 into corresponding signals for the host system
105.

The memory system controller 115 may be configured for
other operations associated with the memory devices 130.
For example, the memory system controller 115 may
execute or manage operations such as wear-leveling opera-
tions, garbage collection operations, error control operations
such as error-detecting operations or error-correcting opera-
tions, encryption operations, caching operations, media
management operations, background refresh, health moni-
toring, and address translations between logical addresses
(e.g., logical block addresses (LBAs)) associated with com-
mands from the host system 105 and physical addresses
(e.g., physical block addresses) associated with memory
cells within the memory devices 130.

The memory system controller 115 may include hardware
such as one or more integrated circuits or discrete compo-
nents, a buffer memory, or a combination thereof. The
hardware may include circuitry with dedicated (e.g., hard-
coded) logic to perform the operations ascribed herein to the
memory system controller 115. The memory system con-
troller 115 may be or include a microcontroller, special
purpose logic circuitry (e.g., a field programmable gate array
(FPGA), an application specific integrated circuit (ASIC), a
digital signal processor (DSP)), or any other suitable pro-
cessor or processing circuitry.

The memory system controller 115 may also include a
local memory 120. In some cases, the local memory 120
may include read-only memory (ROM) or other memory
that may store operating code (e.g., executable instructions)
executable by the memory system controller 115 to perform
functions ascribed herein to the memory system controller
115. In some cases, the local memory 120 may additionally
or alternatively include static random access memory
(SRAM) or other memory that may be used by the memory
system controller 115 for internal storage or calculations, for
example, related to the functions ascribed herein to the
memory system controller 115.

A memory device 130 may include one or more arrays of
non-volatile memory cells. For example, a memory device
130 may include NAND (e.g., NAND flash) memory, ROM,
phase change memory (PCM), self-selecting memory, other
chalcogenide-based memories, ferroelectric random access

US 11,983,073 B2

5

memory (RAM) (FeRAM), magneto RAM (MRAM), NOR
(e.g., NOR flash) memory, Spin Transfer Torque (STT)-
MRAM, conductive bridging RAM (CBRAM), resistive
random access memory (RRAM), oxide based RRAM
(OxRAM), electrically erasable programmable ROM (EE-
PROM), or any combination thereof.

Additionally, or alternatively, a memory device 130 may
include one or more arrays of volatile memory cells. For
example, a memory device 130 may include RAM memory
cells, such as dynamic RAM (DRAM) memory cells and
synchronous DRAM (SDRAM) memory cells.

In some examples, a memory device 130 may include
(e.g., on a same die or within a same package) a local
controller 135, which may execute operations on one or
more memory cells of the respective memory device 130. A
local controller 135 may operate in conjunction with a
memory system controller 115 or may perform one or more
functions ascribed herein to the memory system controller
115. For example, as illustrated in FIG. 1, a memory device
130-a may include a local controller 135-a and a memory
device 130-6 may include a local controller 135-5.

In some cases, a memory device 130 may be or include a
NAND device (e.g., NAND flash device). A memory device
130 may be or include a memory die 160. For example, in
some cases, a memory device 130 may be a package that
includes one or more dies 160. A die 160 may, in some
examples, be a piece of electronics-grade semiconductor cut
from a wafer (e.g., a silicon die cut from a silicon wafer).
Each die 160 may include one or more planes 165, and each
plane 165 may include a respective set of blocks 170, where
each block 170 may include a respective set of pages 175,
and each page 175 may include a set of memory cells.

In some cases, a NAND memory device 130 may include
memory cells configured to each store one bit of informa-
tion, which may be referred to as single level cells (SLCs).
Additionally, or alternatively, a NAND memory device 130
may include memory cells configured to each store multiple
bits of information, which may be referred to as multi-level
cells (MLCs) if configured to each store two bits of infor-
mation, as tri-level cells (TLCs) if configured to each store
three bits of information, as quad-level cells (QLCs) if
configured to each store four bits of information, or more
generically as multiple-level memory cells. Multiple-level
memory cells may provide greater density of storage relative
to SLC memory cells but may, in some cases, involve
narrower read or write margins or greater complexities for
supporting circuitry.

In some cases, planes 165 may refer to groups of blocks
170, and in some cases, concurrent operations may take
place within different planes 165. For example, concurrent
operations may be performed on memory cells within dif-
ferent blocks 170 so long as the different blocks 170 are in
different planes 165. In some cases, an individual block 170
may be referred to as a physical block, and a virtual block
180 may refer to a group of blocks 170 within which
concurrent operations may occur. For example, concurrent
operations may be performed on blocks 170-a, 170-5, 170-c,
and 170-d that are within planes 165-a, 165-5, 165-c, and
165-d, respectively, and blocks 170-a, 170-b, 170-¢c, and
170-d may be collectively referred to as a virtual block 180.
In some cases, a virtual block may include blocks 170 from
different memory devices 130 (e.g., including blocks in one
or more planes of memory device 130-a and memory device
130-5). In some cases, the blocks 170 within a virtual block
may have the same block address within their respective
planes 165 (e.g., block 170-a may be “block 0” of plane
165-a, block 170-b may be “block 0” of plane 165-5, and so

10

15

20

25

30

35

40

45

50

55

60

65

6

on). In some cases, performing concurrent operations in
different planes 165 may be subject to one or more restric-
tions, such as concurrent operations being performed on
memory cells within different pages 175 that have the same
page address within their respective planes 165 (e.g., related
to command decoding, page address decoding circuitry, or
other circuitry being shared across planes 165).

In some cases, a block 170 may include memory cells
organized into rows (pages 175) and columns (e.g., strings,
not shown). For example, memory cells in a same page 175
may share (e.g., be coupled with) a common word line, and
memory cells in a same string may share (e.g., be coupled
with) a common digit line (which may alternatively be
referred to as a bit line).

For some NAND architectures, memory cells may be read
and programmed (e.g., written) at a first level of granularity
(e.g., at the page level of granularity) but may be erased at
a second level of granularity (e.g., at the block level of
granularity). That is, a page 175 may be the smallest unit of
memory (e.g., set of memory cells) that may be indepen-
dently programmed or read (e.g., programed or read con-
currently as part of a single program or read operation), and
a block 170 may be the smallest unit of memory (e.g., set of
memory cells) that may be independently erased (e.g.,
erased concurrently as part of a single erase operation).
Further, in some cases, NAND memory cells may be erased
before they can be re-written with new data. Thus, for
example, a used page 175 may, in some cases, not be
updated until the entire block 170 that includes the page 175
has been erased.

The system 100 may include any quantity of non-transi-
tory computer readable media that support hardware reset
management for UFS. For example, the host system 105
(e.g., a host system controller 106), the memory system 110
(e.g., a memory system controller 115), or a memory device
130 (e.g., a local controller 135) may include or otherwise
may access one or more non-transitory computer readable
media storing instructions (e.g., firmware, logic, code) for
performing the functions ascribed herein to the host system
105, the memory system 110, or a memory device 130. For
example, such instructions, if executed by the host system
105 (e.g., by a host system controller 106), by the memory
system 110 (e.g., by a memory system controller 115), or by
a memory device 130 (e.g., by a local controller 135), may
cause the host system 105, the memory system 110, or the
memory device 130 to perform associated functions as
described herein.

In some examples, the techniques and methods of system
100 may be implemented by and associated with a UFS
device. In some examples, the UFS device may experience
a delay between powering on the systems (e.g., due to the
UFS device being started) and other systems of the device
coming online may occur due at least in part to latency from
the boot-up procedure.

Accordingly, the UFS device may apply techniques
described herein that reduce the duration of the boot-up
procedure. For instance, a boot-up procedure may be char-
acterized by multiple phases (e.g., PBL phase, an XBL
phase, and a kernel boot loader phase), where each phase of
the boot-up procedure may be preceded by a hardware reset
of one or more components of the system 100. In some
examples, one or more operations associated with a next
phase of the boot-up procedure may be conducted during the
current phase of the boot-up procedure and before the UFS
device may perform a requested reset command. As such,
the UFS device may reduce a time between receiving the
reset command and performing the reset operation by iden-

US 11,983,073 B2

7

tifying a likelihood of at what time a reset command may be
received. If the UFS device determines that the likelihood of
receiving the reset command satisfies one or more condi-
tions, a memory system 110 of the UFS device may pre-
emptively begin to conclude operations of a given phase
(e.g., the XBL phase) and preemptively perform one or more
operations associated with a reset operation. By preemp-
tively closing one or more operations of a phase based on
identifying a likelihood of receiving a reset command for the
respective phase, the UFS device may reduce the latency
associated with the UFS boot-up procedure.

FIG. 2 illustrates an example of a system 200 that
supports hardware reset management for UFS in accordance
with examples as disclosed herein. The system 200 may be
an example of a system 100 as described with reference to
FIG. 1 or aspects thereof. The system 200 may include a
memory system 210 configured to store data received from
the host system 205 and to send data to the host system 205,
if requested by the host system 205 using access commands
(e.g., read commands or write commands). The system 200
may implement aspects of the system 100 as described with
reference to FIG. 1. For example, the memory system 210
and the host system 205 may be examples of the memory
system 110 and the host system 105, respectively.

The memory system 210 may include memory devices
240 to store data transferred between the memory system
210 and the host system 205, e.g., in response to receiving
access commands from the host system 205, as described
herein. The memory devices 240 may include one or more
memory devices as described with reference to FIG. 1. For
example, the memory devices 240 may include NAND
memory, PCM, self-selecting memory, 3D cross point, other
chalcogenide-based memories, FERAM, MRAM, NOR
(e.g., NOR flash) memory, STT-MRAM, CBRAM, RRAM,
or OxRAM.

The memory system 210 may include a storage controller
230 for controlling the passing of data directly to and from
the memory devices 240, e.g., for storing data, retrieving
data, and determining memory locations in which to store
data and from which to retrieve data. The storage controller
230 may communicate with memory devices 240 directly or
via a bus (not shown) using a protocol specific to each type
of memory device 240. In some cases, a single storage
controller 230 may be used to control multiple memory
devices 240 of the same or different types. In some cases, the
memory system 210 may include multiple storage control-
lers 230, e.g., a different storage controller 230 for each type
of memory device 240. In some cases, a storage controller
230 may implement aspects of a local controller 135 as
described with reference to FIG. 1.

The memory system 210 may additionally include an
interface 220 for communication with the host system 205
and a buffer 225 for temporary storage of data being
transferred between the host system 205 and the memory
devices 240. The interface 220, buffer 225, and storage
controller 230 may be for translating data between the host
system 205 and the memory devices 240, e.g., as shown by
a data path 250, and may be collectively referred to as data
path components.

Using the buffer 225 to temporarily store data during
transfers may allow data to be buffered as commands are
being processed, thereby reducing latency between com-
mands, and allowing arbitrary data sizes associated with
commands. This may also allow bursts of commands to be
handled, and the buffered data may be stored or transmitted
(or both) once a burst has stopped. The buffer 225 may
include relatively fast memory (e.g., some types of volatile

20

30

35

40

45

50

8

memory, such as SRAM or DRAM) or hardware accelera-
tors or both to allow fast storage and retrieval of data to and
from the buffer 225. The buffer 225 may include data path
switching components for bi-directional data transfer
between the buffer 225 and other components.

The temporary storage of data within a buffer 225 may
refer to the storage of data in the buffer 225 during the
execution of access commands. That is, upon completion of
an access command, the associated data may no longer be
maintained in the buffer 225 (e.g., may be overwritten with
data for additional access commands). In addition, the buffer
225 may be a non-cache buffer. That is, data may not be read
directly from the buffer 225 by the host system 205. For
example, read commands may be added to a queue without
an operation to match the address to addresses already in the
buffer 225 (e.g., without a cache address match or lookup
operation).

The memory system 210 may additionally include a
memory system controller 215 for executing the commands
received from the host system 205 and controlling the data
path components in the moving of the data. The memory
system controller 215 may be an example of the memory
system controller 115 as described with reference to FIG. 1.
Abus 235 may be used to communicate between the system
components.

In some cases, one or more queues (e.g., a command
queue 260, a buffer queue 265, and a storage queue 270)
may be used to control the processing of the access com-
mands and the movement of the corresponding data. This
may be beneficial, e.g., if more than one access command
from the host system 205 is processed concurrently by the
memory system 210. The command queue 260, buffer queue
265, and storage queue 270 are depicted at the interface 220,
memory system controller 215, and storage controller 230,
respectively, as examples of a possible implementation.
However, queues, if used, may be positioned anywhere
within the memory system 210.

Data transferred between the host system 205 and the
memory devices 240 may take a different path in the
memory system 210 than non-data information (e.g., com-
mands, status information). For example, the system com-
ponents in the memory system 210 may communicate with
each other using a bus 235, while the data may use the data
path 250 through the data path components instead of the
bus 235. The memory system controller 215 may control
how and if data is transferred between the host system 205
and the memory devices 240 by communicating with the
data path components over the bus 235 (e.g., using a
protocol specific to the memory system 210).

If a host system 205 transmits access commands to the
memory system 210, the commands may be received by the
interface 220, e.g., according to a protocol (e.g., a UFS
protocol or an eMMC protocol). Thus, the interface 220 may
be considered a front end of the memory system 210. Upon
receipt of each access command, the interface 220 may
communicate the command to the memory system controller
215, e.g., via the bus 235. In some cases, each command
may be added to a command queue 260 by the interface 220
to communicate the command to the memory system con-
troller 215.

The memory system controller 215 may determine that an
access command has been received based on the communi-
cation from the interface 220. In some cases, the memory
system controller 215 may determine the access command
has been received by retrieving the command from the
command queue 260. The command may be removed from
the command queue 260 after it has been retrieved there-

US 11,983,073 B2

9

from, e.g., by the memory system controller 215. In some
cases, the memory system controller 215 may cause the
interface 220, e.g., via the bus 235, to remove the command
from the command queue 260.

Upon the determination that an access command has been
received, the memory system controller 215 may execute the
access command. For a read command, this may mean
obtaining data from the memory devices 240 and transmit-
ting the data to the host system 205. For a write command,
this may mean receiving data from the host system 205 and
moving the data to the memory devices 240.

In either case, the memory system controller 215 may use
the buffer 225 for, among other things, temporary storage of
the data being received from or sent to the host system 205.
The buffer 225 may be considered a middle end of the
memory system 210. In some cases, buffer address manage-
ment (e.g., pointers to address locations in the buffer 225)
may be performed by hardware (e.g., dedicated circuits) in
the interface 220, buffer 225, or storage controller 230.

To process a write command received from the host
system 205, the memory system controller 215 may first
determine if the buffer 225 has sufficient available space to
store the data associated with the command. For example,
the memory system controller 215 may determine, e.g., via
firmware (e.g., controller firmware), an amount of space
within the buffer 225 that may be available to store data
associated with the write command.

In some cases, a buffer queue 265 may be used to control
a flow of commands associated with data stored in the buffer
225, including write commands. The buffer queue 265 may
include the access commands associated with data currently
stored in the buffer 225. In some cases, the commands in the
command queue 260 may be moved to the buffer queue 265
by the memory system controller 215 and may remain in the
buffer queue 265 while the associated data is stored in the
buffer 225. In some cases, each command in the buffer queue
265 may be associated with an address at the buffer 225.
That is, pointers may be maintained that indicate where in
the buffer 225 the data associated with each command is
stored. Using the buffer queue 265, multiple access com-
mands may be received sequentially from the host system
205 and at least portions of the access commands may be
processed concurrently.

If the buffer 225 has sufficient space to store the write
data, the memory system controller 215 may cause the
interface 220 to transmit an indication of availability to the
host system 205 (e.g., a “ready to transfer” indication), e.g.,
according to a protocol (e.g., a UFS protocol or an eMMC
protocol). As the interface 220 subsequently receives from
the host system 205 the data associated with the write
command, the interface 220 may transfer the data to the
buffer 225 for temporary storage using the data path 250. In
some cases, the interface 220 may obtain from the buffer 225
or buffer queue 265 the location within the buffer 225 to
store the data. The interface 220 may indicate to the memory
system controller 215, e.g., via the bus 235, if the data
transfer to the buffer 225 has been completed.

Once the write data has been stored in the buffer 225 by
the interface 220, the data may be transferred out of the
buffer 225 and stored in a memory device 240. This may be
done using the storage controller 230. For example, the
memory system controller 215 may cause the storage con-
troller 230 to retrieve the data out of the buffer 225 using the
data path 250 and transfer the data to a memory device 240.
The storage controller 230 may be considered a back end of
the memory system 210. The storage controller 230 may
indicate to the memory system controller 215, e.g., via the

10

15

20

25

30

35

40

45

50

55

60

10

bus 235, that the data transfer to a memory device of the
memory devices 240 has been completed.

In some cases, a storage queue 270 may be used to aid
with the transfer of write data. For example, the memory
system controller 215 may push (e.g., via the bus 235) write
commands from the buffer queue 265 to the storage queue
270 for processing. The storage queue 270 may include
entries for each access command. In some examples, the
storage queue 270 may additionally include a buffer pointer
(e.g., an address) that may indicate where in the buffer 225
the data associated with the command is stored and a storage
pointer (e.g., an address) that may indicate the location in the
memory devices 240 associated with the data. In some cases,
the storage controller 230 may obtain from the buffer 225,
buffer queue 265, or storage queue 270 the location within
the buffer 225 from which to obtain the data. The storage
controller 230 may manage the locations within the memory
devices 240 to store the data (e.g., performing wear-leveling,
garbage collection, and the like). The entries may be added
to the storage queue 270, e.g., by the memory system
controller 215. The entries may be removed from the storage
queue 270, e.g., by the storage controller 230 or memory
system controller 215 upon completion of the transfer of the
data.

To process a read command received from the host system
205, the memory system controller 215 may again first
determine if the buffer 225 has sufficient available space to
store the data associated with the command. For example,
the memory system controller 215 may determine, e.g., via
firmware (e.g., controller firmware), an amount of space
within the buffer 225 that may be available to store data
associated with the read command.

In some cases, the buffer queue 265 may be used to aid
with buffer storage of data associated with read commands
in a similar manner as discussed with respect to write
commands. For example, if the buffer 225 has sufficient
space to store the read data, the memory system controller
215 may cause the storage controller 230 to retrieve the data
associated with the read command from a memory device
240 and store the data in the buffer 225 for temporary
storage using the data path 250. The storage controller 230
may indicate to the memory system controller 215, e.g., via
the bus 235, at the time the data transfer to the buffer 225 has
been completed.

In some cases, the storage queue 270 may be used to aid
with the transfer of read data. For example, the memory
system controller 215 may push the read command to the
storage queue 270 for processing. In some cases, the storage
controller 230 may obtain from the buffer 225 or storage
queue 270 the location within the memory devices 240 from
which to retrieve the data. In some cases, the storage
controller 230 may obtain from the buffer queue 265 the
location within the buffer 225 to store the data. In some
cases, the storage controller 230 may obtain from the storage
queue 270 the location within the buffer 225 to store the
data. In some cases, the memory system controller 215 may
move the command processed by the storage queue 270
back to the command queue 260.

Once the data has been stored in the buffer 225 by the
storage controller 230, the data may be transferred out of the
buffer 225 and sent to the host system 205. For example, the
memory system controller 215 may cause the interface 220
to retrieve the data out of the buffer 225 using the data path
250 and transmit the data to the host system 205, e.g.,
according to a protocol (e.g., a UFS protocol or an eMMC
protocol). For example, the interface 220 may process the
command from the command queue 260 and may indicate to

US 11,983,073 B2

11

the memory system controller 215, e.g., via the bus 235, that
the data transmission to the host system 205 has been
completed.

The memory system controller 215 may execute received
commands according to an order (e.g., a first-in, first-out
order, according to the order of the command queue 260).
For each command, the memory system controller 215 may
cause data corresponding to the command to be moved into
and out of the buffer 225, as discussed herein. As the data is
moved into and stored within the buffer 225, the command
may remain in the buffer queue 265. A command may be
removed from the buffer queue 265, e¢.g., by the memory
system controller 215, if the processing of the command has
been completed (e.g., if data corresponding to the access
command has been transferred out of the buffer 225). If a
command is removed from the buffer queue 265, the address
previously storing the data associated with that command
may be available to store data associated with a new
command.

The memory system controller 215 may additionally be
configured for operations associated with the memory
devices 240. For example, the memory system controller
215 may execute or manage operations such as wear-
leveling operations, garbage collection operations, error
control operations such as error-detecting operations or
error-correcting operations, encryption operations, caching
operations, media management operations, background
refresh, health monitoring, and address translations between
logical addresses (e.g., LBAs) associated with commands
from the host system 205 and physical addresses (e.g.,
physical block addresses) associated with memory cells
within the memory devices 240. That is, the host system 205
may issue commands indicating one or more LBAs and the
memory system controller 215 may identify one or more
physical block addresses indicated by the LBAs. In some
cases, one or more contiguous LBAs may correspond to
noncontiguous physical block addresses. In some cases, the
storage controller 230 may be configured to perform one or
more of the described operations in conjunction with or
instead of the memory system controller 215. In some cases,
the memory system controller 215 may perform the func-
tions of the storage controller 230 and the storage controller
230 may be omitted.

In some examples, the techniques and methods of system
200 may be implemented by and associated with a UFS
device. In some examples, the UFS device may experience
a delay between powering on the systems (e.g., due to the
UFS device being started) and other systems of the device
coming online may occur due at least in part to latency from
the boot-up procedure.

Accordingly, the UFS device may apply techniques
described herein that reduce the duration of the boot-up
procedure. For instance, a boot-up procedure may be char-
acterized by multiple phases (e.g., PBL phase, an XBL
phase, and a kernel boot loader phase), where each phase of
the boot-up procedure may be preceded by a hardware reset
of one or more components of the system 100. In some
examples, one or more operations associated with a next
phase of the boot-up procedure may be conducted during the
current phase of the boot-up procedure and before the UFS
device may perform a requested reset command. As such,
the UFS device may reduce a time between receiving the
reset command and performing the reset operation by iden-
tifying a likelihood of at what time a reset command may be
received. If the UFS device determines that the likelihood of
receiving the reset command satisfies one or more condi-
tions, a memory system 210 of the UFS device may pre-

10

15

20

25

30

35

40

45

50

55

60

12

emptively begin to conclude operations of a given phase
(e.g., the XBL phase) and preemptively perform one or more
operations associated with a reset operation. By preemp-
tively closing one or more operations of a phase based on
identifying a likelihood of receiving a reset command for the
respective phase, the UFS device may reduce the latency
associated with the UFS boot-up procedure.

FIG. 3 illustrates an example of a timing diagram 300 that
supports hardware reset management for UFS in accordance
with examples as disclosed herein. In some examples,
timing diagram 300 may be implemented by one or more
aspects of systems 100 and/or 200. For instance, timing
diagram 300 may be implemented by a memory system 110
and host system 105 as described with reference to FIG. 1
and/or a memory system 210 and host system 205 as
described with reference to FIG. 2. For instance, a UFS
device 310 may be an example of a memory system, a host
system, or a combination thereof. In some examples, timing
diagram 300 may correspond to one or more phases of a
boot-up procedure for the UFS device 310. Aspects of the
timing diagram 300 may be implemented by a controller,
among other components. Additionally, or alternatively,
aspects of the timing diagram 300 may be implemented as
instructions stored in memory (e.g., firmware stored in a
memory coupled with a controller). For example, the
instructions, in response to being executed by a controller
(e.g., the memory system controller 115), may cause the
controller to perform the operations of the timing diagram
300.

As illustrated in FIG. 3, the timing diagram 300 may
display the one or more phases associated with the boot-up
procedure of the UFS device 310. For example, based on
identifying a power on condition (e.g., receiving a power on
request from the associated host system), the UFS device
310 may initiate a PBL 320 phase of the boot-up procedure.
In some examples, the UFS device 310 may receive from the
host system, one or more commands to perform during the
PBL 320 phase and other associated phases of the boot-up
procedure via a physical (M-PHY) 315 layer. For instance,
the UFS device 310 may receive via the M-PHY 315 layer,
a first reset command 375 from the host system requesting
for the UFS device 310 to reset one or more circuits of the
memory system associated with the PBL 320 phase of the
boot-up procedure. In some examples, the first reset com-
mand 375 may be an example of a power-on reset command
375 used to initiate a preliminary reset of hardware associ-
ated with the memory system upon turning on.

Based on performing the first reset command 375, the
UFS device 310 may execute a link start-up 340-a to
reestablish communications with the host system via the
M-PHY 315 layer. In some examples, during the link
start-up 340-a, the UFS device 310 and host system may
communicate pulse-width modulation (PWM) signaling
(e.g., PWM 350-a), which may reduce the average power
associated with communications by separating the signal
into discrete parts. During the PBL 320 phase, a system
central processing unit (CPU) 305 of the UFS device 310
may also boot from an internal ROM of the memory system.
As such, during the PBL 320 phase, the UFS device 310 may
perform a UFS boot 345. In some examples of performing
the UFS boot 345, the CPU 305 may initiate set-up for a
secure XBL (XBL SEC 325) phase and an XBL 330 phase.
During the UFS boot 345 procedure, the UFS device 310
may also receive via the M-PHY 315 layer one or more PBL
commands 355 to perform during the PBL 320 phase.

In some cases, during the XBL 330 phase (e.g., an
extended primary boot loader (ePBL) phase) the system

US 11,983,073 B2

13

CPU 305 may load code from storage and execute UFS
device 310 initialization. In some examples, performing one
or more portions of the XBL 330 phase may be contingent
on receiving a second reset command 375 from the host
system via the M-PHY 315 layer. For instance, the second
reset command 375 may be an example of an XBL hardware
reset command 375 in which one or more circuits associated
with the memory system are requested for reset. To perform
the second reset command 375, the UFS device 310 may
finalize pending operations and release resources associated
with the XBL 330 phase during an idle period between
reception and execution of the second reset command 375.
However, the duration of the idle period may introduce
latency into the UFS boot-up procedure. As such, the UFS
device 310 may reduce the idle time by identifying a
likelihood of receiving the second reset command 375.
Based on identifying that receiving the reset command 375
is likely, the UFS device 310 may preemptively perform one
or more operations associated with the second reset com-
mand 375 before receiving the second reset command 375.

In some cases, the UFS device 310 may identify the
likelihood of receiving the second reset command 375 based
on one or more indicators of the boot-up procedure. One
example of an indicator may be the UFS device 310 iden-
tifying the power on condition received from the host
system. Additionally, or alternatively, the UFS device 310
may identify the likelihood based on one or more initializa-
tion flags. For instance, the host system may set an initial-
ization flag (e.g., the fDevicelnit flag) to an initial value
(e.g., of “01h™) to communicate to the UFS device 310 to
complete an initialization portion of the boot-up procedure.
At a duration after setting the initial value, the host system
may perform a query by polling the fDevicelnit flag to check
if the UFS device 310 has completed the initialization
process. If the UFS device 310 has not received a query of
the fDevicelnit flag after a configured amount of time, the
UFS device 310 may determine that reception of the second
reset command 375 is likely.

Additionally, or alternatively, the UFS device 310 may
identify the likelihood based on a logical unit number
associated with the boot-up procedure (e.g., the BOOT
LUN) being accessed and read by the host system. For
example, the UFS device 310 may configure a counter
associated with the BOOT LUN and count the total amount
of accessed contents of the BOOT LUN during the boot-up
procedure. If the total size of the accessed contents is above
a configured counter threshold, the UFS device 310 may
identify that receiving the second reset command 375 may
be likely. Additionally, or alternatively, the UFS device 310
may start a timer associated with the idle time between an
acknowledgement flow control (AFC) traffic class 0 (TCO)
event (e.g., representing the completion of a last READ_10
command in the BOOT LUN) and reception of a previous
reset command 375. If the timer satisfies a timing threshold,
the UFS device 310 may identify that receiving the second
reset command 375 may be likely. In some examples, the
UFS device 310 may configure the counter threshold and the
timing threshold based on a previous boot-up procedure. For
instance, the UFS device 310 may identify in a previous
boot-up procedure the amount of accessed contents of the
BOOT LUN at the time that the second reset command 375
is received as well as the idle time between the AFC TCO
event and receiving the first reset command 375. As such,
the UFS device 310 may use this information to configure
the counter threshold and the timing threshold to use as

20

40

45

14

predictive measures to identify the likelihood of receiving
the second reset command 375 during following boot-up
procedures.

Based on identifying that receiving the second reset
command 375 is likely, the memory system may preemp-
tively prepare for receiving the second reset command 375.
For example, the UFS device 310 may complete and close
any pending operations and release resources related to the
XBL 330 phase of the boot-up procedure. Additionally, or
alternatively, the UFS device 310 may start the internal
initialization procedure and take the initial steps to prepare
PWM reads (e.g., the PWM 350-b6 reads) and the steps
carried out during query of the fDevicelnit flag (e.g., reset
the fDevicelnit flag indicating the end of the initialization
process).

Based on preemptively preparing for the second reset
command 375, the UFS device 310 may monitor the M-PHY
315 layer for the second reset command 375. Upon detection
of the second reset command 375, the UFS device 310 may
reset a controller associated with the M-PHY 315 layer
which may allow for reset management of the M-PHY 315
bus (e.g., perform link start-up 340-b). As such, the UFS
device 310 may transmit an indication of a successful reset
operation to the host system via the M-PHY 315 layer.

In some examples, the UFS device 310 may perform the
indication of the successful reset operation using a hardware
reset pin. For instance, the UFS device may apply a voltage
value to the hardware reset pint (e.g., either a high voltage
value or a low voltage value) where the voltage value may
indicate to the host system that the hardware reset has
occurred. In some examples, the UFS device 310 may also
monitor for and receive the second reset command 375 via
the hardware reset pin. For instance, the host system may
apply a different voltage value to the hardware reset pin,
indicating to the UFS device 310 to a reset command 375.

Based on completing the second reset operation, the UFS
device 310 may receive one or more XBL commands 365
that may indicate one or more operations for the UFS device
310 to perform during the XBL 330 phase of the boot-up
procedure. For instance, the UFS device 310 may receive a
command to prepare and preform a kernel load 360 to set-up
the kernel 335 phase of the boot-up procedure. In some
examples, the kernel 335 phase may include one or more
sub-phases of the boot-up procedure. For instance the kernel
335 phase may include a UBOOT phase (e.g., an android
boot loader phase, a unified extensible firmware interface
(UEFI) phase, or TZ phase) during which the UFS device
310 may perform integrity verification steps of the memory
system. Additionally, or alternatively, the kernel 335 phase
may include an operating system (OS) boot phase, in which
the UFS device 310 may load an associated OS (e.g., Linux,
QNX, Microsoft, Android) to initialize user space in which
a user may interact with the UFS device. For instance, the
UFS device may be associated with a vehicle (e.g., a car, a
truck, a train, a motorcycle), an aircraft (e.g., a plane, a
helicopter), a boat, or a human-powered transport (e.g., a
bicycle). In some examples, the vehicle may include systems
that employ the use of the memory system and/or the host
system. For instance, the vehicle may include a parking
camera or a back-up camera that stores information at or
retrieves information from the memory system. Addition-
ally, or alternatively, the kernel 335 phase may include an
application boot phase, in which the UFS device 310 initi-
ates the user space application.

In some examples, performing one or more portions of the
kernel 335 phase may be contingent on receiving a third
reset command 375 from the host system via the M-PHY

US 11,983,073 B2

15

315 layer. For example, the third reset command 375 may be
an example of an OS hardware reset which may be per-
formed by the UFS device 310 during high-end OS opera-
tions. In some examples, the UFS device 310 may receive
the third reset command 375 via the hardware reset pin.
Based on reducing the idle time for performing the second
reset operation, the UFS device 310 may perform the third
reset operation earlier which may reduce the total duration
of the boot-up procedure.

Additionally, or alternatively, while aspects of the tech-
niques for preemptively preparing for reception of a reset
command 375 were described with reference to the XBL 330
phase, it is understood that the UFS device 310 may imple-
ment one or more of the techniques for identifying a
likelihood of receiving a reset command 375 to the kernel
335 phase or any other phase of the boot-up procedure.
Based on completing the third reset operation, the UFS
device may perform a link start-up 340-c to reestablish
connection with host system via the M-PHY 315 link. In
some examples, during the link start-up 340-c, the UFS
device 310 and host system may communicate PWM 350-¢
signaling which may reduce the average power associated
with communications by separating the signal into discrete
parts. During the kernel 335 phase, the UFS device 310 may
also receive one or more kernel commands 370, indicating
a set of operation for the UFS device 310 to perform during
the kernel 335 phase of the boot-up procedure.

FIG. 4 illustrates an example of a process flow 400 that
supports hardware reset management for UFS in accordance
with examples as disclosed herein. In some examples,
process flow 400 may be implemented by one or more
aspects of systems 100 and/or 200. For instance, process
flow 400 may be implemented by a memory system 110 as
described with reference to FIG. 1 and/or a memory system
210 as described with reference to FIG. 2. In some
examples, process flow 400 may correspond to one or more
phases of a boot-up procedure for a UFS device 310 with
reference to FIG. 3. Aspects of the process flow 400 may be
implemented by a controller, among other components.
Additionally, or alternatively, aspects of the process flow
400 may be implemented as instructions stored in memory
(e.g., firmware stored in a memory coupled with a control-
ler). For example, the instructions, in response to being
executed by a controller (e.g., the memory system controller
115), may cause the controller to perform the operations of
the process flow 400.

At 405, power on for a host system of a UFS device may
occur. For instance, a host system and an associated memory
system may power on. Powering on may include coupling
one or more components of the memory system with one or
more power sources, which may occur over one or more
phases of a boot-up procedure.

At 410, a first phase of a boot-up procedure may be
initiated (e.g., by the memory system). In some examples,
the first phase of the boot-up procedure may be an example
of' a PBL phase (e.g., the PBL 320 phase with reference to
FIG. 3). At 415, the memory system may receive from the
host system a first reset command, which may be an example
of a power on reset command. At 420, the memory system
may perform a first reset operation to reset one or more
circuits of the memory system based on receiving the first
reset command during the first phase of the boot-up proce-
dure.

At 425, a second phase of the boot-up procedure may be
initiated (e.g., by the memory system). In some examples,
the second phase may be an example of an XBL phase (e.g.,
the XBL 330 phase phase with reference to FIG. 3).

10

15

20

25

30

35

40

45

55

60

65

16

At 430, a likelihood of receiving a second reset command
associated with the second phase of the boot-up procedure
(e.g., an XBL hardware reset command) may be identified
(e.g., by the memory system). In some examples, the
memory system may identify the likelihood based on iden-
tifying whether a duration after receiving the first reset
command (e.g., duration between an AFC TCO event and the
first reset command) satisfies a first threshold and whether a
quantity of contents accessed (e.g., contents associated with
the BOOT LUN) after receiving the first reset command
satisfies a second threshold, or both. In some examples, the
memory system may configure the first threshold based on
a duration of time between receiving the first reset command
and receiving the second reset command that occurs during
a previous boot-up procedure and may configure the second
threshold based on a quantity of contents accessed between
receiving the first reset command and receiving the second
reset command as part of the previous boot-up procedure.

In some examples, the memory system may identify the
likelihood based on identifying the boot-up procedure for
the host system associated with the memory system. In some
examples, the UFS device may identify the likelihood based
on the host system transmitting to the memory system, a
request for a state of a device initialization flag (e.g., the
fDevicelnit flag), and the host system receiving from the
memory system, the state of the device initialization flag,
where the state indicates that the device initialization flag
has not set. In some examples, the memory system may
identify the likelihood based on receiving a BOOT LUN
indicating that an associated LUN of the memory system has
been accessed and read (e.g., a last BOOT LUN READ_10
command). In some examples, the memory system may
identify the likelihood based on identifying whether a dura-
tion after receiving a read command (e.g., the last BOOT
LUN READ_10 command) associated with the BOOT LUN
exceeds a third threshold. In some cases, the memory system
may identify the likelihood using a combination of the
techniques and indicators described herein.

At 440, whether or not receiving the second reset com-
mand from the host system is likely may be determined. If
the memory system determines that receiving the second
reset command is not likely, then at 445, the memory system
may determine whether or not the second reset command
has already been received. If the memory system determines
that the second reset command has not been received, the
memory system mat cycle back to 430 and redetermine the
likelihood of receiving the second reset command.

If at 440, the memory system determines that receiving
the second rest command is likely, then at 450, a first portion
of'the second reset operation to reset the one or more circuits
of the memory system during the second phase of the
boot-up procedure may be initiated (e.g., by the memory
system). In some examples, initiating the first portion of the
second reset operation may include closing one or more
operations of the second phase of the boot-up procedure,
releasing one or more resources associated with the one or
more operations of the second phase of the boot-up proce-
dure, identifying a quantity of steps for accessing contents of
a register of the host system based on closing the one or
more operations and releasing the one or more resources,
monitoring for the second reset command based on identi-
fying the quantity of steps, or any combination thereof.

At 455, monitoring for the second reset command may
occur (e.g., by the memory system). At 460, the memory
system may receive the second reset command during the
second phase of the boot-up procedure after initiating the
first portion of the second reset operation. In some examples,

US 11,983,073 B2

17

the memory system may receive the second reset command
via a hardware reset pin coupled with the memory system.

At 465, a second portion of the second reset operation to
reset the one or more circuits of the memory system based
on receiving the second reset command during the second
phase of the boot-up procedure and initiating the first portion
of the second reset operation during the second phase of the
boot-up procedure may be initiated (e.g., by the memory
system). In some examples, at least a subset of the circuits
may include a controller configured to facilitate communi-
cations between the memory system and the host system of
the UFS device (e.g., a controller associated with the
M-PHY 315 layer with reference to FIG. 3). In some
examples, the memory system may transmit an indication
for successfully resetting the one or more circuits of the
memory system based on initiating the second portion of the
second reset operation.

At 470, the third phase of the boot-up procedure based on
initiating the second portion of the second reset operation
may be initiated (e.g., by the memory system). In some
examples, the third phase may be a kernel phase (e.g., the
kernel 335 phase with reference to FIG. 3).

If at 445 the memory system determines that the second
reset command has been received, then at 475, a full second
reset operation may be initiated (e.g., by the memory sys-
tem). In some examples, the full second reset operation may
be a combination of performing the first portion of the
second reset operation at 450 and performing the second
portion of the second reset operation at 465.

At 480, the third phased of the boot-up procedure based
on initiating the full second reset operation may be initiated
(e.g., by the memory system).

FIG. 5 shows a block diagram 500 of a memory system
520 that supports hardware reset management for UFS in
accordance with examples as disclosed herein. The memory
system 520 may be an example of aspects of a memory
system as described with reference to FIGS. 1 through 4.
The memory system 520, or various components thereof,
may be an example of means for performing various aspects
of hardware reset management for UFS as described herein.
For example, the memory system 520 may include a boot-up
initiation component 525, a PBL reset component 530, an
XBL reset component 535, a threshold identification com-
ponent 540, a flag state requesting component 545, a flag
state reception component 550, a boot LUN identification
component 555, a reset reception component 560, a reset
command monitoring component 565, a successful reset
indication component 570, a kernel reset component 575, a
threshold configuration component 580, or any combination
thereof. Each of these components may communicate,
directly or indirectly, with one another (e.g., via one or more
buses).

The boot-up initiation component 525 may be configured
as or otherwise support a means for initiating a boot-up
procedure for a host system associated with a memory
system, the boot-up procedure including a first phase, a
second phase, and a third phase. The PBL reset component
530 may be configured as or otherwise support a means for
performing a first reset operation to reset one or more
circuits of the memory system based on receiving a first reset
command during the first phase of the boot-up procedure.
The XBL reset component 535 may be configured as or
otherwise support a means for initiating a portion of a
second reset operation to reset the one or more circuits of the
memory system during the second phase of the boot-up
procedure based on a likelihood that a second reset com-
mand is to be received after performing the first reset

20

25

40

45

55

18

operation. In some examples, the XBL reset component 535
may be configured as or otherwise support a means for
receiving the second reset command during the second
phase of the boot-up procedure after initiating the portion of
the second reset operation.

In some examples, to support initiating the portion of the
second reset operation, the XBL reset component 535 may
be configured as or otherwise support a means for closing
one or more operations of the second phase of the boot-up
procedure. In some examples, to support initiating the
portion of the second reset operation, the XBL reset com-
ponent 535 may be configured as or otherwise support a
means for releasing one or more resources associated with
the one or more operations of the second phase of the
boot-up procedure.

In some examples, the XBL reset component 535 may be
configured as or otherwise support a means for identifying
a quantity of steps for accessing contents of a register of the
host system based on closing the one or more operations and
releasing the one or more resources. In some examples, the
reset command monitoring component 565 may be config-
ured as or otherwise support a means for monitoring for the
second reset command based on identifying the quantity of
steps.

In some examples, the XBL reset component 535 may be
configured as or otherwise support a means for initiating a
second portion of the second reset operation to reset the one
or more circuits of the memory system based on receiving
the second reset command during the second phase of the
boot-up procedure and initiating the portion of the second
reset operation during the second phase of the boot-up
procedure.

In some examples, the successful reset indication com-
ponent 570 may be configured as or otherwise support a
means for transmitting an indication for successfully reset-
ting the one or more circuits of the memory system based on
initiating the second portion of the second reset operation.

In some examples, the kernel reset component 575 may be
configured as or otherwise support a means for initiating the
third phase of the boot-up procedure based on initiating the
second portion of the second reset operation.

In some examples, the threshold identification component
540 may be configured as or otherwise support a means for
identifying whether a duration after receiving the first reset
command satisfies a first threshold and whether a quantity of
contents accessed after receiving the first reset command
satisfies a second threshold, or both, where the likelihood
that the second reset command is to be received is based on
the identifying.

In some examples, the threshold configuration component
580 may be configured as or otherwise support a means for
configuring the first threshold based on a duration of time
between receiving the first reset command and receiving the
second reset command that occurs during a second boot-up
procedure, where the second boot-up procedure occurs
before the boot-up procedure. In some examples, the thresh-
old configuration component 580 may be configured as or
otherwise support a means for configuring the second
threshold based on a quantity of contents accessed between
receiving the first reset command and receiving the second
reset command as part of the second boot-up procedure.

In some examples, the boot-up initiation component 525
may be configured as or otherwise support a means for
identifying the boot-up procedure for the host system asso-
ciated with the memory system, where the likelihood that the
second reset command is to be received is based on the
identifying.

US 11,983,073 B2

19

In some examples, the flag state requesting component
545 may be configured as or otherwise support a means for
transmitting, to the memory system, a request for a state of
a device initialization flag. In some examples, the flag state
reception component 550 may be configured as or otherwise
support a means for receiving, from the memory system, the
state of the device initialization flag, where the state indi-
cates that the device initialization flag has not set, where the
likelihood that the second reset command is to be received
is based on the receiving.

In some examples, the boot LUN identification compo-
nent 555 may be configured as or otherwise support a means
for receiving a boot logical unit number identification indi-
cating that an associated boot logic unit number of the
memory system has been accessed and read, where the
likelihood that the second reset command is to be received
is based on the receiving.

In some examples, the threshold identification component
540 may be configured as or otherwise support a means for
identifying whether a duration after receiving a read com-
mand associated with the boot unit logic number satisfies a
third threshold.

In some examples, to support receiving the second reset
command, the reset reception component 560 may be con-
figured as or otherwise support a means for receiving the
second reset command via a hardware reset pin coupled with
the memory system.

In some examples, at least a subset of circuits of the one
or more circuits of the memory system include a controller
configured to facilitate communications between the
memory system and the host system of a UFS device.

In some examples, the first phase includes a UFS boot
phase, the second phase includes kernel loading boot phase,
and the third phase includes a kernel start boot phase.

FIG. 6 shows a flowchart illustrating a method 600 that
supports hardware reset management for UFS in accordance
with examples as disclosed herein. The operations of method
600 may be implemented by a memory system or its
components as described herein. For example, the opera-
tions of method 600 may be performed by a memory system
as described with reference to FIGS. 1 through 5. In some
examples, a memory system may execute a set of instruc-
tions to control the functional elements of the device to
perform the described functions. Additionally, or alterna-
tively, the memory system may perform aspects of the
described functions using special-purpose hardware.

At 605, the method may include initiating a boot-up
procedure for a host system associated with a memory
system, the boot-up procedure including a first phase, a
second phase, and a third phase. The operations of 605 may
be performed in accordance with examples as disclosed
herein. In some examples, aspects of the operations of 605
may be performed by a boot-up initiation component 525 as
described with reference to FIG. 5.

At 610, the method may include performing a first reset
operation to reset one or more circuits of the memory system
based on receiving a first reset command during the first
phase of the boot-up procedure. The operations of 610 may
be performed in accordance with examples as disclosed
herein. In some examples, aspects of the operations of 610
may be performed by a PBL reset component 530 as
described with reference to FIG. 5.

At 615, the method may include initiating a portion of a
second reset operation to reset the one or more circuits of the
memory system during the second phase of the boot-up
procedure based on a likelihood that a second reset com-
mand is to be received after performing the first reset

10

15

20

25

30

35

40

45

50

55

60

65

20

operation. The operations of 615 may be performed in
accordance with examples as disclosed herein. In some
examples, aspects of the operations of 615 may be per-
formed by an XBL reset component 535 as described with
reference to FIG. 5.

At 620, the method may include receiving the second
reset command during the second phase of the boot-up
procedure after initiating the portion of the second reset
operation. The operations of 620 may be performed in
accordance with examples as disclosed herein. In some
examples, aspects of the operations of 620 may be per-
formed by an XBL reset component 535 as described with
reference to FIG. 5.

In some examples, an apparatus as described herein may
perform a method or methods, such as the method 600. The
apparatus may include features, circuitry, logic, means, or
instructions (e.g., a non-transitory computer-readable
medium storing instructions executable by a processor), or
any combination thereof for performing the following
aspects of the present disclosure:

Aspect 1: A method, apparatus, or non-transitory com-
puter-readable medium including operations, features, cir-
cuitry, logic, means, or instructions, or any combination
thereof for initiating a boot-up procedure for a host system
associated with a memory system, the boot-up procedure
including a first phase, a second phase, and a third phase;
performing a first reset operation to reset one or more
circuits of the memory system based on receiving a first reset
command during the first phase of the boot-up procedure;
initiating a portion of a second reset operation to reset the
one or more circuits of the memory system during the
second phase of the boot-up procedure based on a likelihood
that a second reset command is to be received after per-
forming the first reset operation; and receiving the second
reset command during the second phase of the boot-up
procedure after initiating the portion of the second reset
operation.

Aspect 2: The method, apparatus, or non-transitory com-
puter-readable medium of aspect 1 where initiating the
portion of the second reset operation, further includes opera-
tions, features, circuitry, logic, means, or instructions, or any
combination thereof for closing one or more operations of
the second phase of the boot-up procedure and releasing one
or more resources associated with the one or more opera-
tions of the second phase of the boot-up procedure.

Aspect 3: The method, apparatus, or non-transitory com-
puter-readable medium of aspect 2, further including opera-
tions, features, circuitry, logic, means, or instructions, or any
combination thereof for identifying a quantity of steps for
accessing contents of a register of the host system based on
closing the one or more operations and releasing the one or
more resources and monitoring for the second reset com-
mand based on identifying the quantity of steps.

Aspect 4: The method, apparatus, or non-transitory com-
puter-readable medium of any of aspects 1 through 3, further
including operations, features, circuitry, logic, means, or
instructions, or any combination thereof for initiating a
second portion of the second reset operation to reset the one
or more circuits of the memory system based on receiving
the second reset command during the second phase of the
boot-up procedure and initiating the portion of the second
reset operation during the second phase of the boot-up
procedure.

Aspect 5: The method, apparatus, or non-transitory com-
puter-readable medium of aspect 4, further including opera-
tions, features, circuitry, logic, means, or instructions, or any
combination thereof for transmitting an indication for suc-

US 11,983,073 B2

21

cessfully resetting the one or more circuits of the memory
system based on initiating the second portion of the second
reset operation.

Aspect 6: The method, apparatus, or non-transitory com-
puter-readable medium of any of aspects 4 through 5, further
including operations, features, circuitry, logic, means, or
instructions, or any combination thereof for initiating the
third phase of the boot-up procedure based on initiating the
second portion of the second reset operation.

Aspect 7: The method, apparatus, or non-transitory com-
puter-readable medium of any of aspects 1 through 6, further
including operations, features, circuitry, logic, means, or
instructions, or any combination thereof for identifying
whether a duration after receiving the first reset command
satisfies a first threshold and whether a quantity of contents
accessed after receiving the first reset command satisfies a
second threshold, or both, where the likelihood that the
second reset command is to be received is based on the
identifying.

Aspect 8: The method, apparatus, or non-transitory com-
puter-readable medium of aspect 7, further including opera-
tions, features, circuitry, logic, means, or instructions, or any
combination thereof for configuring the first threshold based
on a duration of time between receiving the first reset
command and receiving the second reset command that
occurs during a second boot-up procedure, where the second
boot-up procedure occurs before the boot-up procedure and
configuring the second threshold based on a quantity of
contents accessed between receiving the first reset command
and receiving the second reset command as part of the
second boot-up procedure.

Aspect 9: The method, apparatus, or non-transitory com-
puter-readable medium of any of aspects 1 through 8, further
including operations, features, circuitry, logic, means, or
instructions, or any combination thereof for identifying the
boot-up procedure for the host system associated with the
memory system, where the likelihood that the second reset
command is to be received is based on the identifying.

Aspect 10: The method, apparatus, or non-transitory
computer-readable medium of any of aspects 1 through 9,
further including operations, features, circuitry, logic,
means, Or instructions, or any combination thereof for
transmitting, to the memory system, a request for a state of
a device initialization flag and receiving, from the memory
system, the state of the device initialization flag, where the
state indicates that the device initialization flag has not set,
where the likelihood that the second reset command is to be
received is based on the receiving.

Aspect 11: The method, apparatus, or non-transitory com-
puter-readable medium of any of aspects 1 through 10,
further including operations, features, circuitry, logic,
means, Or instructions, or any combination thereof for
receiving a boot logical unit number identification indicating
that an associated boot logic unit number of the memory
system has been accessed and read, where the likelihood that
the second reset command is to be received is based on the
receiving.

Aspect 12: The method, apparatus, or non-transitory
computer-readable medium of aspect 11, further including
operations, features, circuitry, logic, means, or instructions,
or any combination thereof for identifying whether a dura-
tion after receiving a read command associated with the boot
unit logic number satisfies a third threshold.

Aspect 13: The method, apparatus, or non-transitory
computer-readable medium of any of aspects 1 through 12
where receiving the second reset command, further includes
operations, features, circuitry, logic, means, or instructions,

10

15

20

25

30

35

40

45

50

55

60

65

22

or any combination thereof for receiving the second reset
command via a hardware reset pin coupled with the memory
system.

Aspect 14: The method, apparatus, or non-transitory
computer-readable medium of any of aspects 1 through 13
where at least a subset of circuits of the one or more circuits
of the memory system include a controller configured to
facilitate communications between the memory system and
the host system of a UFS device.

Aspect 15: The method, apparatus, or non-transitory
computer-readable medium of any of aspects 1 through 14
where the first phase includes a UFS boot phase, the second
phase includes kernel loading boot phase, and the third
phase includes a kernel start boot phase.

It should be noted that the described techniques include
possible implementations, and that the operations and the
steps may be rearranged or otherwise modified and that
other implementations are possible. Further, portions from
two or more of the methods may be combined.

Information and signals described herein may be repre-
sented using any of a variety of different technologies and
techniques. For example, data, instructions, commands,
information, signals, bits, symbols, and chips that may be
referenced throughout the description may be represented by
voltages, currents, electromagnetic waves, magnetic fields
or particles, optical fields or particles, or any combination
thereof. Some drawings may illustrate signals as a single
signal; however, the signal may represent a bus of signals,
where the bus may have a variety of bit widths.

The terms “electronic communication,” “conductive con-
tact,” “connected,” and “coupled” may refer to a relationship
between components that supports the flow of signals
between the components. Components are considered in
electronic communication with (or in conductive contact
with or connected with or coupled with) one another if there
is any conductive path between the components that can, at
any time, support the flow of signals between the compo-
nents. At any given time, the conductive path between
components that are in electronic communication with each
other (or in conductive contact with or connected with or
coupled with) may be an open circuit or a closed circuit
based on the operation of the device that includes the
connected components. The conductive path between con-
nected components may be a direct conductive path between
the components or the conductive path between connected
components may be an indirect conductive path that may
include intermediate components, such as switches, transis-
tors, or other components. In some examples, the flow of
signals between the connected components may be inter-
rupted for a time, for example, using one or more interme-
diate components such as switches or transistors.

The term “coupling” refers to a condition of moving from
an open-circuit relationship between components in which
signals are not presently capable of being communicated
between the components over a conductive path to a closed-
circuit relationship between components in which signals
are capable of being communicated between components
over the conductive path. If a component, such as a con-
troller, couples other components together, the component
initiates a change that allows signals to flow between the
other components over a conductive path that previously did
not permit signals to flow.

The term “isolated” refers to a relationship between
components in which signals are not presently capable of
flowing between the components. Components are isolated
from each other if there is an open circuit between them. For
example, two components separated by a switch that is

US 11,983,073 B2

23

positioned between the components are isolated from each
other if the switch is open. If a controller isolates two
components, the controller affects a change that prevents
signals from flowing between the components using a con-
ductive path that previously permitted signals to flow.

The terms “if,” “when,” “based on,” or “based at least in
part on” may be used interchangeably. In some examples, if
the terms “if,” “when,” “based on,” or “based at least in part
on” are used to describe a conditional action, a conditional
process, or connection between portions of a process, the
terms may be interchangeable.

The term “in response to” may refer to one condition or
action occurring at least partially, if not fully, as a result of
a previous condition or action. For example, a first condition
or action may be performed, and second condition or action
may at least partially occur as a result of the previous
condition or action occurring (whether directly after or after
one or more other intermediate conditions or actions occur-
ring after the first condition or action).

Additionally, the terms “directly in response to” or “in
direct response to” may refer to one condition or action
occurring as a direct result of a previous condition or action.
In some examples, a first condition or action may be
performed, and second condition or action may occur
directly as a result of the previous condition or action
occurring independent of whether other conditions or
actions occur. In some examples, a first condition or action
may be performed, and second condition or action may
occur directly as a result of the previous condition or action
occurring, such that no other intermediate conditions or
actions occur between the earlier condition or action and the
second condition or action, or a limited quantity of one or
more intermediate steps or actions occur between the earlier
condition or action and the second condition or action. Any
condition or action described herein as being performed
“based on,” “based at least in part on,” or “in response to”
some other step, action, event, or condition may additionally
or alternatively (e.g., in an alternative example) be per-
formed “in direct response to” or “directly in response to”
such other condition or action unless otherwise specified.

The devices discussed herein, including a memory array,
may be formed on a semiconductor substrate, such as
silicon, germanium, silicon-germanium alloy, gallium
arsenide, gallium nitride, etc. In some examples, the sub-
strate is a semiconductor wafer. In some other examples, the
substrate may be a silicon-on-insulator (SOI) substrate, such
as silicon-on-glass (SOG) or silicon-on-sapphire (SOP), or
epitaxial layers of semiconductor materials on another sub-
strate. The conductivity of the substrate, or sub-regions of
the substrate, may be controlled through doping using vari-
ous chemical species including, but not limited to, phospho-
rous, boron, or arsenic. Doping may be performed during the
initial formation or growth of the substrate, by ion-implan-
tation, or by any other doping means.

A switching component or a transistor discussed herein
may represent a field-effect transistor (FET) and comprise a
three terminal device including a source, drain, and gate.
The terminals may be connected to other electronic elements
through conductive materials, e.g., metals. The source and
drain may be conductive and may comprise a heavily-doped,
e.g., degenerate, semiconductor region. The source and
drain may be separated by a lightly-doped semiconductor
region or channel. If the channel is n-type (i.e., majority
carriers are electrons), then the FET may be referred to as an
n-type FET. If the channel is p-type (i.e., majority carriers
are holes), then the FET may be referred to as a p-type FET.
The channel may be capped by an insulating gate oxide. The

25

40

45

50

55

24

channel conductivity may be controlled by applying a volt-
age to the gate. For example, applying a positive voltage or
negative voltage to an n-type FET or a p-type FET, respec-
tively, may result in the channel becoming conductive. A
transistor may be “on” or “activated” if a voltage greater
than or equal to the transistor’s threshold voltage is applied
to the transistor gate. The transistor may be “off” or “deac-
tivated” if a voltage less than the transistor’s threshold
voltage is applied to the transistor gate.

The description set forth herein, in connection with the
appended drawings, describes example configurations and
does not represent all the examples that may be implemented
or that are within the scope of the claims. The term “exem-
plary” used herein means “serving as an example, instance,
or illustration” and not “preferred” or “advantageous over
other examples.” The detailed description includes specific
details to providing an understanding of the described tech-
niques. These techniques, however, may be practiced with-
out these specific details. In some instances, well-known
structures and devices are shown in block diagram form to
avoid obscuring the concepts of the described examples.

In the appended figures, similar components or features
may have the same reference label. Further, various com-
ponents of the same type may be distinguished by following
the reference label by a hyphen and a second label that
distinguishes among the similar components. If just the first
reference label is used in the specification, the description is
applicable to any one of the similar components having the
same first reference label irrespective of the second refer-
ence label.

The functions described herein may be implemented in
hardware, software executed by a processor, firmware, or
any combination thereof. If implemented in software
executed by a processor, the functions may be stored on or
transmitted over, as one or more instructions or code, a
computer-readable medium. Other examples and implemen-
tations are within the scope of the disclosure and appended
claims. For example, due to the nature of software, the
described functions can be implemented using software
executed by a processor, hardware, firmware, hardwiring, or
combinations of any of these. Features implementing func-
tions may also be physically located at various positions,
including being distributed such that portions of functions
are implemented at different physical locations.

For example, the various illustrative blocks and compo-
nents described in connection with the disclosure herein may
be implemented or performed with a general-purpose pro-
cessor, a DSP, an ASIC, an FPGA or other programmable
logic device, discrete gate or transistor logic, discrete hard-
ware components, or any combination thereof designed to
perform the functions described herein. A general-purpose
processor may be a microprocessor, but in the alternative,
the processor may be any processor, controller, microcon-
troller, or state machine. A processor may be implemented as
a combination of computing devices (e.g., a combination of
a DSP and a microprocessor, multiple microprocessors, one
or more microprocessors in conjunction with a DSP core, or
any other such configuration).

As used herein, including in the claims, “or” as used in a
list of items (for example, a list of items prefaced by a phrase
such as “at least one of” or “one or more of”) indicates an
inclusive list such that, for example, a list of at least one of
A, B, or C means A or B or C or AB or AC or BC or ABC
(i.e., Aand B and C). Also, as used herein, the phrase “based
on” shall not be construed as a reference to a closed set of
conditions. For example, an exemplary step that is described
as “based on condition A” may be based on both a condition

US 11,983,073 B2

25

A and a condition B without departing from the scope of the
present disclosure. In other words, as used herein, the phrase
“based on” shall be construed in the same manner as the
phrase “based at least in part on.”
Computer-readable media includes both non-transitory
computer storage media and communication media includ-
ing any medium that facilitates transfer of a computer
program from one place to another. A non-transitory storage
medium may be any available medium that can be accessed
by a general purpose or special purpose computer. By way
of example, and not limitation, non-transitory computer-
readable media can comprise RAM, ROM, electrically eras-
able programmable read-only memory (EEPROM), com-
pact disk (CD) ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other
non-transitory medium that can be used to carry or store
desired program code means in the form of instructions or
data structures and that can be accessed by a general-
purpose or special-purpose computer, or a general-purpose
or special-purpose processor. Also, any connection is prop-
erly termed a computer-readable medium. For example, if
the software is transmitted from a website, server, or other
remote source using a coaxial cable, fiber optic cable,
twisted pair, digital subscriber line (DSL), or wireless tech-
nologies such as infrared, radio, and microwave, then the
coaxial cable, fiber optic cable, twisted pair, DSL, or wire-
less technologies such as infrared, radio, and microwave are
included in the definition of medium. Disk and disc, as used
herein, include CD, laser disc, optical disc, digital versatile
disc (DVD), floppy disk, and Blu-ray disc, where disks
usually reproduce data magnetically, while discs reproduce
data optically with lasers. Combinations of these are also
included within the scope of computer-readable media.
The description herein is provided to enable a person
skilled in the art to make or use the disclosure. Various
modifications to the disclosure will be apparent to those
skilled in the art, and the generic principles defined herein
may be applied to other variations without departing from
the scope of the disclosure. Thus, the disclosure is not
limited to the examples and designs described herein but is
to be accorded the broadest scope consistent with the
principles and novel features disclosed herein.
What is claimed is:
1. An apparatus, comprising:
a controller configured to couple with a memory system,
wherein the controller is configured to cause the appa-
ratus to:
initiate a boot-up procedure for a host system associ-
ated with the memory system, the boot-up procedure
comprising a first phase, a second phase, and a third
phase;

perform a first reset operation to reset one or more
circuits of the memory system based at least in part
on receiving a first reset command during the first
phase of the boot-up procedure;

initiate a portion of a second reset operation to reset the
one or more circuits of the memory system during
the second phase of the boot-up procedure based at
least in part on a likelihood that a second reset
command is to be received after performing the first
reset operation; and

receive the second reset command during the second
phase of the boot-up procedure after initiating the
portion of the second reset operation.

2. The apparatus of claim 1, wherein the controller
configured to initiate the portion of the second reset opera-
tion is further configured to cause the apparatus to:

5

10

15

20

25

30

35

40

45

60

65

26

close one or more operations of the second phase of the
boot-up procedure; and
release one or more resources associated with the one or
more operations of the second phase of the boot-up
procedure.
3. The apparatus of claim 2, wherein the controller is
further configured to cause the apparatus to:
identify a quantity of steps for accessing contents of a
register of the host system based at least in part on
closing the one or more operations and releasing the
one or more resources; and
monitor for the second reset command based at least in
part on identifying the quantity of steps.
4. The apparatus of claim 1, wherein the controller is
further configured to cause the apparatus to:
initiate a second portion of the second reset operation to
reset the one or more circuits of the memory system
based at least in part on receiving the second reset
command during the second phase of the boot-up
procedure and initiating the portion of the second reset
operation during the second phase of the boot-up
procedure.
5. The apparatus of claim 4, wherein the controller is
further configured to cause the apparatus to:
transmit an indication for successfully resetting the one or
more circuits of the memory system based at least in
part on initiating the second portion of the second reset
operation.
6. The apparatus of claim 4, wherein the controller is
further configured to cause the apparatus to:
initiate the third phase of the boot-up procedure based at
least in part on initiating the second portion of the
second reset operation.
7. The apparatus of claim 1, wherein the controller is
further configured to cause the apparatus to:
identify whether a duration after receiving the first reset
command satisfies a first threshold and whether a
quantity of contents accessed after receiving the first
reset command satisfies a second threshold, or both,
wherein the likelihood that the second reset command
is to be received is based at least in part on the
identifying.
8. The apparatus of claim 7, wherein the controller is
further configured to cause the apparatus to:
configure the first threshold based at least in part on a
duration of time between receiving the first reset com-
mand and receiving the second reset command that
occurs during a second boot-up procedure, wherein the
second boot-up procedure occurs before the boot-up
procedure; and
configure the second threshold based at least in part on the
quantity of contents accessed between receiving the
first reset command and receiving the second reset
command as part of the second boot-up procedure.
9. The apparatus of claim 1, wherein the controller is
further configured to cause the apparatus to:
identify the boot-up procedure for the host system asso-
ciated with the memory system, wherein the likelihood
that the second reset command is to be received is
based at least in part on the identifying.
10. The apparatus of claim 1, wherein the controller is
further configured to cause the apparatus to:
transmit, to the memory system, a request for a state of a
device initialization flag; and
receive, from the memory system, the state of the device
initialization flag, wherein the state indicates that the
device initialization flag has not set, wherein the like-

US 11,983,073 B2

27

lihood that the second reset command is to be received
is based at least in part on the receiving.

11. The apparatus of claim 1, wherein the controller is
further configured to cause the apparatus to:

receive a boot logical unit number identification indicat-

ing that an associated boot logic unit number of the
memory system has been accessed and read, wherein
the likelihood that the second reset command is to be
received is based at least in part on the receiving.

12. The apparatus of claim 11, wherein the controller is
further configured to cause the apparatus to:

identify whether a duration after receiving a read com-

mand associated with the boot unit logic number sat-
isfies a third threshold.

13. The apparatus of claim 1, wherein the controller
configured to receive the second reset command is further
configured to cause the apparatus to:

receive the second reset command via a hardware reset

pin coupled with the memory system.
14. The apparatus of claim 1, wherein at least a subset of
circuits of the one or more circuits of the memory system are
configured to facilitate communications between the
memory system and the host system of a UFS device.
15. The apparatus of claim 1, wherein the first phase
comprises a UFS boot phase, the second phase comprises
kernel loading boot phase, and the third phase comprises a
kernel start boot phase.
16. A non-transitory computer-readable medium storing
code comprising instructions which, when executed by a
processor of an electronic device, cause the electronic device
to:
initiate a boot-up procedure for a host system associated
with a memory system, the boot-up procedure com-
prising a first phase, a second phase, and a third phase;

perform a first reset operation to reset one or more circuits
of the memory system based at least in part on receiv-
ing a first reset command during the first phase of the
boot-up procedure;

initiate a portion of a second reset operation to reset the

one or more circuits of the memory system during the
second phase of the boot-up procedure based at least in
part on a likelihood that a second reset command is to
be received after performing the first reset operation;
and

receive the second reset command during the second

phase of the boot-up procedure after initiating the
portion of the second reset operation.

17. The non-transitory computer-readable medium of
claim 16, wherein the instructions to initiate the portion of
the second reset operation, when executed by the processor
of the electronic device, further cause the electronic device
to:

close one or more operations of the second phase of the

boot-up procedure; and

release one or more resources associated with the one or

more operations of the second phase of the boot-up
procedure.

18. The non-transitory computer-readable medium of
claim 17, wherein the instructions, when executed by the
processor of the electronic device, further cause the elec-
tronic device to:

identify a quantity of steps for accessing contents of a

register of the host system based at least in part on
closing the one or more operations and releasing the
one or more resources; and

monitor for the second reset command based at least in

part on identifying the quantity of steps.

15

20

25

30

40

45

50

55

65

28

19. The non-transitory computer-readable medium of
claim 16, wherein the instructions, when executed by the
processor of the electronic device, further cause the elec-
tronic device to:

initiate a second portion of the second reset operation to

reset the one or more circuits of the memory system
based at least in part on receiving the second reset
command during the second phase of the boot-up
procedure and initiating the portion of the second reset
operation during the second phase of the boot-up
procedure.

20. The non-transitory computer-readable medium of
claim 19, wherein the instructions, when executed by the
processor of the electronic device, further cause the elec-
tronic device to:

transmit an indication for successfully resetting the one or

more circuits of the memory system based at least in
part on initiating the second portion of the second reset
operation.

21. The non-transitory computer-readable medium of
claim 19, wherein the instructions, when executed by the
processor of the electronic device, further cause the elec-
tronic device to:

initiate the third phase of the boot-up procedure based at

least in part on initiating the second portion of the
second reset operation.
22. The non-transitory computer-readable medium of
claim 16, wherein the instructions, when executed by the
processor of the electronic device, further cause the elec-
tronic device to:
identify whether a duration after receiving the first reset
command satisfies a first threshold and whether a
quantity of contents accessed after receiving the first
reset command satisfies a second threshold, or both,
wherein the likelihood that the second reset command
is to be received is based at least in part on the
identifying.
23. A method, comprising:
initiating a boot-up procedure for a host system associated
with a memory system, the boot-up procedure com-
prising a first phase, a second phase, and a third phase;

performing a first reset operation to reset one or more
circuits of the memory system based at least in part on
receiving a first reset command during the first phase of
the boot-up procedure;

initiating a portion of a second reset operation to reset the

one or more circuits of the memory system during the
second phase of the boot-up procedure based at least in
part on a likelihood that a second reset command is to
be received after performing the first reset operation;
and

receiving the second reset command during the second

phase of the boot-up procedure after initiating the
portion of the second reset operation.

24. The method of claim 23, wherein initiating the portion
of the second reset operation further comprises:

closing one or more operations of the second phase of the

boot-up procedure; and

releasing one or more resources associated with the one or

more operations of the second phase of the boot-up
procedure.

25. The method of claim 24, further comprising:

identifying a quantity of steps for accessing contents of a

register of the host system based at least in part on
closing the one or more operations and releasing the
one or more resources; and

US 11,983,073 B2
29

monitoring for the second reset command based at least in
part on identifying the quantity of steps.

#* #* #* #* #*

30

