US 20150278243A1

a2y Patent Application Publication o) Pub. No.: US 2015/0278243 A1l

a9 United States

VINCENT et al.

43) Pub. Date: Oct. 1, 2015

(54) SCALABLE FILE STORAGE SERVICE

(71) Applicant: Amazon Technologies, Inc., Reno, NV
(US)

(72) Inventors: PRADEEP VINCENT, KENMORE,
WA (US); WAYNE WILLIAM DUSO,
SHREWSBURY, MA (US); MATTI
JUHANI OIKARINEN,
WILMINGTON, MA (US); MATTEO
FRIGO, ACTON, MA (US); JAMES
CHRISTOPHER SORENSON, III,
SEATTLE, WA (US)

(73) Assignee: Amazon Technologies, Inc., Reno, NV
(US)

(21) Appl. No.: 14/231,088

(22) Filed: Mar. 31,2014

Publication Classification

(51) Int.CL

GOGF 17/30 (2006.01)
(52) US.CL

CPC oo GOGF 17/30174 (2013.01)
(57) ABSTRACT

A client request, formatted in accordance with a file system
interface, is received at an access subsystem of a distributed
multi-tenant storage service. After the request is authenti-
cated at the access subsystem, an atomic metadata operation
comprising a group of file system metadata modifications is
initiated, including a first metadata modification at a first node
of' a metadata subsystem of the storage service and a second
metadata modification at a second node of the metadata sub-
system. A plurality of replicas of at least one data modifica-
tion corresponding to the request are saved at respective stor-
age nodes of the service.

Receive file store operation request involving a modification 2001

Perform single page Read-
Modify-Write 2007

Need to write multiple pages at different extents? 2004

Yes

| Select coordinator node for multi-page distributed transaction 2010 |

Collect/generate metadata to implement transaction - e.g., transaction identifier, sorted
list of pages/extents to be modified, identities of master extent replica chain nodes
including terminal or “decider’ node 2013

Read pages to be modified, obtain read logical timestamps 2016

Construct Tx-prepare message and transmit to first node in chain 019

Response received within timeout? 2023

Response is Tx-commit? 2026

Yes
No (Response

is Tx-Abort)

Notify client that requested operation succeeded; optionally, send a Tx-cleanup to node
chain members asynchronously 2029

Optionally, notify client that requested operation failed; optionally, send a Tx-cleanup
message to chain members asynchronously 2032

Optionally, notify client that status of requested operation is unknown, and/or initiate a
transaction state recovery process 2035

US 2015/0278243 Al

Oct. 1,2015 Sheet 1 of 69

CLETS

} Ol4

d081 usid

Y0

0|

| JusliD

0F7 SIdy wayshs aji4

Came

AR L LR R LR R R X BT Y R L LY L N X X]

01T waisAsqns sse00y

dcil
NV

\,

usixg

vrel usixq

el d
APEL sk

g¢el NS

Vel usixg

VZEL NS

0cT waysAsgns abeiolg

J

PRI AL LI LI L L LI L LIl L ALl LI L LN

Patent Application Publication

(o=
g
S

WaIsAS

dccl
NA

vacl
NI

021 waisAsgns elepelay

[

(SS4Q) sowuas abelo)s 8y paINquIsiq

LYY Y R Y P Y PR P Y Y Y PR Y Y Y Y Y Y A Y P Y Y P P R Y PR R P R R PR R P PR R PR R PR R PR YRR PR PR R R R PR R R R R R R R ¥ 3 Y g

L L L L L L L L L L e L L I L L L L P RN PP LI LI L IS

‘sosscscscsscccasssassssccsacssassssacncacsssssaBEccEBaG®

¢ 9Ol

US 2015/0278243 Al

|7 JsWOoISNd JO £S4 1D 18Wao)snd JO 1S4
21059]14 40} pasn J0TZ 1S 9PON 20 JUIOISND J0 7S 4 910}52]14 10} Pasn FGE 19S SPON

81015914 J0} Pasn g0G¢ 19S SPON

vl

mecccssssessaseaan

Oct. 1,2015 Sheet 2 of 69

e =

e ¢ e ¢ ¢ e ¢ ¢ e ¢+ e
92!
N
N
-—

i | ° immimmien
i J
¢ emmm o e s gm0 e ¢ em— ¢ e— e
'
L

.]
' '

DCIC Jautejuod Ayijiqelieny : ' dc1c Jaurejuod Ajliqelieny VC1¢ Jautejuod Ayjigefieay
' .

202 lomau Jepinoid

PRI R L R R R R R R L LR L LY LI
YRR

Patent Application Publication

€ old

0% ao1n8s Bunndwod e

008 d08¢
[D3uaND [D3uaNd

US 2015/0278243 Al

(¥ J3WOISND 10J paysIiqersa)
TZ0E (NAI) HOMIBU [NLIA PaE|oS|

(g 1ewo)sNo
10} PaysI|qeIss) gz0g NAI

----------------,
SNYJOJ0%8 |
sessalppe d| dlignd ¢
- ocospeocessasel
3
~N

V08¢
[D3usND

d08¢
[D3uaND

08¢
[D3uaND

08¢
lORLE0)

P SNVIOSHOEE b
* (s9)sSaIppPE d| B)eAUd-NA| '

e

P OSNYIOIVORE
* (s3)ssaippe d| BjeAld-NA| '

Lo

Oct. 1,2015 Sheet 3 of 69

cTeocecesrcccsesnecce llllllll--llll./lll-llll--llv ssecccssccscasnaa cscscecesscsessegeenees

' -
4¢l1 ¢l dcll IT dcll Vell
NV NY NY NY NY NY

~

Z0C YJOMIaU JAPIAOI

AL L R X XY Y Y X Yy Xy Yy Xy YRR Y RRXRRRRREREY SRR EY Y LYY Y Y Xy X Y Yy ¥ Yy}

P L L L L e L L P e e L AL T Y I

Patent Application Publication

‘cescsscescsssesscccsensssacccscassescesssasser e cesReeseseessesanan?’

US 2015/0278243 Al

Oct. 1,2015 Sheet 4 of 69

Patent Application Publication

v Old

ann QcEl apou sbein)g

y
WClvdd | Tclvdd | Mclvdd | ¢y dd
oy
JuSixs ejeQ _ v
L ZS 1 epou abeio)g -
Te Helvdd | Oclvdd [dCivdd | Jebvdd (|
JUSIX3 Bjeq I :
: . (0 adus) (g adig) (v ading) V2o
: 0207 91 geor g1 (g7) »ooiq [eaiboT

mme ZCT apou abelog

-
ViEr aclvdd | O¢lvdd | 9¢lv dd | V¢lv dd 14 8l uiyim Z0% sbuel 1eso [ealboT
Jusixe ejeq Xew
-18840

mme acer epou sbeigyg

y
e dcly (sdew abed
79 SZivdd | ¥eiv dd | D2iv dd | (dd) ebed -01y00(q 69
Jug)xa ejepelgi\ [eoisAud CJ¥ elepeiaul |4

>

0

US 2015/0278243 Al

Oct. 1,2015 Sheet 5 of 69

Patent Application Publication

cesscaea
‘. ‘-------‘

[4
r

NZET epou abrioig
e T T

49.8
eol|dal Jeisew

ZIN Wu=iXe ejepelsiN

06.§
eodas Jeisew-uou

LN 1U=)Xe E)EPEIGN

21A9p 8BeING

“69) TZES

(isip Bupesol
“69) TZTE 901n8p abeI0Ig

%95
edl|dal Jeysew

-UoU | JuBIXa Bleg

PLEEEL LTS

(ass
“B'8) TZEG 901nap abrIO)S

(sip Bunesou

¢ old

gze) epou abeiayg
AN . .
Blepe)jsW V9.5 m
10, 0TS eoiday J1SRW-UOU ;
dnoub eoidey CIN JuSIx3 EJEPEIR :

g¢.8
eol|dal Jejsew
LIN Jusixe elepelaj

“B'9) JZEG 201Aap 8beI0)g

4c9g
ed||dal Jeysew

<@ usixs ele

ar9s
ed||dal Jeysew

-UoU |.(] JUS)X8 EJE(]

LIAl JUSIX8 Blepe)aLu
101 016 dnoib eaidey

Z(Q ug)xa Blep
o1 016 dnoub ealdsy

L uU8IXe Blep
101 YOTE dnoub eaidsy

Y2el epou 2brioig
AN

VG.S
eoljdal J91SBW-UOU

LIN Juoixa ElEpER)y

“68) §Z¢8

(1sip Bunejou

V495
eol|dal Jeysew
-UoU Z(JUSp@ BleQ

V95
eol|dal Jeysew

L JUeIXa Ejeq

4
“soseoseas

[Y

“69) ¥Z5G 901A8p abeI0Ig

1)
Seaa

L)
TSoesenana®

LY

US 2015/0278243 Al

Oct. 1,2015 Sheet 6 of 69

Patent Application Publication

9 9Ol
(1senbai ao1Al8s 0] puodsal (1sanbal a21AJas Ul palpow
0} papasu ejepejsw buuoys) FZET (s)epou sbeiois jpassecoe ejep Buuols) TZET (s)epou abeioig
$59 (s)ebed
== WS §G0158nbay -
ve BlEpRIS A sllim/pes) Bleq 969
G69
— 260 elepeisll _
719 (s)bumes inoaw Ayigibisul uopeoo|ie-a1 %400|g JueAS[l 09 (s)Bumas Jnoswn ayoe)
-)senbay
719 19S elepeja Alowsw-u| 00 ayoea elepelspy
£69
g
Tl 8pou ejepe)ajy 059 1senbal 71T 8pou 5890y
ejepejsy
A
qrio 1senbal |
grvo o

80IAISS papJemio

9% J3ouB|eq peoT

Y79 1sanbai so1neg

A

16

O

08}

I

US 2015/0278243 Al

Oct. 1,2015 Sheet 7 of 69

Patent Application Publication

Z Old
¢yg = nosuun
uoneoo|je Anqibisul uoneoo|le
e | gums guy< | GZ<NY | Bupoo 50(€3) DI9= | s gL < L1 uopeaydas |
=9ZIS dd 5718 g pox ZA<INd) pr | Binsels §/9 4001 27 = ez|s dd paxi4 5755 7] paxI- >owndsaly | | Aem-g
JnoBW I} ayoe)
1Z <indiy _
UONBXONE 1 1y x <anch m 88 = Jnosil] uoyedole
oness =y _ Buipoo Angibeur ZL >euy
2215 RO Sl aMe = alweuAp . uoneoidal
MZ MZ ML ainsels 20||eal , dsaiy ‘Ll 1S4
gl=8z5dd | . > awi) dsal Y , szisddpaxi4 | ‘gMzlG= [In} Aem-Q}
M| =s8zIs o] 91z} 30019 110 = szis g paxig | > 24 dser m
g7 oIWRUAQ o suin 8501 4 NosSWI ayoe)
[\ BTz o1z s1ebiey | F1Z Aojjod 7z 017 Aoijod 807 Aijod 907 s1ebier | F0Z Aonjod 77 Weu
Aoijod abed | Aoiod yooiq | souewsopsd | Amgeinp | Aoijod Buiyoed | ebed jeaisAyd | 300iq [eaibo] | souewsousd | Ageinp o101S Bl
[eaishyd eyeqg | |eaibol elRQ BleQ eleq BIEPEISIN BlEPRISI BlEpeIeI BlEpeIeI BIEPRISI 1S 9l

Patent Application Publication Oct. 1,2015 Sheet 8 of 69 US 2015/0278243 A1

Establish initial set of M empty extents, e.g., at N different storage subsystem nodes of distributed file
storage service, designated to store data and metadata for file store objects on behalf of clients
running on compute instances of virtual computing service 801

v

Configure, on demand or from pre-existing pools, initial sets of access subsystem nodes (e.g.,
endpoints assigned private IP addresses within isolated virtual networks set up for clients) for a
particular file store FS1 and/or initial set of metadata nodes 804

v

Monitor performance and health status of access subsystem nodes, metadata subsystem nodes and
storage subsystem nodes over time; store records of successful file store operations that are later
used to generate usage-based billing amounts 807

'

In response to analysis of performance metrics (e.g., detection of a potential bottleneck) andfor
changing health status (e.g., failures at one or more nodes), dynamically add/remove nodes from one
or more of the subsystems (access subsystem, metadata subsystem, or storage subsystem)
independently of the other subsystem populations, without impacting file store operation request
stream 810

FIG. 8a

In response to create/open/first write request directed to an object (e.g., file or directory) of file store
FS1, designate/configure a metadata subsystem node for object, and allocate storage from selected
extent(s) (or extent replica groups) based on applicable metadata durability policies and data durability
policies 851

'

As additional writes are directed to object, allocate additional space for data and/or metadata, e.g., at
other storage subsystem nodes based on applicable striping policies, and configure additional
metadata nodes as needed 854

'

In response to client requests that involve metadata changes at multiple extents/nodes (e.g., delete
requests, rename requests), perform atomic update operations that implement/enforce sequential
consistency semantics 857

FIG. 8b

Patent Application Publication Oct. 1,2015 Sheet 9 of 69 US 2015/0278243 A1

Determine, based on durability policies to be implemented for a given file store
object F1, the replica count to be used for the extents storing F1 data/metadata,
the replication strategy (e.g., full replicas vs. erasure-coded replicas), and
placement of replicas (e.g., at least one replica in each of K availability containers
or K data centers) 901

!

Identify specific extent replicas to be used for the object, e.g., based on metrics
such as the storage space utilization levels at different extents, file store “spread”,
etc. 904

!

Designate a storage node storing a master replica of a replica group as a leader
responsible for coordinating writes to the file store object 907

l

In response to a client write request directed to a given logical block, direct an
internal write (e.g., from access subsystem node) to the master extent to which
the logical block is mapped 910

l

Initiate, from the leader, interactions of a consensus-based state management

protocol to perform the required updates at the various replicas, including for

example log records of the state changes as well as the changes themselves
913

l

In response to a commit (success) decision for the internal write, optionally
notify client 916

FIG. 9

Patent Application Publication Oct. 1,2015 Sheet 10 of 69 US 2015/0278243 A1

Configure service endpoint addresses for access subsystem nodes of a
distributed file storage service 1001

Y

Receive a command formatted in accordance with a supported industry-standard
APliprotocol (e.g., NFS, SMB, CIFS) at a particular access subsystem node AN1
1004

'

Perform authentication/authorization operations at AN1 1007
|dentify metadata subsystem node MN1 from which metadata needed to respond
to the command is to be obtained 1010

l

Submit metadata request to MN1 1013
Cache contents of a block of metadata for the object at AN1, for cache timeout

period that is less than the block reallocation ineligibility timeout used by the
metadata node 1016

l

Submit internal read/write request to storage node SN1 based on received
metadata 1019

'

Within cache timeout period, re-use cached metadata as needed to response to
further client requests; at the end of the cache timeout period, discard or re-
validate cached block of metadata 1022

FIG. 10

US 2015/0278243 Al

Oct. 1,2015 Sheet 11 of 69

Patent Application Publication

cessescenea,

.

L OIH
gIITT 9ousnbas MINY m
[]
[]
aciil aciil actil '
— lll—— []
dd S1M dd Aipo dd Pesy 1
[]
llllllllllllllllllll\l&llllllllllllllllllllll\- -\‘ll—
- \ v VZI1} 80uenbss MiNY '
AR ’ '
se AR : Vel Vel Vel ‘
pajuswadw| \ \ m dd S dd Ajpow dd pesy m
d :
/ / (I XX A AL Y Y AR R AR R R R R RRRRR R 2 X ¥ X4
\\ / / yd \//,
~ (yueixa uIm N
gq0911 uun >H_O_Eoﬂmv v N //\\,v
1s3nbai sjuM dclildd Oclildd 9ckildd 2177 (dd) \ se
s\ obeg [eaishyd \ \ pajuswaldu|
vl \ \
AN A 159nbal Sl
—_ S Yeoll (21monns
o¢0L1 91 dcoll a1 .—
(87) %001q [e21607] elepejaw Jo ajy “5'9) 71T 102lq0 210)s aj14

US 2015/0278243 Al

Oct. 1,2015 Sheet 12 of 69

Patent Application Publication

¢t Old
azer epou abeio)s
89¢1
eodal
J8)SeW Z3 Jusix3 4/. gt TS
N ! (azel H
o4+ | epou Aq pebevew) Tzzzr | |
’" ¥90p (221607 :
aroeh : — :
eol|dal Jo)sew v ¢J10J HCEC SUIDBW BlEIS
~uou 13 1USXg m Pajedljde) paseq-snsussuoy v
% N
av \\\ lll
[y »° *e
. P *e
'O' \\\\ Il
o' \\\
gzeT opou aberio)g ... o
. \\
[N] \Oﬂ\
P
\\ 00
p— -\\ S
d59¢1 I .
e2l|dsy J9ySeW re yre=emeessccsscecmcc==a
[}
-uou Z3juaxg ... ’ (vzel o
s ! | apou Aq psbeuew) YZzgr
u ¥o0[0 [ea1607
I\ll '
arocl PPt liy » 1310} ¥ZELT dulyoew oye)s
eoldal Jojsew |«de® 1 pajeaidas paseq-snsussuo)
-UoU |3 JUSIXJ Neeecmmecessscccncccaas?

NZE] opou abeiog

i zr4}

eoljda) JaiseLu
-Uou |3 Jusx3

VZS Tl epou sbring

[y [R}]

N v&9cl
...) el|da) J8)sBW

’ -uou 3 uaxg

V¥acl
eodal
Jajsew |3 jusx3

Patent Application Publication Oct. 1,2015 Sheet 13 of 69 US 2015/0278243 A1

Read page
request 1351
>
Read response, with read logical
timestamp (RLT) 1352
-
Storage subsystem
client(e.g.,
metadata node or Storage node 132
access node) 1310
Write request, with RLT 1361
P
Write response 1362 (success if page
hasn't been written since RLT, abort
otherwise)
=

FIG. 13

US 2015/0278243 Al

Oct. 1,2015 Sheet 14 of 69

Patent Application Publication

vL 'Old
M09 1
X
N6LYL 52 16lvl A6LY)
alusid diusid adlusio arueld
— YZEr] epou abeioig
NZL¥l W.LYL 1yl ALyl <
dwejsawn dwesawn dwesawn dwejsawn
[e2160] S1upp [e2160] Q1A [e2160] S1pn [e2160] QU ga0l¥l
- > eoldal
NGl¥lL WGlvl Gyl AGlyl 18isew z3uepq
Q| 9bed Q| 9beg Q| 9bed q| 8bed
A
oL \\ NOSFT- To%T / (z3weyxe Jo))
gOSF1 Jaung Boj sjum Jeinong
Y091
X
asiyl J61¥1 a6lvl Y6lvl
alusip arusio anusid arusid
VZErT epou sbeioig
asivl JL1¥) a’lyl Y.l —
dwejsawn dweysawn dwesawn dwejsawn
[e2160] |1upn [eibo] aIpn [e2160] S1pA [e2160] |1upn YOI¥1
p— p— -t > edldal
asivl J5vl dsiyl Valyl Jgisew 13 usxg
Q| ebeyd Q| 8bed Q| 9bed q| ebeyd
aoort D097T qo9rT 4/ (13 we1xe J0J)

VOGTT Jeung Boj ajum sejnoi)

Patent Application Publication Oct. 1,2015 Sheet 15 of 69 US 2015/0278243 A1

Determine, at a client C of a storage subsystem (e.g., a metadata subsystem node or an
access subsystem node) that a particular file store operation corresponding to a work
request is to be implemented as a read-modify-write (RMW) operation on a particular

physical page P 1501

'

Receive, from C at a storage subsystem node SN1, a read request directed to P 1504
At SN1, obtain read logical timestamp (RLT) from replicated state machine being used to
manage state of P's extent; provide RLT to client with read response 1507

l

Receive, from C at SN1, a write request WR1 directed to P, with a write payload
(modification) and the RLT 1510

P has been modified since RLT? 1513

Yes

lNo

Modify P as requested in WR1; save write logical timestamp and P’s identifier in a write
log buffer; send “WR1 succeeded’ response (optionally including the write logical
timestamp) to C 1516

Optionally, send “WR1 aborted” response to C 1519 -«

FIG. 15

US 2015/0278243 Al

Oct. 1,2015 Sheet 16 of 69

Patent Application Publication

.

PLEIIT TR Y LR LY L L Y)

2091

83 X3
‘6d abed

(1ap102p)
7ZE9l opou abeioig

-t

ureyd apou sbeinis

9L Old
> G3Ix3

VhHor 1d 36ed Tror

JUWIWOD-X | HWWO2-X |
qzeor opou abein)S [«

dciol d¢vol

aledaid-x | aledaid-x |
Y9l
asedaud-x|

1313
‘Ld obed

Vetg) opou abeio)g

7197 8pou
J0JEUIPJI00D Pajos|es

0G9T esuodsal
$$800NS SIAA

ool
NWWOD-X|

0197 1s8nbai
a)um sbed-niny

.

‘ccscsccnsssssccscencsscscsas

L X X X XX ¥ N ¥ XX ¥ 4

US 2015/0278243 Al

Oct. 1, 2015 Sheet 17 of 69

Patent Application Publication

soecenscsscsscsssensesense,

8313
‘6d abed

(Jsp1osp)
DZE9L 8pou 8bei)S

7097 uieyd apou sbeioig

Z} Old

§31x3
‘1d ebed

GcEar spou sbeio)s |-

Yev9l
aJjedald-x]

¢191 8pou
J0JBUIPJO0D PaJo3[es

0G.1
asuodsal ainjie] S

> e
VIv LD '}d obed
uoge-x|
VZeol apou abeia)g
derol
aledaid-x]

Vesecececcecscsccccccscccscace’

cooscseoyecescscssoncans

qyvll
1oge-X|

0197 1senbay
ajum abed-ninpy

US 2015/0278243 Al

Oct. 1,2015 Sheet 18 of 69

Patent Application Publication

8L Old
r--—-——-—---—--—-- L I_. ||||||||| Im
_ _ |
71 ! L] | T
dnuesjo-x/ | _ %cmo_o-xr | dnuesjp-x].

_ _ _ _

_ ! | |

_ ! | |

_ _ l

_ _ | TS8T IWwoo-x | “

_ _
"-".-----"------"+-----"------'------'l--*--"l------'l-----".--. -'..-----'..-----'.--h-- preoccaccas
i Y LY ¥ v
[}

[}

' 8313 —> 931x3 — 63 X3 ———» 131X3
R ‘6d 9bed 1681 ‘vd obed ¢s8l ‘1d abed €581 ‘Ld 8bed
! JWIWOd-X | JWLWO9-X | JWLWO9-X |

[}

[}

' (19p1oap) (101UIPI002)

m J2E91 9pou obeIo)S fea———] MZEaT apou dbelols fe———| TZEIT opou sbeio)s fee——— VzEaT apou sbeioig
' 7081 ﬁﬂa 7087

= asedaud aledsl aledaid

m 7087 urleys apou sbeloyg X x| x|

1087
aledaid

IX|_|

Secssscsccssscsccnanccna’

US 2015/0278243 Al

Oct. 1,2015 Sheet 19 of 69

Patent Application Publication

6L Ol

[ELLI DL LI LI LRSI LI L LR L Y

J¢061
eol|day Jajsew

-uou L3 1X3

JCEBL
apou 8beio)g

G161 SpI0dal Jus)u|

161 $%00] abed

G06

T 8|qe) 918)s uonoesuel |

0861 Aosodal paseys 1ua)sISIag

uornoesu

0} BJEPEJSW UONOBSUE)

eJ) 912)dwoo

SpeaJ 8pou S Ja1SBW M3N “t

dc¢06}
Aaod eoldal Je)sew
Pase(SNSUssu0d -uou |31x3
BIA 68 ‘po)os|es s
gc06) dceel
J9)sew maN ¢ apou sbelols

"ececsccscscsccccnsccscscencscnce?

PI0D3I 1US]UI SSABS ‘SY0)

190 ‘9)e1S UoNESURY)

S9JlUM BPOU S JBISEN ‘|

Y2061 eoldau
Jgisew 313

VZEbl
apou abeIn)S

SHOQE/SHWWOD UONOBSUE))

alojaq sjie] J8)Se|N ¢

Patent Application Publication Oct. 1,2015 Sheet 20 of 69 US 2015/0278243 A1

Receive file store operation request involving a modification 2001

Need to write multiple pages at different extents? 2004

Perform single page Read- Yes
Modlify-Write 2007

Select coordinator node for multi-page distributed transaction 2010
Collect/generate metadata to implement transaction - e.g., transaction identifier, sorted

list of pages/extents to be modified, identities of master extent replica chain nodes
including terminal or “decider” node 2013

Y

Read pages to be modified, obtain read logical timestamps 2016
Construct Tx-prepare message and transmit to first node in chain 2019

Response received within timeout? 2023

No (Response
is Tx-Abort)

Response is Tx-commit? 2026

Notify client that requested operation succeeded; optionally, send a Tx-cleanup to node
chain members asynchronously 2029

Optionally, notify client that requested operation failed; optionally, send a Tx-cleanup
message to chain members asynchronously 2032

Optionally, notify client that status of requested operation is unknown, and/or initiate a
transaction state recovery process 2035

FIG. 20

Patent Application Publication Oct. 1,2015 Sheet 21 of 69 US 2015/0278243 A1

Receive Tx-prepare message at chain member CM (e.g., node with master replica of
extentE) 2101

Y

Perform commit analysis for local pages to be modified, &.g., comparing read logical
timestamp(s) indicated in Tx-prepare message with write log buffer timestamps 2104

Modifications committable? 2107

Yes

No

“Decider'/terminal node of storage chain? 211

Initiate modification to local page(s); store transaction state record indicating transaction
isin COMMITTED state 2113

'

Initiate propagation of Tx-commit message to chain members 2116

Store intent record; acquire page lock(s); store transaction state record indicating
transaction is in PREPARED state 2119

Y

Transmit Tx-prepare message to next node in chain 2122

Store indication that fransaction has been aborted (e.g., either as an explicit ABORTED
state record, or as a no-op-write) 2125

Y

Initiate propagation of Tx-abort to other nodes in chain that have previously sent Tx-
prepare messages (if any), and to coordinator 2128

FIG. 21

Patent Application Publication Oct. 1,2015 Sheet 22 of 69 US 2015/0278243 A1

Receive Tx-commit message at chain member CM (e.g., node with master replica of
extent E) 2201

'

Initiate modification to targeted page(s) of E; update local transaction state table to
indicate transaction is in COMMITTED state 2204

'

Release local page lock(s) 2207
Delete local intent record(s) 2210
If Tx-commits are being propagated sequentially (or if some chain nodes have not yet

been sent Tx-commit messages) transmit Tx-commit on to selected chain member or
coordinator 2213

FIG. 22

Patent Application Publication Oct. 1,2015 Sheet 23 of 69 US 2015/0278243 A1

Receive Tx-abort message at chain member CM (e.g., node with master replica of extent
E) 2301

'

Release local page lock(s) 2304

'

Delete local intent record(s) 2307
If Tx-aborts are being propagated sequentially (or if some chain nodes that earlier sent

Tx-prepare messages have not yet been sent Tx-abort messages) transmit Tx-abort on to
selected chain member or coordinator 2310

FIG. 23

US 2015/0278243 Al

Oct. 1,2015 Sheet 24 of 69

Patent Application Publication

qeChZ Sisjeweled \

uonduasqnsion)

Z/(2-(4.0:d))
= 2-40 10198} uonduasqnsian0

(4.0:d) > Z ‘g Z = 8zIs Jua)xg

g4 d =978 dd

O =g7418d sdd Xen

d = 9¥gg3 o) paddew sg wnN

ve Ol

puewiap uo
paieoo|le g01 T

Sdd

YSShe Sioraweled
uonduosgnsisaQ

X/(X-(AclN)) V\

= |-40 10108} uonduasgnsien

(ANN) > X ‘X X = 8215 Juaix3

gAA=9ZI8 dd

N\ = g7J8d sdd Xel

N = V¥Erg3 0) paddew sg wnN

PUBLISP-UO PajRIo|[e
VOI7¢ (Sdd) sabed |eaishyd

374 I
X3

== | D0FC 41 | deObe g1

oA

34

x

vreEvred
us)x3

1e0bc 81 | Mcove a1

Ll d¢0bc a1 | Veove a1

@A

34

v00v¢ b

34

US 2015/0278243 Al

Oct. 1, 2015 Sheet 25 of 69

Patent Application Publication

arese3
Jus)xe ejep
PaqUISGNSIBAQ

995 Salq
SM Joy sabed sjedo|ly

G¢ 9old

Y¥eGed
JUS)X8 BJBPE)AW mua
PaqLOSqNSIBAQD

85G¢ ejepejsul
g7 S)lum ‘elepejow
g1 Jo) abed ayeao|y

gzcoe opou abeio)g

VZ£Ge apou abeio)g

795C ejep Jo s8iAq
SM o] 80eds 81800|Y

A

7552 elepejoLl
g1910)3

CCGC SPOU BJEPEIS [t

(Sm = oz
peojied eum) TOGZ g1 0) Sjum 18I

715 9pouU $S800Y

Patent Application Publication

Oct. 1,2015 Sheet 26 of 69

US 2015/0278243 Al
K allocated PPs L unallocated PPs
Z 2 E ; > %& Oversubscribed
| l«—— extent
E2634A
I< Allocation limit 2650
based on free space
threshold
of M allocated PPs
FIG. 26a

Mth PP is

allocated —\

free space threshold
=N allocated PPs, N> M

FIG. 26b

QOriginal
oversubscribed
4 oxtent
E2634A
: -
Allocation limit 2650 :
based on free space ". Allocated pages copied
threshold Y asynchronously to
of M allocated PPs \ different storage device if
'-‘ needed
2655 % Expanded
K oversubscribed
3 extent
' / E2634B
Allocation limit 2651 based on

Patent Application Publication Oct. 1,2015 Sheet 27 of 69 US 2015/0278243 A1

Establish initial set of extents, e.g., distributed across plurality of storage nodes of a
distributed multi-tenant file storage service 2701

!

Set initial oversubscription parameters, e.g., respective free space thresholds, for various
extents 2704

v

Select extent E1 to be used for a first write to a particular logical block LB1 of a file store
object; LB1 can be mapped to up to M physical pages within E1, E1 can store up to a total
of P1 pages of various objects, and current size of E1 may be less than combined sizes
of all the logical blocks mapped to it 2707

Y

Write payload of first write request to page(s) allocated on demand within E1(combined
size of allocated pages may be less than LB1 size) 2710

Y

Receive a subsequent write request directed to E1, with a write payload size WS
2713

Allocating enough pages for WS would violate

E1's free threshold criterion? 2716
Yes

Allocate page(s) for WS and perform requested writes 2719

v

Synchronously, allocate page(s) for WS and perform requested writes; asynchronously,
initiate expansion/copying of E1, e.9., using different storage devices or nodes 2722

FIG. 27

Patent Application Publication Oct. 1,2015 Sheet 28 of 69 US 2015/0278243 A1

Allocate physical pages at extents E1, E2 ..., for various logical blocks (LBs) of files and/
—»| or metadata structures over some period of time T1 using an initial set of oversubscription a———
parameters 2801

y

Collect metrics of file store operations during T1, names of files being created, and/or
access patterns (e.g., sequential vs. random accesses) 2804

Space utilization can be improved by changing
oversubscription threshold(s)? 2807

Change oversubscription threshold(s) 2810

4

No

File store operation performance
(e.g., for sequential 1/0) can be improved by rearranging
contents of selected LBs? 2813

— Initiate asynchronous rearrangement of contents of physical pages of selected LBs 2816

FIG. 28

US 2015/0278243 Al

Oct. 1,2015 Sheet 29 of 69

Patent Application Publication

6¢ Old

(yoeo
gy £8) 2016¢ e

sebed [earsAyd sebed [eaisAyd
821s-paxi4 PaZIS-3|qeUEA

OVE6Cd wua art6cd wua
usg usg

{yoea
g% ¢s) 9016¢
sobed [eaisAyd
9ZIS-paxi4

ave6éd waw
usixg

(yoes
a) 1S) VoI6e
sobed |eaisfyd
8zIS-paxi-

vreeed _ (saz1s adnsya0(q
Jusixg [e2160] Buikiea yum) 006¢ 2l!4

US 2015/0278243 Al

Oct. 1,2015 Sheet 30 of 69

Patent Application Publication

0€ Ol4
q010¢ @ousnbas
8zis g7/eduis
aiN ¥9 v #41
diN 91 c#dl
an ¥ c#4d
an L L #4d1

YO10% 2ouanbas

szis g/eduis
an ¢ 6#4d1
an ol 8#4d1
ax8 L#4d1
av 9#4d1
av G#4d1
ane v #4d1
ane c#d1
ax C#4d1
ax i L#d1

US 2015/0278243 Al

Oct. 1,2015 Sheet 31 of 69

Patent Application Publication

L€ Ol

T comatl Gz} € Sluswainseaw
Ucte SO awnay 108lq0

uonezinn soeds jusix3 07Ie
J1010819p uleped ssenoy

GE1¢ Sousw uonezinn
82In0S81 8pou abelo)s

GT 1€ seweu

A10y0811p JojpuUE 2|14

Aoiod 9z18
adujs s|qeuen
Bunuswaiduwl

443
apou ejepejsy

—_——_———
| e _\

SUOISIOap UONEPIOSUDD)

0}1€ soujew
gouewJopad wasAs 914

| — —]

mremaseman

coig sy
papiroidjus)

—_—_—_——"
_ 0L1€]
suoisiap azis g/edu
_Suorpep a8 E1RdNS
101€ €01¢
103(0 21018 3[1) 8218 peojied
10 8ZIS JusLng 1s8nbal a)lAn

Patent Application Publication Oct. 1,2015 Sheet 32 of 69 US 2015/0278243 A1

Receive or generate a write request at storage service node (e.g., at metadata
subsystem) 3201

!

Determine, e.g., based on analysis of write payload/offset and existing metadata, that
additional storage space is to be allocated for the write request 3204

v

Based on offset-based stripe size sequence in use, andfor on stripeflogical block size
selection policy input factors (e.g., current size of file, client-provided hints, collected
metrics, detected access patterns, etc.) determine size of next stripe/logical block to be
allocated 3207

'

Identify extent, storage node, and/or storage device at which space for stripe/logical block
of the selected size can be allocated 3210

'

Submit allocation request to appropriate storage node 3213

Allocate space at storage node 3216

Perform/initiate requested modification 3219

FIG. 32

US 2015/0278243 Al

Oct. 1,2015 Sheet 33 of 69

Patent Application Publication

€€ old

jusixq

FEEET wua

¢dd | bdd

[

snemecacsan,
Y

23s/0) 9bed ¢z
= Z0c¢ Aoeden Juapxg

-

0y
]
v
:
v
'
'
1

.
0

SPU00SS $+01

sl

SpU02as §+01

*u

= TOEE Aojod uogeznoud 0|

.

ALMONd T¥NO3,

s,

SpU02as Z+(]

0l=~

swi Je 20ee 41

10 peal [enuanbas

puooas |+01

JE)S Sjualo 00}

//J',_OH

-

/!
abed pg

Buipeas uiBaq mou
AJuo uea syualD

1811l peal aAeY
SJuaIR 001 IV

obed 181} \

Buipeas ysiuy 0y
SJUBID GZ J8Y)0 J0)
Jlem 0] 8ARY INg
‘aBed 811 peau
SARY SIUBIPD G/

abed 1s11) peal
0194 spusip Gz

abed 181 \

Buipess ysiuy 03
S)USID G JaYI0 10}
Jlem 0] 8ABY NG
‘abed 1511 pes.
BARY SIUBID 05

abed js1 peal
0} J8A sjuaIP 05

abed 181 \\

Buipeas ysiuy 0y
SJUBID G/ JBY)0 IO}
JIem 0) 9ARY ING
‘aBed 511 peal
aABY SIUBIP 67

23

%,

e
1,
%,

e
% 5
%,

-

#:

pe

abed js11) peal
0} 3eA spuBIP G/

ey

abed js1y peas
0})94 spuslo 00}

US 2015/0278243 Al

288/0) 8bed ¢z

rE Old

VT wua
iEhe)

¢dd | ldd

.|

veoee a1

1Y

]
'
'
'
'
'
'
?

]
s

= TO¥E fonjod uoneznuoud o)

.

.J3svg 135440,

LD T T)

=Z0%¢ Aoedes Juaxg 0l=~
< : swn Je ¢ove a1
J0 peal |enuanbas
Wejs sjueijo 00l
SpU0oas y+0 1 SPU0DSS €401 SpU02as g+0L puodss |+01
s _ _ ~a 101
A Wil @aﬂﬁ- JaREN -\l:—

fuoud \\

\

Oct. 1,2015 Sheet 34 of 69

Patent Application Publication

pasooid o) Aluond

g1xeu .. 18ybiy pejuesb are % a1
0} paaooid ued : . 1xau 0) paaooid Jaybiy psjuelt ase
: ebed 1511 Buipeal _
‘20t 91 Buipes: : pausiuy aABy ued ‘zove 91 obed jsuy pes)
paysiuy sAey N . Buipess paysiull SABY SJUSI G2

SJUBII BJOW G

SJUBI 8J0W G aABY SJUBID 67

LY
eus’ Mg’

P ..

abed s pes)
0} JoA sjuelp 0g

abed 1511 peal
0} 184 sjusif G/

ebed 1su1) peal
0} Jaf sl 05

J
\ eaes

abed 1541 peal
0} 384 syusljo 001

pe

abed 151 peal
0} JeA sjualp G/

Patent Application Publication Oct. 1,2015 Sheet 35 of 69 US 2015/0278243 A1

Tokens instantiated Tokens added over
during bucket time based on refill
044 initialization 35048 rate

LB token
bucket 3508

/

m

I/O request » Toaccept /O request, N

Tokens 3501

3522 tokens are consumed
(cost =N)
FIG. 35a
A
Non-linear
Token cost offset-based
(# Tokens token cost
required policy 3562
for one
physical .
o) Linear offset-
based token
cost policy
3561
Offset within logical block (or within file
store object)
Offset Tokens
0-64KB 10
Token cost policy 3576 — 3IKB =
256KB S
Fl G 35b > 256KB 1

Patent Application Publication Oct. 1,2015 Sheet 36 of 69 US 2015/0278243 A1

10 request queue 3602A

,—— (offset range = 0> (P-1),
min delay = 4d)

R3646 | R3644 | R3642 | R3639 | R3635 R3631|

10 request queue 3602B

—— (offset range = P = (2P-1),
min delay = 2d)

R3645 | R3643 | R3640 [R3636 R3632|

|O request queue 36028
(offset range = 2P = (4P-

V4 1), min delay = d)

R3641 | R3637 R3633|

10 request queue 3602C
(offset range = 4P+, min

e delay = 0)

R3638 | R3634 |

FIG. 36

US 2015/0278243 Al

Oct. 1, 2015 Sheet 37 of 69

Patent Application Publication

2& Ol

Aeosp
[enusuodxa
‘Auoud
Juspuadap
18840

anecl <

aMp9 < [enuanbsg

pesy

BJEQ

Auoud [enb3

Auy

Auy wopuey

QM

Elepelapy

Jleauy ‘Auoud
Juspusdap
9810

an 1S 010

DY > [enusnbag

pesy

Elepelapy

0T ZE sbumjes
Jajaweled
[043U0D
uonsabuon

012¢
8215 J98[q0

g0/ ozis | 90Z¢ wsned
peojAed Qj| $S9I0Y

yo0zc
adfy 0/I

Z0Z¢ adfy
Jusju09

Patent Application Publication Oct. 1,2015 Sheet 38 of 69 US 2015/0278243 A1

Receive an I/O request (e.g., a read or a write) directed to at least a portion of a logical
block LB1 of a file store object F1 3801

!

Determine offset within LB1 to which the request is directed 3804

'

Determine, based at least in part on the offset, congestion control parameters (e.g., token
costs or delays) to be used for scheduling the storage operations to be performed
3807

'

Schedule the storage operation(s) based on the identified congestion control parameters
3810

!

Provide response to requester 3813

FIG. 38

US 2015/0278243 Al

Oct. 1,2015 Sheet 39 of 69

Patent Application Publication

fecccccscccccsscccscccccccsccssccsna,

R L L T Y T R Y g

G6e
Jdiqusied-S4Q

076¢
Jsjuiodepoul-S4a

2Xrg, 8E6¢
awen 108lq0 4@

T£6¢ Aguzhiopaing-s4a

d¢ceE SpoU ElEpERN

J

LY6¢ 21e]S sWeusl-1sod

----------------------------'

6€ Old

-4

4X1g, €
AX1'Y, dweuay

56¢E
Jdlqusied-S4a

9¢6¢

\ Jsyuodepoul-s4q

(¥v,) 7E6E
awen 108lq0 4@

0£6¢ Ajuzhiopaing-s4a

¢
[
[}
[}
[}
[}
[}
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
[}
]

M¢C6E Spou EjepEIRIN

J

s

N Y

ZT6¢ senqupy
103l00 S4a

16€ SPONI-S4d

Y C6E SPOU ElEPEISIN

J

Gy6¢ S1E]S sWeusl-ald

R L L L e L L d

-
«
S .
3 0¥ DI
e~
o
<
e
e
<
(g\]
wn
-
=)
=)
S
=]
= MO|]{IOM SLUBUSI
= Jo uonesado
£ DILOE JSI1)
e ur Anua Alojoaup
v S.A 90| pue sjear)
&
=) ol
> 7T0v 300F Joieledwod swep
o - (0] <
¥00¥ «A 0} X sWeudy,
MO|]IOM SWeua) ._®N>_mcm SOUBPIOAR 100|pea(
1o uonelado
2IWOIR 1341} Ul Ajjus Sov\(
Ruojoa1p X 00T spuesado sweusy

N

10

Patent Application Publication
=T

Patent Application Publication Oct. 1,2015 Sheet 41 of 69 US 2015/0278243 A1

Receive a request to rename object (e.g., file or directory) “A” to “B”; the object’s attribute
values are stored in a DFS-Inade entry DI1 and “A™s directory entry is pointing to DI1
4101

A 4

Determine, e.g., based on a deadlock avoidance analysis, whether the directory entry for

‘A’ is 1o be locked first as part of rename workflow, or whether a directory entry for “B” is
to be locked first 4104

) 4

Directory entry of “A” to be locked first? 4107

Attempt first atomic operation from a first metadata subsystem node MN1, comprising: (a)
obtaining a lock L1 on “A” directory entry; (b) generating a unique workflow identifier
WFID1 associated with the rename workflow; and (c) storing an intent record IR1
indicating that “A” is to be renamed to “B” as part of workflow WFID1 4110

First atomic operation succeeded? 4113

Yes
Attempt second atomic operation, potentially from a different metadata subsystem node
MN2 responsible for “B”s directory entry, comprising: (a) verifying that “B” directory entry

is not locked; (b) (after creating “B's directory entry if necessary) setting “B” directory entry
to point to DFS-Inode DI1; and (c) storing an indication that “B"s DFS-Inode pointer has

been successiully set to point to DI1 as part of workflow “WFID” 4116

Second atomic operation succeeded? 4119

Attempt third set of operations from MN1, comprising: (a) deleting the lock L1 (b) deleting
the intent record IR1; and (c) deleting “A™'s directory entry 4122

(Retry third set) 4

Third set of operations succeeded? 4125

Rename workflow succeeded; optionally, retum success indicator 4128 |—

Abort rename workflow; clean up workflow records if
needed 4131

-

| Asynchronously, delete “WFID1" success indicator stored by MN2 4134 |<—

FIG. 41

Patent Application Publication Oct. 1,2015 Sheet 42 of 69 US 2015/0278243 A1

From
4107

For “rename A to B”, B's directory entry is to be
locked first

Attempt first atomic operation from metadata subsystem node MN2, comprising: (a)
verifying that a directory entry for “B” is not locked, creating “B” directory entry if needed
and obtaining a lock L2 on “B” directory entry; (b) generating/storing a unique workflow

identifier WFID2 associated with the rename workflow; and (c) storing an intent record IR2
indicating that “A” is fo be renamed to “B” 4201

First atomic operation succeeded? 4204

Attempt second atomic operation, potentially from a different metadata subsystem node
MN1 responsible for “A”s directory entry, comprising: (a) verifying that “A” directory entry,
pointing to DI1, is not locked; (b) deleting “A™s directory entry; and (c) storing an
indication that “A”s directory entry has been successfully deleted as part of workflow
‘WFID2” 4207

Second atomic operation succeeded? 4210

Attempt third set of operations from MN2, comprising: (a) setting “B” directory entry to
point to DI1, (b) deleting the lock L2 and (c) deleting the intent record IR2 4213

(Retry third set)

Third set succeeded? 421

| Rename workflow succeeded; optionally, return success indicator 421 |7

Abort rename workflow; clean up workflow records if
needed 4222

Asynchronously, delete “WFID” success indicators stored at MN1 4225 |<—

FIG. 42

Patent Application Publication Oct. 1,2015 Sheet 43 of 69 US 2015/0278243 A1

Determine, at some time after the first atomic operation of a workflow (of FIG. 41) for
‘rename A to B”, comprising a lock being obtained on “A” at node MN1 and an intent
record IR1 and workflow ID WFID1 being stored in persistent storage, has succeeded,
and before the third set of operations has been initiated at MN1, that node MN1 has failed
4301

'

Designate/configure a replacement metadata node MN-R, to take over MN1's
responsibilities 4304

l

At MN-R, read the intent record IR1and WFID1 from the persistent storage locations at
which they were written by MN1 prior to the failure 4307

:

Send a query to MN2 from MN-R, to determine whether second atomic operation of the
workflow WFID1 succeeded 4310

Second atomic operation succeeded? 431

Attempt third set of operations of WFID1from MN-R to complete rename workflow 4316

Cancellation criterion met? 431

Abort rename operation and clean up earlier-generated WFID1-related records;
optionally, store WFID1 cancellation record for configurable period 4322

Resume rename workflow: send request from MN-R to MN2 to attempt second atomic
operation 4325

FIG. 43

Patent Application Publication Oct. 1,2015 Sheet 44 of 69 US 2015/0278243 A1

Determine, at some time after a request was sent to node MN2 to perform the second
atomic operation of a workflow of FIG. 41 for “rename A to B”, which includes setting “B”
directory entry pointer to to DI1 and storing WFID1 success record, that node MN2 has
failed 4401

'

Designate/configure a replacement metadata node MN-R2, to take over MN2's
responsibiliies 4404

l

At MN-R2, receive a query from MN1, to determine whether second atomic operation of
the workflow WFID1 succeeded 4407

Second atomic operation succeeded? 4410

Attempt third set of operations of WFID1from MN1 to complete rename workflow 4413

Cancellation criterion met? 4416

Yes

Abort rename operation and clean up WFID1-related records; optionally, store WFID1
cancellation record for a configurable time 4419

Resume rename workflow: send request from MN1 to MN-R2 to aftempt second atomic
operation 4422

FIG. 44

US 2015/0278243 Al

Oct. 1, 2015 Sheet 45 of 69

Patent Application Publication

.
(Y TSRTRRpR R R—

.,

Gt ‘Old
F06GT 18IS OVQH
(» L amm \
»—10557 9pouU OYQAH M0GGY 9PpOU OVAH—g
S T0C5Y S— R4
e 001G AeuvIN JopESH MceSh 181 Apug JopESH
i i TRAIOVAH i
g g | [oA8] OYAH
D055 9poU OYAH—yg _ F0GGF 8pou OYaH VOGS 8P0U DY AH
— D0¢SH — g0zsy L — Yozsr
- Acecy 18! Anug Jopesy q0157 A_UYIN Jopes VeeGr I8l Al JapesH
¥ $ $
. |
I 1 1 .._
— T025T V205h
VOIGF (AeuvIN) Aeue Jauiuspl 8poN sopeo | sonqune Aiepaig
0 9/8| OYQH w
AN

(ymolb aoedssweu Jaye) YOOGT Spou 100y

452
1@ Kioyaup
— 3[04 Ye0sy 10} OYQaH Jo
8I| A1ug 100 <
S05TISI S oo sopea | semquie owana [~ s spou jooy

W (ares [eniur) FOBGT S18IS OVAH

US 2015/0278243 Al

Oct. 1, 2015 Sheet 46 of 69

Patent Application Publication

N [9A9] DY(A
Buisianel) 104

i

9¥ Ol

€ [9A31 DYA
Buisianel) Jo4

i

¢ I9A91 9Y(d
Buisianel) 104

i

| [eAS] OY(d
buisianel 104

i

9997
Sliq
pasnun

(s¥q IN)
NS aouanbasqng

ST
TG aousnbasgng

(syq W)

7S @ousnbasqng

ST)
TS aousnbasgng

(SHG LN =< 8218) DT9F anjea yseH

y09F uonoun} yseH

¢09¥ sweu 9j!4

US 2015/0278243 Al

Oct. 1, 2015 Sheet 47 of 69

Patent Application Publication

(""ZLPZEYX0 = Q1) YOSZF 8PON

""9/1Z€ox(0} juiod
SjuswWae AelryIN 1O JleH

""ZeL9g/x(03 julod
Sjuswafd Aelay|N 1o JleH

(79/12£9%0 = A1) DOSZ¥ 8PON

\

Zv Old

(""ziPgeyX0 = A1) YOSZF 8poN

(~-zee98/x0 = A1) GOSZ¥ 9PON

d01/¥ /
aoeds aa14
911.¢EX0 BuI ..
"9.1269%0 oyo3 A nes
"9/ 1.269%0 sIyeyD
"'9/1289X0 oneig (14 9df yds) wds
AeliyIN Aq paoejdal 81| Anue paseq yseH o
...Nm.m.om.ﬂxo < 1811 AJUB YOG/ SPON 'Z .
"CeB98.X(eNeq
'22e98.X0 YOIz . aipey)
aoeds 8314 V'
"Cee98. X0 onelg
"CeB98. X0 eydly
Eled 4
— LBWIT, Hasy|
eydyy o >
/

(~-zeegg/x0 = Q1) G0SZF 2PON

ISR

Yo
<«
2 8 Ol
oL
o~
o
4
= (*9.12€9%0 = Q1) DOSLY 9PON
M (spou mau)
= 0 = T 500 (€z1ezex0 = (zipzepx0=al) VOSZF SpoN
t ("'21Peerx0 = 1) VOGZY 8PON Q1) VOG0 0N i
2 eI
3 (ssupus T
® £21622X0 £21622X0 JoMa)) (c#edfayids) wds| oyo3 9L12E9X0
- 0} Julod sjuswafe e (~0/,269%0 81| Anus L
3 Aeuy|N Jo Japen 9Seq YSeH aleyD
2 VIN 10 481END 62182200 =) POSEGUSEH 9112600
D0GZF 8pON orelg
v "9L12E9%0 08 9412€9%0)
- 0} Juiod SjuBWaR 9LITEX0 | g 9/12£9%0
o ARLIY|N 1O J81END eckeeexo al
8 9L12E9X0 5pOU MaU 0} SiajuIod Y 9/ | Z69X0 0} Bunuiod 9L12E9X0
alam 1eY) S8lUS YOS/ 8pou Jo Jey sdejdey
—— Y V0S¥ 8pou Jo Jey soejday g S ——
m (L) 2oeds sa.4 v
.m -7228/%0 01 JuI0d ""ZBR98/X0 ""ZBR9G/X0
.M sjuawae AeIyN JO JieH 788G X0 "ZBROG/ X0
[~™
S "ZBR98/X0 ""ZBR9Q/X0
= ~"ZBRIRLX0 ~"ZERO8JX0
&
<
~Na
=
&
«
[~™

US 2015/0278243 Al

Oct. 1,2015 Sheet 49 of 69

Patent Application Publication

""ZHPZEPX0 = A1) 876V 9PON

<t

12470

B> 912600

P 97178000

<t

"'9L12EX0

""gee98/x0

""CEE98.X0

""Zee98/x0

""CEB98.X0

6% Old
(opou j2b1ey uonajep)
i ("'12ervox0 = a1) 0567 SPON
fiduws- ("ZkPgerX0 = 1) 876 3PON
-fdws-
-fdws- TLLLLEXO
-hdws- —
3 >bcm LZEVOX0 ‘I_
— Buiuiewai jse| sapou Y/ eUNr B 206
LJainp, 9j1eq | T ™
A YA %)
BpOU p|IYo 88l] (] SPOU SJusWale
Aewry|N Joqubiau yiim | s.8pou pliyo soeiday ‘g
Lommm_wz "'eegg/Xx0
"'Ceeg8.X0
"'CeB98.X0
"'CeRg8.X0

US 2015/0278243 Al

Oct. 1, 2015 Sheet 50 of 69

Patent Application Publication

(""Z1PZEYX0 = A1) §76F 8PoN

-hidwe-

-Rdwe-

-hidwe-

-bQEou A

0G Ol

(epou 12B1e) UONBIEP)

‘(" 1ZEpYOx0 = Q1) 0GBF 8PON

Aug Bulurews) 15e|
s,apou a)9leq |

/

-fdws-

(""Z1PZEPX0 = A1) B76Y 8poN

-fidws-

-Adws-

-fdws-

VA Bine

-fidwe-

-Rdwe-

-Aidws-

-Rdwe-

9pou pIyd
9a4] J81] Anud Adwis azieniul pue s A3,
01 Aeuy|N, woJ) adA) s.apou juaied abueyy 'z

R T4%

"12EYYIX0

" EEYIOX0

" LCEPYOX0

" LCEPYOX0

" LEEYYOX0

" LCEPYOX0

"12EPYOX0

Patent Application Publication Oct. 1,2015 Sheet 51 of 69 US 2015/0278243 A1

Receive request to add an entry E (e.g., in response to an open() of a file named FName)
to a namespace of a distributed file storage service 5101

v

Use selected hash function to obtain hash value Hvalue for Fname, such that Hvalue can
be expressed as a bit sequence with N subsequences of M bits each 5104

Y

Navigate HDAG levels, starting from root (level 0) to find candidate node CN for inserting
E, e.g., using successive M-bit subsequences as indexes to successive levels of the
HDAG; HDAG nodes comprise either entry lists or NIArrays (node ID arrays) 5107

w Yes

No
Return error (e.g., “maximum allowed number of files in directory exceeded”) 5113

CN entry list has space for E? 5116 —
No (a node splitis

Yes required)
Add E to CN 5119

No (criterion for split type #2

CN’s parent node PN has only one has been met)

NIArray entry for CN (or PN is root)? 5122

Yes (criterion for split type#1 has been met)
Generate hash values for CN’s entry list members 5125 |

Y

Use hash values to distribute entry list members (and E) into P groups
(P>=2) 5128

v

Store (e.g., using conditional writes or distributed transaction to make the writes
persistent) each group in a different new node of HDAG 5131

y

Replace CN's entry list (e.g., using conditional write or distributed transaction) with an
NIArray such that (1/Pth) of the NIArray elements point to each of the new nodes; store
modified CN in persistent storage 5134

FIG. 51 @

Patent Application Publication Oct. 1,2015 Sheet 52 of 69 US 2015/0278243 A1

Identify a sub-list of CN'’s entry list (e.g., 1/(Q+1) of the entry list) to be distributed
between CN and Q new nodes NN1, NN2, .. NNQ to be added to the HDAG 5201

v

Determine hash values for the sub-list members 5204

v

Use hash values to group sub-list members (and E) into Q+1 groups, intended for
inclusion in either CN or one of the new nodes NN1, NN2, ..., NNQ 5207

'

Change appropriate NIArray elements in CN's parent node PN to point to new nodes
NN1, ..NNQ 5210

'

Using atomic operation (e.g., distributed transaction),store new nodes NN1, NN2, ...,
NNQ, modified node CN and CN’s parent node at persistent storage 5213

FIG. 52

Patent Application Publication Oct. 1,2015 Sheet 53 of 69 US 2015/0278243 A1

Receive request to remove an entry E (e.g., for a file name FName) from a namespace of
a distributed file storage service 5301

v

Use selected hash function to obtain hash value HValue for Fname, such that Hvalue can
be expressed as N subsequences of M bits each 5304

v

Traverse namespace’s HDAG levels, starting from root (level 0) to find deletion target
node N1 that contains entry E, using successive subsequences to traverse successive
levels of DAG 5307

N1's entry list contains other entries? 5310

Yes

Mark E’s slot in entry list as “empty”; optionally, move empty entry to one end of the list
5313

No (E is the last
entry remaining)

No (PN does not
comprise a neighbor

NT's parent node PN includes a “neighbo NIArray entry)

NlArray element NX of the elements NP1, NP2, ... that
are pointing to N1?7 5316

Copy NX contents to NP1, NP2, ... so that PN no longer points to N1 5319
I

v

Change PN’s node type (e.g., by modifying header) to an “Entry List” node instead of an
“‘NIArray” node; initialize an empty entry list 5322

4
Mark N1 as invalid or free 5325

FIG. 53

US 2015/0278243 Al

Oct. 1, 2015 Sheet 54 of 69

Patent Application Publication

rS Ol4
(9IS ‘SN
“68) [000)01d WS)SAS 9|1} PBIUBLIO-UOISSES
10} paureyuiew TOFS 19Sqns Blepelsy
A301- A0 ¢SO uoIssas
20 00]- 787 uoIsse

w0 %00 400l 250 uoisseg
uojessdoue i i
10} passaooe | YOOIy PRIRY H00|-M 18D uoIssas
QoS i

198 BIPER 3 end |00 openg | ees Zd N T3 o3 | Fd Kioyoang

uoISSas Jual|)
(o138 Nooj/Uado “Hd) uonewiour 3jeys ydalqo a10)s 9|14
14 3|l uo uonesado —

Ue 10} passa0oe aq 0] JzZFC 18S Blepelely

US 2015/0278243 Al

Oct. 1, 2015 Sheet 55 of 69

Patent Application Publication

gg 9Old
085G Jus)x3
755G elepelsw
U0ISSas 810]S
¥¥S%
JNOSLUIN 8SBST
9¥5S (ssaippe
(epou ssadoe [eoisAyd
BJepejoll a|qisuodsal) Nvy 10/pue [ea16o]
U0ISSaS 10} s ejepejall
psiedojie |g97] N uo paseq
¥00|q [e21607 | uoIsses
GGG Buipnpour “63)
uoISSas 006G asuodsau
IETENE) JIUI UOISSOS
725G SpoU Bjepe;d)
€55 SPOU elepelsiy e Isanbal
JUI UOISSag

876G 9Yded
Ejepejaw
uoISSas

Z15G 9pou SS300Y

(.anusy),
84N
(| uoIsssg

|

GGG 1senbal
uoISSas a0

(eoueysul

andwod

Jejusijo
S4N “6'8)
206G sl
wasAs aji4

US 2015/0278243 Al

Oct. 1, 2015 Sheet 56 of 69

Patent Application Publication

¢C4G 3pOU EjepElSy

9G Old
815G 94oe0 mwﬂm
BlEpEIoUl asuodsa.l
759G Jsanbal L0ISS5S uonesado
ases| paydjeg 5100 JoINq
/ Sjemaual
0 paydjeg
€599 <
Jsanbal |[emausl 0GoG 1senbal
ases|(payoleq Z1GG 9pOU SS90y uonesado
-un) ajeIpaWIW| 810)S 9|14
— 899
8896 ploysaiy)
[eMausJ SjeIpaW| Hw\m_mﬂw_wﬂﬂ@o

€066 Juel
wajsAs g)i4

Patent Application Publication Oct. 1,2015 Sheet 57 of 69 US 2015/0278243 A1

Root dir
metadata
5704A Open/lock_state
information
distributed across
L515705 - multiple extents

— —

Dir D1 Dir D2 Dir D3
metadata metadata metadata
5704B 5704C 5704D
LS| 57058 LSI5705C LSI 5705D nmn
File F1 File F2
metadata metadata
5704E 5704F
LI 5705E LsiszosE ||
FIG. 57a
Consolidated open/lock state metadata extent 5754
Lsi5705A |Ls157058| 5! LSI 1\ si5705E | LS| 5705F
e —=| 5705C of | 5705D of —_— p— L
ofrootdir | ofdirD1 | =~ - of file F1 | offile F2
dir D2 dir D3

FIG. 57b

Patent Application Publication Oct. 1,2015 Sheet 58 of 69 US 2015/0278243 A1

At access node of distributed file storage service supporting a session-oriented file
system protocol (e.g. NFS/SMBY), receive implicit/explicit request to create a client session
5801

v

Transmit request for session identifier to metadata node from access node 5804

v

Allocate block at a metadata extent that is to contain at least some elements of session’s
metadata, such as the “responsible access node” identifier and/or a lease timeout setting
5807

v

Provide, from the metadata node to access node, a session identifier (e.g., NFS
“ClientlD") that is based at least in part on the storage address of the block (e.g., either
logical block address or physical page address), and the lease setting 5810

Cache the session identifier and the lease setting at access node, and provide session
identifier to client 5813

y

Receive an operation request from client at access node (e.g., read or write directed to
file store object F1) that requires a lock in accordance with the file system protocol; the
request includes the session identifier 5816

Y

Transmit internal representation of request from access node to metadata node 5819

Conflict with existing lock? 5820

Return error message to client 5821

Determine, by metadata node, persistent storage location at which a state metadata
record (e.g., including an NFS “StatelD”) comprising a lock state indicator of F1 is to be
stored 5822

Y

Store state metadata record at persistent storage location, provide lock state indicator to
access node 5825

v

Cache lock state indicator at access node; use cached lock state indicator and session
identifier at access node to respond to subsequent requests from client 5828

v

In response to session lease expiration, delete lock state indicator and session identifier
from access node cache and from persistent storage locations 5831

FIG. 58

Patent Application Publication Oct. 1,2015 Sheet 59 of 69 US 2015/0278243 A1

Determine, at an access node, that a file system operation request OR1 received from a
client Cl1 during session CS1 belongs to a category of lease-renewing operations
designated by the file system protocol (or is an explicit lease renewal request) 5901

v

Look up session lease information of CS1, e.g., in access node's cache 5904

Lease due to expire within threshold time T? 5907
Yes

Add CS1 lease renewal request to a buffered set of pending lease renewal operations to
be sent to metadata node in a batch 5910

v

Transmit immediate, un-batched request to metadata node to renew lease of CS1 5913

r

Initiate storage operations (if any are needed) to implement OR1, e.g., by communicating
directly with the storage subsystem from the access node using cached block mappings;
provide response to Cl1 5916

v

Asynchronously with respect to storage operations performed in response to OR1, send
batch of lease renewal requests including CS1's lease renewal request to metadata node
5919

FIG. 59

US 2015/0278243 Al

Oct. 1,2015 Sheet 60 of 69

Patent Application Publication

PR R L R L L L L LI LI LI LI L LN

0609

O

081 Jus!|Q

d

[=

gLy | |

grwan |

(e

Joke| 1ooueeq pROT

2209 YomieN

| Domoangn | | @oz09ngn | | 0709 (NgT) opou ssouereq peot _w

209 duqe) yomaN

2009 3IomjsU Jopirnold

09 'Ol

=
7]
A

a 4
; WI109 7109 MI109 ' 07109 az109 vZI03 (WaTn) | |4
' WdT WET WgT $ e WeT WaT enpow ssouefeq | | 3
! m ' peo| [eo07] m
[} [}
ml am m " mmm <mFO© m
' G109 WY TGT09 WY YGrogwy || &4 TG0 WY gg109 Wy () sobeuew | |3
' ' m $S800y '
; P '
m.:..fl_\,_:..m.v.o.@.zk LU >TI0INY. BEI0ONY] | »—37106NY »—EZI09 NY »—TCIONY_}
L »— 70809 dnoio Jesd N 0700 wa)sAsgns $$820y ®— 70909 dnoio Jead N)

gegl
am Zm
0% T wa)sAsqgns sbeiols

. dccl veel
NI NI
021 WarsAsqns B1epelspy

Vmecccnencassncccccescacccacacccncacccacenesacasencananasesaenaa’

—
“
e
4 -
& T3T 1D 19 OI4
a
< A 3079 158nbay
s ' UOORUUOD
& ' panssiual)
2 L RN SRR S
= 1519 | TOT9sdoppvdllenuA b
tped joxoRd - 2 -

pesecfeccscncaccccncnsanened
2 “ 0209 opou g1
S [}
(=] [}
— ’ L L
b : DZEI9 gcerg
@ m ocr9 o 1dweye z# 1dwape
= ' 8ouejdsooy, UONYBUUOY) — uonosUU0N

[} —

' Y¥EL9 -
m m uonosley # Musspe gtcl9
Q ' uondsuuoy uonosley
= 5519 : 1 Y
~—
m Joeindivew — B - N

ooed T 7709 WgTT VIT08 W TT

;
n [} cescecssaen Soneoaesa=y coeseaneceaes
(=] [
= v A0) e el
o 't souew R (T ETIT
= ' ! peopuom m 1 PEODOM ' DEOpLOM m
£ ' m oo 8 m [eo07 ¢ m oo !
E Y
= e |
2 JG109 WY da¢109 Ny Y4109 NV
&
<«
m »—0Z109 NV »—GzZ109 NV »>—VZ109 NV
=
a

US 2015/0278243 Al

Oct. 1, 2015 Sheet 62 of 69

Patent Application Publication

9029 (V)
Apeded paisnipy

¢9 Old
ploysaiy
OV.G8°0 | OV,G20 | OV,00 | OV.G50 | OV.60 peo| pajsnipe
=Y =Y =Y =Y =y soueydadoe
uonoBuULU0Y
G=Junod | $=3unod | £=3unod | z=3unod | | =junod
Mdwepy | idwspy | dwepy | jdwepy | jdwspy
SGZ9
8|qe) eus)lo
aourydanoe
uonoBUUY
91c9

1 G123 uojouny

(1v) peoj paisnipy

¥0¢9 1010EJ
pesyIan0 ainjie

19 soumsw
PEO| [EOLI0ISIH

PEO]| JUS08) SO

¢0¢9
Aoedes aoinosal

NV SAREN

US 2015/0278243 Al

Oct. 1, 2015 Sheet 63 of 69

Patent Application Publication

£9 Ol
[SSOloV.60
=>[SS0] 1Y
[wapn]ov,.660 | 9% [saAlov.s0
[eNIOV.5L°0 beNIov.9'0 => [wap[Ty => PisalTy sploysaiy
[NdIov.58°0 => [leN]Tv =[Ny | #8DeNIOY.GE0 | $BWOAIOVG0 |) oo
=>[NdolTY | 98 [NdDlov.620 | 9% [NdDIOV.9'0 => [1aN] v => [Wap] 1Y LOBUUO?)
=> [Ndolv =>[NdolTv | ®%8 [NdDlov.e60 | 28 BON]OV.S0 _
=> [Ndol1v => [IeNTV
28 [NdOloV.5 0
=> [NdoIY
Y= Junod jJdwany | +=1unoo jdwany | ¢ = wnod jdwepy [z = unod dwapy [| = unod jdwepy
GGE9
8|qe) BUSJIO \
2oue)daooe
uonosuuod
29IN0S3-NINA
[ssoly bsalty | [wewlty | Benlv | [ndohv
speol pajsnipe [SSOlov bisalov | [wewlov | benlov | Indolov
pue ssnioedey ———»
%._vm (Sy008 uado Sl Kiows oM@
10 710 Aewy “6'3) aInIONNS SO ysid N | omieN Ndo

Patent Application Publication Oct. 1,2015 Sheet 64 of 69 US 2015/0278243 A1

Establish/advertise network addresses (e.g., virtual IP addresses) associated with load
balancer nodes to which file store clients are to direct connection requests (e.g., for NFS
mount requests) 6401

Y

Receive connection request from client at a particular load balancer node LBN1 6404

Y

Receive connection request from LBN1 at AN (e.g., an AN selected at random by LBN1
from among a group configured for the file store to which client wants to connect);
connection request includes attempt count indicating how many attempts LBN1 has made
so far to establish the connection 6407

v

At AN, determine (a) attempt-count based workload threshold(s) WT for accepting
connection and (b) adjusted workload metric(s) WM (e.g., based on weighted combination
of recent and historical workload measures) 6410

Acceptance criteria met (e.g. WM <=
WT for respective resources)? 6413

| Reject connection 6416 |

Attempt count == Max-attempt-count? 6419

Connection establishment failed; return error to client 6422

v

LBN1 increments attempt count, selects next AN to contact and submits connection
request to next AN 6425

Y

Inform LBN1 that connection has been accepted 6428

'

Receive network packet P1 from client at LBN1, representing client’s storage request;
transmit P1 to local LB module (LLBM) at AN (e.g., after encapsulation) 6431

Manipulate P1 at LLBM if needed (e.g., to unpack encapsulated packet) and send on to
AN's network processing software stack 6434

Y

Send internal operation request corresponding to P1 from AN to metadata subsystem
and/or storage subsystem 6437

FIG. 64

US 2015/0278243 Al

Oct. 1, 2015 Sheet 65 of 69

Patent Application Publication

G9 Ol

i [%0) [4%0) 13%0)

dzo zzo 120

gp0G9 sonsnels
uono8ULOY

0S99 Sonsne)s
uoI[joaUU0)

O¢059 si0jedipul
PEOIOM JB8d

5119 souaw
PEOJHIOM [B20T]

OCLG9 NY

d¢059 siojeoipul
PEOJYIOM J88d

gG119 somjsu
PEOJ}IOM [BO0T

d¢lG9 Ny

0769 sesuodsal
/s3l1anb peOpIOAA

Y

Buuejeq-al 1o}
PBJRUILLB) UOROBUUOY)

N\

uLd

w%o 110

Vb0G9 Sonsnels

uonI3UU0)D

Y2069 siojeaipul

PEOPHOM J88d

VG119 soujsw
PEOYIOM [BD01

V1G9 NV

V0919 dnoig) Jead Ny

US 2015/0278243 Al

Oct. 1,2015 Sheet 66 of 69

Patent Application Publication

99 Ol

%0/ < Ayiqeqoid-souejdaooe [SSOloV.60

-UONOBUU0J-2poU-Idad-pejewnsy => [SSOlTv
2% [welov.s60 | 99 Disalov.so

009 < 90UB|B(8I-}SE|-B0UIS-SPU0IRS [eN]OV.80 [eN]OV.9'0 => [WweN] v => sl v
9% => [jou] 1y => [1oN]Y 99 [1ONIOV.SG0 | 9% WBN]OV.S0

[wap]ov.68'0 =< [wanly 8% [Nd2lov.80 | 8% [NdDlov.90 => [JoN|Tv => [WoN] v
99 => [NdOl1v =>[NdolTv | 98 [NdOlov.Ss 0| 98 [eN]OV.S0

(beN]OV.58°0 =< heN] TV => [ndohv => [IoNTv
I 838 [Nd2IOV.50

[NdDIOV.68'0=< [NdITV) =>[Ndov

Bunueegey

¥ = 1uno2 1dweny

¢ = Junco 1dwany

Z = unoo ydweny

| =Juno3 Jdwapy

GG99
3|qe) euslIO \
Buiouelegs!

pue aoue)danoe
uo[joBuu0)

Patent Application Publication Oct. 1,2015 Sheet 67 of 69 US 2015/0278243 A1

Establish connections C1, C2, ... Cn between an access subsystem node AN1 of a multi-
tenant distributed storage service and one or more load balancer nodes on behalf of
respective clients 6701

Y

At AN1, collect (a) local workload metrics and (b) workload indicators (e.g., responses to
connection requests) from a set of peer access nodes during time period T 6704

Local workload metrics meet re-balance threshold? 6707

Optionally, throttle traffic on one or
more connections 6728

A

Peer capacity availability criterion met? 6710

No

Time elapsed since last rebalancing
connection termination > Tmin ? 6713

Select connection Cj to be terminated at AN1, e.g., based on connection age, amount of
traffic, resource use, and/or other criteria 6716

Y

Initiate close of connection Cj from AN1 6719

'

Cj's client sends connection re-establishment request to load balancer node 6722

l

Load balancer establishes connection to a different access node AN2 on behalf of client
6725

FIG. 67

Patent Application Publication Oct. 1,2015 Sheet 68 of 69 US 2015/0278243 A1

Upon establishment of client session CS1, identifier of access node AN1 (through which
session traffic of client Cl1 is received) is stored in RAN (“responsible access node”) field
of session metadata 6801

Y

AN1 determines that Cl1's connection is to be terminated for rebalancing 6804

'

RAN is set to null, e.g., in response to a request from AN1 6807

'

Cl1 sends request to load balancer node to re-establish connectivity to storage service
6810

'

Load balancer node’s connection request is accepted by access node AN2 6813

'

AN2 receives a service request from CI1, with session ID of CS1 6816

'

AN2 sends a query to metadata subsystem regarding CS1's session metadata 6819

CS1 metadata indicates
RAN ==null? §822

CS1's RAN is set to AN2; CS1 client session resumes 6825

o Session metadata is invalid; client establishes new session 6828

FIG. 68

Patent Application Publication Oct. 1,2015 Sheet 69 of 69 US 2015/0278243 A1

Computing device

9000
Processor Processor Processor
9010a 9010b e 9010n

{ ; i

I/O interface 9030

System memory 9020 Network interface

Code Data 9040
9025 9026 T

Other device(s)
9060

FIG. 69

US 2015/0278243 Al

SCALABLE FILE STORAGE SERVICE

BACKGROUND

[0001] Many companies and other organizations operate
computer networks that interconnect numerous computing
systems to support their operations, such as with the comput-
ing systems being co-located (e.g., as part of a local network)
or instead located in multiple distinct geographical locations
(e.g., connected via one or more private or public intermedi-
ate networks). For example, data centers housing significant
numbers of interconnected computing systems have become
commonplace, such as private data centers that are operated
by and on behalf of a single organization, and public data
centers that are operated by entities as businesses to provide
computing resources to customers. Some public data center
operators provide network access, power, and secure instal-
lation facilities for hardware owned by various customers,
while other public data center operators provide “full service”
facilities that also include hardware resources made available
for use by their customers.

[0002] Some large provider networks implement a variety
of storage services, such as services that implement block-
level devices (volumes) or objects that can be modeled as
arbitrary bit buckets accessible via respective URLs. How-
ever, a number of applications running at data centers of a
provider network may still face limitations with respect to
their use of some of the more common storage-related pro-
grammatic interfaces, such as various industry-standard file
system interfaces. Some industry-standard file systems may
have been designed prior to the large-scale deployment of
network-accessible services, and may therefore support con-
sistency models and other semantics that are not straightfor-
ward to implement in distributed systems in which asynchro-
nous computational interactions, failures of individual
components and network partitions or networking-related
delays are all relatively common.

BRIEF DESCRIPTION OF DRAWINGS

[0003] FIG. 1 provides a high-level overview of a distrib-
uted file storage service, according to at least some embodi-
ments.

[0004] FIG. 2illustrates the use of resources at a plurality of
availability containers of a provider network to implement a
file storage service, according to at least some embodiments.
[0005] FIG. 3 illustrates a configuration in which network
addresses associated with isolated virtual networks are
assigned to access subsystem nodes of a storage service,
according to at least some embodiments.

[0006] FIG. 4 illustrates a mapping between file storage
service objects, logical blocks, and physical pages at one or
more extents, according to at least some embodiments.
[0007] FIG. 5 illustrates a configuration of replica groups
for data and metadata extents, according to at least some
embodiments.

[0008] FIG. 6 illustrates examples of interactions associ-
ated with caching metadata at access subsystem nodes of'a file
storage service, according to at least some embodiments.
[0009] FIG. 7 illustrates examples of the use of distinct
combinations of policies pertaining to data durability, perfor-
mance, and logical-to-physical data mappings for file stores,
according to at least some embodiments.

[0010] FIG. 8a is a flow diagram illustrating aspects of
configuration and administration-related operations that may

Oct. 1, 2015

be performed to implement a scalable distributed file system
storage service, according to at least some embodiments.
[0011] FIG. 85 is a flow diagram illustrating aspects of
operations that may be performed in response to client
requests at a scalable distributed file system storage service,
according to at least some embodiments.

[0012] FIG. 9 is a flow diagram illustrating aspects of
operations that may be performed to implement a replication-
based durability policy at a distributed file system storage
service, according to at least some embodiments.

[0013] FIG. 10 is a flow diagram illustrating aspects of
operations that may be performed to cache metadata at an
access subsystem node of a distributed file system storage
service, according to at least some embodiments.

[0014] FIG. 11 illustrates examples of read-modify-write
sequences that may be implemented at a file storage service in
which write offsets and write sizes may sometimes not be
aligned with the boundaries of atomic units of physical stor-
age, according to at least some embodiments.

[0015] FIG. 12 illustrates the use of consensus-based rep-
licated state machines for extent replica groups, according to
at least some embodiments.

[0016] FIG. 13 illustrates example interactions involved in
a conditional write protocol that may be used for some types
of' write operations, according to at least some embodiments.
[0017] FIG. 14 illustrates example write log buffers that
may be established to implement a conditional write protocol,
according to at least some embodiments.

[0018] FIG. 15 is a flow diagram illustrating aspects of
operations that may be performed to implement a conditional
write protocol at a distributed file system storage service,
according to at least some embodiments.

[0019] FIG. 16 illustrates an example message flow that
may result in a commit of a distributed transaction at a file
storage service, according to at least some embodiments.
[0020] FIG. 17 illustrates an example message flow that
may result in an abort of a distributed transaction at a file
storage service, according to at least some embodiments.
[0021] FIG. 18 illustrates an example of a distributed trans-
action participant node chain that includes a node designated
as the coordinator of the transaction, according to at least
some embodiments.

[0022] FIG. 19 illustrates example operations that may be
performed to facilitate distributed transaction completion in
the event of a failure at one of the nodes of a node chain,
according to at least some embodiments.

[0023] FIG. 20 is a flow diagram illustrating aspects of
operations that may be performed to coordinate a distributed
transaction at a file system storage service, according to at
least some embodiments.

[0024] FIG. 21 is a flow diagram illustrating aspects of
operations that may be performed in response to receiving a
transaction-prepare message at a node of a storage service,
according to at least some embodiments.

[0025] FIG. 22 is a flow diagram illustrating aspects of
operations that may be performed in response to receiving a
transaction-commit message at a node of a storage service,
according to at least some embodiments.

[0026] FIG. 23 is a flow diagram illustrating aspects of
operations that may be performed in response to receiving a
transaction-abort message at a node of a storage service,
according to at least some embodiments.

US 2015/0278243 Al

[0027] FIG. 24 illustrates examples of over-subscribed
storage extents at a distributed storage service, according to at
least some embodiments.

[0028] FIG. 25 illustrates interactions among subsystems
of a storage service implementing on-demand physical page-
level allocation and extent oversubscription, according to at
least some embodiments.

[0029] FIG. 264 illustrates an extent for which a free space
threshold has been designated, while FIG. 265 illustrates an
expansion of the extent resulting from a violation of the free
space threshold, according to at least some embodiments.
[0030] FIG. 27 is a flow diagram illustrating aspects of
operations that may be performed to implement on-demand
physical page allocation at extents that support oversubscrip-
tion, according to at least some embodiments.

[0031] FIG. 28 is a flow diagram illustrating aspects of
operations that may be performed to dynamically modify
extent oversubscription parameters, according to at least
some embodiments.

[0032] FIG. 29 illustrates examples of file store objects
striped using variable stripe sizes, according to at least some
embodiments.

[0033] FIG. 30 illustrates examples of stripe sizing
sequences that may be used for file store objects, according to
at least some embodiments.

[0034] FIG. 31 illustrates examples of factors that may be
taken into consideration at a metadata subsystem to make
stripe sizing and/or consolidation decisions for file store
objects, according to at least some embodiments.

[0035] FIG. 32 is a flow diagram illustrating aspects of
operations that may be performed to implement striping using
variable stripe sizes, according to at least some embodiments.
[0036] FIG. 33 illustrates an example timeline of the
progress made by multiple concurrent read requests directed
to a logical block of a storage service object in a scheduling
environment in which all the read requests to the logical block
are granted equal priority relative to one another, according to
at least some embodiments.

[0037] FIG. 34 illustrates an example timeline of the
progress made by multiple concurrent read requests directed
to a logical block of a storage service object in a scheduling
environment in which an offset-based congestion control
policy is used, according to at least some embodiments.
[0038] FIG. 354 illustrates an example of a token-based
congestion control mechanism that may be used for schedul-
ing I/O requests at a storage service, wile FIG. 354 illustrates
examples of offset-based token consumption policies that
may be employed, according to at least some embodiments.
[0039] FIG. 36 illustrates an example of the use of offset-
based delays for congestion control at a storage service,
according to at least some embodiments.

[0040] FIG. 37 illustrates examples of congestion control
policies that may be dependent on the type of storage object
being accessed and various characteristics of the requested
accesses, according to at least some embodiments.

[0041] FIG. 38 is a flow diagram illustrating aspects of
operations that may be performed to implement offset-based
congestion control for scheduling 1/O operations at a storage
service, according to at least some embodiments.

[0042] FIG. 39 illustrates an example of the metadata
changes that may have to be performed at a plurality of
metadata subsystem nodes of a storage service to implement
a rename operation, according to at least some embodiments.

Oct. 1, 2015

[0043] FIG. 40 illustrates a use of a deadlock avoidance
mechanism for concurrent rename operations, according to at
least some embodiments.

[0044] FIG. 41 is a flow diagram illustrating aspects of
operations that may be performed to implement a first rename
workflow based on a first lock ordering, among two possible
lock orderings, that may be determined at a storage service for
a rename operation, according to at least some embodiments.
[0045] FIG. 42 is a flow diagram illustrating aspects of
operations that may be performed to implement a second
rename workflow based on a second lock ordering, among the
two possible lock orderings, that may be determined at a
storage service for a rename operation, according to at least
some embodiments.

[0046] FIG. 43 is a flow diagram illustrating aspects of
recovery operations that may be performed in response to a
failure of one metadata subsystem node of a pair of metadata
subsystem nodes participating in a rename workflow, accord-
ing to at least some embodiments.

[0047] FIG. 44 is a flow diagram illustrating aspects of
recovery operations that may be performed in response to a
failure of the other metadata subsystem node of the pair of
metadata subsystem nodes participating in the rename work-
flow, according to at least some embodiments.

[0048] FIG. 45 illustrates an example of a hash-based
directed acyclic graph (DAG) that may be used for file store
namespace management, according to at least some embodi-
ments.

[0049] FIG. 46 illustrates a technique for traversing an
HDAG using successive subsequences of a hash value
obtained for a file name, according to at least some embodi-
ments.

[0050] FIG. 47 illustrates an example of the first of two
types of HDAG node splits that may result from an attempt to
insert an entry into a namespace, according to at least some
embodiments.

[0051] FIG. 48 illustrates an example of the second of two
types of HDAG node splits that may result from an attempt to
insert an entry into a namespace, according to at least some
embodiments.

[0052] FIG. 49 illustrates an example of the first of two
types of HDAG node deletion operations, according to at least
some embodiments.

[0053] FIG. 50 illustrates an example of the second of two
types of HDAG node deletion operations, according to at least
some embodiments.

[0054] FIG. 51 is a flow diagram illustrating aspects of
operations that may be performed in response to an insertion
of an entry into a namespace that results in a first type of
HDAG node split, according to at least some embodiments.
[0055] FIG. 52 is a flow diagram illustrating aspects of
operations that may be performed in response to an insertion
of an entry into a namespace that results in a second type of
HDAG node split, according to at least some embodiments.
[0056] FIG. 53 is a flow diagram illustrating aspects of
operations that may be performed in response to a deletion of
an entry from a namespace, according to at least some
embodiments.

[0057] FIG. 54 illustrates two dimensions of metadata that
may be maintained for session-oriented file system protocols
at a distributed storage service, according to at least some
embodiments.

US 2015/0278243 Al

[0058] FIG. 55 illustrates an example of client session
metadata-related interactions between subcomponents of a
distributed storage service, according to at least some
embodiments.

[0059] FIG. 56 illustrates alternative approaches to client
session lease renewal at a distributed storage service, accord-
ing to at least some embodiments.

[0060] FIGS. 574 and 575 illustrate alternative approaches
to lock state management for a session-oriented file system
protocol at a distributed storage service, according to at least
some embodiments.

[0061] FIG. 58 is a flow diagram illustrating aspects of
client session metadata management operations that may be
performed a distributed storage service, according to at least
some embodiments.

[0062] FIG. 59 is a flow diagram illustrating aspects of
client session lease renewal operations that may be performed
a distributed storage service, according to at least some
embodiments.

[0063] FIG. 60 illustrates a system in which a load balancer
layer is configured for a distributed storage service, according
to at least some embodiments.

[0064] FIG. 61 illustrates example interactions between a
load balancer node and a plurality of access subsystem nodes
of a distributed storage service, according to at least some
embodiments.

[0065] FIG. 62 illustrates examples of connection accep-
tance criteria that may vary with the number of connection
attempts made, according to at least some embodiments.
[0066] FIG. 63 illustrates examples of connection accep-
tance criteria that may be dependent on workload levels asso-
ciated with a plurality of resources, as well as on connection
establishment attempt counts, according to at least some
embodiments.

[0067] FIG. 64 is a flow diagram illustrating aspects of
operations that may be performed to implement connection
balancing based on attempt counts at a distributed storage
service, according to at least some embodiments.

[0068] FIG. 65 illustrates an example of an access sub-
system of a distributed storage service at which client con-
nection re-balancing may be attempted based on workload
indicators of members of a peer group of access nodes,
according to at least some embodiments.

[0069] FIG. 66 illustrates an example of connection accep-
tance and re-balancing criteria that may be used at an access
subsystem node, according to at least some embodiments.
[0070] FIG. 67 is a flow diagram illustrating aspects of
operations that may be performed at an access subsystem of a
distributed storage service to implement connection re-bal-
ancing, according to at least some embodiments.

[0071] FIG. 68 is a flow diagram illustrating aspects of
operations that may be performed at a distributed storage
service to preserve client sessions across connection re-bal-
ancing events, according to at least some embodiments.
[0072] FIG. 69 is a block diagram illustrating an example
computing device that may be used in at least some embodi-
ments.

[0073] While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled in the art will recognize that embodiments are
not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed descrip-
tion thereto are not intended to limit embodiments to the
particular form disclosed, but on the contrary, the intention is

Oct. 1, 2015

to cover all modifications, equivalents and alternatives falling
within the spirit and scope as defined by the appended claims.
The headings used herein are for organizational purposes
only and are not meant to be used to limit the scope of the
description or the claims. As used throughout this application,
the word “may” is used in a permissive sense (i.e., meaning
having the potential to), rather than the mandatory sense (i.e.,
meaning must). Similarly, the words “include,” “including,”
and “includes” mean including, but not limited to.

DETAILED DESCRIPTION

[0074] Various embodiments of methods and apparatus for
a high-availability, high-durability scalable file storage ser-
vice are described. In at least some embodiments, the file
storage service may be designed to support shared access to
files by thousands of clients, where each individual file may
comprise very large amounts (e.g., petabytes) of data, at per-
formance, availability and durability levels that are targeted
to be independent of the size of the file and/or the number of
concurrent users. One or more industry-standard file system
interfaces or protocols may be supported by the service, such
as various versions of NFS (network file system), SMB
(Server Message Block), CIFS (Common Internet File Sys-
tem) and the like. Accordingly, in at least some embodiments,
the consistency models supported by the distributed file stor-
age service may be at least as strong as the models supported
by the industry-standard protocols—for example, the service
may support sequential consistency. In a distributed system
implementing a sequential consistency model, the result of an
execution of operations implemented collectively at a plural-
ity of executing entities (e.g., nodes or servers of the distrib-
uted system) is expected to be the same as if all the operations
were executed in some sequential order. The file storage
service may be designed for use by a wide variety of appli-
cations, such as file content serving (e.g. web server farms,
software development environments, and content manage-
ment systems), high performance computing (HPC) and “Big
Data” applications such as media, financial, and scientific
solutions requiring on-demand scaling of file store capacity
and performance, and the like. The term “file store” may be
used herein to indicate the logical equivalent of a file sys-
tem—e.g., a given client may create two different NFS-com-
pliant file stores FS1 and FS2, with the files of FS1 being
stored within one set of subdirectories of a mountable root
directory, and the files of FS2 being stored within a set of
subdirectories of a different mountable root directory.

[0075] To help enable high levels of scalability, a modular
architecture may be used for the service in at least some
embodiments. For example, a physical storage subsystem
comprising some number of multi-tenant storage nodes may
be used for file store contents, while a logically distinct meta-
data subsystem with its own set of metadata nodes may be
used for managing the file store contents in one implementa-
tion. The logical separation of metadata and data may be
motivated, for example, by the fact that the performance,
durability and/or availability requirements for metadata may
in at least some cases differ from (e.g., more stringent than)
the corresponding requirements for data. A front-end access
subsystem, with its own set of access nodes distinct from the
metadata and storage nodes, may be responsible for exposing
network endpoints that allow clients to submit requests to
create, read, update, modify and delete the file stores via the
industry-standard interfaces, and for handling connection
management, load balancing, authentication, authorization

US 2015/0278243 Al

and other tasks associated with client interactions. Resources
may be deployed independently to any one of the subsystems
in some embodiments, e.g., to the access subsystem, the
metadata subsystem, or the storage subsystem, without
requiring corresponding deployment changes at the other
subsystems. For example, if a triggering condition such as a
potential performance bottleneck is identified in the access
subsystem, or if some set of access subsystem nodes experi-
ence a network outage or other failure, additional access
subsystem nodes may be brought online without affecting the
storage or metadata subsystems, and without pausing the flow
of client requests. Similar deployment changes may be made
at other subsystems as well in response to various types of
triggering conditions. In some embodiments, the access sub-
system nodes in particular may be implemented in a largely
stateless manner, so that recovery from access node failures
may be especially efficient.

[0076] In at least some embodiments, the contents of the
file store metadata objects (e.g., data structures representing
attributes of directory entries, links, etc.) may themselves be
stored on devices managed by the storage subsystem—al-
though, as described below, in some cases different policies
may be applied to the storage objects being used for the data
than are applied to the storage objects being used for meta-
data. In such embodiments, the metadata subsystem nodes
may, for example, comprise various processes or threads of
execution that execute metadata management logic and coor-
dinate the storage of metadata contents at the storage sub-
system. A given storage subsystem node may include several
different types of storage media in some embodiments, such
as some number of devices employing rotating magnetic
disks and some number of devices employing solid state
drives (SSDs). In some embodiments a given storage sub-
system node may store both metadata and data, either at
respective different storage devices or on the same storage
device. The term “file store object” may be used herein to
refer collectively to data objects such as files, directories and
the like that are typically visible to clients of the storage
service, as well as to the internal metadata structures (includ-
ing for example the mappings between logical blocks, physi-
cal pages and extents discussed below), used to manage and
store the data objects.

[0077] In at least some embodiments, the distributed file
storage service may be built using resources of a provider
network, and may be designed primarily to fulfill storage
requests from other entities within the provider network. Net-
works set up by an entity such as a company or a public sector
organization to provide one or more network-accessible ser-
vices (such as various types of cloud-based computing or
storage services) accessible via the Internet and/or other net-
works to a distributed set of clients may be termed provider
networks herein. Some of the services may be used to build
higher-level services: for example, computing, storage or
database services may be used as building blocks for a content
distribution service or a streaming data processing service. At
least some of the services of a provider network may be
packaged for client use in service units called “instances”: for
example, a virtual machine instantiated by a virtualized com-
puting service may represent a “compute instance”. Comput-
ing devices at which such compute instances of the provider
network are implemented may be referred to herein as
“instance hosts” or more simply as “hosts” herein. A given
instance host may comprise several compute instances, and
the collection of compute instances at a particular instance

Oct. 1, 2015

host may be used to implement applications of one or more
clients. In some embodiments, the file storage service may be
accessible from some subset (or all) of the compute instances
of'a provider network, e.g., as a result of assigning the appro-
priate network addresses to the access subsystem nodes of the
storage service, implementing the authorization/authentica-
tion protocols that are used for the virtual computing service,
and so on. In some embodiments, clients outside the provider
network may also be provided access to the file storage ser-
vice. In various embodiments, at least some of the provider
network services may implement a usage-based pricing
policy—e.g., customers may be charged for a compute
instance based at least partly on how long the instance was
used, or on the number of requests of various types that were
submitted from the compute instance. In at least some such
embodiments, the file storage service may also employ usage-
based pricing for at least some categories of client requests—
e.g., the service may keep records of the particular file system
interface requests that were completed on behalf of a given
customer, and may generate billing amounts for the customer
on the basis of those records.

[0078] Thefile store service may support high levels of data
durability in some embodiments, e.g., using any of a number
of different replication techniques. For example, in one
embodiment, file store data and metadata may be physically
stored using storage units called extents, and the contents of
an extent may be replicated at various physical storage
devices. The contents of an extent may be referred to herein as
a“logical extent”, to distinguish it from the physical copies at
the different physical storage devices, which may be referred
to as “extent replicas”, “replica group members”, or “extent-
lets” or a “replica group”. In one implementation, for
example, a file (or a metadata object) may be organized as a
sequence of logical blocks, with each logical block being
mapped to one or more physical data pages. A logical block
may considered a unit of striping, in that at least in some
implementations, the probability that the contents of two
different logical blocks of the same file (or the same metadata
structure) are stored at the same storage device may be low.
Each replica of a given logical extent may comprise some
number of physical data pages. In some embodiments, era-
sure-coding based extent replicas may be used, while in other
embodiments, other replication techniques such as full repli-
cation may be used. In at least one embodiment, a combina-
tion of erasure coding and full replication may be used. A
given modification request from a client may accordingly be
translated into a plurality of physical modifications at respec-
tive storage devices and/or respective storage subsystem
nodes, depending on the nature of the replication policy inuse
for the corresponding file store object or metadata. In some
embodiments, one or more of the extent replicas of a replica
group may be designated as a master replica, and updates to
the extent may be coordinated, e.g., using a consensus-based
replicated state machine, by the storage service node that is
hosting the current master. Such a storage service node may
be termed a “master node” or a “leader” herein with respect to
the extent for which it stores a master replica. In one imple-
mentation, if N extent replicas of a given logical extent are
being maintained, a quorum of M (where M>=N/2) of the
replicas may be needed, and such a quorum may be obtained
using an update protocol initiated by the leader/master node,
before a particular update is committed. In one embodiment,
some extents may be used entirely for file contents or data,
while other extents may be used exclusively for metadata. In

US 2015/0278243 Al

other embodiments, a given extent may store both data and
metadata. In some implementations, a consensus-based pro-
tocol may be used to replicate log records indicating state
changes of a given file store, and the contents of the state may
bereplicated using a plurality of extents (e.g., using either full
replication or erasure-coded replicas). Replicated state
machines may also be used to ensure consistency for at least
some types of read operations in various embodiments. For
example, a single client read request may actually require a
plurality of physical read operations (e.g., of metadata and/or
data) at various extents, and the use of replicated state
machines may ensure that the result of such a distributed read
does not violate the read consistency requirements of the
targeted file store.

[0079] A variety of different allocation and sizing policies
may be used to determine the sizes of, and relationships
among, logical blocks, physical pages, and/or the extents for
data and metadata in different embodiments as described
below. For example, in one straightforward implementation,
a file may comprise some number of fixed size (e.g., 4-mega-
byte) logical blocks, each logical block may comprise some
number of fixed size (e.g., 32-kilobyte) physical pages, and
each extent may comprise sufficient storage space (e.g., 16
gigabytes) to store a fixed number of pages. In other embodi-
ments, different logical blocks may differ in size, physical
pages may differ in size, or extents may differ in size. Extents
may be dynamically resized (e.g., grown or shrunk) in some
embodiments. Static allocation may be used for logical
blocks in some embodiments (e.g., all the physical storage for
the entire logical block may be allocated in response to the
first write directed to the block, regardless of the size of the
write payload relative to the size of the block), while dynamic
allocation may be used in others. Various techniques and
policies governing logical block configurations and corre-
sponding physical storage space allocations are described
below in further detail. In some embodiments, different file
stores managed by the file storage service may implement
distinct block/page/extent sizing and configuration policies.
Depending on the write sizes that the file system interfaces
being used allow clients to specify, a given write operation
from a client may result in the modification of only a part of
apage rather than the whole page in some cases. If, in a given
implementation, a physical page is the minimum level of
atomicity with respect to writes supported by the storage
subsystem, but write requests can be directed to arbitrary
amounts of data (i.e., writes do not have to be page-aligned
and do not have to modify all the contents of an integral
number of pages), some writes may be treated internally
within the storage service as read-modify-write sequences.
Details regarding an optimistic conditional-write technique
that may be employed for writes that do not cross page bound-
aries in some such embodiments are provided below. In gen-
eral, each storage device and/or storage service node may
support operations for, and/or store data for, a plurality of
different customers in at least some embodiments.

[0080] Ingeneral, metadata and/or data that may have to be
read or modified for a single file store operation request
received from a customer may be distributed among a plural-
ity of storage service nodes. For example, delete operations,
rename operations and the like may require updates to mul-
tiple elements of metadata structures located on several dif-
ferent storage devices. In accordance with the sequential con-
sistency model, in at least one embodiment an atomic
metadata operation comprising a group of file system meta-

Oct. 1, 2015

data modifications may be performed to respond to a single
client request, including a first metadata modification at one
metadata subsystem node and a second metadata modifica-
tion at a different metadata subsystem node. Various distrib-
uted update protocols that support sequential consistency
may be used in different embodiments—e.g., a distributed
transaction mechanism described below in further detail may
be used in at least some embodiments for such multi-page,
multi-node or multi-extent updates. Of course, depending on
the replication strategy being used, each one of the metadata
modifications may in turn involve updates to a plurality of
extent replicas in some embodiments.

[0081] In some embodiments, optimization techniques
associated with various aspects of the file storage service,
such as the use of object renaming protocols, load balancing
techniques that take connection longevity into account, name
space management techniques, client session metadata cach-
ing, offset-based congestion control policies, and the like,
may be employed. Details on these features of the storage
service are provided below in conjunction with the descrip-
tion of various figures.

File Storage Service Overview

[0082] FIG. 1 provides a high-level overview of a distrib-
uted file storage service, according to at least some embodi-
ments. As shown, system 100 comprising storage service 102
may be logically divided into at least tree subsystems: a
storage subsystem 130, a metadata subsystem 120 and an
access subsystem 110. Each subsystem may comprise a plu-
rality of nodes, such as storage nodes (SNs) 132A and 132B
of storage subsystem 130, metadata nodes (MNs) 122A and
122B of metadata subsystem 120, and access nodes (ANs)
112A and 112B of the access subsystem 110. Each node may,
for example, be implemented as a set of processes or threads
executing at a respective physical or virtualized server in
some embodiments. The number of nodes in any given sub-
system may be modified independently of the number of
nodes in the other subsystems in at least some embodiments,
thus allowing deployment of additional resources as needed
at any of the subsystems (as well as similarly independent
reduction of resources at any of the subsystems). The terms
“access server”, “metadata server” and “storage server” may
be used herein as equivalents of the terms “access node”,
“metadata node” and “storage node” respectively.

[0083] In the depicted embodiment, the storage nodes 132
may be responsible for storing extents 134 (such as extents
134A and 134 at storage node 132A, and extents 134K and
134L. at storage node 132B), e.g., using some combination of
SSDs and rotating disks. An extent, which may for example
comprise some number of gigabytes of (typically but not
always) contiguous storage space at some set of physical
storage devices, may represent a unit of storage replication in
some embodiments—thus, a number of physical replicas of
any given logical extent may be stored. Each extent replica
may be organized as a number of physical pages in some
embodiments, with the pages representing the smallest units
in which reads or writes are implemented within the storage
subsystem. As discussed below with respect to F1G. 4, a given
file store object (e.g., a file or a metadata structure) may be
organized as a set of logical blocks, and each logical block
may be mapped to a set of pages within a data extent. Meta-
data for the file store object may itself comprise a set of
logical blocks (potentially of different sizes than the corre-
sponding logical blocks for data), and may be stored in pages

US 2015/0278243 Al

of a different extent 134. Replicated state machines may be
used to manage updates to extent replicas in at least some
embodiments.

[0084] The access subsystem 110 may present one or more
file system interfaces to clients 180, such as file system APIs
(application programming interfaces) 140 in the depicted
embodiment. In at least some embodiments, as described
below in further detail, a set of load balancers (e.g., software
or hardware devices that may be configured independently of
the storage service itself) may serve as intermediaries
between the clients of the storage service and the access
subsystem. In some cases, at least some aspects of load bal-
ancing functionality may be implemented within the access
subsystem itself. In at least some embodiments the access
subsystem nodes 112 may represent service endpoints estab-
lished within the appropriate network fabric that is concur-
rently being used by clients 180. As described below with
respect to FIG. 3, special network addresses associated with
isolated virtual networks may be assigned to ANs 112 insome
embodiments. ANs 112 may authenticate an incoming client
connection, e.g., based on the client’s network identity as well
as user identity; in some cases the ANs may interact with
identity/authentication services similar to Active Directory
Service or Kerberos. Some file system protocols that may be
supported by the distributed file storage service 102 (such as
NFSv4 and SMB2.1) may require a file server to maintain
state, for example pertaining to locks and opened file identi-
fiers. In some embodiments, durable server state, including
locks and open file states, may be handled by the metadata
subsystem 120 rather than the access subsystem, and as a
result the access subsystem may be considered a largely state-
less server fleet that can be scaled up and down as needed. In
some embodiments, as described below with respect to FIG.
6, ANs 112 may cache metadata state pertaining to various file
store objects, and may use the cached metadata to submit at
least some internal I/O requests directly to storage nodes
without requiring interactions with metadata nodes.

[0085] Themetadata subsystem 120 may be responsible for
managing various types of file store metadata structures in the
depicted embodiment, including for example the logical
equivalents of inodes, file/directory attributes such as access
control lists (ACLs), link counts, modification times, real file
size, logical block maps that point to storage subsystem
pages, and the like. In addition, the metadata subsystem may
keep track of the open/closed state of the file store objects and
of locks on various file store objects in some embodiments.
The metadata subsystem 120 may sequence and coordinate
operations so as to maintain desired file store object consis-
tency semantics, such as the close-to-open semantics
expected by NFS clients. The metadata subsystem may also
ensure sequential consistency across operations that may
involve multiple metadata elements, such as renames, deletes,
truncates and appends, e.g., using the distributed transaction
techniques described below. Although the metadata sub-
system 120 is logically independent of the storage subsystem
130, in at least some embodiments, persistent metadata struc-
tures may be stored at the storage subsystem. In such embodi-
ments, even though the metadata structures may be physically
stored at the storage subsystem, the metadata subsystem
nodes may be responsible for such tasks as identifying the
particular storage nodes to be used, coordinating or sequenc-
ing storage operations directed to the metadata, and so on. In
at least some embodiments, the metadata subsystem may
reuse some of the state management techniques employed by

Oct. 1, 2015

the storage subsystem in some embodiments, such as the
storage subsystem’s consensus-based state replication
machinery.

Provider Network Implementations of File Storage Service

[0086] As mentioned earlier, in some embodiments the dis-
tributed storage service may be implemented using resources
of'a provider network, and may be used for file-related opera-
tions by applications or clients running at compute instances
of the provider network. In some embodiments a provider
network may be organized into a plurality of geographical
regions, and each region may include one or more availability
containers, which may also be termed “availability zones”
herein. An availability container in turn may comprise one or
more distinct locations or data centers, engineered in such a
way (e.g., with independent infrastructure components such
as power-related equipment, cooling equipment, and physical
security components) that the resources in a given availability
container are insulated from failures in other availability con-
tainers. A failure in one availability container may not be
expected to result in a failure in any other availability con-
tainer; thus, the availability profile of a resource is intended to
be independent of the availability profile of resources in a
different availability container. Various types of applications
may be protected from failures at a single location by launch-
ing multiple application instances in respective availability
containers. Nodes of the various subsystems of the storage
service may also be distributed across several different avail-
ability containers in some embodiments, e.g., in accordance
with the availability/uptime goals of the service and/or the
data redundancy requirements for various file stores. At the
same time, in some implementations, inexpensive and low
latency network connectivity may be provided between
resources (such as the hosts or storage devices being used for
the distributed file storage service) that reside within the same
geographical region, and network transmissions between
resources of the same availability container may be even
faster. Some clients may wish to specify the locations at
which at least some of the resources being used for their file
stores are reserved and/or instantiated, e.g., at either the
region level, the availability container level, or a data center
level, to maintain a desired degree of control of exactly where
various components of their applications are run. Other cli-
ents may be less interested in the exact location where their
resources are reserved or instantiated, as long as the resources
meet the client requirements, e.g., for performance, high
availability, and so on.

[0087] In at least some embodiments, the resources within
a given data center may be further partitioned into sub-groups
based on differences in expected availability or failure resil-
ience levels. For example, one or more server racks at a data
center may be designated as a lower-level availability con-
tainer, as the probability of correlated failures within a rack
may at least in some cases be higher than the probability of
correlated failures across different racks. At least in some
embodiments, when deciding where to instantiate various
components or nodes of the storage service, any combination
of the various levels of availability containment described
(e.g., theregion level, the data center level, or at the rack level)
may be taken into account together with performance goals
and durability goals. Thus, for some types of storage service
components, redundancy/replication at the rack level may be
considered adequate, so in general different racks may be
used for different components providing the same function

US 2015/0278243 Al

(or storing replicas of the same data/metadata). For other
components, redundancy/replication may also or instead be
implemented at the data center level or at the region level.

[0088] FIG. 2illustrates the use of resources at a plurality of
availability containers 212 of a provider network 202 to
implement a file storage service, according to at least some
embodiments. In the embodiment depicted, three availability
containers 212A, 212B and 212C are shown, each of which
comprise some number of storage nodes, metadata nodes and
access nodes of the storage service. Since each availability
container is typically set up so as to prevent correlated failure
events that cross availability container boundaries, the set of
storage service nodes that are assigned to a given file store
may typically be spread across different availability contain-
ers. It is noted that some file stores may have lower availabil-
ity or durability requirements than others, and may therefore
be implemented within a single availability container in at
least some embodiments. In one embodiment, when the file
storage service is set up, a pool of nodes may be established
for each of the three subsystems in each of several availability
containers 212, from which specific nodes may be assigned to
a given file store as needed. In other embodiments, instead of
establishing pre-configured storage service node pools, new
nodes may be instantiated as needed.

[0089] The collection of ANs, MNs and SNs that collec-
tively implement file storage for a given file store or file
system may be referred to as a “node set” 250 for that file
store. In the embodiment shown in FIG. 2, the storage service
nodes are multi-tenant, in that a given node of any of the
subsystems may be responsible for handling requests from
several different clients and/or several different customers. It
is noted that in various embodiments, a given customer (e.g.,
a business entity or individual on whose behalf a billing
account has been established at the storage service) may set
up several different file stores in the depicted embodiment,
and that many different client devices (computing devices
from which programmatic interfaces may be invoked) may be
used to issue file service requests to a single file store by, or on
behalf of, a given customer. In at least some embodiments,
multiple user accounts (e.g., one or more user accounts for
each of several employees of a customer business organiza-
tion) may be set up under the aegis of a single billing account,
and each of the user accounts may submit file storage requests
from a variety of client devices.

[0090] Node set 250A of FIG. 2, used for file store FS1 of
customer C1, comprises SNs 132A, 132B and 132K, MNs
122A, 122B and 122F, and ANs 112A, 112B and 112H,
distributed among two availability containers 212A and
212B. Node set 250B, used for file store FS2 of a different
customer C2, comprises nodes in three availability containers
212A, 212B and 212C: SNs 132B, 132K, 132L and 132P,
MNs 122B 122F, 122G and 122R, and ANs 112B and 112M.
Node set 250C, used for file store FS3 of customer C1, uses
nodes of availability container 212C alone: SNs 132P and
132Q, MNs 122R and 1228, and ANs 112M and 112N. The
specific nodes that are to be used for a given file store may be
selected on demand based on various factors, e.g., by a place-
ment component of the storage service, and the node set may
change over time in view of changing storage space needs,
performance needs, failures and the like. A given storage
device at a single storage node may store data and/or metadata
belonging to different clients in at least some embodiments.
In at least some embodiments, a single extent may comprise
data and/or metadata of a plurality of clients or customers.

Oct. 1, 2015

[0091] At least with respect to the SNs, redundancy or
replication may be implemented along several different
dimensions for a given file store in some embodiments. As the
amount of data in a given file grows, for example, the various
logical blocks of the file may in general be mapped to difter-
ent logical extents. Thus, file striping may be implemented at
the logical-block level, which may help to improve perfor-
mance for certain patterns of 1/O requests and may also
reduce the time taken to recover a large file in case one of the
storage nodes or devices being used for the file fails. Metadata
for the file may also be striped across multiple metadata
logical extents and managed by multiple MNs in some imple-
mentations. Each logical extent (whether for data or meta-
data) in turn may be replicated across multiple SN at difter-
ent availability containers 212, e.g., using erasure coding or
full replication, to achieve the desired degree of data durabil-
ity. As noted earlier, in at least one embodiment replication
may be implemented across lower-level availability contain-
ers, e.g., by choosing different racks within the same data
center for different replicas. ANs and MNs may also be orga-
nized into redundancy groups in some embodiments, so that
if some AN or MN fails, its workload may be quickly taken up
by a different member of its redundancy group.

[0092] Insome embodiments, a provider network 202 may
support establishment of “isolated virtual networks” (IVNs)
on behalf of various customers. An IVN (which may also be
referred to in some environments as a virtual private cloud or
VPC) set up for a given customer may comprise a collection
of computing and/or other resources in a logically isolated
section of the provider network, over which the customer is
granted substantial control with respect to networking con-
figuration. In some embodiments, for example, a customer
may select the IP (Internet Protocol) address ranges to be used
for the IVN resources, manage the creation of subnets within
the IVN, and the configuration of route tables, gateways, etc.
for the IVN. For at least some of the devices within an I[VN in
some embodiments, the network addresses may not be visible
outside the IVN, at least by default. In order to enable con-
nectivity between an IVN and the customer’s external net-
work (e.g., devices at the customer’s data center or office
premises), a virtual interface that is configured for use with
private addresses (and may therefore be termed a private
virtual interface) and a virtual private gateway may be set up.
In some embodiments one or more VPNs (virtual private
networks) may be configured between the customer’s IVN
and external networks (such as the customer’s office network
or the customer’s data centers). In at least some embodi-
ments, such VPNs may utilize secure networking protocols
such as IPSec (Internet Protocol Security), SSL/TLS (Secure
Sockets Layer/Transport Layer Security), DTLS (Datagram
Transport Layer Security) and the like.

[0093] Insomeembodiments, for security or other reasons,
access to a given file store managed by a distributed storage
service may be limited to a specific set of client devices within
one or more IVNs. FIG. 3 illustrates a configuration in which
network addresses associated with isolated virtual networks
302 are assigned to access subsystem nodes of a storage
service, according to at least some embodiments. As a con-
sequence of such address assignments, only those clients
whose network addresses also lie within the [IVN may be able
to access the file store via the ANs 112. As shown, the pro-
vider network 202 in FIG. 3 includes SNs 132A-132F, MNs
122A-122F, and ANs 112A-112F. Two IVNs 302A and 302B
have been set up in the provider network 202, for customers A

US 2015/0278243 Al

and B respectively. Each IVN includes a number of compute
instances (Cls) of virtual computing service 302, at which
applications that require file storage services may be run. In
addition to the Cls shown within the IVNs 302A (e.g., Cls
380A and 380B) and 302B (CIs 380K and 380L), other Cls
(e.g., 380P and 380Q) may also run on instance hosts outside
the IVNs in the depicted embodiment—thus, not all clients of
the file storage service need necessarily belong to an IVN
302.

[0094] In order to enable access to the file storage service
from CIs within IVN 302A, ANs 112A and 112D have been
assigned private IP (Internet Protocol) addresses 350 A asso-
ciated with IVN 302A. As a result, client CIs 380A and 380B
of IVN 302A may invoke the file storage service interfaces
using addresses 350A, and may be able to rely on various
network isolation and security features already implemented
for IVNs when interacting with the file storage service. Simi-
larly, ANs 112D and 112E may be assigned private network
addresses of IVM 302B, enabling secure access from client
CIs 380K and 380L of IVN 302B. It is noted that a given AN
(such as 112D) may be assigned more than one network
address in at least some embodiments, allowing a single AN’s
resources to be shared by multiple IVNs. In other embodi-
ments, each AN may be restricted to network addresses of no
more than one IVN. In addition to the private addresses, in
some embodiments, public network addresses (e.g., IP
addresses accessible from the public Internet) may also be
used for at least some ANs such as AN 112C, enabling access
from ClIs such as 380P or 380Q that are not part of an IVN. In
one embodiment, clients located outside the provider network
202 may also be able to access the storage service using
public IP addresses. In some embodiments, a single (private
or public) network address may be assigned to a plurality of
ANs 112, so that, for example, incoming work requests may
be balanced across multiple ANs, and AN failover may be
implemented without impacting clients (e.g., clients may
continue to send file store requests to the same address even
after a particular AN fails, because the remaining ANs with
the same network address may continue to respond to client
requests).

Logical Blocks, Pages, and Extents

[0095] FIG. 4 illustrates a mapping between file storage
service objects, logical blocks, and physical pages at one or
more extents, according to at least some embodiments. Three
logical blocks LB 402 A, 402B and 402C have been config-
ured for a file F1. Logical blocks may also be referred to
herein as stripes, as the contents of different logical blocks of
a given object such as file or metadata structure may typically
be stored at distinct storage locations. In some embodiments,
physical separation of stripes such as stripes A, B and C offile
F1 may be enforced—e.g., no two stripes of a given object
may be stored at the same physical storage device. In other
embodiments, physical separation of stripes may occur with a
high probability without explicit enforcement, e.g., due to the
use of random or near-random distribution of stripes across
large numbers of physical devices. In at least some embodi-
ments, logical block sizes may vary within a given file or
metadata structure. In other embodiments, all the logical
blocks of at least some storage service objects may be of the
same size. The contents of each logical block 402 may be
stored in one or more physical pages (PPs) 412 of a given data
extent 434 in the depicted embodiment. Thus, for example,
contents of LB 402 have been written to PPs 412], 412K and

Oct. 1, 2015

412L at data extent 434C of storage node 132D. Contents of
LB 403 are stored in PP 412B within data extent 434A of
storage node 132B, and contents of LB 404 are stored in PP
412F of storage extent 434B at storage node 132C. To sim-
plify the discussion of the mapping between blocks and
pages, extent replicas are not shown in FIG. 4. At least in the
depicted embodiment, the techniques used for replication of
extents may be independent of the techniques used for map-
ping blocks to pages.

[0096] In atleast some embodiments, as described below in
further detail, dynamic on-demand allocation may beused for
physical storage, in accordance with which only the set of
pages actually needed to store the write payload of a given
write request may actually be allocated when the write
request is received. Consider an example scenario in which
the logical block size of a particular LB is 8 megabytes, a
fixed page size of 64 kilobytes is being used for the extent to
which the LB is mapped, and the first write directed to the LB
comprises a write payload of 56 kilobytes. In such a scenario,
only one page (64 kilobytes) of storage space may be allo-
cated in response to the request in embodiments in which
on-demand allocation is being used. In other embodiments,
physical storage for the entire LB may be set aside in response
to the first write request directed to the LB, regardless of the
write payload size.

[0097] When a client writes to a particular file for the first
time, a selected metadata subsystem node may generate meta-
data 475 for one or more logical blocks 402 (e.g., depending
on the size of the write payload relative to the logical block
size, more than one logical block may be required in some
cases). This metadata 475 itself may be stored in one or more
physical pages such as PP 412Q) of a metadata extent 464 in
the depicted embodiment. The block sizes and/or page sizes
being used for metadata structures may differ from those
being used for the corresponding data in at least some
embodiments. In at least one embodiment, the metadata
extents may be stored using a different class or type of storage
device (e.g., SSDs) than are used for data (e.g., rotating
disks). In some implementations, at least a portion of the
metadata and at least a portion of metadata for the same file
store object may be stored on the same extent.

[0098] Insome embodiments, as discussed above, the con-
tents of data extents 434 and/or metadata extents 464 may be
replicated, e.g., in order to meet respective data durability
requirements. In such embodiments, as described in further
detail below, a particular replica of a logical extent may be
chosen as the master replica, and updates to the extent may be
initiated and/or coordinated by the master replica (or the
storage node where the master replica resides), e.g., by propa-
gating the updates to the required number of replicas from the
master before indicating that the corresponding update
request has succeeded.

[0099] The order in which content of a given logical block
is written at the storage device at which any given replica of
the extent is stored may vary—i.e., if two 32-kilobyte physi-
cal pages P1 and P2 corresponding to a particular 1-megabyte
logical block are located in the order “P1 followed by P2” on
the disk or SSD, this may not necessarily imply that the data
in P1 has a lower starting offset within the logical block than
the data in P2. In some embodiments, pages may be moved
(i.e.,rearranged within their storage device) after they are first
written, e.g., to facilitate improved sequential read or write
performance. Within a given extent or extent replica, physical
pages associated with several different files may be stored—

US 2015/0278243 Al

for example, in metadata extent 634, block-to-page maps (or
other metadata) of one or more files other than F1 may be
stored in PPs 412P, 412R and 412S. Similarly, pages 412A,
412C, 412D, 412E, 412G, 412H, and 412M may all store
contents of files other than F1. In some embodiments, a large
enough number of extents may be established that the prob-
ability of any two logical blocks of the same file being
mapped to the same extent (e.g., to the same replica group of
extents) may be quite low. In such a scenario, it may be
possible to respond in parallel to concurrent [/O requests
directed to different logical blocks of the same file, as the
requests may be directed (in most cases) to different storage
nodes and different storage devices. In at least one embodi-
ment, the storage system may in general tend to distribute
logical blocks in an apparently random or near-random man-
ner among available extents, e.g., by selecting the extent to be
used for a particular block based on factors such as the
amount of available free space at the time that the particular
block is first written.

[0100] FIG. 5 illustrates a configuration of replica groups
510 for data and metadata extents, according to at least some
embodiments. Two replica groups 510A and 510B for data
extents D1 and D2 are shown, and two replica groups 510C
and 510D for metadata extents M1 and M2 are shown. Each
replica group illustrated comprises two or more replicas at
respective storage devices 532 at respective storage nodes
132 of the storage subsystem, although in general it may
sometimes be the case that two physical replicas of the same
logical extent are stored on the same storage device or on
different storage devices at the same storage node.

[0101] Each replica group 510 is shown as comprising one
master replica and one or more non-master replicas. The
master replica may be responsible for coordinating writes to
the members of the replica group, e.g., using a replicated state
machine and/or a consensus-based update protocol. In some
embodiments, a replicated state machine and/or a consensus-
based protocol may also be used for reads as well. The total
number of replicas in a replication group may vary as a
function of the durability requirements for the file data and/or
metadata being stored at the replicas. In FIG. 5, replica 564A
is the master replica of group 510A, replica 565B is the master
replica of group 510B, replica 575B is the master replica of
replica group 510C, and replica 576B is the master replica of
replica group 510D. Replica groups S10A and 510C include
two non-master replicas each (replicas 564B and 564C for
group 510A, and replicas 575A and 575C for group 510B).
Different types of replication techniques may be used in
various embodiments, such as erasure-coding techniques, full
replication, or a combination of full and erasure-coded repli-
cas. In some embodiments, different replication techniques
may be used for different file stores.

[0102] In at least some embodiments, a variety of different
storage devices may be available for storing extent replicas,
such as one or more types of SSDs and/or individual or
arrayed devices based on rotating magnetic disks. In some
embodiments, a given storage node 132 may comprise several
different types of storage devices, while in other embodi-
ments a given storage node may only have a single type of
storage device available. In the depicted embodiment, storage
nodes 132A, 132B and 132C each have an SSD device (de-
vices 532B, 5321, and 532T respectively at the three nodes) as
well as a rotating disk-based device (532A, 532K and 532S
respectively). In some implementations, one particular stor-
age device technology may be preferred, for storing data

Oct. 1, 2015

extent replicas, metadata extent replicas, or for storing both
types of extents as long as space is available. In one imple-
mentation, for example, metadata extents may be stored on
SSDs when possible, while data extents may be stored on
cheaper rotating disks. In some embodiments, data and/or
metadata extents, or portions thereof, may be migrated from
one type of storage device to another, for example based on
usage levels.

Metadata Caching

[0103] FIG. 6 illustrates examples of interactions associ-
ated with caching metadata at access subsystem nodes ofa file
storage service, according to at least some embodiments. As
mentioned earlier, in some embodiments external load bal-
ancers may be configured to distribute client workload among
the available access subsystem nodes. In the embodiment
depicted in FIG. 6, a service request 644 A (such as a write or
aread directed to a file) is received from a client 180 at a load
balancer 646. The load balancer 646 forwards a correspond-
ing service request 644B to a selected access node 112 via a
different network connection than was used for the original
service request 644 A.

[0104] The access node 112 may maintain a cache 604 of
metadata objects regarding various file store objects. If meta-
data sufficient to identify a storage subsystem node 132 that
stores the appropriate set of pages corresponding to for-
warded service request 644B happens to be in cache 604, the
access node may issue read/write requests to the storage node.
However, if the metadata is not cached, the access node 112
may submit a metadata request 650 to a selected metadata
subsystem node 122, as indicated by arrow 693. As men-
tioned earlier, the metadata contents may actually be stored at
storage subsystem nodes in some embodiments. The meta-
data node 122 (which may comprise, for example, a process
executing the metadata management code) may itself main-
tain an in-memory set 612 of metadata, comprising another
cache layer. If the metadata requested by the access node is
not in the in-memory set 612, the metadata node may obtain
pages 654 containing the metadata from one or more storage
nodes 132A, as indicated by arrow 694, and store the meta-
datain its in-memory set 612. In some cases, therequest 644 A
from the client may require new metadata to be generated
(e.g., if the request was the first write to a file, the metadata
node may create metadata entries for the first logical block of
the file), in which case the metadata node may ensure that the
new metadata is safely stored at the storage nodes 132 before
responding to the request 650 in the depicted embodiment.
[0105] At least the portion of the metadata obtained from
storage node 132A that is required for responding to the
client’s request (termed request-relevant metadata 652) may
be provided to the access node 112, as indicated by arrow 695.
The access node may read the metadata, store it in cache 604,
and submit read or write request(s) 655 to the appropriate
storage node(s) 132 identified by the metadata, as indicated
by arrow 696. The storage node(s) 132B may provide a
response to the read/write request(s), not shown in FIG. 6, and
the access node may in some embodiments respond to the
client 180 to indicate whether the requested service opera-
tions succeeded or not. The access node 112 may be able to
respond to at least some subsequent client requests using the
cached metadata, without having to re-obtain the metadata
from the metadata subsystem.

[0106] In the depicted embodiment, instead of using
explicit cache invalidation messages, a timeout-based tech-

US 2015/0278243 Al

nique may be used for managing potential staleness of meta-
data cache entries at the access node. Thus, the access node
112 may use caching timeout setting(s) 608 to determine
when to evict any given element of metadata from the cache
604. In some implementations, a given metadata entry may
simply be removed from cache 604 after its timeout 608
expires, with no attempt to re-cache it until it is needed for a
different client request. In other implementations, or for some
selected types of metadata entries, the access node 112 may
re-request a metadata entry from the metadata node 122 when
its cache timeout expires, or check whether the metadata
entry remains valid. In the latter scenario, the timeout may be
re-set to the original value each time that the entry is revali-
dated or refreshed. At the metadata node 122, a different type
of timeout setting may be used with respect to a given logical
block of metadata in the depicted embodiment. When the
metadata node 122 initially generates metadata for some file
store object and stores the metadata in a given logical block of
a metadata structure, a metadata block re-allocation ineligi-
bility timeout period may be started, which indicates the
minimum amount of time that has to pass before that metadata
logical block can be re-allocated. (Such a metadata re-allo-
cation may eventually occur, for example, in case the object
whose metadata is stored in the block is deleted.) The block
re-allocation ineligibility timeout setting(s) 614 may typi-
cally be set to a longer time period than the cache timeout
settings 608 for the corresponding block metadata. For
example, in one implementation, the block re-allocation tim-
eout value may be two weeks, while the cache timeout setting
may be one day. In such a scenario, the access node 112 may
re-check the validity of a given block of metadata once every
day, while the metadata node 122 may ensure that that block
is not re-used for some other purpose before two weeks have
passed since the initial allocation of the block.

[0107] In some embodiments, instead of using a timeout-
based mechanism, an explicit lease or lock may be used for
metadata entries cached at the access node. In at least one
embodiment, an explicit cache invalidation mechanism may
be used, in which for example the metadata node 122 may
send out invalidation messages when some element of meta-
data is no longer valid. In one embodiment, the metadata
subsystem may mark a block of metadata “invalid” or “inac-
cessible” in response to metadata changes. When an access
node attempts to use invalid cached metadata to access data
blocks, an error message indicating that the metadata is
invalid may be returned by the metadata subsystem or the
storage subsystem to the access node. Thus, the cached meta-
data may be invalidated implicitly as a result of such error
messages. Various combinations of timeout-based, lock/
lease-based, implicit and explicit invalidation-based strate-
gies may be used in different embodiments for metadata
cached at the access nodes.

[0108] Insome of the interactions depicted in FIG. 6, such
as those indicated by the arrow labeled 693, 694 and 696,
some components of the storage service may act as clients of
other components. For example, the access node 112 may
send internal requests (i.e., requests that are generated within
the storage service and use network paths that are not directly
accessible to customers of the storage service) to the metadata
node (arrow 693), acting as a client of the metadata node.
Similarly, both the metadata node and the access node may
send internal requests to storage nodes 132, acting as clients
of' the storage nodes. In some embodiments, the various sub-
systems may implement internal APIs that can be invoked by

Oct. 1, 2015

other components of the storage service to enable such inter-
actions. A storage node 132 may, for example, respond in the
same way whether a particular storage service APl was
invoked from an access node 112 or from a metadata node
122. Thus, at least in some embodiments, storage service
nodes may be agnostic with respect to the sources from which
they are willing to receive internal requests.

File Store Policies

[0109] In some embodiments, clients may be granted sub-
stantial flexibility to control various aspects of the behavior of
the file storage service with respect to specific file stores. For
example, one or more administrative APIs may be imple-
mented to allow clients to set or modify the durability, per-
formance, availability or other requirements for a particular
file store, which may differ from the corresponding require-
ments for other file stores created on behalf of the same client
or other clients. FIG. 7 illustrates examples of the use of
distinct combinations of policies pertaining to data durability,
performance, and logical-to-physical data mappings for file
stores, according to at least some embodiments.

[0110] As shown in columns 704 and 714, the durability
policies for data and metadata respectively for a given file
store such as FS1 may differ, and the durability policies used
at different file stores such as FS1 and FS2 may differ for
either data, metadata or both. For FS1, 10-way full replication
is used for metadata (10 full copies of each page of metadata
are maintained), while 12/6 erasure coding is used for data
durability (12 erasure coded copies are stored of each data
page, of which 6 are needed to reconstruct the contents of the
page). Performance goals/requirements for the metadata and
data of file stores FS1 and FS2 are indicated in columns 706
and 716 respectively. The performance goals may be
expressed in various units, e.g., units for latency or response
time (indicated by the label “resp time” in columns 706 and
716) versus units for throughput (indicated by the label
“tput”), and in some cases different sets of requirements may
be specified for reads (indicated by the label R in columns 706
and 716) than for writes (indicated by the label W). The
performance goals may be used, for example, to select the
types of storage devices that should be used for a given file
store’s metadata or data.

[0111] Different approaches may be used for allocating
storage space for storage objects for respective file stores in
the depicted embodiment. For example, as indicated in col-
umn 708, a fixed logical block size of 512 kilobytes and a
policy of dynamic page allocation is used for FS1 metadata,
while for FS2 metadata, physical storage for one-megabyte
logical blocks may be allocated statically. As shown in col-
umn 718, for FS1 data, a varying logical block size may be
used, with the first few logical blocks of a given file being set
to 1 kilobyte, 1 kilobyte, 2 kilobytes, 2 kilobytes, etc., with the
logical block size gradually increasing as the file grows. For
FS2 data, in contrast, fixed-size 4-megabyte logical blocks
may be used. The physical page sizes used for metadata may
be set as follows (column 710): 8 kilobytes for FS1 and 16
kilobytes for FS2. For data, as shown in column 720, the page
size may be set equal to the logical block size for FS1, while
the page size may be set to 32 kilobytes for FS2. Respective
metadata cache-related settings for FS1 and FS2 are shown in
column 712, including metadata cache timeouts and the block
reallocation ineligibility timeouts discussed above with ref-
erence to FIG. 6. In some embodiments, e.g., in order to
decrease implementation complexity of the file storage ser-

US 2015/0278243 Al

vice, only a discrete set of options may be supported for
durability policies, block and page sizing policies, and the
like. Other types of policies, such as availability-related or
uptime requirements, file store space limits, and the like, may
also be set differently for difterent file stores in some embodi-
ments. In at least one embodiment, clients may be able to
choose from among a plurality of pricing policies on a per-
file-store basis as well—e.g., some clients may select a stor-
age-space-usage-based pricing policy, while other clients
may select a file system API-count-based pricing policy.

Methods of Implementing a Scalable File Storage Service

[0112] FIG. 8a is a flow diagram illustrating aspects of
configuration and administration-related operations that may
be performed to implement a scalable distributed file system
storage service, according to at least some embodiments. As
shown in element 801, an initial set of M empty extents may
be established for data and/or metadata, e.g., at N different
storage subsystem nodes of a distributed file storage service
during a service initialization procedure. The storage service
may be set up to implement file storage operations on behalf
of client applications running on compute instances of a vir-
tual computing service established at a provider network in
some embodiments. In various embodiments, each storage
node may comprise a plurality of extents, e.g., M may be
larger than N. In embodiments in which extent contents are
replicated for data durability, each of the M empty extents
may be capable of storing a respective replica of the contents
of a logical extent. Each storage node may comprise one or
more storage devices, including for example some number of
rotating disk-based devices and/or solid-state store devices. A
given extent may be incorporated within a single storage
device in some embodiments, or may be spread over multiple
storage devices in other embodiments. In one embodiment,
all the extents may be of the same size, e.g., based on a
configurable parameter associated with the storage service. In
other embodiments, different extents may have different
sizes, and/or the size of an extent may change over time. The
total number of extents in a given instantiation of the storage
service may vary over time—e.g., as the size of the metadata
and data grows, more storage devices and/or more extents
may be deployed. The extents may represent a unit of recov-
ery with respect to data and metadata of the storage service in
some embodiments—e.g., each extent may be replicated
based on durability policies or settings, using erasure coding,
full replication, or some combination of replication tech-
niques. Each extent replica group (i.e., a group of replicas of
the same logical data or metadata extent) may include at least
onereplica designated as a master replica whose storage node
(which may also be referred to as a master node or a leader
node with respect to the logical extent) is responsible for
coordinating updates among the group members. In some
embodiments, decisions regarding master selection and/or
membership of replica groups may be deferred until the first
object of a file store is written. In at least some implementa-
tions, the extents may be multi-tenant—e.g., each extent may
store data or metadata of a number of different clients or
customers.

[0113] Some number of access subsystem nodes may be
established initially to enable access to at least a particular file
store FS1 (element 804) in the depicted embodiment. For
example, in an embodiment in which the file store clients
comprise compute instances of an isolated virtual network
(IVN), private IP addresses accessible only from within the

Oct. 1, 2015

IVN may be assigned to the P access subsystem nodes. Public
IP addresses may also or instead be assigned to some or all of
the access subsystem nodes in some embodiments. In some
embodiments, a pool of partially pre-configured access sub-
system nodes may be set up, and specific access nodes may be
assigned for particular file stores from the pool; in other
embodiments, access nodes may be instantiated on demand.
A given network address may be assigned to more than one
access subsystem node in at least one embodiment.

[0114] In some embodiments, a set of Q metadata nodes
may be assigned to the file store FS1 upon file store creation.
In other embodiments, metadata nodes (which may also be
selected from a pre-configured pool, or may be instantiated
dynamically) may be assigned to FS1 on-demand, e.g., when
the first write request to an object of FS1 such as a file or a
directory is received (as described below with respect to FIG.
8b). Administrative components of the file storage service
may monitor the performance and/or health status of various
nodes of the access subsystem, the metadata subsystem, and
the storage subsystem in the depicted embodiment (element
807). Records of the completed or successful file store opera-
tions performed on behalf of any given client may be stored,
and such records may be later used to generate usage-based
billing amounts for the client in the depicted embodiment. In
response to an analysis of observed performance metrics
and/or health status changes, nodes may be dynamically
added or removed from any of the subsystems without affect-
ing the population of the other layers, and without impacting
the stream of incoming file storage requests (element 810).
E.g., in response to a detection of a possible performance
bottleneck at the access subsystem, or a detection of a failed
or unresponsive access subsystem node, more access sub-
system nodes may be instantiated without affecting either of
the other subsystem nodes. In some cases, if the resource
utilization (e.g., CPU or storage utilization) at one or more
nodes remains below a threshold for some period of time,
such nodes may be eliminated and their workload may be
distributed among other nodes. Thus, each of the subsystems
may be independently scaled up or down as needed.

[0115] FIG. 85 is a flow diagram illustrating aspects of
operations that may be performed in response to client
requests at a scalable distributed file system storage service,
according to at least some embodiments. In response to a
create (e.g., an invocation of an “open” API) or a first write
request directed to a file of file store FS1, for example, space
may be allocated at one or more selected metadata extents and
data extents (element 851). In the depicted embodiment, the
metadata subsystem may store the metadata contents at stor-
age subsystem nodes, e.g., the storage capabilities of the
storage subsystem may be re-used for metadata instead of
implementing a separate storage layer strictly for metadata. In
other embodiments, a separate storage subsystem may be
used for metadata than is used for data. In embodiments in
which replication is being used to achieve desired data dura-
bility, space may be allocated at a plurality of metadata and/or
data extents, e.g., for all the members of the appropriate
extent replica groups. A particular extent may be selected to
allocate one or more pages to respond to the first write based
on various factors in different embodiments—e.g., based on
how full the extent currently is, based on the performance
characteristics of the extent relative to the performance
requirements of the object being created, and so on. In at least
some embodiments, the current “spread” of the objects of the
file store may also be taken into account when selecting an

US 2015/0278243 Al

extent—e.g., the storage subsystem may attempt to reduce the
probability of “hot spots” by avoiding storing too many
blocks of a given file store’s data or metadata at the same
extent or at the same storage node.

[0116] As additional writes are directed to objects within
FS1, additional space may be allocated for data and/or meta-
data, e.g., at other storage subsystem nodes based on appli-
cable striping policies (i.e., logical-block-to-physical-page
mapping policies), and additional metadata nodes may be
configured as needed (element 854). The nodes of each of the
three subsystems—the storage subsystem, the access sub-
system and the metadata subsystem—may be configured to
support multi-tenancy in at least some embodiments—e.g.,
each storage service node may handle storage requests from,
or store data/metadata of, several different clients at the same
time. The clients may not be aware that the same resources
that are being used for their storage requests are also being
used for requests from other clients. Each storage service
node may comprise, for example, one or more processes or
threads that may be executed using hosts or servers of a
provider network in some embodiments.

[0117] Over time, the metadata corresponding to a given
file store object such as a directory or a file may end up being
distributed across several different extents at several different
storage nodes. Some file storage operations (e.g., rename
operations or delete operations) may require modifications to
metadata at more than one extent, or at more than one storage
node. In response to a request for such an operation, the
storage service may perform an atomic update operation that
includes changes at more than one metadata page or more
than one metadata extent (element 857) in a manner that
supports or enforces sequential consistency. Any of a number
of different types of consistency enforcement techniques may
be used in different embodiments, such as a distributed trans-
action technique or a consistent object renaming technique,
which are both described in further detail below.

[0118] FIG. 9 is a flow diagram illustrating aspects of
operations that may be performed to implement a replication-
based durability policy at a distributed file system storage
service, according to at least some embodiments. As shown in
element 901, values for each of a set of durability-related
parameters that are to be used for the data and/or metadata of
agiven file store object F1 may be determined, e.g., at the time
that the object is created. The parameters may include replica
counts—e.g., the number of replicas of each page, and there-
fore each extent, that stores contents of the object or contents
of metadata related to the object in some embodiments. The
replication strategy (e.g., whether full replication is to be
used, erasure-coded replication is to be used, or some com-
bination of such techniques is to be used), and/or the place-
ment of the replicas among the available data center resources
may also be specified as parameters in some embodiments.
For example, in some embodiments in which the storage
service includes a plurality of availability containers, at least
one replica may be placed within each of K availability con-
tainers. An appropriate set of extent replicas may then be
identified in accordance with the parameters (element 904).
In some embodiments, the specific physical extents may be
chosen based on an analysis of the amount of free space
available at various candidates, recent workload levels at the
extents or their containing storage servers, locality with
respect to expected sources of client requests, the “spread” of
the file store for which space is being allocated as described
earlier, or based on other metrics. One of the replicas may be

Oct. 1, 2015

designated as the master replica, and its storage node may be
designated as a leader responsible for coordinating various
operations such as writes directed to the file store object
among the members of the replica group (element 907). In at
least some embodiments, the particular storage node chosen
as a leader for coordinating data writes to a given file store
object may also be selected as the leader for coordinating
metadata writes for that file store object (even though at least
some of the metadata may be stored at different storage nodes
than the data).

[0119] Inresponseto a particular write request directed to a
logical block of the file store object from a client, an internal
write request may be directed to the master extent replica of
the logical extent to which that logical block is mapped (ele-
ment 910). Thus, for example, the access node that received
the client’s request may first have to identify the master extent
replica for the logical block, e.g., using metadata extracted
from the appropriate metadata subsystem node, and then
direct an internal write request to the storage node storing the
master replica. In response to receiving the internal write
request, the leader node may initiate interactions of a consen-
sus-based state management protocol to replicate the write
payload among the replica group members (element 913). In
at least some implementations, the consensus-based protocol
may be used to replicate log records of state changes, and a
representation of the state itself may be replicated using era-
sure cording or using full replicas. If the write is committed as
a result of the protocol interactions, e.g., if the write succeeds
at a quorum of the replica group members, in some embodi-
ments the requesting client may eventually be informed that
the write request succeeded. In other embodiments, at least
for some types of operations and some file system protocols,
clients may not necessarily be provided an indication as to
whether their request succeeded or not. Instead, for example,
the clients may be expected to retry operations that appear not
to have succeeded.

[0120] FIG. 10 is a flow diagram illustrating aspects of
operations that may be performed to cache metadata at an
access subsystem node of a distributed file system storage
service, according to at least some embodiments. As shown in
element 1001, service endpoint addresses that allow clients to
submit file store-related requests to a set of access subsystem
nodes of a distributed file storage service may be configured.
In some embodiments, as discussed earlier, private IP
addresses that are accessible only within an isolated virtual
network may be assigned for the access nodes. In other
embodiments, public IP addresses that can be accessed by
non-IVN clients may also or instead be used. The access
subsystem nodes may be configured to respond to various
types of commands, system calls, or API invocations con-
forming to one or more industry-standard file system proto-
cols (e.g., one or more versions of NFS, SMB, CIFS, and the
like). In some embodiments a given access subsystem node
may be capable of responding to commands formatted in
accordance with a plurality of such standards or protocols. In
one embodiment, proprietary file system interfaces may also
or instead be supported.

[0121] A command (e.g., a create, read, write, modify,
reconfigure, or delete command) formatted in accordance
with one of the APIs/protocols and directed to a particular file
store object F1 may be received at a particular access node
ANT1 (element 1004). AN1 may perform a set of authentica-
tion and/or authorization operations (element 1007), e.g.,
based on the network identity (e.g., the source network

US 2015/0278243 Al

address), user identity (e.g., a user account identifier), or other
factors to decide whether to accept or reject the command.
[0122] If the command passes the authentication/authori-
zation checks, AN1 may identity a metadata node MN1 from
which metadata pertaining to F1, to be used to implement the
requested operation, is to be obtained (element 1010). The
access node AN1 may then submit a metadata request to MN1
(element 1013). In some embodiments, the identification of
the appropriate metadata node may itself involve the submis-
sion of another request, e.g., to a metadata node that manages
mappings between storage objects and other metadata nodes.
A block of metadata pertaining to the file store object F1 may
then be obtained at AN1. AN1 may store the metadata in a
local metadata cache (element 1016), with a cache timeout
setting indicating when the block of metadata is to be dis-
carded (as potentially stale) or has to be re-validated. In at
least some embodiments, the cache timeout interval may be
set to a value smaller than a metadata block re-allocation
timeout setting used at the metadata node to determine when
it is acceptable to re-use to recycle the block of metadata for
other purposes (e.g., to store metadata for a difterent file store
object F2 in the event that F1 is deleted).

[0123] ANI1 may use the received block of metadata to
identify the particular storage node SN1 to which an internal
read/write request is to be directed, and submit the internal
request accordingly (element 1019). Prior to the expiration of
the cache timeout, AN1 may re-use the cached block of meta-
data to issue additional internal requests that may result from
further invocations of the APIs/protocols (element 1022). At
the end of the cache timeout period, the block of metadata
may be deleted or marked as invalid in some embodiments. In
at least one embodiment, instead of merely discarding the
metadata, the access node may re-validate it, e.g., by sending
another request to the metadata node from which the meta-
data was obtained.

Conditional Writes for Single-Page Updates

[0124] As discussed earlier, in at least some embodiments
the file storage service may be designed to handle large num-
bers of concurrent operations from hundreds or thousands of
clients, potentially directed to thousands of file store objects.
Traditional locking-based mechanisms to ensure atomicity
and consistency may not work in such high-throughput high-
concurrency environments, as the locking system itself may
become a bottleneck. Accordingly, one or more optimistic
schemes may be used for concurrency control in at least some
embodiments, as described below. First, a concurrency con-
trol mechanism for single-page writes (i.e., write requests
whose modifications are limited to a single page of a single
logical extent) is described, and later a distributed transaction
mechanism that can be used to implement multi-page writes
as atomic operations is described.

[0125] In at least some implementations, as also described
above, the physical pages used for storing data and metadata
of'a given file store may differ in size from the logical blocks
of the corresponding objects, while write operations may in
general be directed to arbitrary offsets and have write pay-
loads of arbitrary sizes. For example, for at least some file
system protocols/APIs, from the perspective of an end user of
a file, a single write to the file may modify data starting at any
desired byte-level offset within the file, and may modify (or
write for the first time) any number of bytes starting from that
byte-level offset. The storage subsystem of the file storage
service may, however, treat physical pages as the units of

Oct. 1, 2015

atomicity in some embodiments—e.g., to reduce implemen-
tation complexity, a page may represent the minimum granu-
larity supported by the storage subsystem’s internal read and
write APIs. Thus, there may a mismatch between the flexibil-
ity of the file store APIs exposed to the end users, and the
constraints on the internal operations supported by the stor-
age subsystem. Accordingly, the clients of the storage sub-
system (e.g., the access nodes or the metadata nodes) may be
forced to translate arbitrary write requests into page-level
internal write operations in such embodiments. In at least
some embodiments, at least some internal metadata manipu-
lations that may not result directly from external client
requests may in some cases need to modify only a small
portion of a given page of metadata. Such metadata write
requests may also haveto be implemented at page granularity.
[0126] Accordingly, at least some write operations directed
to physical pages may be implemented as read-modify-write
sequences. FIG. 11 illustrates examples of read-modify-write
sequences that may be implemented at a file storage service in
which write offsets and write sizes may sometimes not be
aligned with the boundaries of atomic units of physical stor-
age, according to at least some embodiments. As shown, a file
store object (such as a file or a metadata structure) may be
organized as a set of logical blocks (LBs) 1102, including [.LB
1102A, 1102B and 1102C. Each logical block may be
mapped to a set of pages within an extent (e.g., one logical
extent and a plurality of physical extent replicas) of a storage
subsystem, where the pages represent the units of atomicity
with respect to the storage subsystem’s APIs. For example,
logical block 1102A is mapped to physical pages (PPs)
1112A, 1112B, 1112C and 1112D of extent 1164 in the
depicted embodiment.

[0127] In response to a particular write request 1160, only
a portion of a single page (such as the shaded portion of PP
1112A in the case of write request 1160A, and the shaded
portion of PP1102D in the case of write request 1160B) may
actually have to be changed. However, because the storage
subsystem APIs may not permit partial-page writes in the
depicted embodiment, each of the write requests shown may
be translated into a read-modify-write sequence directed to
the corresponding physical page. Thus, the client (e.g., an
access node or metadata node that issued the internal write
requests 1160) may determine that to implement the intended
partial write, it must first read the targeted page, apply the
desired changes, and then submit a write of the entire page.
For write request 1160A, the read-modify-write sequence
RMW 1177A may be implemented, comprising a read of
page 1112A, a local modification of the contents of the page
1112A at the client, and a write of the entire page 1112A. For
write request 1160B, RMW 1177B may be implemented,
involving a read of page 1112D, followed by a modification
and then a write of the entire page 1112D.

[0128] Given the possibility of concurrent or near-concur-
rent updates being requested to the same physical page, the
storage service may have to ensure that contents of a given
physical page has not been modified between the read of an
RMW sequence and the write of the RMW sequence. In at
least some embodiments, a logical timestamp mechanism,
which may be implemented for replicated state management
at the storage subsystem, may be used to ensure such sequen-
tial consistency as described below.

[0129] As mentioned earlier and shown in FIG. 5, replica
groups of logical extents may be used in at least some
embodiments to achieve the desired level of data durability.

US 2015/0278243 Al

FIG. 12 illustrates the use of consensus-based replicated state
machines for extent replica groups, according to at least some
embodiments. For logical extent E1, four extent replicas are
shown in the depicted embodiment: master replica 1264A at
storage node 132, and non-master replicas 1264B, 1264C,
1264D at respective storage nodes 132B, 132C and 132D. For
a different logical extent E2, master extent replica 1265C at
storage node 132D and two non-master replicas 1265A (at
storage node 132A) and 1265B (at storage node 132B) are
shown. A consensus-based replicated state machine 1232A
may be used by node 132A (the node at which the master
replica is stored) to coordinate various operations on the E1
replicas, and a different consensus-based replicated state
machine 1232B may be used by node 132D (the node at
which master replica 1265C resides) to coordinate operations
on E2 replicas.

[0130] State machine 1232A may utilize a logical clock
1222A in the depicted embodiment, and state machine 1232B
may utilize a different logical clock 1222B. The logical clock
may be used to indicate the relative ordering of various opera-
tions managed using the corresponding state machine, and
may not be related directly to a wall-clock time or any par-
ticular physical clock in at least some embodiments. Thus, for
example, a particular logical clock value LC1 may be asso-
ciated with the commit of a write operation coordinated using
the state machine 1232A, and a different logical clock value
LC2 may indicate when a response to a read operation was
provided from the replica group. f LC1<L.C2 in this example,
this would indicate that from the perspective of the storage
subsystem, the write operation was completed prior to the
read operation. The values of the logical clock may also be
referred to herein as “logical timestamps” or as “operation
sequence numbers” (since they may indicate the sequence in
which various read or write operations were completed using
the associated replicated state machine). In some implemen-
tations an integer counter implemented at the storage node at
which the master replica is resident may be used as a logical
clock, and that storage node may be responsible for changes
to the clock’s value (e.g., the counter may be incremented
whenever a read or write operation is completed using the
state machine).

[0131] The storage nodes may associate logical timestamp
values obtained from the state machines 1232 with the read
and write requests of the RMW sequences described above,
and may use the logical timestamps to decide whether a
particular single-page write is to be committed or aborted in
various embodiments. FIG. 13 illustrates example interac-
tions involved in a conditional write protocol that may be used
for some types of write operations, according to at least some
embodiments. As shown, as part of a read-modify-write
sequence corresponding to a particular write operation, a
client 1310 of the storage subsystem (such as an access node
or a metadata node) may submit a read page request 1351 to
a storage node 132 (e.g., the node at which the master replica
of'the extent to which the page belongs is stored). The storage
node may provide a read response 1352 that comprises the
contents of the requested page as well as a read logical times-
tamp (RLT) assigned to the read operation. The RLT may be
obtained, for example, from the replicated state machine
being used for the extent.

[0132] Continuing with the RMW sequence, the storage
subsystem client 310 may subsequently submit a write
request 1361 for the entire page to the storage node 132, and
may include the RLT that was included in the read response.

Oct. 1, 2015

The storage node may determine whether the page has been
successfully updated since the RLT was generated. Ifthe page
has not been updated since the RLT was generated, the
requested write may be completed and a write response 1362
indicating success may be provided to the storage subsystem
client. If the page has been updated as a consequence of
another intervening write request since the RLT was gener-
ated, the write request may be rejected. Accepting such a
write request may in some cases lead to data inconsistency,
because, for example, the specific data D1 to be written in
response to a given write request may be dependent on a value
R1 read earlier from the page, and that value R1 may have
been overwritten by the intervening write. In some imple-
mentations, if the write request from client 1310 is rejected, a
write response 1362 indicating that the write was aborted may
be provided to the client; in other implementations no write
response may be provided. If the write is aborted, the client
1310 may initiate one or more additional RMW sequences for
the same page in some embodiments, e.g., until the write
eventually succeeds or until some threshold number of write
attempts fails.

[0133] Inorderto detect whether an intervening write to the
same page has succeeded since the RLT was generated, in
some embodiments write log buffers that store write logical
timestamps may be implemented at storage nodes 132. FIG.
14 illustrates example write log buffers that may be estab-
lished to implement a conditional write protocol, according to
at least some embodiments. In the depicted embodiment, a
respective circular write log buffer 1450 is maintained for
each logical extent, e.g., at the storage node where the master
replica of the extent is stored. Circular buffer 1450A is main-
tained for extent E, by the storage node 1432A managing E1’s
master replica 1410A, and circular buffer 1450B is main-
tained by the storage node 1432B at which E2’s master rep-
lica 1410B is stored. Each circular bufter comprises a plural-
ity of write log records 1460, such as records 1460 A, 14608,
1460C and 1460D in buffer 1450A and records 1460K,
14601, 1460M and 1460N in buffer 1450B. Each log entry
1460 in the depicted embodiment comprises a respective
indication of a committed (i.e., successful) page write, indi-
cating the page identifier that was written to, the logical
timestamp associated with the completion of the write, and
the client on whose behalf the write was performed. Thus, in
buffer 1450A, records 1460A-1460D indicate that pages with
identifiers 1415A-1415D respectively were written to, in an
order indicated by respective write logical timestamps
1417 A-1417D on behalf of clients with respective identifiers
1419A-1419D. Similarly, buffer 1450B indicates that pages
with identifiers 1415K-1415N respectively were written to, in
an order indicated by respective write logical timestamps
1417K-1417N on behalf of clients with respective identifiers
1419K-1419N. In at least some embodiments, the write log
buffers may be maintained in main memory for fast access. In
at least one implementation, the write logical timestamp of a
given record 1460 may be implicitly indicated by the relative
position of that record within the buffer. Thus, in such an
implementation, explicit values of write logical timestamps
need not be stored in the bufter. In some embodiments the log
buffers may be stored in persistent memory, and may have
indexes set up for speed retrieval by timestamp value, by page
identifier, and/or by client identifier. In various embodiments,
write logical timestamp information similar to that shown in

US 2015/0278243 Al

FIG. 14 may be maintained at different granularities—e.g.,
either at the physical page granularity, at the extent granular-
ity, or at some other level.

[0134] When the storage node 1432 has to determine
whether a particular write of a read-modify-write sequence is
to be accepted or rejected, and the write request includes the
read logical timestamp (RLT) of the read operation of the
sequence, it may inspect the write log buffer to see whether
any writes with larger logical timestamps than the RLT have
occurred to the same page. For example, if the RLT value
corresponding to a write request of an RMW sequence for a
page P1 is V1, the minimum write logical timestamp among
the records 1460 is V2<V 1, and there is no record in the buffer
with a value V3>V1, then the storage node 1432 may con-
clude that no intervening write to page P1 has occurred, and
the write of the RMW may accepted. If there is an entry with
a write logical timestamp V3>V1 for page P1, the write may
be rejected or aborted in the depicted embodiment. If the
minimum write logical timestamp V2 among the records in
the circular buffer 1450 is greater than V1, this might indicate
that some writes directed to P1 may have succeeded since the
RLT was generated but may have had their write log records
overwritten (e.g., due to buffer space limitations), so at least
in some embodiments the write request for P1 may also be
rejected in such a scenario. If the write request of the RMW is
accepted, a new write log record 1460 may be added to the
circular write log buffer (potentially overwriting an earlier-
generated log record) with a write logical timestamp corre-
sponding to the commit of the write. (It is noted that depend-
ing on the number of replicas that have to be updated, and the
replication protocol being used, it may take some time before
the modification is propagated to enough replicas to success-
fully complete or commit the write.)

[0135] Circular buffers may be used in the depicted
embodiment so that the total amount of memory used for the
buffers remains low, and older write log records gradually get
overwritten by more useful recent write log records. As the
write operation of a particular read-modify-write sequence is
typically expected to be performed fairly quickly after the
read, older write log records may typically not be of much
help in deciding whether to commit or abort a write of an
RMW sequence. However, as discussed above, in some sce-
narios it may be the case that writes to the extent are so
frequent that potentially useful write log records may get
overwritten within the circular buffer. In some embodiments,
the storage service may keep track of the number of writes
that are rejected because of such overwrites, i.e., the write
rejection rates caused specifically as a result of comparisons
of'read logical timestamps with earliest logical timestamps of
the buffer (and subsequent determinations that the read logi-
cal timestamp is before the earliest logical timestamp) may be
monitored. In some such embodiments the size of the circular
log buffers may be modified dynamically—e.g., it may be
increased in response to a determination that the write rejec-
tion rates resulting from buffer space constraints has
exceeded some threshold, or it may simply be increased dur-
ing heavy workload periods. Similarly, buffer sizes may be
decreased during light workload periods or in response to a
determination that the rejection rates attributable to buffer
size constraints are lower than some threshold. In some
embodiments other types of buffers (i.e., buffers that are not
circular) may be used. In at least one embodiment the client
identifiers may not be stored in the write log buffers. In some
embodiments buffers similar to those shown in FIG. 14 may

Oct. 1, 2015

be used to record reads as well as writes. In at least one
embodiment, the length of the buffer may be dynamically
adjusted based on the timing of the reads of outstanding
read-modify-write sequences. For example, if the read of a
particular RMW sequence occurs at time T1, and the buffer
becomes full at some time T2 before the corresponding write
request of that sequence is received, the buffer size may be
increased (e.g., within some maximum length threshold and/
or some maximum time threshold) in an attempt to make the
correct decision regarding accepting the corresponding write.
In some such scenarios, when the corresponding write is
received, say at time T3, the buffer size may be reduced again
to its previous length.

[0136] In atleast one embodiment, the storage service may
maintain versioning information at the per-page level, and use
the versioning information to decide whether a write of an
RMW should be accepted or not. For example, instead of
maintaining a log buffer of write operations at the per-extent
level, in one such versioning approach, log entries may be
maintained at the per-page level, so that it becomes possible
to determine whether a write of an RMW is directed to the
same version as the corresponding read. If a new version has
been created since the read, the write may be rejected.
[0137] FIG. 15 is a flow diagram illustrating aspects of
operations that may be performed to implement a conditional
write protocol at a distributed file system storage service,
according to at least some embodiments. As shown in element
1501, a determination may be made at a client C of a storage
subsystem (such as an access node or a metadata node) that in
order to implement a particular file store operation, a read-
modify-write sequence on a particular page P is to be imple-
mented. In some embodiments, all single-page writes may be
translated into read-modify-write operations by default, even
if the entire page is being modified; hence, in such embodi-
ments, any write to any page may be translated into a RMW
sequence, and a determination regarding whether an RMW is
needed or not may be required. In other embodiments, writes
that modify the whole page may not require translation to
RMW sequences, while writes that modify only part of apage
may be translated to RMW sequences.

[0138] As shown in element 1504, as part of the RMW
sequence, a read request directed to P may be received from C
at a storage node SN1 (e.g., the node at which the master
replica of the extent to which P belongs is stored). A read
logical timestamp RLT corresponding to the read request,
indicating the order on which the read is performed relative to
other reads and writes at the same extent, may be obtained
(element 1507), e.g., from a replicated state machine being
used to manage P’s extent. The RLT may be provided to the
client C that submitted the read request.

[0139] Subsequently, a write request WR1 of the RMW
sequence directed to page P may be received from C at SN1
(element 1510). The write request may include the RLT value
that was provided to C in the read response of element 1507,
as well as the write payload (i.e., the modification to be
applied to P). The storage node SN1 may determine whether
the page P has been modified since the RLT was generated,
e.g., by inspecting contents of a write log bufter that stores the
logical timestamps associated with recent successful writes.
Ifitis determined that P has not been modified since RLT was
generated (element 1513), the write may be implemented by
making the appropriate modifications to P and propagating
the modifications to the appropriate number of replicas (ele-
ment 1516). A write logical timestamp corresponding to the

US 2015/0278243 Al

completion of the write may be stored in a write log buffer in
the depicted embodiment, and at least in some embodiments
an indication that the write completed may be sent to the
client that issued the RMW sequence. In some implementa-
tions the write logical timestamp may be provided to the
client as part of the completion indication. If it is determined
that P has been modified since RLT was generated (also in
operations corresponding to element 1513), the write may be
rejected and in some embodiments a “write aborted” response
may be sent to the client.

Distributed Transactions Using Ordered Node Chains

[0140] The conditional write technique described above
may be used for ensuring sequential consistency among
single-page write operations in various embodiments. How-
ever, for some types of operations of a distributed file storage
service (such as deletions, renames and the like), multiple
pages of metadata and/or data may have to be modified atomi-
cally—that is, either all the changes to all the pages involved
have to be committed, or all the changes have to be rejected.
A higher-level optimistic consistency enforcement mecha-
nism involving distributed transactions may be employed for
this purpose in at least some embodiments. To implement a
distributed transaction in such an embodiment, a coordinator
node (e.g., one of the metadata and/or storage nodes involved)
may be selected. The coordinator may identify the storage
nodes that are to participate in the changes, determine a
sequence in which the individual page-level changes are to be
examined for acceptance or rejection at respective storage
nodes, and then initiate an ordered sequence of operations
among the storage nodes in which each of the nodes can make
a respective commit/abort decision for their page-level
changes. If all the participants decide that their local changes
are committable, the transaction as a whole may be commit-
ted, while if any one of the participants determines that their
local page-level changes cannot be committed, the transac-
tion as a whole may be aborted. Details regarding various
aspects of the operations of the coordinator and the partici-
pant nodes are provided below.

[0141] FIG. 16 illustrates an example message flow that
may result in a commit of a distributed transaction at a file
storage service, according to at least some embodiments. A
determination may be made that a particular file store opera-
tion requires multiple pages to be written, e.g., either at an
access subsystem node or at a metadata node. A correspond-
ing multi-page write request 1610 may be generated. The set
of'pages to be modified may be termed the “targeted pages™ of
the transaction herein. A particular node of the storage service
(which may be either an access node, a metadata node, or a
storage node in various embodiments) may be selected as a
coordinator node 1612 for a distributed transaction to atomi-
cally implement the set of writes to the targeted pages. The
coordinator may identify the set of pages that are to be modi-
fied and the set of storage nodes (which may include itself if
the coordinator is a storage node) at which page-level changes
are to be initiated or performed (e.g., the set of storage nodes
at which master replica extents containing the targeted pages
are stored). Any of a variety of techniques may be used to
select the coordinator node—e.g., in some embodiments, the
storage node at which a randomly-selected page of the set of
pages to be modified resides may be selected as the coordi-
nator, while in other embodiments the workload levels at
candidate coordinator nodes may be taken into account, and

Oct. 1, 2015

anattempt may be made to distribute the work associated with
transaction coordination among the storage nodes of the ser-
vice.

[0142] In at least some embodiments, a sequence in which
the pages targeted for modifications should be locked may be
determined by the coordinator 1612 in accordance with a
deadlock avoidance technique. For example, a deadlock
analysis module may be provided the identifiers of the pages
and extents to be modified in the transaction, and the deadlock
analysis module may sort the identifiers based on some
selected sort order (e.g., a lexicographic sort order based on a
concatenation of extent ID, page ID and/or other factors) to
determine the locking order. The same sort order may be used
consistently across all the distributed transactions for the file
store, and as a result locks for any given pair of pages P1 and
P2 may always be requested in the same order. For example,
if the deadlock analysis module indicates that a lock on P1
should be acquired before a lock on P2 for transaction Tx1, it
would never indicate that a lock on P2 should be acquired
before a lock on P1 for any other transaction Tx2, thus avoid-
ing deadlocks.

[0143] In at least some embodiments, as part of a prelimi-
nary phase of the distributed transaction, the selected coordi-
nator node 1612 may also issue read requests directed to the
targeted pages, and obtain the corresponding read logical
timestamps (RLTs) for those reads in accordance with the
techniques described earlier. The read logical timestamps
may be used for making page-level commit decisions at each
of the storage nodes at which the targeted pages reside, as
described below.

[0144] The selected coordinator node 1612 may then com-
pose a transaction-prepare (Tx-prepare) message 1642A,
which includes an indication of the order in which the tar-
geted pages are to be analyzed for respective page-level com-
mit decisions, a node chain comprising the storage nodes
responsible for making the page-level commit decisions in
that order, the actual changes to be made to the pages (the
bytes to be written), and the RLTs for each of the targeted
pages. Node chain 1602 is shown in FIG. 16 by way of an
example. The last or terminal member of the node chain (e.g.,
node 1632C in node chain 1602) may be designated as a
“commit decider” or “decider” node, since its own local page-
level commit decision may lead to a commit of the transaction
as a whole.

[0145] The coordinator may transmit the Tx-prepare mes-
sage 1642 A to the first node of the node chain, such as storage
node 1632 A of node chain 1602, which stores at least one of
the targeted pages (page P1 of logical extent E1 in FIG. 16).
Node 1632A may perform a local page-level commit analy-
sis, e.g., using the RLT for page P1 to decide whether the
change to P1 can be committed. Using a technique similar to
that described earlier with respect to conditional writes and
RMW sequences, if P1 has not been modified since its RLT
was obtained, the change to P1 may be deemed committable.
If P1 has been modified since the RLT was obtained, the
change may have to be rejected (the rejection scenario is
illustrated in FIG. 17 and described below; FIG. 16 illustrates
a scenario in which all the page-level commit decisions are
affirmative). Assuming that the proposed change to P1 is
committable, node 1632A may lock P1 (e.g., acquire a lock
managed by a replicated state machine used for extent E1)
and store an “intent record” in persistent storage. As long as
page P1 is locked, no reads or updates may be performed on
P1 on behalf of any other transaction or any other RMW

US 2015/0278243 Al

sequence in the depicted embodiment. The intent record may
indicate that the node 1632A intends to perform the proposed
modification to P1, and will do so if the remaining chain
members can also agree to perform their respective page-level
modifications. Node 1632A may then transmit Tx-prepare
message 1642B (whose contents may be similar or identical
to those of 1642A) to the next node 1632B of the node chain.

[0146] A similar local page-level commit analysis may be
performed at node 1632B with respect to page P7 of logical
extent ES. If node 1632B determines that its local page-level
changes are committable (e.g. using P7’s RLT, which was
included in the Tx-prepare message 1642B), node 1632B
may acquire a lock on P7, store its own intent record, and
transmit Tx-prepare message 1642C (similar or identical to
1642B) to the decider node 1632C.

[0147] Decide node 1632C (the terminal or last node in the
chain) may perform its own page-level commit analysis with
respect to page P9 of extent ES8. If the proposed modification
to page P8 is committable (e.g., if no writes to P8 have been
performed since P8’s RLT was obtained by the coordinator)
the decider may determine that the transaction as a whole is to
be committed, and may perform or initiate the proposed
changes to P8. The decider node may generate a Tx-commit
message 1644 A indicating that the distributed transaction is
to be committed, and transmit it to the other nodes of the
chain. In the depicted embodiment, the Tx-commits may be
propagated sequentially in the reverse order relative to the
propagation of the Tx-prepare messages. In other embodi-
ments, the Tx-commits may be sent in parallel to some or all
of the non-decider nodes and/or the coordinator, or may be
sent in a different sequential order than that shown in FIG. 16.
[0148] When a non-decider node of chain 1602 receives the
Tx-commit message, it may perform or initiate its local page-
level modifications, release the lock on the local targeted page
(e.g., P7 inthe case of node 1632B and P1 in the case of node
1632A), delete the intent record it had generated earlier for
the page, and (ifrequired) transmit the Tx-commit message to
another node (e.g., node 1632B may send Tx-commit mes-
sage 1644B to node 1632A, and node 1632A may send Tx-
commit message 1644C back to the coordinator). When the
coordinator node 1612 receives the Tx-commit message, in
some embodiments it may transmit a write success response
1650 to the requester of the multi-page write 1610. The tech-
niques described above, of performing local page-level com-
mit analyses in a pre-determined order determined to avoid
deadlocks, locking pages only when a Tx-prepare message is
received and the local commit analysis succeeds, and storing
intent records in persistent storage (from which they may be
accessed in case the storage node responsible for the intent
record is replaced as a result of a failure that may occur before
the transaction completes, for example), may all help increase
the efficiency and recoverability of operations that require
atomicity for multiple writes in distributed storage services.
[0149] Inatleastsomeembodiments, any one of the storage
nodes of the node chain identified for a given distributed
transaction may decide, based on its local commit analysis,
that the proposed modification for its local page is not accept-
able, and may therefore initiate an abort of the transaction as
a whole. FIG. 17 illustrates an example message flow that
may result in an abort of a distributed transaction at a file
storage service, according to at least some embodiments. As
in the case of FIG. 16, node 1612 may be selected as coordi-
nator of a distributed transaction attempted in response to a
multi-page write request 1610. The coordinator may perform

Oct. 1, 2015

a preliminary set of operations of the transaction similar to
those described in the context of FIG. 16, such as determining
an order in which local page-level commit decisions are to be
made and locks are to be acquired, generating the node chain
1602 and creating the Tx-prepare message 1642A. The Tx-
prepare message may be sent to the first node 1632A of the
chain by the coordinator 1612.

[0150] Node1632A may perform its local commit analysis,
and decide that the proposed changes to page P1 of extent E1
are acceptable. As in the scenario shown in FIG. 16, node
1632A may acquire a lock on P1, store an intent record in
persistent storage, and transmit Tx-prepare message 1642B to
the next node 1632B of chain 1602. In the scenario illustrated
in FIG. 17, node 1632B may decide that the proposed changes
to page P7 of extent E5 are not acceptable, e.g., because P7
has been successfully modified since its RLT was obtained by
the coordinator 1612. Accordingly, instead of storing an
intent record indicating that it is willing to perform the pro-
posed modification to P7, node 1632B may instead generate
a Tx-abort message 1744A, indicating that the transaction
should be aborted. The Tx-abort message 1744A may be sent
to the node from which the Tx-prepare message 1642B was
received in the depicted embodiment, although in other
embodiments it may be sent in parallel to other node chain
members that have already stored intent records after success-
ful local commit analyses. Upon receiving the Tx-abort mes-
sage 1744 A, node 1632 A may delete its intent record, release
the lock on page P1, and transmit the Tx-commit message
1644C back to the coordinator 1612. The coordinator 1612
may in turn send a write failure response 1750 to the requester
of'the multi-page write in some embodiments. In at least some
embodiments, and depending on the semantics of the APIs
being used, neither a write failure response 1750 nor a write
success response 1650 may be transmitted in at least some
embodiments—instead, the requesting entities may deter-
mine whether their requests succeeded or not using other
commands (e.g., a directory listing command may be used to
determine whether a delete or rename succeeded). It is noted
that not all the nodes in the node chain may participate in a
transaction that gets aborted—e.g., decider node 1632C in
FIG. 17 may not even be made aware that it was to participate
in the distributed transaction. Thus, aborts may not end up
wasting any resources at several of the chain members, which
may help reduce the overall amount of processing associated
with distributed transactions compared to some other tech-
niques.

[0151] Asnoted above, one of the participant storage nodes
of a node chain identified for a transaction may itself be
selected as a coordinator of the transaction in some embodi-
ments. The coordinator need not be the first node of the chain
in at least some embodiments, nor may the coordinator nec-
essarily be the decider node. FIG. 18 illustrates an example of
a distributed transaction participant node chain 1804 that
includes a node designated as the coordinator of the transac-
tion, according to at least some embodiments. As shown, the
node chain 1804 comprises storage nodes 1632A, 1632B,
1632K and 1632C, with 1632 A designated as the first node of
the chain and 1632C the terminal and decider node in the
chain. The targeted pages of the transaction that are to be
modified include page P1 of extent E1 at node 1632A, page
P7 of extent ES at node 1632B, page P4 of extent E6 at node
1632K, and page P9 of extent E8 at node 1632C. (Although
the examples of FIGS. 16, 17 and 18 all show only a single
page being modified at each chain member, in general any

US 2015/0278243 Al

number of pages may be modified at each chain member in
various embodiments.) Node 1632K has also been designated
as the transaction coordinator.

[0152] Accordingly, in its role as transaction coordinator,
node 1632K may send the Tx-prepare message 1801 to the
first node 1632A ofthe chain. As in the scenario illustrated in
FIG. 16, Tx-prepare messages may be propagated sequen-
tially along the node chain, e.g., Tx-prepare 1802 may be sent
from node 1632A to node 1632B, Tx-prepare 1803 may be
sent from node 1632B to 1632K, and Tx-prepare 1804 may be
sent from node 1632K to the decider node 1632C, assuming
the respective local page-level commit decisions at each of
the intermediary nodes are positive.

[0153] The decider node 1632C may initiate a propagation
of Tx-commit messages in the reverse sequence, e.g., Tx-
commit message 1851 may be sent from node 1632C to node
1632K, Tx-commit message 1852 may be sent from node
1632K to node 1632B, and Tx-commit message 1853 may be
sent from node 1632B to node 1632B. To complete the trans-
action, in the depicted embodiment, node 1632A may send a
final Tx-commit message 1804 to the coordinator node
1632K. In at least some embodiments, the dynamic selection
of participant nodes of the node chains as coordinators may
help to more evenly distribute the coordination workload
(e.g., workload related to the preliminary phases of the trans-
action during which the information needed for Tx-prepare
messages is collected and analyzed) among the storage sub-
system nodes than would have been possible if the coordina-
tor were chosen statically.

[0154] In at least some embodiments, each of the node
chain members may store transaction state records locally for
some time even after the transaction, as discussed below with
reference to FIG. 19. The state information may be used, for
example, during recovery operations that may be needed in
the event that one of the participant nodes fails before the
transaction is completed (either committed or aborted). Over
time, such transaction state information may use up more and
more memory and/or storage space. Accordingly, in order to
free up the memory and/or storage devoted to state informa-
tion for older transactions, at some point after a given trans-
action is committed or aborted, the coordinator node 1632K
may transmit Tx-cleanup messages 1871, 1872 and 1873 to
the nodes of the chain 1804 in the embodiment depicted in
FIG. 18. The Tx-cleanup messages may indicate identifiers of
the transactions whose state records should be deleted from
the storage nodes. Accordingly, in at least some embodi-
ments, the storage nodes may remove the specified transac-
tion state records upon receiving a Tx-cleanup message. The
Tx-cleanup messages may be sent from the coordinator to the
storage node chain members in parallel (as suggested in FIG.
18) or may be propagated sequentially in various embodi-
ments. The coordinator may decide to transmit Tx-cleanup
messages for a given transaction after a tunable or config-
urable time period has elapsed since the transaction was com-
mitted or aborted in some embodiments, and the time period
may be adjusted based on various factors such as measure-
ments of the amount of storage/memory space used up by old
transaction records at various storage nodes. Although the
coordinator node happens to be a member of the node chain
1804 in FIG. 18, Tx-cleanup messages may be sent by coor-
dinator nodes regardless of whether the coordinator is a mem-
ber of the node chain or not. In some embodiments a single
Tx-cleanup message may comprise indications of several
different transactions whose records should be cleaned up. In

Oct. 1, 2015

at least one embodiment, instead of the coordinator sending
Tx-cleanup messages as shown in FIG. 18, some other
selected member of the chain may be responsible for trans-
mitting the Tx-cleanup messages. For example, the
Tx-cleanup messages may be sent by the first member (e.g.,
node 1632A in FIG. 18) of the chain in one such embodiment.

[0155] In any distributed computing environment, espe-
cially large provider networks in which thousands of com-
modity computing and/or storage devices are being used, the
possibility of hardware and/or software failures at some sub-
set of the components has to be dealt with when designing the
services being implemented. FIG. 19 illustrates example
operations that may be performed to facilitate distributed
transaction completion in the event of a failure at one of the
nodes of a node chain, according to at least some embodi-
ments. Three storage nodes storing 1932A,1932B and 1932C
are shown storing respective replicas 1902A, 1902B and
1902C of the same logical extent E1. Initially, replica 1902A
is designated the master replica, while 1902B and 1902C are
designated non-master replicas.

[0156] The storage node chain generated for any given
distributed transaction may typically comprise storage nodes
where the master replicas of the extents involved in the trans-
action are stored. Such nodes may also be referred to as
“master nodes” or “leader nodes” with respect to those
extents whose master replicas are stored there. Changes made
at a given node chain member to a physical page may be
propagated among the other replicas from the master node.
Thus, the messages discussed earlier (e.g., Tx-prepare, Tx-
commit and Tx-abort) may typically be sent to the master
nodes for the extents involved in the transaction in at least
some embodiments.

[0157] Inthe depicted embodiment, the master node 1932A
may store intent records 1915, page locks 1910, and transac-
tion state records 1905 at a persistent shared repository 1980
that is also accessible to other storage nodes at which mem-
bers of E1’s replica group are stored. In at least some embodi-
ments, each node chain member that participates in a distrib-
uted transaction message flow (such as nodes 1632A,1632B
and 1632C of FIG. 16, and nodes 1632A and 1632B of FIG.
17) may store a transaction record 1905 indicating its local
view of the state of the distributed transaction at the time that
a Tx-prepare, Tx-commit, or Tx-abort message is sent from
the node chain member. For example, if the commit analysis
for the local page modification indicates that the modification
is acceptable, and an intent record to modify the local page is
stored, a transaction state record indicating that the transac-
tion (identified by a unique identifier selected by the coordi-
nator and included in the Tx-prepare message) is in a PRE-
PARED state from the perspective of the node chain member.
When a decider node determines that the transaction as a
whole is to be committed, it may save a transaction record
with the state set to COMMITTED. When a non-decider node
receives a Tx-commit message, the transaction’s state (which
was previously PREPARED) may be changed to COMMIT-
TED in the depicted embodiment. When any node of the
chain decides to abort the transaction, a transaction state
record with the state set to ABORTED may be stored in
repository 1980. When any node chain member receives a
Tx-abort message, the transaction state record may be modi-
fied to set the state to ABORTED. As mentioned above in the
discussion regarding Tx-cleanup messages, in at least some
embodiments transaction state records 1905 may be retained
at a given storage node for some time period after the mes-

US 2015/0278243 Al

saging associated with the transaction has completed from the
perspective of that node. This may be done for various pur-
poses in different embodiments—e.g., to aid in recovery from
failure situations resulting from lost messages, for debug-
ging, for audit purposes, and so on. When a Tx-cleanup mes-
sage is received for a given transaction, the transaction state
records may be deleted or archived in some embodiments.

[0158] The persistent state repository 1980 may be used so
that a failover node may take over the transaction-related
operations if a master node fails before the transaction is
completed (e.g., before all the Tx-prepare, Tx-Commit, Tx-
Abort or messages that the master is responsible for sending
for a given transaction are received successfully at their
intended recipients). For example, as indicated by the arrow
labeled “17, master node 1932A (with respect to extent E1)
may write a transaction state record 1905, an indication of a
page lock 1910, and an intent record 1915) for a given trans-
action Tx1 for which it received a Tx-prepare message in
repository 1980 at time T1. Before the corresponding Tx-
commit or Tx-abort message is received, node 1932 may fail,
asindicated by the “X” and the text labeled “2”. Inaccordance
with a replicated state management protocol, node 1932B
may be selected as the new master node with respect to extent
E1 (as indicated by the label “3”), e.g., by designating replica
1902B as the new master. In some embodiments a consensus-
based policy may be used to elect the new master. The node
chain member that would (prior to the failure of node 1932A)
have transmitted a Tx-commit or Tx-abort to node 1932A,
may instead find that the master role with respect to extent E1
has been transferred to node 1932B, and may therefore send
the Tx-commit or Tx-abort to node 1932B instead. Because
the intent record, lock and transaction state record were all
stored in the persistent repository 1980, node 1932B may be
able to read the required transaction information for Tx1 from
repository 1980 and easily perform the transaction-related
tasks that would otherwise have been performed by node
1932A. In at least some embodiments, the persistent reposi-
tory 1980 may be implemented as a component of the repli-
cated state management system used for propagating changes
among replicas, associating logical timestamps with reads
and writes, and so on.

[0159] FIG. 20 is a flow diagram illustrating aspects of
operations that may be performed to coordinate a distributed
transaction at a file system storage service, according to at
least some embodiments. As indicated in element 2001, a file
store operation request that involves a modification may be
received, e.g., at a metadata node from an access node or from
another metadata node. An analysis of the request may reveal
whether multiple pages (containing either metadata, data or
both), e.g., at different extents and/or different storage nodes
are required to fulfill the request. If only a single page is to be
modified, as detected in element 2004, a Read-Modify-Write
sequence similar to those described earlier may be initiated
(element 2007).

[0160] If multiple pages need to be modified or written to
(as also detected in element 2004), a distributed transaction
may be started by selecting a identifying a coordinator node
(element 2010). A variety of techniques may be used to select
a coordinator in different embodiments. In at least one
embodiment, one of the participants involved in the transac-
tion—e.g., a storage node at which a master replica of one of
the targeted pages is stored, or one of the metadata nodes
responsible for generating and managing the metadata being
affected by the transaction, may be selected. In some embodi-

Oct. 1, 2015

ments, a set of storage subsystem, metadata subsystem or
access subsystem nodes may be designated in advance as
coordinator candidates, and a particular node from among the
candidates may be selected.

[0161] The coordinator may collect various elements of
information needed to complete the transaction (element
2013). Such information may include, for example, a list of
all the pages that are to be modified and a list of the corre-
sponding write payloads (content of the bytes to be written)
may be generated in the depicted embodiment. The coordi-
nator may also determine, e.g., using a deadlock avoidance
mechanism, the order in which page-level commit analyses
should be performed for the transaction (and hence the order
in which locks should be acquired). In some embodiments,
for example, using the deadlock avoidance mechanism may
comprise sorting the identifiers of the targeted pages using a
consistent sorting methodology that is applied to all distrib-
uted transactions, so that the order in which locks are obtained
on any two pages does not change from one transaction to
another. The coordinator may construct the storage node
chain for the transaction in the depicted embodiment, for
example by identifying the (current) master storage nodes for
all the extents whose pages are targeted, and arranging them
in the order in which the commit analyses should be per-
formed. In at least one embodiment, the coordinator may also
be responsible for generating a unique transaction identifier
(e.g., a universally unique identifier or UUID that incorpo-
rates a randomly-generated string). In some embodiments in
which read logical timestamps (RLTs) or operation sequence
numbers such as those discussed with respect to the condi-
tional write techniques described above are available for I/O
operations, the coordinator may also read all the targeted
pages and determine the RLTs associated with the reads (ele-
ment 2016). The coordinator may then construct a Tx-prepare
message that indicates the node chain, the write payloads, and
the RLTs, and transmit the Tx-prepare message to the first
node of the chain (element 2019).

[0162] Atleast in some embodiments, the coordinator may
then start a timer set to expire after a selected timeout period,
and wait for a response to its Tx-prepare message. If no
response is received within the timeout period (as detected in
element 2023), in some embodiments a response may be
provided to the client that requested the file store operation of
element 2001 indicating that the result of the operation is
unknown (element 2035). In at least one embodiment, a trans-
action state recovery operation may be initiated, e.g., by
sending another Tx-prepare message to the first node of the
chain if that node is still accessible, or to a replacement node
for that first node if one can be found or configured.

[0163] If, within the timeout period, a Tx-commit message
is received at the coordinator (as determined in element
2026), this may indicate that all the individual page modifi-
cations of the transaction have been successfully performed.
Accordingly, in some embodiments, the coordinator may
send an indication that the requested operation has succeeded
to the client that requested the operation (element 2029). In at
least one embodiment, Tx-cleanup messages may be sent to
the chain nodes, e.g., asynchronously with respect to the
receipt of the Tx-commit, so that any resources holding trans-
action state for the committed transaction at the node chain
members can be released. As discussed earlier, Tx-cleanup
messages may be sent either by the coordinator or by some
other selected chain member, such as the first member of the
chain.

US 2015/0278243 Al

[0164] Ifa Tx-abort message is received at the coordinator
(as also detected in element 2026), the coordinator may in
some embodiments optionally send an indication to the client
that the requested operation failed (element 2032). In some
embodiments, Tx-cleanup messages may also be sent to those
chain members who had participated in the aborted transac-
tion, either by the coordinator or some other member of the
chain. Since transactions may be aborted by any of the chain
members, only a subset of the members may have stored
transaction state records before the abort occurred, and hence
only a subset of the chain members may be sent Tx-cleanup
messages in some implementations. In other implementa-
tions, the Tx-cleanup messages may simply be sent to all the
nodes of the chain, and those nodes that had not stored any
transaction state for the transaction identified in the
Tx-cleanup message may ignore the Tx-cleanup message.

[0165] FIG. 21 is a flow diagram illustrating aspects of
operations that may be performed in response to receiving a
transaction-prepare (Tx-prepare) message at a node of a stor-
age service, according to at least some embodiments. A mem-
ber CM of the node chain constructed by the coordinator, e.g.,
a node storing a master replica of one of the extents whose
pages are to be modified as part of the transaction, may
receive a Tx-prepare message from some other node (e.g.,
typically either from the coordinator or from some non-de-
cider member of the chain) (element 2101). The Tx-prepare
message may indicate, in a list of proposed page modifica-
tions for the transaction, one or more proposed page-level
modifications to a page P whose parent extent’s master rep-
lica is stored at CM. CM may determine whether the changes
are acceptable/committable from its perspective, e.g., by
checking in a write log buffer (similar to the buffers shown in
FIG. 14) whether page P has been modified since a read
logical timestamp indicated for P in the Tx-prepare message
was obtained. In some cases multiple page level modifica-
tions, either to the same page or to different pages being
stored at CM, may be indicated in the Tx-prepare message,
and all such changes may be checked for acceptability.

[0166] If the local page-level modifications are commit-
table, as determined in element 2107, different actions may be
taken depending on whether CM is the decider (the last mem-
ber of the node chain) or not. If CM is the decider (as detected
in element 2110), the modifications to the local page or pages
may be initiated, and a transaction record indicating that the
transaction is in COMMITTED state may be stored in persis-
tent storage in the depicted embodiment (element 2113). The
decider node may then initiate the propagation of Tx-commit
messages to the other members of the node chain (element
2116). The Tx-commit messages may be propagated sequen-
tially in some embodiments, e.g., in the reverse order relative
to the sequential order in which the Tx-prepare messages
were transmitted for the same transaction. In other embodi-
ments, the Tx-commit messages may be sent in parallel.

[0167] If the local page-level modifications are commit-
table and CM is not the decider node (as also determined in
elements 2107 and 2110), in the depicted embodiment CM
may (a) store an intent record (indicating that if the remaining
node chain members also find their local changes commit-
table, CM intends to perform its local modifications), (b) lock
the targeted local pages of CM (e.g., to prevent any writes to
those pages until the distributed transaction as a whole is
committed/aborted), and (c) store a transaction state record
indicating that the transaction is in PREPARED state (ele-

Oct. 1, 2015

ment 2119). CM may then send a Tx-prepare message on to
the next node in the chain (element 2122).

[0168] If the local page-level modifications are not com-
mittable (as also detected in element 2107), e.g., if the page P
has been written to since the RLT for P indicated in the
Tx-prepare message was obtained, the transaction as a whole
may have to be aborted in order to support sequential consis-
tency semantics. Accordingly, CM (which may be a non-
decider node or a decider node) may store an indication that
the transaction has been aborted (element 2125). In some
implementations, a transaction state record indicating the
transaction is in ABORTED state may be stored. In other
implementations, a dummy or “no-op” write record may be
stored in a local write log buffer (similar to buffers 1450 of
FIG. 14). Such a dummy write would have the same effect as
the state record indicating the ABORTED state. That is, if for
some reason (e.g., as a result of receiving an erroneous or
delayed message) an attempt is made to re-try the transaction
at CM, the retry would fail. CM may initiate a propagation of
a Tx-abort message to the other nodes in the chain that have
already sent Tx-prepare messages (if there are any such
nodes) and/or to the coordinator (element 2128).

[0169] FIG. 22 is a flow diagram illustrating aspects of
operations that may be performed in response to receiving a
transaction-commit (Tx-commit) message at a node of a stor-
age service, according to at least some embodiments. As
shown in element 2201, a node chain member CM, indicated
by the transaction coordinator in the Tx-prepare message for
the transaction, may receive a Tx-commit message. The Tx-
commit message may (at least under normal operating con-
ditions) typically be received at some time after CM has
performed its local page-level commit analysis and stored a
transaction record indicating the transaction is in a PRE-
PARED state. In response to receiving the Tx-commit mes-
sage, CM may initiate the actual modifications to the local
targeted pages (element 2104) and modify the transaction
state record to indicate that the transaction is now in COM-
MITTED state. In some embodiments, depending on the data
durability requirements of extent E, multiple extent replicas
may have to be modified before the local page writes can be
considered completed. In some such scenarios CM may wait,
after initiating the page modifications, until enough replicas
have been updated before changing the transaction record.

[0170] CM may then release the lock(s) it was holding on
the targeted page or pages (element 2207). In at least some
embodiments, the intent record that CM had stored when
responding to the Tx-prepare message for the transaction may
be deleted at this point (element 2210). As noted earlier, in
some embodiments, Tx-commit messages may be propa-
gated sequentially among the chain members in reverse order
relative to the Tx-prepare messages, while in other embodi-
ments, parallel propagation may be used, or some combina-
tion of sequential and parallel propagation may be used. If
sequential propagation is being used, or if CM can determine
(e.g., based on indications within the Tx-commit message
that it received) that some nodes of the chain have not yet
received a Tx-commit message, CM may then transmit a
Tx-commit message on to a selected node in the chain or to
the coordinator (element 2213). In some embodiments dupli-
cate Tx-commit messages may be ignored—e.g., if a given
node or the coordinator receives a Tx-commit message for
transaction Tx1 and Tx1 is already recorded as having been
committed, the new Tx-commit message may be disregarded.
In some such embodiments, a non-sequential propagation

US 2015/0278243 Al

mechanism may be used for Tx-commit messages to shorten
the total time taken to complete the transaction, in which, for
example, each node that receives a Tx-commit message may
forward Tx-commit messages to N other nodes of the chain.
[0171] FIG. 23 is a flow diagram illustrating aspects of
operations that may be performed in response to receiving a
transaction-abort (Tx-abort) message at a node of a storage
service, according to at least some embodiments. As shown in
element 2301, a Tx-abort message may be received at a chain
member CM. Just like a Tx-commit message, a Tx-abort
message may (at least under normal operating conditions)
typically be received at some time after CM has performed its
local page-level commit analysis and stored a transaction
record indicating the transaction is in a PREPARED state.
[0172] Inresponse to receiving the Tx-abort message, CM
may release the lock(s) it was holding on the targeted page or
pages (element 2304). In at least some embodiments, the
intent record that CM had stored when responding to the
Tx-prepare message for the transaction may be deleted at this
point (element 2307). As in the case of Tx-commit messages,
in different implementations, either sequential, parallel, or
hybrid (i.e. some combination of sequential and parallel)
propagation may be employed for Tx-abort messages. In
some embodiments, Tx-abort messages may be propagated
sequentially among the chain members in reverse order rela-
tive to the Tx-prepare messages, for example. If sequential
propagation is being used, or if CM can determine (e.g., based
on indications within the Tx-abort message that it received)
that some nodes of the chain that had earlier sent Tx-prepare
messages have not yet received a Tx-abort message, CM may
then transmit a Tx-abort message on to a selected node in the
chain or to the coordinator (element 2310). In some embodi-
ments, as with duplicate Tx-commit messages, duplicate Tx-
abort messages may be ignored—e.g., if a given node or the
coordinator receives a Tx-abort message for transaction Tx1
and Tx1 is already recorded as having been aborted, the new
Tx-abort message may be disregarded. In some such embodi-
ments, a non-sequential propagation mechanism may be used
for Tx-abort messages to shorten the total time taken to abort
the transaction, in which, for example, each node that receives
a Tx-abort message may forward Tx-abort messages to N
other nodes of the chain.
On-Demand Page Allocation an Extent
Oversubscription Model

[0173] In many storage systems, performance goals may
sometimes potentially conflict with space-efficiency goals.
For example, in general, keeping the amount of metadata
(such as structures that comprise logical-block-to-physical-
page mappings) relatively small relative to the amount of data
being managed may help to speed up various types of file
store operations. If metadata grows too large, the cache hit
rate atthe access nodes’ metadata caches may fall, which may
result in more interactions between the access and metadata
subsystems to service the same number of client requests.
Since at least some metadata may be maintained on a per-
logical-block basis, this would suggest that having large logi-
cal blocks (e.g., 4 megabyte or 16 megabyte logical blocks)
would be better from a performance perspective than having
small logical blocks. However, if physical pages for the entire
logical block were allocated at the time the first write to the
logical block is requested, this might result in suboptimal
space usage efficiency. For example, consider a scenario
where the logical block size is 4 MB (thus, a minimum of 4

Using

Oct. 1, 2015

MB of physical space would be allocated for any given file if
enough space for an entire logical block is allocated at a time),
and the median amount of data stored in a file within a given
directory or file system is, say, 32 KB. In such a scenario, a
large amount of physical storage space would be wasted. If
logical block sizes were set to close to the median file size,
however, this may result in very large amounts of metadata for
large files, thus potentially slowing down operations not just
directed to the large files but to the file storage service as a
whole.

[0174] A number oftechniques may beused to deal with the
tradeoffs between space efficiency and performance in differ-
ent embodiments. In one technique, an oversubscription
model may be used for extents, and physical pages within a
given logical block may only be allocated on demand rather
than all at once (i.e., ifalogical block size is set to X kilobytes,
and the first write to the logical block has a payload of only
(X-Y) kilobytes, only enough pages to store X-Y kilobytes
may be allocated in response to the first write). In another
technique, described after the discussion of the oversubscrip-
tion model, logical blocks of different sizes may be employed
within a given file store object, so that the sizes of at least
some of the stripes of the object may differ from the sizes of
other stripes. It is noted that while extents may be replicated
for data durability in various embodiments as described ear-
lier (including in embodiments at which extents are oversub-
scribed and/or variable logical blocks sizes are used), the
extent replication techniques may be considered orthogonal
to the logical-block-to-page mappings, and to extent oversub-
scription, as discussed here. Accordingly, extent replicas may
not be discussed in detail herein with respect to oversub-
scribed extents or with respect to variable-sized stripes. To
simplify the presentation, a logical extent may be assumed to
comprise a single physical extent with respect to most of the
discussion of extent oversubscription management tech-
niques and with respect to discussions of techniques used for
variable-sized stripes or variable-sized logical blocks.

[0175] FIG. 24 illustrates examples of over-subscribed
storage extents at a distributed storage service, according to at
least some embodiments. In the depicted embodiment, logi-
cal blocks of a given file store object (such as files 2400A,
2400B, or 2400C) are all of the same size, and all the physical
pages allocated for a given logical block are part of a single
extent. A physical page within a given extent may typically
also be of the same size as the other physical pages of the
extent in the depicted embodiment. Thus, in one example
implementation, an extent may comprise 16 Gigabytes of
32-KB physical pages, while a logical block may comprise 4
megabytes. The sizes of the extents, logical blocks and/or
physical pages may be set using respective configuration
parameters in at least some embodiments.

[0176] As shown, different logical blocks of the same file
may at least in some cases be mapped to different extents, and
as a result logical blocks may be considered the equivalent of
stripes. File 2400A comprises LB (logical block) 2402A and
2402B. LB 2402A is mapped on-demand to some number of
physical pages (PPs) 2410A of extent E2434A. Similarly
some number of physical pages 2410B at extent E2434B are
allocated on demand for LB 2402B. At extent E2434A, some
number of pages 2410A are allocated on demand for LB
2402L of file 2400B as well as LB 2402P of file 2400C. At
extent E2434B, some number of pages 2410B are allocated
on demand for LB 2420K of file 2400B and for LB 2402Q of
file 2400C. The on-demand allocation technique may be

US 2015/0278243 Al

implemented as follows in the depicted embodiment: when-
ever a write request directed to a particular logical block is
received, the starting offset within the file, and the size of the
write payload (e.g., the number of bytes to be written or
modified) may be used to determine whether any new physi-
cal pages are to be allocated, and if so, how many new physi-
cal pages need to be allocated. (Some write requests may not
need any new pages to be allocated, as they may be directed to
previously-allocated pages.) Only the number of new physi-
cal pages that are required to accommodate the write payload
may be allocated, instead of, for example, allocating at one
time the entire set of physical pages that could potentially be
written as part of the logical block. Consider the following
example: LB 2402A is 4 megabytes in size, and PPs 2410A
are 32 KB in size. A first write to LB 2402A, comprising 28
KB of write payload, is received. Prior to this point, no physi-
cal storage has been allocated for LB 2402A in the example
scenario. The storage service makes a determination that only
one PP 2410A is needed for the first write (since 28 KB can be
accommodated within a single 32-KB page). As a result, only
one PP 2410A is allocated within extent E2434A, even
though the entire 4 MB of LB 2402 A may eventually have to
be stored within extent E2434 A, since all the pages of a given
logical block have to be allocated from within the same extent
in the depicted embodiment.

[0177] Ingeneral, in at least some embodiments, it may not
be straightforward to predict what fraction of a logical block
is eventually going to be written to; some sparse files may
contain small regions of data at widely different logical oft-
sets, for example. In order to improve space usage efficiency
in the depicted embodiment, extents E2434A and E2434B
each may be oversubscribed. An extent may be considered to
be oversubscribed if it is configured to accept write requests
to more logical blocks than could be fully physically accom-
modated within its current size—e.g., if the complete offset
range within all the logical blocks were somehow to be writ-
ten to at the same time, the extent may have to be enlarged (or
a different extent may have to be used). Thus, as shown in
oversubscription parameters 2455A, N logical blocks may be
mapped to extent E2434A, and each logical block could be
mapped to a maximum of M physical pages of Y kilobytes
each. Extent E2434A’s current size is X Kilobytes, where X
is less than (N*M*Y). An oversubscription factor OF1
applies to extent E2434A in the depicted embodiment, equal
to the ratio of the potential overflow amount of storage
((N*M*Y)-X) to the actual size of the extent (X). Similar
oversubscription parameters 2455B apply to extent E2434B.
E2434B can currently store only up to Z kilobytes, but it is
configured to accept write requests directed to P logical
blocks, each of which can be mapped to Q physical pages of
R KB each. Z is less than (P*Q*R), and the oversubscription
factor OF2 for E2434B is therefore (P*Q*R)-Z)/Z. In some
embodiments, different extents may be configured with dif-
ferent oversubscription factors. In one embodiment, a uni-
form oversubscription factor may be used for all the extents.
As described below, in some embodiments the oversubscrip-
tion factor and/or a free space threshold associated with the
oversubscription factor may be modified for at least some
extents over time, e.g., based on collected metrics of file
system usage or behavior. Techniques similar to those
described herein for oversubscription management at the per-
extent level may also or instead be applied to oversubscription
at other levels in various embodiments—e.g., storage sub-

Oct. 1, 2015

system nodes may be oversubscribed based on the oversub-
scription of their extents, individual storage devices may be
oversubscribed, and so on.

[0178] FIG. 25 illustrates interactions among subsystems
of a distributed multi-tenant storage service implementing
on-demand physical page-level allocation and extent over-
subscription, according to at least some embodiments. As
shown, both metadata extents (such as E2534A) and data
extents (such as E2534B) may be oversubscribed in the
depicted embodiment. A first write request directed to a par-
ticular logical block (LLB) may be received at a metadata node
2522 from an access node 2512, as indicated by arrow 2501.
The write request may comprise a write payload of size
“WS”, and may, for example, have been generated at the
access node 2512 in response to a client’s write request
directed to a file 2400.

[0179] The metadata for the logical block itself may not
have been created at the time the write request 2501 is
received—e.g., the write may simply be the first write
directed to a file 2400 after the file is opened. In the depicted
embodiment, the metadata node 2522 may first generate and
write LB’s metadata. A request 2554 may be sent, for
example, to a storage node 2532A to store the LB’s metadata.
The storage node may allocate a page from an oversubscribed
metadata extent E2534 A, and store the metadata generated by
the metadata node 2522, as indicated by block 2558. The
particular metadata extent to be used may be selected by
either the metadata node 2522, the storage node 2532A, or by
a different placement component of the storage service in
different embodiments. The selection may be based, for
example, on various factors such as the name of the file being
modified, the amount of free space available in various
extents, and so on.

[0180] The metadata node 2522 may also determine how
many new physical data pages are to be allocated to store the
write payload of WS bytes in the depicted embodiment. A
request 2562 for the appropriate number of physical pages to
accommodate WS bytes may be sent to a different storage
node 2532B in at least some embodiments than is used for the
LB metadata. The storage node 2532B may allocate the
requested number of physical pages (which may in at least
some cases be less than the number of pages that would be
required if the entire address range of the logical block were
written at once) at an oversubscribed data extent 25348 in the
depicted embodiment. The identities of the physical pages
may be stored within the LB metadata stored at extent 2534 A
in the depicted embodiment—e.g., the storage node 2534B
may transmit the addresses of the data pages within extent
2534B to metadata node 2522, and metadata node 2522 may
submit a request to storage node 2532 A to write the addresses
within the LB metadata. In some embodiments, the data
pages may be allocated before the metadata pages are allo-
cated, so that for example the allocation of the metadata page
can be combined with the writing of the data page addresses
without requiring additional messages. In one embodiment,
the write payload may be transmitted to the storage node
2532B by the metadata node 2522 together with the alloca-
tion request 2562 for the data pages, in which case the writing
of the WS bytes may be combined with the allocation of the
data pages, without requiring additional messages. In at least
some embodiments, after the data page or pages have been
allocated for the first write request 2501, the identity of the
appropriate storage node (2532B) at which the data is to be

US 2015/0278243 Al

stored may be provided to the access node 2512, and the
access node 2512 may submit the write payload to the storage
node.

[0181] In atleast some embodiments, as mentioned earlier,
the use of the oversubscription model may result in situations
where a given extent may run short of sufficient storage space
for all the logical blocks whose contents it is designated to
store. Accordingly, in some embodiments, oversubscribed
extents may have to be expanded from time to time, or extent
contents may have to be moved or copied from their original
extent to a larger extent. In some embodiments, in order to
avoid synchronous delays that might otherwise result if
extent-level data copying or extent expansion is supported,
free space thresholds may be assigned to oversubscribed
extent. An asynchronous extent expansion operation, or asyn-
chronous transfer of extent contents, may be implemented in
such embodiments if the free-space threshold is violated.
Different extents may grow at different rates, depending on
the nature of the storage workload directed to them. A maxi-
mum extent size may be defined for at least some extents (e.g.,
based on the capacity of the particular storage devices being
used). As a result, when such a maximum extent size is
reached for a particular extent, the extent may no longer be
considered as oversubscribed, and the storage service may
employ different logic to deal with such maximally-sized
extents than the logic used for extents that can still grow. In
some embodiments, selected extents may be moved to a dif-
ferent storage node or a different storage device proactively in
order to make room for growth of other extents. Such proac-
tive moves may in some implementations be performed as
background tasks, so as to minimize disruption of ongoing
client-requested operations. A number of different rules, poli-
cies or heuristics may be used to select which extents are to be
moved proactively to make room for other extents in different
embodiments—e.g., in one embodiment, extents with most of
their capacity unused may be chosen for proactive moves in
preference to extents with most of their capacity already in
use. The opposite approach may be used in other embodi-
ments—e.g., extents that have already reached their maxi-
mum size (or are closer to reaching their maximum size) may
be moved in preference to those that still have substantial
growth possible. Similarly, the target storage devices or stor-
age nodes to which the extents are moved may also be
selected based on configurable policies in various embodi-
ments. In one embodiment, extents may only be moved when
absolutely necessary (e.g., proactive moves may not be
implemented).

[0182] FIG. 264 illustrates an extent for which a free space
threshold has been designated, while FIG. 265 illustrates an
expansion of the extent resulting from a violation of the free
space threshold, according to at least some embodiments. As
shown in FIG. 264, the free space threshold set for an over-
subscribed extent E2634A may be set such that a maximum
limit 2650 of M physical pages may be allocated within the
extent before expansion is triggered. As long as the number of
allocated pages K of extent 2634 A is less than M (i.e., the
number of unallocated pages L is above the free threshold
limit), new pages may be allocated on demand in response to
write requests as illustrated in FIG. 25. If/when the Mth page
is allocated, an asynchronous copying of the contents of the
original extent 2634 A to a larger or expanded extent 2634B
may be initiated, as indicated by arrow 2655 of FIG. 265. As
shown, the maximum allocation limit (N pages) of the
expanded extent 2634B may be larger than the allocation

Oct. 1, 2015

limit of M pages of the original extent 2634A. In some
embodiments, it may be possible to expand at least some
extents without copying the pages—e.g., if a given oversub-
scribed extent is located on a storage device with sufficient
space to accommodate a desired expansion, the size of the
extent may be increased within the storage device. In other
embodiments, the contents of the original extent may have to
be copied to a different storage device, potentially at a differ-
ent storage node. Thus, in one implementation, expanded
extent 26348 may occupy a different physical storage device
than the original extent 2634A. In at least some implementa-
tions, extents of several different sizes may be created at the
storage service—e.g., N1 extents of 10 GB may be created,
N2 extents of 20 GB may be created, and so on. In such
embodiments, expansion of an extent may involve copying
pages from a 10 GB extent to a pre-existing 20 GB extent, for
example. The term “extent expansion”, as used herein, is
intended to refer generally to any of these types of operations
that lead to the ability to store additional data or metadata
contents at an oversubscribed extent when its free space
threshold is violated—e.g., whether the operation involves
in-place enlargement of an extent or a transfer of extent con-
tents from one storage device to another. Thus, an extent may
in some embodiments be expanded by, in effect, replacing the
storage device being used for the extent with a different
storage device, either at the same storage node as the original
device or at a different storage node. In some embodiments, if
an extent identifier E1 was used to refer to the extent prior to
the expansion, and a different storage device is used post-
expansion, a different extent identifier E2 may be used post-
expansion. In other embodiments, the same identifier may be
used post-expansion.

[0183] FIG. 27 is a flow diagram illustrating aspects of
operations that may be performed to implement on-demand
physical page allocation at storage services that support
extent oversubscription, according to at least some embodi-
ments. As shown in element 2701, a plurality of physical
extents may be set up at a plurality of storage subsystem
nodes of a distributed multi-tenant file storage service. In
some embodiments, some number of extents of one or more
different sizes may be pre-configured at the time that the
storage service is started up at a set of resources of a provider
network, for example. In other embodiments, a set of extents
may be set up when a new file store (e.g., a file system) is
initialized. Each extent may comprise enough space for some
selected number of physical pages, with each page compris-
ing some number of bytes that can be used for storing contents
of'logical blocks of either data or metadata in some embodi-
ments. For example, in one embodiment, each of a set of
extents may comprise 8 Gigabytes of storage space on a
particular SSD or rotating-disk-based storage device, the
default logical block size being used objects whose contents
are to be stored at the extent may be 4 MB, and the physical
page size may be set to 32 KB. With this set of parameters,
each logical block may comprise up to 128 physical pages,
and each extent may store up to approximately 2000 fully-
populated logical blocks (blocks to which at least 4 MB of
data has actually been written, so that there are no unwritten
ranges of offsets within the logical blocks). In general, it may
be the case that not all the ranges of offsets within the logical
block may contain data (or metadata), since in at least some
file system protocols writes may be directed to random offsets
within a file or a metadata structure. The contents of a given
logical block may be contained within a given extent in the

US 2015/0278243 Al

depicted embodiment—e.g., all the physical pages to which
the logical block is mapped may have to be part of the same
extent.

[0184] Because of the potential for unwritten gaps in the
logical blocks, a set of oversubscription parameters may be
determined for at least some subset of extents (element 2704),
in accordance with which more logical blocks may be
assigned to a given extent than could be accommodated if the
blocks were to be fully populated. The parameters for a given
extent may indicate, for example, the oversubscription factor
(e.g., a measure of how much additional space could poten-
tially be required for the logical blocks mapped to the extent),
one or more thresholds (such as the free space threshold
discussed above) at which various actions such as extent
expansion are to be triggered, preferred storage devices or
extents to which the contents of the current extent should be
copied/moved if the thresholds are met, and so on.

[0185] Inresponseto a particular write request directed to a
logical block LB1 of a file store object, such as the first write
to a file orto a metadata structure, a particular extent E1 of the
available extents may be selected to store contents of the
logical block (element 2707). For example, E1 may be
capable of storing up to P1 pages in all (which could be part
of several different file store objects in a multi-tenant envi-
ronment), including up to M pages of LB1. In at least some
scenarios E1 may be oversubscribed at the time that it is
selected—e.g., the combined sizes of the logical blocks
mapped to it (at least some of which may not be fully popu-
lated with data or metadata) may exceed the current size of
E1l. E1 may be selected based on various criteria in different
embodiments, such as the fraction of its storage space that is
free, the type of storage device (SSD or rotating disk-based)
that is preferred for the file store object, etc. One or more
pages may be allocated within E1 for the first write, and the
payload of the first write request may be written thereto
(element 2710). While the combined size of the allocated
pages may be sufficient to accommodate the payload, the
combined size of the allocated pages may at least in some
cases be smaller than the size of the logical block LB1 (e.g.,
if the payload size is smaller than L.B1’s size). Under normal
operating conditions, in at least some embodiments E1 would
only have been selected for the first write if implementing the
write would not violate E1 ’s free space constraints.

[0186] A subsequent write request with a write payload of
size WS directed to E1 may be received (element 2713). The
subsequent write request may be directed either to LB1 or to
some other logical block mapped to E1. If allocating enough
physical pages to accommodate the write payload WS would
not violate the free space threshold set of E1 (as detected in
element 2716), the required number of physical pages may be
allocated, and the requested write may be performed (element
2719). If E1’s free space threshold would be violated (as also
detected in element 2716), in the depicted embodiment one
synchronous operation and one asynchronous operation may
be initiated. Synchronously with respect to the write request,
e.g., so as to avoid any lengthy delays in responding to the
write request, one or more additional pages would be allo-
cated within E1. Asynchronously, an extent expansion opera-
tion of the kind discussed above with respect to FIG. 265 may
be initiated. The extent expansion may involve, for example,
an in-place enlargement of E1 by changing E1-related meta-
data at its original storage device, or it may involve transfer-
ring at least some of E1’s contents to some other storage
device (and/or some other storage node) at which a larger

Oct. 1, 2015

extent may be configured. It is noted that in at least some
embodiments, E1 may be one extent replica (such as the
master replica) of a replica group configured in accordance
with a data durability policy associated with a file store of
which LB1 is a block and writes performed at E1 may be
propagated to one or more additional replicas in accordance
with the kinds of replication techniques (e.g., erasure coding,
full replication, etc.) discussed earlier. At least in some
embodiments in which extents are oversubscribed and pages
within a given block are allocated on-demand, the sizes of
pages within a given extent or logical block may differ, and/or
the sizes of logical blocks within a given file or metadata
structure may differ.

[0187] Dynamic on-demand page-level allocation of stor-
age may have the side effect of separating parts of the same
logical block—e.g., the pages allocated for a given logical
block may at least in some cases not be contiguous on the
storage device(s) beingused. In some embodiments, it may be
possible to monitor various characteristics of file store opera-
tions over time, and optimize the way in which extent over-
subscription is being implemented, including for example the
degree of oversubscription, as well as the manner in which
pages of a given logical block are laid out on a physical
storage device. FIG. 28 is a flow diagram illustrating aspects
of operations that may be performed to dynamically modify
extent oversubscription parameters, according to at least
some embodiments. As shown in element 2801, physical
pages may be allocated over a time period T1 for data and/or
metadata in accordance with an initial set of oversubscription
parameters set for some set of extents E1, E2, etc.

[0188] A number of different metrics may be collected
during T1 on the file store operations being performed using
the oversubscribed extents (element 2804). For example, file
access patterns may be analyzed, e.g., to determine the pro-
portions of reads and/or writes that are random versus sequen-
tial. Statistics on file sizes (e.g., on the mean or median file
size, and on how a file’s size tends to change over time), on
gaps within files (e.g., the extent to which logical blocks are
populated), and/or on response times and throughputs for
various types of operations may be collected. In some
embodiments and for certain types of operations, it may be
feasible to infer likely patterns of file access from the file
names—e.g., file used to store e-mails may be identifiable
based on file name extensions and may be expected to be
accessed in a particular way, files used for database logs or
web server logs may be identifiable by name and may have
characteristic access patterns, and so on. Such information
and metrics on storage use may be analyzed, e.g., at optimizer
components of the storage service in accordance with a
machine learning technique, to determine whether modifying
any of the oversubscription parameters may be advisable, or
whether the physical pages of some logical blocks should be
consolidated. If a determination is made that changing over-
subscription thresholds may improve space utilization levels
(element 2807), the threshold may be modified accordingly
(element 2810) and a new set of metrics with the modified
parameters may be collected. For example, in one embodi-
ment, oversubscription parameter settings for a file system
FS1 may initially be set conservatively—e.g., an oversub-
scription factor of only 10% may be set. Later, after storage
use metrics and address range gaps for objects within FS1 are
analyzed, the allowed oversubscription level may be
increased, say to 20%. If it is determined that file store per-
formance (e.g., for sequential reads/writes) may be improved

US 2015/0278243 Al

by rearranging the physical pages of some set of logical
blocks, contents of selected physical pages may be rearranged
(element 2813) (e.g., by allocating contiguous space to hold
the contents of a given block, and copying the contents of the
block from their original non-contiguous locations to the
contiguous locations). In at least some embodiments, such
rearrangements may typically be performed asynchronously
with respect to incoming I/O requests, so that the clients
issuing the read/write requests do not experience delays due
to the optimization operations. Other types of optimizations,
such as for example moving some extents to faster storage
devices (such as SSDs) or slower storage devices than the
ones currently being used, may also be initiated on the basis
of similar analysis in various embodiments.

Variable Stripe Sizes

[0189] In some embodiments, another approach may be
taken to the tradeoffs discussed above between metadata size
and storage space efficiency. In some embodiments employ-
ing this technique, extents need not be oversubscribed, and all
the storage that could potentially be required for a given
logical block may be acquired up front, e.g., at the time that
the first write is directed to the block. However, logical blocks
within a given storage object (which, as discussed above, may
represent the units of striping file data and/or metadata across
extents, storage devices or storage nodes) may not all be of the
same size. In some such embodiments, the logical block size,
and hence the amount of space allocated at a time, may be
increased as a function of the logical offset within the file.
Starting with a relatively small amount of storage space being
allocated for the first block, more and more space may be
allocated for subsequent blocks; thus, both it may be possible
to implement both small files and large files without creating
anamount of metadata that increases linearly with object size.
[0190] FIG. 29 illustrates examples of file store objects
whose contents are stored using variable stripe sizes, accord-
ing to at least some embodiments. Recall that, as discussed
with reference to FIG. 4, different logical blocks of a file store
object may typically (although not necessarily) be mapped to
different extents at different storage devices at respective
storage nodes, and that logical blocks may therefore be con-
sidered equivalent to stripes. A file 2900 is selected as an
example of a storage object, although various metadata struc-
tures may also be implemented using variable stripe sizes in
various embodiments. File 2900 is shown as comprising four
stripes or logical blocks LB 2902A, 2902B, 2902C and
2902D. At least some of the logical blocks 2902 may differ in
size from at least some of the others, although some subset of
the logical blocks may be of the same size.

[0191] Two types of extents are shown in FIG. 29—extents
with fixed-size pages and extents with variable-sizes pages.
Extent 2934A comprises physical pages 2910, each of which
is S1 KB insize. Extent 2934B’s pages 2910B are ecach S2 KB
in size, while each of extent 2934C’s pages is S3 KB in size.
S1, S2 and S3 may differ from each other in the depicted
embodiment, e.g., S1 may be smaller than S2, and S2 may be
smaller than S3. As mentioned earlier, at least for extents with
fixed page size, physical pages may represent the smallest
units of I/O that are supported in some embodiments. Thus, it
may be possible to support smaller reads and writes at extent
2934A than at 2934B or 2934C in the depicted embodiment.
Extent 2934D supports variable-size pages—i.e., an arbitrary
amount of physical space (with some specified minimum and
maximum) may be allocated at a time within extent 2934D. In

Oct. 1, 2015

contrast, within extents 2934A,2934B and 2934C, space may
be allocated in multiples of their respective page sizes. In at
least some embodiments, only a discrete set of page sizes, or
a single page size, may be supported.

[0192] Inresponse to the first write directed to an LB 2902,
physical storage space for the entire stripe (which may be
more than the physical space required for the write payload of
the first write) may be allocated from a selected extent in at
least some embodiments. Thus, for example, one or more
pages 2910 A of extent 2934 A may be used for LB 2902A, and
one or more pages 2910B of extent 2934B may be used for LB
2902B. Similarly, for LB 2902C, one or more pages 2910C
may be allocated from extent 2934C, and one or more pages
from extent 2934D may be allocated for LB 2902D. In some
embodiments, any given logical block or stripe may be
mapped to one contiguous region of physical storage space,
while in other embodiments, the physical space allocated for
a given logical block may be non-contiguous within the stor-
age device address space in at least some cases. If relatively
small stripe sizes are used, for example, for the first few
stripes of a file, even small files may be striped across multiple
extents, thus obtaining performance benefits of striping
which may otherwise not have been achieved had a single
large stripe size been used.

[0193] In general, in the depicted embodiment, when a
write request with a specified offset and write payload size is
received, a decision may be made (based on the offset and
payload size) as to whether the write requires additional stor-
age space to be allocated. Such a decision may be made in at
least some embodiments at a metadata node of the storage
service. If space does need to be allocated, the amount of
(typically, but not necessarily) contiguous physical storage
space to be allocated for the payload may be determined. In at
least some embodiments, that amount of space allocated may
depend on the write offset. (Examples of stripe sizing patterns
over the course of a file’s existence, and of some of the kinds
of'factors that may be taken into account when deciding stripe
sizes, are discussed in greater detail below.) One or more
storage nodes may be identified that have extents that can be
used to allocate the desired amount of space. For example, if
space for a one-kilobyte stripe is to be allocated, the storage
service may attempt to identify extents that have 1 KB pages
and have enough free space to accommodate the write of the
stripe. It is noted that the minimum page size at a selected
extent need not be equal to the stripe or logical block size—
for example, the stripe size may be 3 KB, but an extent that
supports 4 KB pages may be used, or another extent that
supports 2 KB pages or 1 KB pages may be used. After
physical storage for the desired stripe size is obtained, the
modifications indicated in the write payload may be initiated.
In some embodiments in which extents are replicated, for
example, the modifications may be coordinated from the stor-
age node at which the master replica is stored, and may be
propagated to the non-master replicas from or by the master
node.

[0194] In some embodiments, stripe sizes within a given
file or metadata structure may change as a function of offsetin
a predictable fashion. FIG. 30 illustrates examples of stripe
sizing sequences that may be used for file store objects,
according to at least some embodiments. In stripe size
sequence 3010A, the sizes of the first nine logical blocks of a
file store object may be set, respectively, to 1 KB, 1 KB, 2 KB,
2 KB, 4 KB, 4 KB, 8 KB, 16 KB, and 32 KB, for example.
Such a pattern may be used, for example, for files or metadata

US 2015/0278243 Al

structures that are expected to be small, or for files or struc-
tures that are expected to grow relatively slowly. For other
files, to which for example a large number of sequential writes
are expected with some high probability, a different stripe size
sequence 3010B may be used, in which the sizes of the first
four blocks are set to 1 MB, 4 MB, 16 MB and 64 MB
respectively. Thus, even in implementations in which a dis-
crete set of stripe sizes is implemented, a stripe size used for
one file F1 may differ from any of the stripe sizes used for a
different file F2. In some embodiments, at least some of the
stripe size sequences 3010 to be used may be specified as
configuration parameters of the storage subsystem. In some
cases, as a file grows, it may be useful (for both metadata
performance and for data access performance) to consolidate
smaller stripes into larger stripes.

[0195] FIG. 31 illustrates examples of factors that may be
taken into consideration at a metadata subsystem to make
stripe sizing decisions 3170 and/or consolidation decisions
3172 for file store objects, according to at least some embodi-
ments. In the depicted embodiment, a metadata subsystem
node 122 may be responsible for determining stripe/logical
block sizes for various file store objects, including files and
metadata structures, and for determining if and when physical
pages and/or logical blocks should be combined or consoli-
dated. When determining the stripe size to be used for the next
portion of a file store object for which space is to be allocated,
the metadata node 112 may consider the current size 3101 of
the object and the write request payload size 3103. In one
implementation, for example, the size of the first stripe allo-
cated for a file store object may be based on the write payload
of'the first write directed to the object—e.g., if the payload of
the first write is 3.5 megabytes, a 4 megabyte stripe size may
be selected, while if the first write is less than or equal to 2
megabytes, a 2 megabyte stripe size may be selected. In some
embodiments, when a file or directory is created at the request
of a customer, hints 3105 may be provided to the storage
service, indicating for example whether the object is going to
be used primarily for sequential writes and reads, random
writes and reads, or some mix of sequential and random
access, and such hints may be used to select stripe/logical
block sizes. Metrics 3110 of file system performance, such as
the average response times achieved for writes and/or reads of
different sizes, may also influence the selection of logical
block size in some embodiments, and/or the scheduling of
consolidation operations in which contents of earlier-created
stripes are combined into larger stripes.

[0196] Insome scenarios, as discussed earlier, the name (or
part of the name, such as a file extension) of a file or directory
may provide some guidance on the manner in which contents
of the file or directory are expected to grow or be accessed.
For example, some applications such as e-mail servers, web
servers, database management systems, application servers,
and the like use well-known file extensions and/or directory
hierarchies for various parts of their functionality, and it may
be possible for an optimizer component of the metadata node
112 to select stripe sizes more intelligently based such file/
directory names 3115. In at least one embodiment, the meta-
data node 112 may determine the access patterns (e.g., ran-
dom versus sequential, percent read versus percent write, read
size distributions, write size distributions) and choose stripe
sizes accordingly. Measurements 3125 of object lifetime
(e.g., how much time, on average, elapses between a file’s
creation and deletion at a given file store) may be helpful in
making stripe size decisions in some embodiments—for

Oct. 1, 2015

example, if most files within a given directory are expected to
be deleted within X hours after creation, the decisions regard-
ing their stripe sizes may not have much long-term impact. In
some embodiments, extent space utilization metrics 3130
and/or storage node resource utilization metrics 3135 (such as
CPU, memory, or network utilization levels of the storage
nodes being used) may also play a role in determining stripe
sizes. In one embodiment, small stripes of a given file or
metadata structure may be combined into larger stripes based
on one or more triggering criteria, e.g., if/when the file or
structure grows beyond a threshold size or if/when frequent
sequential accesses to the file are detected. Depending on the
characteristics of the extents being used (e.g., on the particu-
lar page sizes supported at different extents), such combina-
tion operations may involve moving or copying data/meta-
data from one storage device to another or from one extent to
another. In at least some embodiments, a machine learning
technique may be employed to improve the stripe sizing and/
or consolidation decisions being made at the storage service
over time. As part of such a machine learning approach, the
relative impact of the various factors illustrated in FIG. 31 on
overall file store performance and/or cost may be analyzed.

[0197] FIG. 32 is a flow diagram illustrating aspects of
operations that may be performed to implement striping using
variable stripe sizes, according to at least some embodiments.
A write request indicating a write offset within a file store
object, and a write payload, may be received or generated
(element 3201), e.g., at a metadata node 112 of a distributed
multi-tenant storage service. In some cases, the write request
could be generated at an access node 122 in response to a
customer-issued file system API call such as a file write, while
in other cases the metadata node may itself decide that some
new metadata is to be stored, or that existing metadata is to be
modified. Based on analysis of the write offset, the write
payload, and existing metadata (if any) of the targeted object,
a determination may be made that additional storage is to be
allocated to implement the write (element 3204). (As men-
tioned earlier, some writes that consist entirely of modifica-
tions of pre-written content may not require additional stor-
age.)

[0198] The size of the next new stripe or logical block ofthe
file store object may be determined (element 3207), e.g.,
based on an offset-based stripe sizing sequence in use for the
file store object (similar to the sequences shown in FIG. 30)
and/or on some combination of the factors shown in FIG. 31,
such as the size of the object, the detected access patterns, etc.
The particular extent, storage node and/or storage device to be
used to store at least one replica of a stripe of the selected size
may then be identified (element 3210). As discussed in the
context of FIG. 29, in at least some embodiments, a given
extent may be configured to use a particular physical page
size, and as a result not all extents may be suitable for allo-
cating space for a given logical block size; accordingly, the
extent may be selected based on the sizes of’its pages. In some
scenarios, only a discrete set of logical block sizes that map to
a discrete set of physical page sizes of the supported extents
may be permitted. Extents that are configured to support
variable page sizes (such as extent 2911 of FIG. 29) may be
available in some embodiments, and such extents may be
selected for allocating space for logical blocks/stripes of a
variety of sizes. In some embodiments, a plurality of storage
nodes (e.g., distributed among several availability containers

US 2015/0278243 Al

or data centers) may be identified for a replica group of
extents when space for a new logical block or stripe is allo-
cated.

[0199] An allocation request for the desired amount of
physical storage space may be sent to at least one selected
storage node (element 3213). The storage node may allocate
the requested physical storage, e.g., enough pages to store
contents of the stripe if the stripe were fully populated (ele-
ment 3216). The modification indicated in the write request
may then be initiated or performed (element 3219). Depend-
ing on the data durability policy associated with the file store
object, the write payload may have to be propagated to several
different replicas before the write can be considered com-
plete. It is noted that at least in some embodiments, on-
demand page allocation and/or oversubscribed extents may
be used in combination with variable stripe sizing of the kind
described above.

Offset-Based Congestion Control Techniques

[0200] Customer workloads that access small portions of a
data set with high concurrency can cause hot spots in a dis-
tributed file storage service. For example, if a customer
requests multiple sequential reads of a file using multiple
threads of execution at about the same time, all the threads
may end up accessing a single stripe or logical block near the
beginning of the file first. Furthermore, depending on the
relative sizes of the logical block and the read payload (the
amount of data being requested in each read request from the
customer), multiple read requests may be directed to a single
stripe from each thread. In such a scenario, when many clients
request multiple reads from the same logical block at about
the same time, congestion control techniques may be imple-
mented within the address range of the logical block to pre-
vent poor overall throughput and/or poor response times for
individual threads. In some embodiments, such congestion
control techniques may associate offset-based priorities with
1/0O requests, in which for example the scheduling priority
given to a read request may increase with the read offset
within the logical block.

[0201] To motivate the discussion of offset-dependent con-
gestion control techniques, an illustration of a potentially
problematic scenario that could result from un-prioritized
read request scheduling may be helpful. FIG. 33 illustrates an
example timeline of the progress made by multiple concur-
rent read requests directed to a logical block of a storage
service object in a scheduling environment in which all the
read requests to the logical block are granted equal priority
relative to one another, according to at least some embodi-
ments. Extreme values have been chosen for various param-
eters of the example in order to more clearly illustrate the
potential problems; the selected parameters are not intended
as representative of common usage scenarios.

[0202] Elapsed time increases from left to right in FIG. 33.
At approximately time TO, 100 client threads each start a
sequential read of a logical block 3302 whose contents (e.g.,
either data or metadata) are stored at two physical pages PP1
and PP2 of an extent E3334. Logical block 3302 may, for
example, represent the first logical block of a file which also
includes other logical blocks (not shown). Assume that the
contents of LB 3302 are read a page at a time, e.g., to read the
entire logical block, a given client has to first read PP1 and
then read PP2. The extent E3334 can handle up to 25 page
1/Os per second, as indicated by extent capacity 3302. This
capacity limit may be assumed to be enforced in the example

Oct. 1, 2015

scenario illustrated by ensuring that no more than 25 page
reads are allowed to start during a given second of time. As
indicated by /O prioritization policy 3301, all the read
requests are treated as having equal priority (which has the
same effect as not using prioritization). Given these param-
eters, consider the state of the client requests at the following
times along the timeline: TO, TO+1 second, TO+2 seconds,
T0+3 seconds, and TO+4 seconds.

[0203] At approximately TO, 100 requests are waiting to
start reading page PP1. Due to the extent capacity constraints,
only 25 are allowed to start (and finish) reading PP1 between
TO0 and TO+1. Accordingly, at TO+1, 75 clients are yet to read
PP1, while 25 clients have completed reading PP1. However,
because all requests are treated with equal priority, it may
well be the case that the 25 clients that have completed read-
ing PP1 may not be able to proceed to page PP2 until the
remaining 75 clients have read PP1. Thus, the 25 clients that
are indicated by the darker rounded rectangle at TO+1 may
wait for the other 75 to complete reading PP1. At time T0+2,
25 more clients may have completed reading PP1, but they
too may have to wait, until the remaining 50 clients read PP1.
Attime T0+3, 25 clients may have yet to read PP1, and the 75
that have read PPO may be forced to wait for them. Only at
TO+4, when all 100 clients have read the first page, are any of
the clients allowed to proceed to page PP2 in the example
scenario in which equal priorities are assigned to all the read
requests directed at the pages of LB 3302.

[0204] In at least some embodiments it may be possible to
improve overall performance achieved for the sequential
reads by assigning higher priorities (or, equivalently, lower
costs) to those clients that have made more progress. FIG. 34
illustrates an example timeline of the progress made by mul-
tiple concurrent read requests directed to a logical block of'a
storage service object in a scheduling environment in which
an offset-based congestion control policy is used, according
to at least some embodiments. Logical block 3302 once again
comprises two pages PP1 and PP2 at an extent E3334 with a
capacity of 25 page I/Os per second. In the depicted embodi-
ment, LB 3302 has an offset-based 1/O prioritization policy
3401 to implement congestion control. In accordance with the
policy, read requests that are directed to higher offsets within
LB 3302 are given higher priority than read requests directed
to lower offsets.

[0205] At approximately TO, 100 clients begin their
sequential read operations. At TO+1, 25 clients have com-
pleted reading page PP1, and these 25 clients are now request-
ing reads at a higher offset than the remaining 75. According
to the offset-based prioritization policy, the 25 clients who
have finished reading PP1 are granted higher priority than the
remaining 75 at time TO0+1. Thus, those 25 clients now begin
reading page PP2, while the 75 others wait. At time T0+2, the
25 clients have finished reading all of LB 3302, and can
proceed on to the next logical block (if any) of the file or
metadata structure being read sequentially. Since the next
logical block would (with a high probability) be stored at a
different storage device, this means that starting from T0+2,
the workload of the 100 clients would begin to be distributed
across two storage devices, instead of still being directed to
the same extent as in the case where equal priorities were
being used. At TO+3, 25 more clients have finished reading
PP1, and are granted higher priority than the remaining 50
clients that are yet to read PP1. At TO+4, 25 more clients have
finished reading both pages, and can proceed to the next
logical block. Meanwhile, 50 clients have yet to read page

US 2015/0278243 Al

PP1 at TO+4 in FIG. 34 (which, from the perspective of those
50 clients, is a worse outcome than could have been achieved
if equal priorities were being used for all clients as shown in
FIG. 33, where all 100 clients finish reading page PP1 at
TO0+4). Thus, some client requests may be treated somewhat
“unfairly” with respect to others in the scheme illustrated in
FIG. 34. As another illustration of the unfairness, consider a
scenario in which 1/O requests R1 and R2 are received at
times Tk and (Tk+delta) from clients C1 and C2 respectively,
where R1 is directed to an offset O1 within a logical block, R2
is directed to offset O2 within the logical block, and O2 is
greater than O1. Even though R2 is received after R1, R2 may
be assigned a higher priority based on its higher offset, and
hence may be scheduled and/or completed earlier than R1
under the scheme of FIG. 34. In some cases, if R2 is part of a
sequential pattern of reads, for example, the entire set of
sequential reads may complete as a result of offset-based
prioritization before R1 is scheduled. Despite this “unfair-
ness”, however, the scheme of FIG. 34 would in general tend
to lead more quickly to /O workload parallelism, as the
sequential reads of various sets of clients would tend to get
distributed sooner among different storage devices than if
equal priorities are used for all requests regardless of offset. In
scenarios in which the file store object being accessed com-
prises a plurality of stripes at different store devices (which is
expected to be the case for most file store objects), such
spreading of the workload more evenly across storage devices
using offset-based prioritization may help improve overall
average completion times and overall throughput for the
sequential operations. From the perspective of the compo-
nents of a multi-tenant storage service supporting hundreds or
thousands of clients concurrently, it may not always be
straightforward (or efficient) to keep track of whether a par-
ticular page read request is a random read or is part of a
sequential read sequence, and as a result in some embodi-
ments the offset-based prioritization may be used for page-
level reads in general, regardless of whether the read is part of
alarger sequential scan or not. At least in some embodiments,
offset-based prioritization within logical blocks may be used
for any combination of the following types of operations on
data and/or metadata: sequential reads, sequential writes, ran-
dom reads, or random writes.

[0206] A number of different offset-based congestion con-
trol techniques based on similar principles as those illustrated
in FIG. 34 may be employed in different embodiments. FIG.
35a illustrates an example of a token-based congestion con-
trol mechanism that may be used for scheduling I/O requests
at a storage service, while FIG. 3554 illustrates examples of
offset-based token cost policies that may be employed,
according to at least some embodiments. Generally speaking,
token-based mechanisms may be used for workload manage-
ment of various types of entities, such as storage objects,
database tables, database partitions, and the like. In the con-
text of a distributed file storage service, such buckets may be
maintained for logical blocks of files, for logical blocks of
metadata structures, for entire files, and/or for entire metadata
structures in various embodiments. A mechanism that uses a
single bucket 3508 of tokens 3501 is illustrated in FIG. 35a
for simplicity of presentation; however, combinations of mul-
tiple buckets may be used in some embodiments, such as one
bucket for read operations and a different bucket for write
operations. According to the mechanism, a bucket 3508 (e.g.,
a logical container which may be implemented as a data
structure within a software congestion control module in at

Oct. 1, 2015

least some embodiments) set up for congestion control pur-
poses associated with a particular work target such as a logi-
cal block of a file may be populated with an initial set of
tokens 3501 during bucket initialization, as indicated via
arrow 3504 A. The initial population may be determined, e.g.,
based on expectations of the concurrent workload level, a
provisioned operation limit associated with the work target,
or some combination of such factors in various embodiments.
For some types of buckets the initial population may be set to
zero in some embodiments. In some implementations the
initial population of a bucket may be set to a maximum
population for which the bucket is configured.

[0207] Whenanew I/O request 3522 (such as a read request
or a write request) is received, e.g., at a congestion control
subcomponent of a storage node 132, the congestion control-
ler may attempt to determine whether some number N of
tokens (where N may be greater than or equal to 1, depending
on implementation or on configuration parameters) are
present in the bucket 3508 in the depicted embodiment. If that
number of tokens is available in the bucket, the I/O request
3522 may be accepted for execution immediately, and the
tokens may be consumed or removed from the bucket (arrow
3506). Otherwise, if N tokens are not present, the execution of
the requested storage operation may be deferred until suffi-
cient tokens become available in the depicted embodiment.
The number of tokens used up for a given I/O request may be
referred to as the “cost” of accepting the I/O request.

[0208] As shown by the arrow labeled 3504B, the bucket
3508 may be refilled or repopulated over time, e.g., based on
configuration parameters such as a refill rate associated with
the bucket. In some implementations, token refill operations
may accompany, or be performed in close time proximity to,
consumption operations—e.g., within a single software rou-
tine, N tokens may be consumed for admitting a request, and
M tokens may be added based on the refill rate and the time
elapsed since the bucket was last refilled. Refill rates or token
counts of a given bucket may be modified in some implemen-
tations, e.g., to allow higher work request rates to be handled,
typically for short time intervals. Limits may be placed on the
maximum number of tokens a bucket may hold in some
embodiments, and/or on the minimum number oftokens, e.g.,
using configuration parameters. Using various combinations
of configuration parameter settings, fairly sophisticated
admission control schemes may be implemented using token
buckets in different embodiments. In particular, as described
below, by requiring different token costs for [/O requests
directed to different offsets, offset-based prioritization simi-
lar to the example of FIG. 34 may be implemented.

[0209] Inone simple example scenario, to support a steady
load of 25 I/O requests per second (IOPS) of equal priority at
a logical block LB1, bucket 3508 may be configured with an
initial population of 25 tokens, a maximum allowable popu-
lation of 25 tokens and a minimum of zero tokens. The cost
per I/O may be set to 1 token, the refill rate may be set to 25
tokens per second, and one token may be added for refill
purposes (assuming the maximum population limit is not
exceeded) once every 40 milliseconds. As I/O requests 3522
arrive, one token may be consumed for each request. If a
steady state workload at 25 IOPS, uniformly distributed dur-
ing each second, is applied, the refill rate and the workload
arrival rate may balance each other. Such a steady-state work-
load may be sustained indefinitely in some embodiments,
given the bucket parameters listed above. However, if more

US 2015/0278243 Al

than 25 I/O requests are received during a given second, some
requests may have to wait, and the kind of scenario illustrated
in FIG. 33 may result.

[0210] Instead of setting the cost to 1 token per I/O request,
regardless of offset, in one embodiment more tokens may be
required for I/O requests directed towards smaller offsets than
are required for /O requests directed towards higher offsets
in the file. An example of such a token cost policy 3576 is
shown in FIG. 35b. According to policy 3575, 10 tokens are
required for each [/O directed to an offset between 0 and 64
KB within a logical block, 5 tokens are required for an /O
directed to an offset between 64 KB and 256 KB, and 1 token
is required for each /O directed to an offset greater than 256
KB. Since more tokens are required for lower offsets, I/Os
directed to lower offsets may be more likely to be blocked or
delayed for a given token bucket population and refill rate,
while I/Os directed towards higher offsets may in general be
scheduled more quickly. Various different mathematical
functions or mappings may be selected (e.g., based on heu-
ristics, machine learning components of the storage system,
or configuration settings chosen by an administrator) to com-
pute costs from offsets in different embodiments. In some
embodiments, a linear offset-based token cost policy 3561
may be used, while in other embodiments non-linear cost
policies such as 3562 may be used. The cost policies, refill
rates and other congestion control parameters being used for
various logical blocks, files, or metadata structures may be
modified over time, e.g., in response to the analysis of per-
formance metrics obtained from the storage service. Different
parameters may be used for different logical blocks within a
given file store object in some embodiments, and/or different
parameters may be selected for different file store objects. In
at least some embodiments, a similar offset-based congestion
control technique may be applied at the file store object level
instead of, or in addition to, at the logical block level—e.g., a
higher priority may be assigned to I/Os directed to an offset X
within a file than is assigned to I/Os directed to an offset Y,
where Y is less than X. Instead of using token-based tech-
niques, in some implementations, other variable cost assign-
ment techniques may be used in some embodiments to assign
different priorities to 1/O requests directed within a logical
block or within a storage object. For example, in one embodi-
ment, a numerical cost may simply be assigned to each I/O
request, and outstanding I/O requests may be handled in
inverse order of assigned cost.

[0211] In at least one embodiment, respective queues may
be set up for I/O requests directed to different offset ranges
within a logical block or file store object. Each such queue
may have an associated delay interval before any one of its
queued I/O requests is serviced, with larger delays assigned to
lower-offset /O requests. FIG. 36 illustrates an example of
the use of offset-based delays for congestion control at a
storage service, according to at least some embodiments. In
the depicted embodiment, four queues 3602A,3602B,3602C
and 3602D are shown, each designated for /O requests (indi-
cated by labels beginning with “R”, such as request R3631)
within a particular offset range of a logical block. Queue
3602A is used for /O requests to offsets (e.g., in bytes)
between 0 and P-1; queue 3602B is used for 1/O requests to
offsets between P and 2P-1; queue 3602C is used for 1/O
requests with offsets between 2P and 4P-1, and queue 3602D
is used for I/O requests with offsets higher than 4P. Each
queue 3602 has an associated minimum delay, indicating the
minimum time that must elapse between the implementation

Oct. 1, 2015

of'any two queued I/O requests of that queue. The minimum
delays for queues 3602A, 3602B, 3602C and 3602D are
shown as 4d, 2d, d, and O respectively. Consider an example
scenario in which d is set to one second, the population of the
various queues at time T is as shown, and no new requests
arrive for at least a few seconds. Since requests of queue
3602D have a minimum delay of zero seconds, request R3634
may be scheduled first, followed by R3638. Then, requests
within queue 3602C may be scheduled, with a delay of one
second between the completion of each request and the com-
mencement of the next. Requests of queue 3602B may then
be scheduled at two-second intervals, followed by requests of
queue 3602 A with four seconds of delay between each pair of
requests. In the depicted embodiment, the minimum delays
may add to the queuing delay of an I/O request. For example,
a particular request R1 may have to wait K seconds in its
queue simply because there are other requests in the same
offsetrange that arrived before R1, and then, when R1 reaches
the front of the queue, R1 may still have to wait for the
minimum delay associated with its queue. The delays
between scheduling requests may in general allow higher-
offset (and hence higher-priority) requests that arrive during
those delays to be serviced more quickly in the depicted
embodiment. A number of variations of the straightforward
offset-based queuing technique may be used for congestion
control in different embodiments—e.g., in one embodiment,
the delay associated a given queue 3602 may depend on the
number of higher-priority requests that are waiting for ser-
vice. In one implementation, a delay to be used for a given I/O
request may be computed simply by multiplying its offset by
a constant.

[0212] Insome embodiments, error messages may be used
as a mechanism for implementing offset-based prioritization.
If a particular /O request R1 is directed to alower offset some
other request or requests, instead of placing R1 in a queue or
requiring more tokens to be used for R1, an error message
may be returned to the client that submitted R1. The client
may then retry the /O (assuming the I/O is still considered
necessary by the client). The delay resulting from the retry
may be considered analogous to the insertion of the request in
an offset-based queue as described above.

[0213] Inatleastsomeembodiments, the storage devices at
which the logical blocks are stored may have to reach a
threshold workload level before the prioritization policy is
enforced. For example, in FIG. 35, the extent E3334 has a
defined or baseline capacity of 25 page 1/Os per second, and
as a result the prioritization policy may only be applied when
the workload exceeds (or at least approaches) the capacity in
the depicted embodiment. The threshold that triggers the
prioritization may itself be a modifiable parameter in at least
some embodiments. For example, in various embodiments,
distinct thresholds may be applied to different extents, to
different storage nodes, to different physical storage devices,
or to different logical blocks within the same extent. Such
thresholds may be dynamically modified based on various
factors. In one implementation, the threshold could be
changed based at least in part on an overall workload level
(e.g., as computed based on a statistical analysis of measure-
ments obtained over some time period) of the extent, the
storage device or storage node at which the extent is located,
or even the particular logical block to which the threshold is
applied. Other factors that could be used to adjust the thresh-
olds may include, for example, the identity of the client(s) that
submit I/O requests to a logical block or the clients on whose

US 2015/0278243 Al

behalf the storage service object containing the logical block
was created (e.g., some clients may be considered more
important than others and may thus have higher thresholds
assigned), the time of day (e.g., the threshold may be
increased during typically low-usage periods such as between
11 PM and 6 PM), or the names of the file systems, directo-
ries, files, volumes or other storage objects implemented
using the extent.

[0214] In some embodiments, an element of randomness
may be added to the congestion control technique—e.g.,
instead of implementing fixed delays for each offset range, a
delay that includes a random component (obtained using
some selected random number generator) may be used. In
token-based congestion control schemes, a random number
of tokens may be added to the requirement for an /O request
to a given offset range. Such randomization may in some
cases help to smooth out the workload distribution, and may
help to reduce the probability of undesirable edge cases in
which, for example, storage devices may end up being
underutilized.

[0215] In at least some embodiments, different congestion
control policies may be used for different categories of stor-
age operations. FIG. 37 illustrates examples of congestion
control policies that may be dependent on the type of storage
object being accessed and various characteristics of the
requested accesses, according to at least some embodiments.
As shown in table 3780, congestion control parameter set-
tings 3710 may vary based on the content type 3702 (e.g.,
metadata versus data), whether a request is a read or a write
(IO type column 3704), and/or on whether the request is part
of a sequential or random sequence (access pattern column
3706). Different congestion control settings may also or
instead be used based on I/O payload size (column 3708)
(e.g., how many bytes of data/metadata are being read or
written) and/or on the current size of the targeted object
(column 3710).

[0216] For sequential reads of metadata structures, where
the individual read payload sizes are less than 4 KB and the
metadata structure is smaller than S1 MB, linear offset-based
prioritization may be used for congestion control in the
depicted embodiment. Random metadata write operations of
any size are to be treated as having equal priorities. Sequential
data reads with payload sizes greater than 64 KB, directed at
files with size >128 MB, are to use offset-based priorities with
exponential decay as a function of offset. Various details
(such as the cost associated with each priority level, the offset
boundaries for different priorities, or the minimum delays
between requests) of the congestion control policies have
been omitted from FIG. 36 to simplify the presentation. It is
noted that other factors than those shown in FIG. 36 may be
used to assign congestion control parameters in different
embodiments, and that not all the factors shown in FIG. 36
need be considered in at least some embodiments. For
example, in some embodiments, congestion control tech-
niques may only be used for concurrent sequential reads.
[0217] FIG. 38 is a flow diagram illustrating aspects of
operations that may be performed to implement offset-based
congestion control for scheduling 1/O operations at a storage
service, according to at least some embodiments. As shown in
element 3801, an I/O request (a read or a write) directed to at
least aportion ofa logical block LB 1 ofa storage object (such
as a file or a metadata structure) being managed by a multi-
tenant file storage service may be received. In different
embodiments, offset-based congestion control decisions may

Oct. 1, 2015

be made at any of the various subsystems described above, or
by a combination of subsystems. In some embodiments con-
gestion control decisions for file reads/writes may be made at
access subsystem nodes, while the decisions for metadata
may be made at the metadata subsystem. In other embodi-
ments, congestion control decisions may be made at storage
subsystem nodes for both data and metadata. The offset
within the logical block LB1 at which one or more storage
operations are to be performed to fulfill the /O request may
be determined (element 3804).

[0218] Based at least in part on the offset, values of one or
more congestion control parameters (e.g., the cost value
assigned to the IO request, such as the number of tokens to be
consumed from a token bucket, or the delay before the execu-
tion of a storage operation) may be determined (element
3807). In at least some embodiments, the parameters selected
may favor, or give a higher priority to, requests at higher
offsets within the logical block L.B1 than to requests at lower
offsets. The storage operations corresponding to the 1/O
request may then be scheduled in accordance with the
selected congestion control parameters (element 3810). In at
least some embodiments and for certain types of /O requests,
a response may be provided to the requester (element 3813).
It is noted that the offset-based congestion control techniques
similar to those described herein may be used in a variety of
storage service environments in different embodiments,
including services that implement file system interfaces/pro-
tocols, services that implement a web services interface in
which the storage object is associated with a universal record
identifier (URI), or services that implement a block-level
device interface.

Consistent Object Renaming Techniques

[0219] At a distributed file storage service, object rename
operations—e.g., operations performed in response to cus-
tomer requests to change the name of a file or a directory—
may at least in some cases involve updates to metadata ele-
ments stored at more than one metadata node (or more than
one storage node, if the metadata subsystem stores its struc-
tures at the storage subsystem). Although the distributed
transaction technique described earlier may be used to imple-
ment such multi-node renames, in at least some embodiment
a different rename-specific mechanism may be used as
described below. FIG. 39 illustrates an example of the meta-
data changes that may have to be performed at a plurality of
metadata subsystem nodes of a file storage service to imple-
ment a rename operation, according to at least some embodi-
ments. By way of example, the metadata changes needed to
rename a file “A.txt” to “B.txt” are illustrated, although simi-
lar changes may be made for directory renames, link renames,
and the like. In the depicted embodiment, three metadata
subsystem nodes 3922A, 3922K and 3922P of the storage
service are shown. Various attributes 3912 of a particular file
store object initially named “A.txt”, including for example an
identification of the physical pages being used for the object
at one or more storage nodes, a user identifier and/or a group
identifier of the object’s owner, the current size of the object,
the last modification time, the access permissions or ACLs
(access control lists), a link count indicating how many hard
links point to the object, and so on, may be stored in a DFS
node entry structure labeled DFS-Inode 3910 at metadata
node 3922A. The DFS-Inode structure 3910 may be similar in
concept to the inode structures implemented in many tradi-

US 2015/0278243 Al

tional file systems, with some set of added or modified fea-
tures of the DFS-Inode resulting from the distributed nature
of the file storage service.

[0220] The name “A.txt” of the file store object (prior to the
implementation of the rename operation workflow) may be
stored in a different metadata structure called DFS-Directo-
ryEntry 3930, at a different metadata node 3922K in the
depicted embodiment. DFS-DirectoryEntry 3930 may
include a field 3934 for the object name and a pointer to the
DFS-Inode 3910 that stores the attributes of the object. In at
least some embodiments, the DFS-DirectoryEntry 3930 may
also include a parent directory pointer DFS-ParentDirPtr
3952 pointing to the DFS-DirectoryEntry of the parent direc-
tory of the object. Thus, for example, if “A.txt” is in a direc-
tory “dirl”, the DFS-ParentDirPtr may point to the DFS-
DirectoryEntry of “dirl”. DFS-DirectoryEntry metadata
structures may be referred to in the subsequent discussion
simply as directory entries, while DFS-Inode structures may
be referred to simply as node entries.

[0221] The particular metadata node 3922A that is chosen
to manage a given object’s directory entry may be selected
using different techniques in different embodiments, such as
by hashing the name of the object at the time the object is
created, by selecting the metadata node based on its current
available workload capacity or space availability, and so on.
As aresult, a different metadata node 3922P may at least in
some cases be selected to manage the directory entry to be
created for the second operand (“B.txt”) of the “rename A.txt
B.txt” operation.

[0222] The changes required to implement the rename of
“Axt” to “B.txt” are indicated in FIG. 39 by the labels
“Pre-rename state 3945 and “Post-rename state 3947”. To
implement the rename workflow, a new directory entry 3931
with object name field 3938 set to “B.txt”, and a pointer field
pointing to DFS-Inode 3910 should be created, and the origi-
nal directory entry 3930 with the name field “A..txt” should be
removed. The node entry 3910 itself may not be modified
during the rename in at least some embodiments. For consis-
tency, the combination of metadata changes shown in FIG. 39
may have to be performed in such a way that either all the
changes (at both metadata nodes involved) succeed, or none
succeed. In some embodiments, as described earlier, the
metadata structures may actually be stored using extents
implemented at physical storage devices of storage sub-
system nodes of the service. In the latter scenario, four types
of entities may be involved in a rename workflow, any one of
which may fail independently of the other, or may indepen-
dently lose incoming or outgoing network packets: the meta-
data node and the storage node of the original directory entry
(“A.txt”’s directory entry) and the metadata node and storage
node of the new directory entry (“B.txt”’s directory entry).
Accordingly, a rename workflow designed to take possible
failures and/or communication delays at any of the participant
nodes may be implemented, using a sequence of at least two
atomic operations as described below. Each atomic operation
of'the sequence may be confined to one of the metadata nodes,
and may therefore be easier to implement than multi-node
atomic operations. It is noted that each metadata node (and/or
storage node) involved may be configured to manage meta-
data for numerous file store objects, potentially belonging to
numerous clients of the storage service in a multi-tenant
environment, and as a consequence each metadata or storage
node may have to handle large numbers of rename requests
and other file store operation requests concurrently.

Oct. 1, 2015

[0223] To prevent inconsistency and/or metadata corrup-
tion, metadata structures such as directory entries may be
locked (e.g., using exclusive locks) during rename worktlows
in some embodiments. In order to prevent deadlocks (as
might potentially occur if, for example, two rename requests
“rename A.txt B.txt” and “rename B.txt A.txt” are received in
very close time proximity), a lock ordering protocol may be
employed in at least some embodiments. FIG. 40 illustrates a
use of such a deadlock avoidance mechanism for concurrent
rename operations, according to at least some embodiments.
A deadlock avoidance analyzer module 4004 (e.g., a subcom-
ponent of the metadata subsystem) may take as input the
operands 4001 of the rename request (e.g., operands “X** and
“Y” of a “rename X to Y™ request) and generate a particular
lock acquisition order in the depicted embodiment.

[0224] Two alternative lock acquisition sequences 4010
and 4012, of which exactly one may be generated as output by
the deadlock avoidance analyzer module 4004, are shown
with respect to a “rename X to Y™ request in the depicted
embodiment. According to acquisition sequence 4010, a lock
on X’s directory entry is to be obtained as part of a first atomic
operation of a rename workflow. According to acquisition
sequence 4012, a directory entry forY is to be obtained (after
creating the directory entry if necessary) in a first atomic
operation of the rename workflow. In the depicted embodi-
ment, a name comparator 4008 may be used by the deadlock
avoidance module to arrive at the lock sequence. The two
operands may be compared, e.g., lexicographically, and in at
least some embodiments the operand that is first in the lexi-
cographic order may be selected as the one to be locked in the
first atomic operation. (In other embodiments, the operand
that is second in lexicographic order may be locked first; as
long as the ordering logic is applied consistently across dif-
ferent rename operations, which specific one of the operands
is locked first may not matter.) Thus, in such embodiments,
the same directory entry may be locked first regardless of
whether the rename request was “rename X to Y or “rename
Y to X”. In this way, even if two requests “rename X toY” and
“rename Y to X” are received near-concurrently, deadlocks
may be avoided, since it would not be possible for X to be
locked for the first request and Y to be locked for the second
request. In some embodiments, techniques other than lexico-
graphic comparison may be used to determine lock order
among the rename operands. Since multiple objects (e.g.,
multiple files or directories) may have the same name within
agiven file store, while the identifiers assigned to DFS-Inodes
may typically be expected to be unique within a file store, in
at least some embodiments the “names” used as inputs to the
comparator may be obtained by concatenating or otherwise
combining the identifier of a selected DFS-Inode associated
with the object (e.g., the parent DFS-Inode of the object) with
the object’s name. Other disambiguation techniques may be
used in other embodiments to overcome potential problems of
file name (or directory name) re-use—e.g., the entire path
from the root of the file store to the object may be used as the
“name” for lock sequence determination in one embodiment,
or DFS-Inode identifiers associated with several of the path’s
directories may be combined with the object name.

[0225] In at least some embodiments, based on the output
of the deadlock avoidance analysis, one of two different
rename workflows may be implemented for a given rename
request. The two workflows may differ in which directory
entry is locked first. Each of the rename workflows may be
considered as comprising at least three phases: a first set of

US 2015/0278243 Al

operations performed atomically (which may collectively be
referred to as “the first atomic operation” of the workflow), a
second set of operations performed atomically (which may
collectively be referred to as “the second atomic operation™),
and a third set of operations for which atomicity may be
implementation-dependent. Additional (typically asynchro-
nous) phases may also be included in some cases as described
below. FIG. 41 is a flow diagram illustrating aspects of opera-
tions that may be performed to implement a first rename
workflow based on a first lock ordering, among two possible
lock orderings, that may be determined at a storage service for
a rename operation, according to at least some embodiments.
As shown in element 4101, a request to rename a particular
file store object, such as a file or a directory, whose current
name is “A” to “B” may be received, e.g., at a metadata
subsystem of a distributed storage service. For example, an
access subsystem node may receive a rename command from
a customer, and transmit a corresponding internal rename
request to a selected metadatanode. Inembodiments in which
a storage subsystem of the service is used for both metadata
and data, the metadata node may for example comprise a
process or thread co-located at the same hardware server as a
storage node. A directory entry for “A” may currently point to
anode entry DI1 that comprises values of various attributes of
the object, such as ownership identification, read/write per-
missions, and the like. A directory entry for “B” may not yet
exist.

[0226] A determination may be made, e.g., based on dead-
lock avoidance analysis, whether a lock on “A’s directory
entry is to be acquired first as part of the rename workflow, or
whether a lock on a directory entry for “B” (which may first
have to be created) is to be acquired first (element 4104). If
B’s directory entry is to be locked first (element 4107), the
workflow steps illustrated in FIG. 42 may be used, as indi-
cated by the label “Go to 4201 in FIG. 41. If “A”’s entry is to
be locked first (as also determined in element 4107), a first
atomic operation of the rename workflow may be attempted at
a particular metadata node MN1 of the storage service (ele-
ment 4110). The first atomic operation may comprise the
following steps in the depicted embodiment: (a) obtaining a
lock L1 on “A”’s directory entry; (b) generating a unique
rename workflow identifier WFID1 for the workflow being
attempted and (c) storing an intent record IR1 indicating that
the object currently named A is to be renamed to B. In at least
some implementations the intent record may include or indi-
cate the workflow identifier WFID1. In one implementation,
a state management subcomponent of the storage service
(e.g., similar to the replicated state machine illustrated in FIG.
12) may be used to combine the three steps into one atomic
operation. The order in which the three steps of the first
atomic operation are performed relative to each other may
vary in different implementations. In some embodiments,
respective representations of the lock L1, the intent record
IR1 and/or the workflow identifier WFID1 may each be rep-
licated on persistent storage devices, e.g., using extent repli-
cas of the storage subsystem as described earlier. In at least
one embodiment, the persistent storage locations selected for
storing the lock, the intent record and/or the workflow iden-
tifier may be accessible from replacement metadata nodes in
the event of a failure of MN1. As long as the lock L1 is held,
no other modification may be applied to “A”’s directory entry
in the depicted embodiment. If the lock is already held when
the first atomic operation is attempted, e.g., on behalf of some

Oct. 1, 2015

other concurrent or near-concurrent modification operation,
the first atomic operation may be delayed until the lock
becomes available.

[0227] If the initial atomic operation succeeds, as deter-
mined in element 4113, the second atomic operation of the
rename workflow may be attempted. It is noted that with
respect to each of the atomic operations of the workflows
illustrated in FIGS. 41 and 42, in at least some embodiments
the atomic operation may be re-tried one or more times (e.g.,
based on some configurable maximum retry count) in the
event that the operation cannot be completed on the first
attempt. The second atomic operation may be performed at
the metadata node (MN2) that is designated to manage and/or
store the directory entry for “B”. In some embodiments, after
the first atomic operation is completed at MN1, a request to
perform the second atomic operation may be sent from MN1
to MN2. The request may include the workflow identifier
WFID1 in at least some implementations. As shown in ele-
ment 4116, the second atomic operation may comprise the
following steps: (a) verifying that “B”’s directory entry is not
currently locked on behalf of some other modification opera-
tion (b) setting B’s directory entry to point to the node entry
DIl for the object being renamed and (c) storing a record
indicating that, for the workflow with identifier WFID1, the
pointer modification step of “B”’s directory entry succeeded.
In at least some cases, “B”’s directory entry may not exist at
the time that the second atomic operation is attempted, in
which case the step of verifying that it is not locked may be
implemented implicitly by creating a new directory entry for
“B”. In at least some embodiments, a lock may be acquired on
B’s directory entry before the pointer is modified, e.g., to
prevent any concurrent modifications of “B*”s directory
entry. The lock may be released after the pointer to DI1 is set
in some such embodiments. As in the case of the writes
performed as part of the first atomic operation, the writes of
the second atomic operation (e.g., the setting of the pointer
and the success indication) may be performed at persistent
storage locations such as replicated extents from which they
may be read later in the event of a failure at MN2. A state
management subcomponent of the storage service may be
used to enforce atomicity of the combination of the writes.

[0228] If the second atomic operation succeeds (as deter-
mined in element 4119), a third set of operations may be
attempted (element 4122). Like the first atomic operation,
this third set of operations may also be executed at MN1. In at
least some embodiments, an indication received at MN1 that
the second atomic operation succeeded (e.g., a response to a
request sent from MN1 to MN2 for the second atomic opera-
tion) may trigger the third set of operations. In the third set of
operations, the lock [.1 acquired on “A”’s directory entry may
be deleted, the intent record IR1 may be deleted, and “A”’s
directory entry itself may be deleted. As mentioned earlier, in
some implementations, this third set of operations may also
be performed as an atomic unit, and in such cases the opera-
tions of the third set may be referred to as the “third atomic
operation” of the workflow. In other implementations atom-
icity may not be enforced for the third set of operations. In
embodiments in which the metadata generated during the first
atomic operation (e.g., the intent record, the workflow iden-
tifier and the indication of the lock) are stored in persistent
storage, the third set of operations may be expected to succeed
eventually, even if one or more retries are required due to
failures of various kinds, regardless of whether the third set is
performed atomically or not. If the third set of operations

US 2015/0278243 Al

succeeds as well (as detected in element 4125), the rename
workflow as a whole may be deemed to have succeeded
(element 4128). In at least some embodiments a response to
the rename request may be sent, indicating that the rename
succeeded. In some embodiments no response may be sent,
and the requester.

[0229] In the depicted embodiment, if either of the two
atomic operations did not succeed, the workflow as a whole
may be aborted (element 4131), and any of the records gen-
erated in earlier parts of the workflow may be deleted (such as
the intent record IR1, a representation of the acquisition of
lock L1 and/or the success record stored at MN2). If any
operation of the third set of operations fails as detected in
element 4125), it may simply be retried in the depicted
embodiment as indicated by the arrow leading back to ele-
ment 4122. As mentioned earlier, in at least some embodi-
ment multiple attempts may be tried for each of the atomic
operations before declaring failure. In some embodiments, at
some point after the third set of operations of a workflow with
identifier WFID1 is complete, the success record stored at
MN2 may be deleted (element 4134), e.g., asynchronously
with respect to the completion of the third set of operations.

[0230] As indicated in the negative output of element 4107
of FIG. 41, a different rename workflow may be attempted if
the directory entry for “B” is to be locked first. FIG. 42 is a
flow diagram illustrating aspects of operations that may be
performed to implement a second rename workflow based on
such a second lock ordering, among the two possible lock
orderings, that may be determined at a storage service for a
rename operation, according to at least some embodiments.
This second workflow may also comprise two successive
atomic operations to be used to rename “A” to “B” in the
depicted embodiment, followed by a third set of operations
that may or may not be implemented atomically depending on
the implementation. The first atomic operation (element 4201
of FIG. 42), performed at the metadata node MN2 (the node
responsible for storing a directory entry for object name “B”)
may include verifying that “B”’s directory entry is not locked
for some other operation, creating “B”’s directory entry if
needed, locking “B’”’s directory entry, generating and storing
a unique workflow identifier WFID2 for the rename work-
flow, and storing an intent record IR2 indicating that the
object currently named “A” is going to be renamed to “B”. In
some implementations the intent record IR2 may include or
indicate the workflow identifier WFID2.

[0231] Ifthe first atomic operation succeeds (as detected in
element 4204), a second atomic operation of workflow
WFID2 may be attempted (element 4207). This second
atomic operation may be performed at the metadata node
MN1 at which “A” s directory entry is managed, and in some
embodiments may be triggered by a request from MN2 indi-
cating that the first atomic operation has succeeded. The
second atomic operation may include verifying that A’s
directory entry is not locked, deleting “A”’s directory entry,
and storing a persistent record that “A”’s director entry has
been successfully deleted as part of workflow WFID2. If the
second atomic operation succeeds (as determined in element
4210), the third set of operations may be attempted at MN2
(element 4213). In some embodiments, an indication that the
second atomic operation succeeded, e.g., a response received
at MN2 to a request sent from MN2 to MN1 earlier for the
second atomic operation, may trigger the attempt to perform
the third set of operations. The third set of operations may
include setting “B” s directory entry to point to DI1 (the node

Oct. 1, 2015

entry for the object being renamed), releasing/deleting lock
L2, and deleting the intent record IR2.

[0232] Ifthe third set of operations succeeds (as detected in
element 4216), the workflow as a whole may be deemed to
have succeeded (element 4219), and in some embodiments a
success indicator may be returned to the requester of the
rename operation. As in the workflow illustrated in FIG. 41,
the third set of operations of FIG. 42 may be expected to
succeed eventually, although one or more retries may be
required in failure scenarios as indicated by the arrow leading
back from element 4216 to element 4213. Asynchronously
with respect to the completion of the third set of operations,
the success record stored by MNI1 (indicating that “A™’s
directory entry has been deleted) may itself be deleted (ele-
ment 4225) in at least some embodiments. If either of the two
atomic operations fail, the rename workflow as a whole may
be aborted (element 4222), and records stored during earlier
operations of the aborted worktflow may be cleaned up. As in
the operations illustrated in FIG. 41, the storage service’s
state management mechanisms and/or replicated extents may
be used for the atomic operations of the second workflow.

[0233] Using the deadlock-avoiding lock ordering
sequence and the operations illustrated in FIG. 41 and FIG.
42, rename operations for file store objects may be imple-
mented to achieve the desired level of consistency expected
by the file system protocols being used. The techniques of
storing intent records associate with unique workflow identi-
fiers in persistent storage may be helpful in recovery from
various types of failures in different embodiments. F1G. 43 is
aflow diagram illustrating aspects of recovery operations that
may be performed in response to a failure of one metadata
subsystem node of a pair of metadata subsystem nodes par-
ticipating in a rename workflow, according to at least some
embodiments, while FIG. 44 is a flow diagram illustrating
aspects of recovery operations that may be performed in
response to a failure of the other metadata subsystem node of
the pair of metadata subsystem nodes participating in the
rename workflow, according to at least some embodiments.
To simplify the presentation, FIG. 43 and FIG. 44 each illus-
trate operations that may be performed if a single metadata
node failure occurs during the workflow sequence illustrated
in FIG. 41, although similar recovery strategies may be
employed even if both metadata nodes involved in the work-
flow fail in at least some embodiments.

[0234] As shown in element 4301 of FIG. 43, a failure of
node MN1 may be detected at some point after the first atomic
operation (whose steps were illustrated in element 4110) of
FIG. 41’s workflow sequence completes, and before the third
set of operations (element 4122) of FIG. 41’s workflow
sequence is begun. For example, the processes or threads
implementing the metadata node MN1 where “A” s directory
entry is managed may exit prematurely, or MN1 may become
unresponsive to health checks due to a network-related failure
or due to a software bug that results in a hang. Under such
circumstances, a replacement metadata node MN-R may be
configured or designated to take over the responsibilities of
MN1 (element 4304) in the depicted embodiment. In some
embodiments, as mentioned earlier, MN1 may have been
configured as a member of a redundancy group comprising a
plurality of metadata nodes, and another member of the
redundancy group that was preconfigured for failover may be
quickly designated as a replacement. In other embodiments,
replacement metadata node MN-R may not be part of a pre-
configured redundancy group.

US 2015/0278243 Al

[0235] Inthe first atomic operation of the workflow of FIG.
41, MN-1 stored intent record IR1 and workflow identifier
WFID1 in persistent storage, together with a representation of
the lock L.1. The replacement metadata node MN-R may read
the intent record IR1 and workflow identifier WFID1 that
were written prior to MN-1’s failure (element 4307). MN-R
may then send a query to MN2, the metadata node responsible
for “B’’s directory entry, to determine the status of the work-
flow WFIDI1 (element 4310) in the depicted embodiment—
e.g., to find out whether B’s directory entry pointer has
already been set to point to DI1 (the node entry of the object
being renamed) as part of the second atomic operation of the
workflow.

[0236] As mentioned earlier, each metadata node may be
responsible for managing metadata for several different files
and/or for several different clients in embodiments in which
the distributed storage service is multi-tenant. Consequently
MN2 may have stored respective success records correspond-
ing to the second atomic operation of numerous rename work-
flows. Upon receiving the query regarding the status of the
workflow with identifier WFID1, MN2 may look up its
records of successful atomic operations. If MN2 finds a suc-
cess record for WFID1’s second atomic operation (as deter-
mined in element 4313), it may inform MN-R that the second
atomic operation was completed (i.e., that “B”’s directory
entry was set to point to the node entry DI1). Accordingly, in
the depicted embodiment, MN-R may then attempt the third
set of operations in an effort to complete the rename worktlow
identified by WFID1 (element 4316).

[0237] Atleastinsome scenarios, it may be the case that the
second atomic operation of workflow WFID1 does not suc-
ceed. For example, MN1 may have failed before its request to
MN2 to start the second atomic operation was successfully
transmitted, or the request may have been lost, or MN2 may
not have been able to successfully implement the requested
second atomic operation. In some embodiments, if MN-R is
informed that the second atomic operation had not succeeded
(as also determined in element 4313), MN-R may have the
option of either abandoning or resuming the workflow. In the
depicted embodiment, if a cancellation criterion is met (as
detected in element 4319), the rename workflow may be
aborted and metadata record associated with WFID1 that
were stored by MN1 may be removed (e.g., the intent record
IR1 and the representation of the lock [.1 may be deleted from
persistent storage) (element 4322). In one embodiment, the
cancellation criterion may be met if the time that has elapsed
since the original rename request was received from a client
exceeds some configured threshold. An elapsed-time-depen-
dent termination of the rename workflow may be imple-
mented, for example, under the assumption that in view of the
long elapsed time, the client that requested the rename would
have realized that the original request did not succeed, and
would therefore not be expecting the rename to succeed at this
point. In some embodiments, a cancellation record indicating
that the workflow with identifier WFID1 has been aborted/
cancelled may be stored for some configurable time period,
e.g., at either MN-R, at MN2, or at both MN-R and MN2. In
one such embodiment, after determining that the workflow is
to be abandoned, MN-R may first send a request to MN2 to
store the cancellation record, and may delete both the intent
record and the lock after it is informed that MN2 has success-
fully stored the cancellation record to persistent storage.

[0238] If, however, the cancellation criterion is not met (as
also detected in element 4319), in the depicted embodiment

Oct. 1, 2015

MN-R may resume the workflow by sending a request to
MN2 to implement the second atomic operation (element
4325). Other strategies to respond to MN1 failures may be
implemented in various embodiments—e.g., in some
embodiments the rename workflow may always be resumed
regardless of the time that has elapsed since the initial rename
request was received, and in at least one embodiment the
rename workflow may always be abandoned in the event of a
failure of MN1 after the completion of the first atomic opera-
tion.

[0239] FIG. 44 illustrates operations that may be performed
if metadata node MN2 fails during the workflow sequence
illustrated in FIG. 41, according to at least some embodi-
ments. As shown in element 4401, a failure of MN2 may be
detected, for example after a request to implement the second
atomic operation (element 4116) of the workflow is sent to
MN2. In a manner similar to that discussed for replacing
MN1 by MN-R above, a replacement metadata node MN-R2
may be designated or configured for MN-R in the depicted
embodiment (element 4404). MN-R2 may be able to read the
success records written to persistent storage by MN2 prior to
its failure.

[0240] At MN-R2, a query from MN1 may be received to
enable MN1 to determine whether the second atomic opera-
tion of the workflow with identifier WFID1 was successfully
completed (element 4407). If the second atomic operation
had been completed prior to MN2’s failure (as detected in
element 4410), MN-R2 may be able to find a success record
for WFID1, and may respond to MN1 accordingly. MN1 may
then resume the workflow by attempting the third set of
operations (element 4413).

[0241] If the second atomic operation of WFID1 had not
been completed, a similar procedure may be implemented in
the embodiment depicted in FIG. 44 as was implemented in
FIG. 43. If a cancellation criterion for the rename operation is
met (as detected in element 4416)—e.g., if the time elapsed
since the rename was requested exceeds some threshold time
T—the rename operation may be aborted and the data struc-
tures related to WFID1 may be cleaned up (element 4419).
Otherwise, if the cancellation criterion has not been met, the
workflow may be resumed by MN1 by sending a request to
perform the second atomic operation to MN-R2 (element
4422).

[0242] While FIG. 43 and FIG. 44 illustrate recovery tech-
niques responsive to failures at either metadata node during
the workflow of FIG. 41, analogous techniques may also be
implemented if either metadata node fails during the work-
flow illustrated in FIG. 42 in at least some embodiments. As
long as the replacement node configured for the failed meta-
data node is able to read the workflow records (e.g., the intent
record, the lock, and/or the success record) from persistent
storage, it may be possible to resume the workflow after the
failure. For example, in the workflow of FIG. 42, if MN2 fails
after the first atomic operation and a replacement MNR-2 is
designated, MNR2 may read the intent record IR2 and the
workflow identifier WFID2 and send a status query regarding
to MN1, and so on. In a manner similar to that shown in FIGS.
43 and 44, depending on how long it takes to detect the failure
and configure the replacement node, and how much progress
the rename workflow had made prior to the failure, in some
cases the rename workflow of FIG. 42 may be abandoned
after a metadata node failure. In embodiments in which meta-
data is stored using the same underlying storage subsystem as
is used for data, recovery techniques similar to those illus-

US 2015/0278243 Al

trated in FIG. 43 and FIG. 44 may be used to respond to
storage node failures as well. In some embodiments the func-
tionality of a metadata node and a storage node may be
performed at the same host or hardware server, and as a result
a failure of that host or server may affect both types of nodes.

Scalable Namespace Management

[0243] The goals of the distributed storage service may
include handling very large numbers of files, directories,
links, and/or other objects in a scalable manner in various
embodiments. For example, for some large customers, a
given file system may comprise a million or more directories,
and a given directory may comprise a million or more files. In
some embodiments, in order to support high throughputs
and/or to ensure that response times remain relatively flat at
high concurrency for various namespace operations such as
directory listings, lookups, inserts and deletes as the number
of objects in the namespace increases to such levels, a data
structure called a hash-directed acyclic graph (HDAG) may
be used for managing namespace entriecs. The term
namespace is used herein to refer to the collection of names of
objects (files, directories, hard and soft links, and the like)
created within a given file system or other data store logical
container, and to the relationships (e.g., parent-child relation-
ships) between the objects. In some embodiments, a respec-
tive HDAG may be generated for each directory of a file
system, e.g., by the metadata subsystem of the service. The
HDAG-based namespace management techniques described
below may utilize some of the features of the distributed
storage service that have been described earlier, such as the
striping of metadata structures at configurable granularity
across multiple storage extents and the ability to perform
modifications at a plurality of storage devices in a single
atomic operation. For example, in one implementation a
respective logical block (which may be mapped to one or
more pages of a respective extent) may be used for each node
of a particular HDAG, thus potentially partitioning the
namespace entries among a plurality of storage servers.

[0244] FIG. 45 illustrates an example of a hash-directed
acyclic graph (HDAG) that may be used for file store
namespace management, according to at least some embodi-
ments. An HDAG for a directory may include at least two
types of nodes in the depicted embodiment: entry list (EL)
nodes (each of which comprise a list of directory entries
similar to the DFS-DirectoryEntry structures shown in FIG.
39, with pointers to respective DFS-Inodes that contain other
attribute values for the corresponding objects), and node
identifier array (NIArray) nodes (each of which comprise an
array of pointers to a set of child nodes). The type of a node
may be indicated in a header field, such as header field 4504 A
or4520A. When a directory D1 is created, an HDAG in initial
state 4590A, comprising a single ELL node (such as node
4500A, referred to as the root node of the HDAG), may be
created for the directory. In some implementations, the DFS-
Inode for the directory may itself be used as the root node of
the HDAG. Root node 4500A may comprise sufficient space
to hold some set of directory attributes 4502 A, a header field
4520R indicating the type of the root node (initially EL), and
a root entry list 4506 for the first few files or subdirectories
created within D1. A given EL node may store up to some
configurable number (e.g., a value that may be selected for all
the EL entries of a given file store) of namespace entries, and
a given NIArray node may store up to some configurable
number of node identifiers (e.g., another value selected for all

Oct. 1, 2015

the NIArray entries of a given file store). In at least some
embodiments, the maximum permissible size of an HDAG
node may be determined such that the contents of one HDAG
node can be written to storage in a single atomic operation—
e.g., in one implementation, if the HDAG parameters are
selected such that an HDAG node never occupies more than 4
kilobytes, extents that support 4 kilobyte pages may be used
for the HDAGs, and/or a logical block size of 4 kilobytes may
be used. Other mappings between HDAGs, logical block
sizes, and page sizes may be used in other implementations.

[0245] As more files or subdirectories are added within D1
(as indicated by arrow 4525), the root entry list 4506 may
eventually become full, and the root node 4500 A may be split
into some number of child nodes using a hash function to
distribute its entry list members into the child nodes. The type
of the root node may be changed from EL to NIArray, and
pointers to the child nodes (e.g., the logical or physical stor-
age addresses at which the child nodes are stored) may be
written to respective elements in an NIArray at the root node.
A selected strong hash function may be applied to each of the
entry names (e.g., file names or subdirectory names) to pro-
duce a hash value of a desired size, and portions of the bit-
sequence representation of the hash value for a given entry
may be used to map the entry to a new child node. Several
types of split operations (described in detail below) may be
implemented in various embodiments on non-root nodes as
they fill up, using a similar hash-based distribution of entries
among newly-created child nodes. In response to lookup
requests, the same hash function may also be used to search
for entries for specified object names, e.g., using successive
subsequences of the bit sequence representation of the hash
value as indexes to navigate respective levels of the HDAG
until a node with the targeted entry is found. To obtain a
directory listing, all the pointers starting from the root node’s
NlArray (assuming the root node has split) may be followed
recursively until the entire HDAG has been traversed and all
its entries have been retrieved. Further details regarding vari-
ous types of HDAG operations are provided below.

[0246] Thetype of an entry list node may change as a result
of one or more types of HDAG operations under some con-
ditions—e.g., root node 4500 A has become an NIArray node
after its entries are distributed among child nodes (and as
described in further detail below, in some cases an NIArray
node may be transformed into an entry list node after a dele-
tion). The NIArray 4510A includes pointers (e.g., storage
addresses) of child nodes 4550A, 4550B and 4550C in
HDAG state 4590B. The entries that were originally in root
entry list 4506 may initially be distributed among respective
entry lists at the child nodes (e.g., entry list 4522 A of node
4550A, entry list 4522B of node 4550C, and another entry list
initially created at node 4550B). Thus, each of the child nodes
4550A, 4550B and 4550C may have started out as an EL
node. By the time state 4590B is reached, however, node
45508 itself has split and become an NIArray node, with
pointers to its own children nodes 4550K and 45501 being
stored in NIArray 4510B. Node 4550L has also changed state
from EL to NIArray in state 4590B, and its NIArray 4510C
includes pointers to its children nodes. Node 4550K still
remains an EL. node, with entry list 4522K representing some
of'the files/directories created within D1. The headers of each
of'the nodes (e.g., headers 4520R, 4520A, 4520B, etc.) may
be modified when and if the type of the node is changed as a
result of a node split (or a node join after some types of entry
deletions) in the depicted embodiment. In some implementa-

US 2015/0278243 Al

tions, at least at some points in time, the root node 4500A
and/or other HDAG nodes may comprise some number of
bytes that are not in use. In state 4590B, the HDAG may be
considered as comprising at least three “levels” including a
root level, HDAG level 1 (comprising nodes 4550A, 45508
and 4550C that can be accessed in a single lookup using
NIArray pointers of the root node), and HDAG level 2 (com-
prising nodes 4550K and 4550L that can be accessed in a
single lookup using NIArray pointers of level 1 nodes). The
term “HDAG level” may be used herein as an indication of the
number of nodes that have been encountered, starting from
the root node of the HDAG, to arrive at some particular node.
HDAG nodes that have no children may be referred to as leaf
nodes. At least in some embodiments, it may be the case for
two leaf nodes L1 and L2 of an HDAG, during respective
traversals towards the leaf nodes from the HDAG root, dif-
ferent numbers of nodes may be encountered before reaching
L1 than are encountered before reaching [.2. It is noted that in
the embodiment illustrated in FIG. 45, the hash values that are
used to distribute the entries among the nodes, and thereafter
to look up the entries, may not need to be stored within the
HDAG itself.

[0247] As noted earlier, one of the goals of the namespace
management technique may be to enable fast lookups by
name. FIG. 46 illustrates a technique for navigating an HDAG
using successive subsequences of a hash value obtained for a
file name, according to at least some embodiments. (Similar
techniques may be used for directories, links or other file store
objects) The name 4602 of the file is used as input to a selected
hash function 4604, ¢.g., in response to a lookup request with
the name as a parameter. In some embodiments, a string of up
to K (e.g., 255) UTF-8 characters may be used as a file name
or a directory name. Other length restrictions or encodings of
file store object names may be used in other embodiments. In
one embodiment, different hash functions may be used for
respective file stores—e.g., the hash functions may be speci-
fied as configuration parameters, or may be selected by the
storage service based on expectations of the namespace size
for the file store, hints provided by the clients on whose behalf
the file store is being created, and so on. In at least one
embodiment, various metrics of the effectiveness of a hash
function in use may be tracked over time, such as the average
number of levels of the HDAG for a given number of
namespace entries, or the degree to which the HDAGs are
balanced (e.g., whether some entries are reached by passing
through far fewer levels than others), and a different hash
function may be selected (at least for future use) if the mea-
sured effectiveness is not sufficient.

[0248] In the depicted embodiment, a hash value 4610
expressible as a sequence of (at least) N*M bits may be
generated, where N and M may be configurable parameters.
N subsequences of the hash value 4610 (e.g., S1, S2, ... SN)
of M bits each may be used as indexes into corresponding
levels of the HDAG—e.g., subsequence S1 may be used to
select the NIArray pointer (of the root node) to be used to
navigate level 1, subsequence S2 may be used to select the
NIArray pointer to be used to navigate level 2 starting from
the level 1 node, and so on. Not all the bits in a given subse-
quence need be used for a given search or navigation level—
e.g., only the q high-order bits (where g<M) may be used in
some cases. In some embodiments, some bits 4666 of the hash
value may not be used for any level.

[0249] When a new entry is to be added to a file store, e.g.,
in response to an open file command or create directory

Oct. 1, 2015

command, the hash value for the name of the new entry may
be obtained, and the HDAG may be traversed using the sub-
sequence-based navigation technique described above until a
candidate EL node to which the name is mapped is found. (In
some scenarios, it may be the case that the namespace has run
out of space for entries—such special cases are discussed
below). If the candidate node has no more free space in its
entry list, or of its free space would fall below a threshold
level if the new entry were added, the candidate node may be
split. At least some of the entries of node that is split may be
distributed among one or more new nodes added to the
HDAG, e.g., using selected subsequences of the hash values
of'the entries as described below. At least two different types
of HDAG node split operations may be performed in some
embodiments.

[0250] FIG. 47 illustrates an example of the first of two
types of HDAG node splits that may result from an attempt to
insert an entry into a namespace, according to at least some
embodiments. In this first type of split, the type of an HDAG
node may be changed from entry list (EL) to NIArray as
described in detail below. The namespace entry insertion may
be one of several steps taken in response to a client request to
create a namespace object such as a file in some embodi-
ments—e.g., the other steps may include allocating space for
a DFS-Inode object associated with the file, setting the initial
attributes of the file and/or setting a pointer from the
namespace entry to the DFS-Inode and from the Inode to one
or more physical pages to be used for storing file contents.
The order in which these steps are taken may differ in difter-
ent embodiments.

[0251] A request to insert an entry 4701 with name (e.g.,
file name) “Lima” into a namespace is received in the
embodiment shown in FIG. 47, and a candidate EL node
4750A is found after navigating within the HDAG created for
the directory into which the insertion of the object with name
“Lima” is being attempted. Initial portions of the identifiers of
the HDAG nodes (which may also correspond to their storage
addresses, and thus may be used as parameters to read or write
operations directed to the storage subsystem) are shown as
hexadecimal strings in FIG. 47—e.g., node 4750 has an ID
“0x432d12 The first type of node split, illustrated in
FIG. 47, may be attempted under the following conditions in
the depicted embodiment: either (a) the candidate node
4750A is the root node or (b) only one NIArray pointer entry
in the parent node of node 4750A (not shown in FIG. 47)
points to node 4750A. If either of these conditions is met,
space may be allocated (e.g., at respective metadata extents)
for two new HDAG nodes 47508 and 4750C in the depicted
embodiment. (It is noted that two child nodes are illustrated in
FIG. 47 for ease of presentation; in other embodiments, more
than two new child nodes may be created during a split.) Each
of the entries that were previously in node 4750A (e.g.,
“Alpha”. “Bravo”, “Charlie”, etc.), and the new entry “Lima”,
may be mapped to one of the new nodes 47508 or 4750C
based on their respective hash values, as indicated by the
arrows labeled “1”. In one implementation, for example, if the
candidate node were in the Kth level of the HDAG, the (K+1)
th subsequences of the hash values for the entries may be
sorted based on their most significant bit, and the entries
whose hash values have “1” as their most significant bit may
be mapped to node 4750B, while the entries whose hash
values have “0” as their most significant bit may be mapped to
node 4750C. In embodiments in which more than two child
nodes are created during a split, more bits may be used for the

US 2015/0278243 Al

mapping of the entries—e.g., if four child nodes are created,
the two highest-order bits of the hash subsequence values
may be used, and so on. In the depicted embodiment, depend-
ing for example on the object names and the hash function, it
may not always be the case that the entries of the node being
split (4750A in the depicted example) are distributed uni-
formly between the child nodes, and at least in some embodi-
ments no attempt may be made to “balance” the HDAG by
trying to achieve such uniformity. Instead, the strength and
quality of the hash function may be relied upon in such
embodiments to achieve areasonably balanced distribution of
entries among the nodes. After the distribution of the entries
among the child nodes in the depicted example, child node
47508 has free space 4710A that may be used for subsequent
insertions, while child node 4750C has free space 4710B that
may be sued for subsequent insertions.

[0252] Node 4750A, which was an EL node prior to the
split, may be converted into an NIArray node, as indicated by
the arrow labeled “2” in FIG. 47. Half of its NIArray entries
may be set to point to node 4750B (e.g., by storing 4750B’s
1D 0x786aa2 . . .) and the other half may be set to point to
node 4750C (e.g. by storing 4750C’s ID 0xc32176 .. .). Inan
implementation in which the most significant bit was used to
split the entries, the lower half of the NIArray entries (e.g.,
entries with indexes 0 to (NIArraySize/2)-1) may be set to
point to the node 4750C (entries whose hash values began
with “0”), and the upper half of the NIArray entries (e.g.,
entries with indexes (NIArraySize/2) to (NIArraySize-1))
may be set to point to the other child node 4750C. In embodi-
ments in which n children nodes are created as a result of the
split, 1/n of the NIArray entries may be set to point to each of
the children. The changes to the three nodes 4750A, 47508
and 4750C may be saved to persistent storage at the storage
subsystem. In some embodiments, changes to all three nodes
may be performed in a single atomic operation, e.g., using the
distributed transaction technique described earlier. In other
embodiments, the conditional writes described earlier may be
used to make the changes for at least one of the three nodes
persistent separately from the other nodes.

[0253] If the conditions outlined above for performing the
first type of split operation are not met (e.g., if the parent node
of the candidate node has more than one NIArray pointer to
the candidate node), a second type of split operation may be
performed. FIG. 48 illustrates an example of the second of
two types of HDAG node splits that may result from an
attempt to insert an entry into a namespace, according to at
least some embodiments. In the depicted example, node
4750C has been identified as the candidate node for a new
entry “Queen” 4801, and node 4750C has no free space left in
its entry list. The parent node, 4750A, includes numerous
pointers to node 4750C (e.g., the NIArray entries with the ID
value 0xc32176 . . .) at the time the insert of “Queen” is
attempted. As indicated by the multiple elements with the
same value “0x786aa2 . . . ”, and the multiple elements with
the value “0x32176 . . . ”, in the depicted embodiment, the
NIArray elements each point to the block at which the node’s
content is stored, not to individual EL entries within the node.
In other embodiments, entry-level pointers may be used
instead of or in addition to block-level pointers. In the sce-
nario depicted in FIG. 48, only one new node (node 4850A
with ID 0x223123 .. .)is created instead of two nodes as was
illustrated in FIG. 47. Hash values for the entries of node
4750C may be computed in a manner similar to that used for
4750A entries in FIG. 47. The hash values may be sorted

Oct. 1, 2015

based on the most significant bit. Those of the entries in
4750C at the time of the split that have a “1” as the most
significant bit may be mapped to the new node 4850A, while
the remaining (the ones with “0” as the most significant bit)
may be kept within node 4750C, as indicated by the arrow
labeled 1.

[0254] Theparentnode’s NI1Array entries may be modified
to add pointers to the newly-added node 4850A in the
depicted embodiment, as indicated by arrow 2. Of the 4750A
NlArray entries that were previously pointing to 4750C, one
half (e.g., the upper half of the array index range) may be set
to point to the new node 4850A, while the other half may
continue to point to 4750C. Thus, after the split, among the
NlArray entries of node 4750A, half may contain the ID of
47508 (which was not affected in the split), one quarter may
point to 4750C, and one quarter may point to 4850A. As inthe
case of the first type of node split discussed above, in some
embodiments, the entries of the candidate node 4750C whose
EL is full may be redistributed among more than two nodes
(including the candidate node itself)—e.g., a total of 4 nodes
may be used using 2 bits of the entry hash values for the
distribution. Under some circumstances, a split of a given
node may have to be propagated upwards towards the root of
the HDAG——e.g., a node N1 may have to be split due to an
insert, as a result N1’s parent may also have to be split, and so
on. The procedure of traversing the HDAG to reach a candi-
date node may have to be repeated in such cases, starting from
the root of the HDAG.

[0255] The split operations illustrated in FIGS. 47 and 48
assume that a new level (e.g., new child pointers) may be
added to the HDAG at the time when the split is attempted.
However, in at least some embodiments, based for example
on the hash value size and the number of bits used for navi-
gating each level of the HDAG, at some point the maximum
number of levels allowed by the hash function may be
reached, and no more levels may be added. In such a scenario,
instead of performing the hash-based splits illustrated in
FIGS. 47 and 48, a chain or linked list for new entries that
cannot be accommodated by the hash-based split may be
created (e.g., using a third type of HDAG node). For example,
in FIG. 48, if node 4850 becomes full and the limit on the
number of levels has been reached when an attempt to insert
a node “Tom” is made, a new node of type “chain” may be
created to store “Tom”’s entry, and a pointer to the chain node
may be inserted at a selected location in the candidate node.
The chain node may itself be modified to point to other chain
nodes if needed. In order to locate any given entry that has
been included in a chain node, a sequential scan of the chain
may be used instead of a hash-based lookup as is used at other
types of nodes. In this way, large numbers of entries may be
accommodated even if the HDAG becomes “unbalanced”,
although of course some of the speed advantages of hash-
based traversal may be lost, as the chained entries may have to
be traversed sequentially for a lookup. In various embodi-
ments, the selection of a reasonably long hash value and a
strong hash function may reduce the probability of having to
use chain nodes to below an acceptable threshold.

[0256] When a namespace entry E is to be deleted (e.g.,
when the corresponding file or directory is deleted at a client’s
request), the EL. node from which the entry is to be deleted
may be found using the hash-based traversal technique out-
lined above, in which respective subsequences of the hash
value for the name of the object are used as indexes at suc-
cessive levels of the HDAG. The EL node from which the

US 2015/0278243 Al

entry is to be removed may be referred to as the deletion target
node. If the deletion target contains more than one entry, E’s
entry may simply be deleted or marked as free, and no addi-
tional operations may be required. However, if there were no
other namespace entries at the deletion target (i.e., if remov-
ing E’s entry would result in an empty entry list), then the
deletion target node itself may have to be deleted. FIG. 49
illustrates an example of the first of two types of HDAG node
deletion operations, according to at least some embodiments.
In the depicted example, a request to delete “Juliet” from a
namespace represented by an HDAG is received. A hash value
for “Juliet” is computed, and successive subsequences of the
hash value are used to navigate from the root of the HDAG
towards node 4950. Node 4950 is an EL node with a single
entry (the entry for “Juliet” that is to be deleted) remaining.
The Juliet entry may be deleted (as indicated by the “X”
symbol and the accompanying label “1”.) Because removing
Juliet’s entry results in an empty entry list at node 4950, node
4950 may itself have to be deleted. The consequences of
deleting node 4950 on its parent node 4948 may differ
depending on the state of node 4948’s NIArray list.

[0257] In the depicted embodiment, the deletion target
node’s parent node may in general have one or more NIArray
elements that point to the deletion target node (which may be
termed “deletion target pointers™), and zero or more NIArray
elements that point to nodes other than the deletion target
node. Those NIArray elements that point to nodes other than
the deletion target node, and are next to the deletion target
pointers within the NI Array (e.g., at the immediately adjacent
lower indexes within the array) may be termed “neighbors” of
the deletion target pointers. If at least one neighbor exists in
4948’s NIArray list when the last entry of the deletion target
node is deleted, the neighbor pointer values may simply be
copied into the deletion target pointers in the depicted
embodiment. In the scenario depicted in FIG. 49, for
example, there are two deletion target pointers, 4901 and
4902, in parent node 4948 that point to the deletion target
node 4950 (as indicated by the fact that 4950°s ID 0xc44321

. . is stored in 4901 and 4902). Also, parent node 4948’s
NIArray comprises a neighbor element 4903, which stores a
node ID 0x32176 Thus, as indicated by the arrow labeled
2, when a deletion of the Juliet entry results in an empty entry
list at deletion target node 4950, and parent node 4948 com-
prises at least one neighbor in its NIArray, the contents of that
neighbor are copied into the NI1Array entries that were previ-
ously pointing to the deletion target node 4950. In addition, in
the depicted embodiment, the deletion target node 4950 may
be freed, e.g., by sending a request to release its storage space
to the storage subsystem. The replacement of the contents of
the deletion target pointer array elements by the contents of
the neighbor pointer is indicated by arrow 4904. It is noted
that in different embodiments, different techniques may be
used to designate neighbors of the deletion target pointers—
in some embodiments the NIArray entry that has the next
higher index within the NI Array may be selected as the neigh-
bor, for example.

[0258] If there were no neighbors in the NIArray entry of
the parent node of the deletion target node, the parent node
may be reorganized in a different way in some embodiments.
FIG. 50 illustrates an example of the second of two types of
HDAG node deletion operations, according to at least some
embodiments. As shown, the deletion target node 4950 com-
prises a single entry in its entry list. That sole remaining entry
(“Juliet”) is deleted, as indicated by the “X” symbol and the

Oct. 1, 2015

accompanying label “1”. In the depicted example scenario,
the NIArray of parent node 4948 does not contain any neigh-
bor elements (i.e., NIArray elements that do not point to the
deletion target node). The approach illustrated in FIG. 49 may
thus not be feasible, as there are no neighbor pointer values
available. Accordingly, a different approach may be taken, as
illustrated by the arrow labeled “2”: the type of the parent
node 4948 may be changed to EL (entry list) instead of
NlArray, and an empty entry list may be initialized for node
4948. The newly-initialized ELL node may be re-used, e.g.,
when a new node is to be added to the HDAG as a result of the
types of split operations described earlier. The deletion target
node 4950 may be freed, in a manner similar to that discussed
above with respect to FIG. 49. In various embodiments, the
modifications made at a given level of an HDAG may in some
cases require changes at other levels—e.g., in one embodi-
ment, when the type of node 4848 is changed as described
above, 4848’s parent node’s NIArray entries may have to be
modified, and the effects of the changes may propagate
upwards towards the root of the HDAG. As mentioned earlier,
in various embodiments the conditional write technique and/
or the distributed transaction technique described earlier may
be used to combine a desired number of the HDAG changes
resulting from a given insert or delete into an atomic opera-
tion.

[0259] FIG. 51 is a flow diagram illustrating aspects of
operations that may be performed in response to an insertion
of an entry into a namespace that results in a first type of
HDAG node split, according to at least some embodiments. A
simple example of such a split operation is provided in FIG.
47. As shown in element 5101, a request to add an entry E to
a namespace of a distributed multi-tenant storage service is
received. The request may be generated, for example, in
response to a command to create a file “Fname”, or open a file
“Fname”, issued by a client of a file system implemented at
the service. In one embodiment, the request may be generated
at a command interpreter component at a particular metadata
subsystem node, and may be received at a namespace man-
ager component at another metadata subsystem node (or at
the same metadata subsystem node). A hash function may
have been selected for namespace management for the tar-
geted file system (e.g., based on the strength of the hash
function, the expected size and/or performance requirements
of the file store, and/or on other factors). The hash function
may be used to generate a hash value Hvalue corresponding to
“Fname”, where Hvalue can be expressed as N subsequences
of M bits each (element 5104). In one implementation, for
example, Hvalue may comprise 8 subsequences of 8 bits
each, thus consuming at least 64 bits.

[0260] An HDAG comprising at least two types of nodes
(node identifier array (NIArray) nodes and entry list (EL)
nodes as described earlier) may have been set up for the
namespace, e.g., for the directory into which the new file
Fname is being added. An entry list node may be able to
accommodate up to Max-EL entries in the depicted embodi-
ment, where Max-EL. may depend on such factors as the
maximum lengths of the object names supported, the length
of the DFS-Inode addresses or identifiers stored in the entry
list, the number of bytes being used for an HDAG node, and
so on. Similarly, an NIArray may be able to accommodate up
to Max-NIDs elements in the depicted embodiment, with
Max-NIDs being dependent upon the size of the node IDs and
the size of the HDAG nodes. In at least one embodiment, a
threshold population of entries EL-threshold may be desig-

US 2015/0278243 Al

nated, such that if the number of entries exceeds EL-threshold
as a result of an insertion, a node split is to be initiated. In
some implementations, the default value for EL-threshold
may be set to Max-EL, e.g., splits may only be implemented
when the EL becomes full. Similarly, a threshold may be
defined for NIArray nodes in at least one embodiment, e.g.,
when the number of elements in the NIArray at a node
exceeds NID-threshold, the NIArray node may be split. NID-
threshold may be set to Max-EL by default in some embodi-
ments. Either EL-threshold, NI-threshold, or both E1-thresh-
old and NI-threshold may be implemented as configurable
parameters in some implementations.

[0261] Starting from the root of the HDAG (the zeroth
level), one or more HDAG levels may be navigated or tra-
versed to identify a candidate node CN into which E should be
added, using successive M-bit subsequences of Hvalue to
identify the specific node or nodes to be examined at each
level (element 5107). In at least some embodiments, each of
the nodes of the HDAG may correspond to a different logical
block, and the probability that a different extent at a different
storage subsystem node is being used for it than for the other
HDAG nodes may be high. If no candidate node is found
(which may in some cases happen if the metadata subsystem
has run out of space for the HDAG), as determined in element
5110), an error may be returned (e.g., “maximum number of
files allowed in a directory has been exceeded”) (element
5113). If a candidate node CN is found (as also determined in
element 5110), and its entry list has enough space to accom-
modate the new entry E (e.g., the addition of E would not
cause the EL length to exceed EL-threshold) (as detected in
element 5116), the new entry E may be written to one of the
currently unused entries in the list (element 5119). The modi-
fication to CN may be saved to persistent storage in the
depicted embodiment, e.g., at one or more metadata extent
replicas. In at least some embodiments, a DFS-Inode struc-
ture may be allocated for the object with name Fname, and a
pointer to that DFS-Inode structure may be included within E.
Inresponseto subsequent lookup requests for “Fname”, hash-
based navigation similar to that illustrated in elements 5104
and 5107 may be used (i.e., respective subsequences of the
hash value obtained for “Fname” may be used for respective
levels of HDAG navigation until the entry for “Fname” is
found).

[0262] If CN does not have enough space for E (e.g., if the
EL-threshold has been reached, or would be reached by the
insertion of E) (as also detected in element 5116), the number
of pointer’s in CN’s parent NI1Array list that point to CN may
be determined. If the parent node has only one pointer to CN
(or happens to be the root node of the HDAG) (as detected in
element 5122), a first type of node split operation (similar to
that illustrated in FIG. 47) may be initiated. Respective hash
values may be obtained for the object names in each of the
entries in CN’s list (element 5125), in addition to the Hvalue
already obtained for the new entry E. The hash values may be
used to distribute the entry list members and E into P groups
in the depicted embodiment (element 5128), e.g., using the
log 2P most significant bits of the hash values as the sorting/
distribution criterion. In one example implementation, P may
be setto 2, so only the single most significant bit may be used.
Each of the P groups may be stored as an entry list of a
respective new node to be added to the HDAG (element
5131). A new NIArray may be created, with approximately
1/Pth of the array elements pointing to (e.g., containing the
storage addresses or identifiers of) each of the P new nodes.

Oct. 1, 2015

CN’s header may be modified to indicate that it is an NI Array
node rather than an EL node, and the new NIArray may be
written into CN (element 5134). The contents of the P new
nodes of the HDAG and the modified CN may be saved to
persistent storage, e.g., at one or more storage subsystem
nodes. In some embodiments, the distributed transaction
technique described above may be used to combine some
subset or all of the changes to the HDAG into a single atomic
operation. In other embodiments, conditional writes of the
type described earlier may be used for at least some of the
HDAG nodes.

[0263] Ifthe number of NIArray elements that were point-
ing to CN from CN’s parent node exceeded one (as also
detected in element 5122), a second type of split operation
may be conducted on CN (as indicated by the “Go to 52017
element of FIG. 51). FIG. 52 is a flow diagram illustrating
aspects of operations that may be performed in response to an
insertion of an entry into a namespace that results in such a
second type of HDAG node split, according to at least some
embodiments. This type of split may be designated as a type-2
split herein, and the type of split illustrated in FIG. 51 may be
referred to as a type-1 split. In the type-2 split, some of the
members of CN’s entry list may be moved into Q new HDAG
EL nodes (where Q is no less than one), while some may
remain in CN, and the parent node’s NIArray pointers may be
changed accordingly. In the depicted embodiment, a sub-list
of CN’s entry list may be selected for redistribution among Q
new HDAG nodes NN1, NN2, NNQ and in CN itself. In one
implementation, Q may be set to 1 and approximately (or
exactly) half of the entry list may be considered for redistri-
bution, while in another implementation, three-fourths may
be considered. A respective hash value may be determined for
each member of the sub-list (element 5204). The hash values
may be used to arrange the sub-list members into Q+1 groups
(element 5207), e.g., using some number of most significant
bits of the hash values as the distribution criterion.

[0264] Q of the groups may be placed in respective new
HDAG EL nodes, while the remaining group may be retained
within CN. Some of the NIArray entries in CN’s parent node
that were pointing to CN may be set to point to the new nodes
NN1, NNQ (element 5210). In the depicted embodiment, the
HDAG nodes that were modified or created as a result of the
split (e.g., the Q new nodes, CN, and CN’s parent node) may
be written to persistent storage in a single atomic operation
(element 5213). The distributed transaction technique
described above may be used in some embodiments. In other
embodiments, a single atomic operation may not be used; for
example, the conditional write technique may be used for at
least some of the HDAG nodes.

[0265] It is noted that the technique whereby entry list
members are re-distributed in type-2 splits may differ in some
embodiments from that illustrated in FIG. 52. For example, in
some embodiments, the sub-list members may be selected in
such a way that they may be distributed entirely among the Q
new nodes. In some embodiments, the size of the sub-list may
be chosen at random—e.g., not all the type-2 splits that are
implemented at a given HDAG or at a given file store may
result in the same number of new nodes. In some embodi-
ments, an element of randomness may also be introduced into
type-1 splits—e.g., the EL-threshold used may be varied at
random within a range, or the number of new nodes P may be
selected at random from a range.

[0266] FIG. 53 is a flow diagram illustrating aspects of
operations that may be performed in response to a deletion of

US 2015/0278243 Al

an entry from a namespace, according to at least some
embodiments. As shown in element 5301, a request to remove
an entry E for a file store object with a name Fname from a
namespace of a distributed storage service may be received.
Such arequest may be generated as a result of a client request
to remove a file or directory, for example. Using a selected
hash function, a hash value Hvalue whose bit sequence can be
divided into N subsequences of M bits each may be obtained
(element 5304).

[0267] An HDAG generated for the namespace may be
navigated or traversed, starting from its root node, to identify
adeletion target node N1 which contains E (element 5307). At
each level of the HDAG, a successive subsequence of the N
subsequences may be used to identify the nodes to be read or
examined. If N1’s entry list includes at least one more entry
(as detected in element 5310), E’s slot within the entry list
may simply be marked as unused or free (element 5313) and
the deletion operation may be completed. In some implemen-
tations, e.g., to make it quicker to find non-empty entries, the
freed entry may be moved to one end of the list. Thus, for
example, if an entry list of length N contains two non-empty
entries, in one such implementation, those two non-empty
entries would be found at offset 0 and offset 1 within the list,
while the entries with offsets 2, 3, . . . , N-1 would be empty.
In some embodiments, the change to N1 may be made per-
sistent synchronously, while in other embodiments N1 may
be written to persistent storage at one or more extents asyn-
chronously with respect to the delete request for E.

[0268] If E was the last entry in N1’s entry list (as also
detected in element 5310), the NIArray of N1°s parent node
PN may be examined. PN’s NIArray may comprise one or
more elements NP1, NP2, . . ., pointing to (e.g., storing the
address or identifier of) N1. If the NIArray of PN also
includes at least one “neighbor” element NX that points to
some other node than N1 (as determined in element 5316), the
contents of NX may be copied to NP1, NP2, . .. so that PN no
longer contains a pointer to N1 (element 5319). In at least
some embodiments, the array elements NP1, NP2, . . . may
also or instead be marked as invalid.

[0269] If PN’s NIArray contains no such neighbor ele-
ments that point to nodes other than N1 (as also detected in
element 5316), PN may be modified in a different way in the
depicted embodiment. As shown in element 5322, PN’s type
may be changed from NIArray to EL, e.g., by modifying its
header. In addition, a new entry list may be initialized for
PN—e.g., at least some of the bytes that were being used for
the NIArray may be overwritten. In the depicted embodiment,
regardless of whether a neighbor element was found or not in
the parent node PN, the deletion target node may be marked as
free or unused (element 5325). Contents of each of the node
affected by the deletion, e.g., PN and N1, may be saved to
persistent storage at one or more extents of the storage sub-
system. In some embodiments a distributed transaction of the
type described earlier may be used to make at least the
changes shown in elements 5322 and 5325 part of a single
atomic operation. In another embodiment, the modifications
shown in element 5319 may also be combined with those of
elements 5322 and 5325 in a single atomic operation or dis-
tributed transaction. Conditional writes may be used for each
of the changes in at least one embodiment.

[0270] In various embodiments, configurable parameters
(e.g., defined either at the file system level, or for the file
storage service as a whole) may be used to determine various
aspects of the hash-based namespace management technique.

Oct. 1, 2015

Such configurable parameters may be specified for any com-
bination of: (a) the specific hash function(s) or hash function
family to be used, (b) the required lengths of the bit sequence
output by the hash function, (c) the lengths of various subse-
quences of the hash value output to be used for traversing
respective levels of the DAG, (d) the fan-out of the splits of
each type (e.g., the number of lists to which the entries of the
splitnode are to be assigned in each split type), (e) the number
(or fraction) of NIArray elements in which each new node’s
identifier is to be stored after a split, (f) the threshold popu-
lation levels for each type of split, or (g) the maximum per-
missible number of levels of the DAG or the total size of the
DAG. In some embodiments, additional constraints (e.g.,
extent placement constraints) may also be specified via
parameters—e.g., a constraint that all the HDAG nodes of the
first N levels be stored at the same extent may be specified, or
a constraint that no two HDAG nodes should be stored at the
same extent may be specified. In some embodiments, one or
more of these parameters may be modified based on collected
performance results. E.g., if namespace-related performance
is unsatisfactory with a given set of parameters for a particular
file system, the storage service may adjust the parameters—
either for the same file system (which may involve new
HDAGS to be created either on the fly or during a reconfigu-
ration downtime period) or for file systems created subse-
quently.

Client Session Metadata Management

[0271] In at least some embodiments, the distributed stor-
age service may support one or more stateful or session-
oriented file system protocols such as NFS. In some such
protocols, a client component of the service (e.g., a daemon
running at a client-side execution platform) may typically
create a session via one or more communications with a
server component (e.g., another daemon running at a server-
side execution platform), where the session has an associated
expiration time during which the service is able to expedite
responses to certain kinds of client requests, and where the
session may be extended or renewed under some conditions.
During a session, the client may, for example, obtain a lock on
an object such as a file, and the lock may remain in effect until
either the session ends or the client releases the lock. Subse-
quent accesses of the object from the client during the session
may not require additional locking According to some file
system protocols, such a time-bound grant of control of the
state of a file (or another type of file store object) to a client
from the server may be referred to as a “lease”. A single lease
may be associated with locks on a plurality of file store
objects, and may be renewed either explicitly or implicitly by
the client. In at least some embodiments, a session-oriented
protocol may require that session state information (e.g., alist
of locked files or directories associated with a client’s lease,
the expiration time of the lease, and so on) be maintained by
the “file server”. In a distributed file storage service, the
protocol-mandated responsibilities of the file server may be
distributed among the various subsystems described above—
e.g., the access subsystem, the metadata subsystem, and/or
the storage subsystem. Various factors such as scalable
response time and throughput goals, metadata durability
requirements, and so on, may be taken into consideration
when deciding the specific portions of the protocol-mandated
session-related functionality that should be implemented at
different subsystems in different embodiments.

US 2015/0278243 Al

[0272] FIG. 54 illustrates two dimensions of metadata that
may be maintained for session-oriented file system protocols
at a distributed storage service, according to at least some
embodiments. Information about all the objects that have
been opened and/or locked during a given client session may
have to be accessed efficiently by the storage service for
certain types of operations (e.g., for lease expirations, which
may require that all the locks of a session be released). This
first dimension of metadata information is represented by a
row in the conceptual metadata table 5401 shown, such as the
contents of metadata set 5401 that may be accessed for lease-
related operations on client session CS1. Metadata set 5401
may, for example, comprise lock state indicators (LSIs) (such
as NFS “StatelDs”) whose use is discussed in further detail
below, for a plurality of files, directories, links and the like. In
the example shown, for client session CS1 a write lock state
indicator W-lock is shown for directory D1, and R-locks (read
lock indicators) are shown for files F1 and FP. It is noted that
at least in some implementations, locking may be imple-
mented at the file level but not at the directory level.

[0273] The second dimension is the set of session-related
information that has to be maintained in accordance with the
file system protocol on any given object, such as metadata set
5420 on file F1. This second collection of metadata (which
may also include lock state indicators such as the R-lock of
client session CS1) may have to be accessed efficiently when,
for example, a new request to lock the object is received, or
when a request to view the state or attributes of the object is
received. In a file store that may store millions of objects
(many of which are at least potentially distributed across
multiple extents) and may have tens of thousands of concur-
rent client sessions with many different types of locking
modes and/or leasing modes supported, it may not be practi-
cal or efficient to store all of the session-related information
of'the type illustrated in FIG. 54 in a single centralized loca-
tion. FIG. 54 thus provides a conceptual view of at least two
kinds of session-related metadata that may have to be
accessed efficiently in various embodiments, and is not
intended to imply any particular implementation approach.

[0274] It is noted that in addition to the session-oriented
metadata 5401 required by a particular file system protocol,
other internal metadata (such as namespace management
metadata including HDAGs as described above, logical-
block-to-physical-page mappings as described earlier, etc.)
may also be maintained. The different types of metadata may
be managed by independent subcomponents of the metadata
subsystem in at least some embodiments—e.g., the manage-
ment of striping or logical-block-to-physical-page mappings
may be implemented orthogonally with respect to the man-
agement of client session information of the type illustrated in
FIG. 54. Furthermore, the distributed storage service may, at
least in on embodiment, support a plurality of stateful or
session-oriented file system protocols, each of which might
define respective session metadata object types and seman-
tics. For example, NFS may specify its set of metadata objects
and relationships, SMB may specify a different set, and so on.
In such scenarios, separate sets of session-oriented metadata
5401 may be maintained for file systems associated with each
of the different protocols.

[0275] In at least some embodiments, a client (such as an
NFS client implemented using one or more processes at a
compute instance of a provider network) may request an
establishment of a client session by transmitting a message to
the distributed storage service, formatted in accordance with

Oct. 1, 2015

the file system protocol. FIG. 55 illustrates an example of
client session metadata-related interactions between subcom-
ponents of a distributed storage service, according to at least
some embodiments. File system client 5501 may send a ses-
sion request 5550 to an access subsystem node 5512, e.g., an
access subsystem node whose IP address has been exposed or
advertised as an endpoint for the file system being used by the
client. In some implementations in which the file system
protocol being used is NFS, for example, the session request
may comprise a “SetClientID” request, and may include an
identification of the client (generated by the client) and a
unique, non-repeating object called a “verifier” (also gener-
ated by the client). The verifier may be used in some such
implementations by the service to determine whether a client
has rebooted since the session was originally instantiated;
thus, the submission of a second SetClientID request with a
different verifier may allow the service to expire the client’s
earlier session/lease. In response to the session request, the
file system protocol in use may require that (unless error
conditions are encountered) a session identifier 5563 (e.g., an
NFS “ClientID” object) ultimately be provided to the
requester by the service.

[0276] In at least some embodiments, the metadata sub-
system of the distributed storage service may be responsible
for managing the client session state information. For
example, the metadata subsystem may control the manner in
which client session state information is mapped to logical
blocks as well as the mapping of those logical blocks to
extents. The extents themselves may be stored at storage
subsystem nodes in some embodiments, and at the metadata
subsystem nodes in other embodiments as described earlier.
While the access subsystem nodes may cache session-related
metadata temporarily in some embodiments, the metadata
subsystem may be designated as the authoritative source of
client session information within the distributed storage ser-
vice.

[0277] Inthe depicted embodiment, upon receiving the cli-
ent session request, the access subsystem node 5512 may
transmit a session initialization request 5553 to a selected
metadata node 5522, requesting a session identifier to be
generated by the metadata subsystem. The parameters pro-
vided by the client (e.g., the client’s identifier and/or verifier)
may be passed along to the metadata node by the access node
in at least some embodiments. The metadata node 5522 may
generate a new logical block LB1 to store at least a portion of
the client’s session metadata. LB1 may include, for example,
a session identifier 5563 generated for the client session by
the metadata node, a lease timeout setting 5544 for the ses-
sion, and a “responsible access node” (RAN) field 5546 in the
depicted embodiment. The RAN field may identity the par-
ticular access node 5512 through which the client’s requests
during the ensuing session are expected to be received at the
back-end subsystems (e.g., the metadata subsystem or the
storage subsystem). The metadata node 5522 stores contents
of the logical block of the session metadata at one or more
pages of a selected extent 5580 in the depicted embodiment,
as indicated by arrow 5557. In some implementations, the
metadata node 5522 may submit a request to the storage
subsystem to store the logical block contents, while in other
embodiments, the metadata node 5522 may write the contents
to an extent that is managed by the metadata subsystem itself.
[0278] According to at least some embodiments, the ses-
sion identifier (e.g., NFS ClientID) selected or generated for
the client may be based at least in part on the storage address

US 2015/0278243 Al

of the logical block—e.g., the session identifier may be used
later as a parameter in a read operation to quickly look up the
client session metadata. For example, in one implementation,
each logical block may be assigned a 128-bit logical storage
address, and the 128-bit logical address used for LB1 may be
provided as the session identifier 5563 for the client, or may
be included or encoded within the session identifier 5563. In
another embodiment, the session identifier may be based at
least in part on the physical storage address of at least one of
the physical block(s) being used to store the session metadata
elements. The metadata node 5522 may transmit a response
5560 to the session initialization request 5553. The response
5560 may include the session identifier 5563, which may be
cached at the access node 5512 at cache 5578 and provided to
the requesting client 5502 in the depicted embodiment. In
some embodiments, the file system’s session establishment
protocol may require one or more addition interactions, e.g.,
a confirmation request message comprising the session iden-
tifier may be sent to the storage service by the client 5502 and
the client may then receive a response confirming the validity
of'the session identifier. Subsequent requests from the client,
such as file opens, closes, lock requests and the like may be
required to include the session identifier 5563 in at least some
embodiments. On receiving such later requests, the access
node 5512 may validate the client’s session identifier using
cache 5578. If the session identifier is missing from the cache,
the access node may submit a query to the metadata sub-
system regarding the session, and may only proceed with the
requested operation if the session is still open (or if a new
session is instantiated by the metadata subsystem in response
to the query).

[0279] As indicated earlier, in some embodiments a file
system protocol such as NFS may implement a leasing tech-
nique for efficiently managing concurrent accesses to file
system objects. In some such embodiments, a lease associ-
ated with a client session may represent a time-bound grant of
control of the state of one or more files, directories, links or
other client-accessible objects of a file system to the client. In
at least one embodiment, another metadata object, referred to
herein as a lock state indicator, may be used to represent the
locking state of a particular file system object by the storage
service. For example, in at least some implementations of the
NFS protocol, a lock state indicator may be termed a
“State]D”. A lock state indicator for an object such as afile F1
may be defined in at least some embodiments in the context of
to a given client session CS. Thus, for example, when a client
C11 locks afile F1 as part of a client session CS1, a lock state
indicator LSI1 for F1 that is specific to CS1 may be created;
and later, when a different client C12 locks file F1 as part of
aclient session CS2, a different lock state indicator LSI1 may
be generated by the storage service. In at least some embodi-
ment, an L.SI may incorporate, or include a pointer to, the
session identifier of the corresponding client session—e.g., in
one implementation, an NFS-compliant StatelD may include
a pointer to (or the actual value of) the corresponding Clien-
tID. Each open client session may have an associated lease
timeout period in some embodiments, at the end of which the
locks associated with all of the session’s LSIs may be freed.
In some embodiments, open state indicators (similar to L.SIs)
may be used to indicate that a particular file store object is
currently open for access by a client. An indication ofthe open
state and the locked state of a file store object may be repre-
sented using a single metadata structure (e.g., an open/lock
state indicator) in some implementations.

Oct. 1, 2015

[0280] According to the semantics of at least some file
system protocols implementing leases, one or more mecha-
nisms for lease renewals may be supported. For example, a set
of operation types may be defined, such that a request for an
operation of that set of operation types by a client during an
open session may automatically result in the renewal of the
lease for some specified lease renewal term. If a client issues
arequest to read a file F1 in such an embodiment, for example,
during a session CS1 for which the lease was set to expire at
time T1, the lease may be extended to a later time T2. In some
embodiments, APIs for explicitly renewing leases may also or
instead be supported. If none of the types of requests that
result in automatic (or explicit) lease renewal are received for
a specified period, the lease may expire. In some embodi-
ments, upon lease expiration, the corresponding locks (indi-
cated by LSIs) may be released by the storage service, file
system objects that were opened during the session and had
not been closed before the lease expiration point may be
closed, and at least in some embodiments the session meta-
data may be deleted from the metadata subsystem’s persistent
repository and/or from the access subsystem’s caches.

[0281] FIG. 56 illustrates alternative approaches to client
session lease renewal at a distributed storage service, accord-
ing to at least some embodiments. In the depicted embodi-
ment, an auto-renew operation list 5678 may be specified by
a file system protocol being used by the client. The auto-
renew operation list 5678 may indicate operation types that
when requested during a currently open session, result in the
automatic renewal of the lease(s) associated with the session.
For example, in some NFS implementations, the auto-renew
operation list may include (among others), read, write, open,
lock, unlock, and set-attributes operations. In some imple-
mentations, a renew operation for explicit renewal of a lease
may also be included in the operation list 5678.

[0282] In the depicted embodiment, an access subsystem
node 5512 may receive a file store operation request 5650. If
the operation request is of a type indicated in the auto-renew
operation list (or is an explicit request to renew the client’s
lease), the access node 5612 may have two options in the
depicted embodiment. The access node may either submit an
immediate or un-batched lease renewal request 5653 to the
metadata node 5522, or may defer the lease renewal for up to
some configurable time period and submit a batched lease
renewal request 5654 to the metadata node 5522. The batched
lease renewal request may, for example, comprise session
identifiers for a plurality of client sessions for which auto-
renewal operation requests or explicit renewal requests were
received during a time window. The batching of lease renewal
requests may help to reduce the renewal-related overhead
(e.g., communication overhead, processing overhead, or
both) at the metadata node 5522 and/or the access node 5512
in at least some embodiments.

[0283] In some embodiments, a configurable immediate
renewal threshold 5688 may be used by the access node to
determine whether a given lease renewal should be transmit-
ted immediately in response to the client’s operation request
5650, or whether the deferred batch approach should be used
for the client’s lease renewal. If the immediate renewal
threshold is set to X seconds, for example, and the client’s
lease is set to expire within X seconds of the time that opera-
tion request 5650 is received by the access node, an un-
batched or immediate lease renewal request 5653 may be
generated in the depicted embodiment. Otherwise, if more
than X seconds remain before the lease is set to expire, a

US 2015/0278243 Al

representation of the client’s renewal request may be stored in
batched renewals buffer 5679, and some number of renewals
may be sent later in a batched lease renewal request 5654 to
the metadata node 5522. The access node may have cached
the lease expiration times for various client sessions for which
the access node is responsible within session metadata cache
5578 in the depicted embodiment, and may use the cache
contents to make a determination as to whether to send the
immediate renewal request or a batched renewal request.
Independently of the lease renewal, the access node may
initiate the requested operations on behalf of the client (e.g.,
using cached client session metadata and/or cached logical-
block-to-physical-page mappings), and may provide the
appropriate file store operation response 5663 to the client
5502.

[0284] In order to perform various types of file store opera-
tions at the desired performance level, any of several
approaches to the storage of lock state information for file
store objects may be employed. FIGS. 57a and 575 illustrate
alternative approaches to lock state management for a ses-
sion-oriented file system protocol at a distributed storage
service, according to at least some embodiments. In one
approach, illustrated in FIG. 574, the lock state indicators
5705 of a particular file system may be distributed among
multiple extents. In some implementations of this approach,
the LSIs containing lock and/or open state information for the
various file store objects may be stored together with other
types of metadata maintained for the entries, e.g., the corre-
sponding namespace DFS-DirectoryEntries (namespace
entries), DFS-Inodes, and/or the logical-block-to-physical-
page mappings for the objects of the file system. Thus, for
example, LSI5705 A for the root directory may be stored with
other metadata 5704 A for the root directory at one or more
logical blocks of a particular extent, L.SI 5705B for directory
D1 may be stored with other metadata 5704B for directory D1
at a different extent, and so on. Similarly, respective open/
lock state information entries 5705C, 5705D, 5705E and
5705F may each be stored in respective logical blocks for
directory D2, directory D3, file F1, and file F2. In the second
approach, illustrated in FIG. 575, the open/lock state infor-
mation for all the objects of a given file system may be stored
in a consolidated fashion, e.g., within a single metadata extent
5754. When looking up all the LSI entries for a given client
session, e.g., for session invalidation operation, multiple
extents may have to be accessed if the distributed approach
illustrated in FIG. 57a is used, while only one or a small
number of extents may be required if the consolidated
approach illustrated in FIG. 575 is used. However, under
some circumstances the consolidated approach may result in
poorer resource utilization than the distributed approach, e.g.,
because LSIs may be deleted as the population of file store
objects changes, and/or because the amount of storage even-
tually required for lock/open state information for a given file
system may not be easy to predict at the time that the file
system is created and the extent for its L.SIs is obtained.

[0285] FIG. 58 is a flow diagram illustrating aspects of
client session metadata management operations that may be
performed a distributed storage service, according to at least
some embodiments. As shown in element 5801, a request to
initialize or create a client session may be received from a
client at an access subsystem node of a distributed storage
service that supports a stateful or session-oriented file system
protocol such as NFS or SMB. In some implementations, an
API requesting an explicit session initialization, similar to an

Oct. 1, 2015

NFS SetClientID API, may be used by the client. In other
implementations, the request to establish the session may be
implicit, e.g., a session may be initialized, if one does not
already exist, in response to an open() API invoked from the
client. The session request may in some implementations
include an identification of the particular client (e.g., a value
derived from an IP address and/or hostname of ahost at which
one or client processes are running) as well as a unique
single-use-only verifier value. If a client process exits and has
to be restarted, or if the host or compute instance at which the
client processes run is rebooted, at least in some embodiments
a new session may have to be initialized, and a different
verifier may be supplied to the storage service in the corre-
sponding session initialization request.

[0286] In the depicted embodiment, the metadata sub-
system of the distributes storage service may be responsible
for storing client session information at persistent storage at
one or more extents, while the access subsystem may be
configured to cache session state information, e.g., in volatile
memory and/or local persistent storage at the access node. In
response to receiving the session request, the access node
may transmit a request for a session identifier, e.g., in an
internal version of the client’s session request, to a selected
metadata node (element 5804). The metadata node may be
selected based on the client’s identification information in
some embodiments—e.g., in one embodiment two different
metadata nodes MN1 and MN2 may be selected for respec-
tive client sessions to be established for clients C11 and C12.
The selected metadata node may allocate a logical block
(mapped to some number of physical pages at metadata
extents using one of the mapping techniques described ear-
lier) for various elements of the client session metadata to be
stored, including for example the lease settings for the ses-
sion, the identity of the client, the identity of the responsible
access node for the client session, and so on (element 5807).
In at least some embodiments, a session identifier (e.g., NFS
ClientID) may be determined for the new session based at
least in part on the address at which the session metadata is
stored—e.g., a logical block address or a physical page
address may be incorporated within, or used as, the session
identifier. The session identifier and an initial lease setting
may be provided from the metadata node to the access node
(element 5810) in the depicted embodiment. In some embodi-
ments, only the session identifier may be provided to the
access node, and the access node may be able to retrieve other
elements of the session metadata from the storage subsystem
using at least a portion of the session identifier as a parameter
in a read request.

[0287] The session identifier and the lease information may
be cached in a session metadata cache by the access node, and
the session identifier may be returned to the client (element
5813). The client may include the session identifier as a
parameter in subsequent file store operation requests, e.g., in
open(), read(), write(), getattribute(), or close() calls
directed at files or directories of the file system. When the
access node receives such an operation request, it may look up
the session information in its local cache, e.g., to verify that
the client’s session is still open.

[0288] For some types of operations in the depicted
embodiment, e.g., write operations directed to files, locks
may be required in accordance with the concurrency manage-
ment techniques of the file system protocol in use. Upon
receiving a given file system operation request (comprising
the session identifier), such as a write or a read directed to a

US 2015/0278243 Al

file store object F1, the access node may determine whether
such a lock is needed (element 5816). If a lock is needed and
is not already cached at the access node, a corresponding
internal version of the operation request may be transmitted
from the access node to a metadata node (element 5819). The
metadata node may determine whether a conflicting lock state
indicator already exists (e.g., because F1 is already locked on
behalf of another client). If such a conflicting lock is found (as
determined in element 5820), the client’s file system opera-
tion request may be rejected (element 5821), e.g., by sending
an error message indicating that the targeted object is already
locked. If no conflict is found, the metadata node may deter-
mine a persistent storage location for a logical block to be
used to store state information for F1, including for example
the corresponding lock state indicator (element 5822). For
example, in some embodiments, one of the techniques illus-
trated in FIG. 574 or 576 may be used to allocate space for the
lock state indicator and/or other state metadata to be saved for
F1. The state information may be stored at the persistent
storage location (element 5825), and at least a portion of the
state metadata including the lock state indicator may be pro-
vided to the access node.

[0289] The requested operation (e.g., the read or write
directed to F1) may be completed, e.g., as a result of an
internal I/O request directed to the storage subsystem by
either the access node or the metadata node, and a corre-
sponding response may be sent to the client. The access node
may add the lock state indicator to its session metadata cache
and use the cached lock state indicator, caches lease settings
and/or the cached session identifier to respond to subsequent
requests from the client during the session element 5828),
e.g., without requiring interactions with the metadata sub-
system for at least some of the subsequent requests. When and
if the session expires, its metadata may be deleted from both
the access node’s cache and from the persistent storage allo-
cated at the request of the metadata node (element 5831) in
the depicted embodiment. It is noted that in accordance with
some file system protocols, at least a portion of the session-
related metadata may also be provided to and/or cached at
client-side components of the service, e.g., daemons instan-
tiated at the hosts at which applications utilizing the file
storage service are run.

[0290] FIG. 59 is a flow diagram illustrating aspects of
client session lease renewal operations that may be performed
a distributed storage service, according to at least some
embodiments. As described earlier, a lease may represent a
time-bound grant of control of the state of a set of files,
directories or other client-accessible storage objects to a cli-
ent from storage service. As shown in element 5901, a file
store operation request OR1 that belongs to a category of
operations that result in automatic lease renewals may be
received from a client C11 at an access node of the storage
service during a client session CS1. For example, a read,
write, open or close request directed towards a particular file
of a session-oriented file system such as NFS may be
received. Different file system protocols may define respec-
tive sets of leas-renewing operations in various embodiments.
The remaining operations illustrated in FIG. 59 may also be
performed in response to an explicit lease renewal command
in at least some embodiments. The request may include the
client’s session identifier (e.g., an NFS ClientID), which may
be usable as an index value for metadata records in the access
node’s session metadata cache.

Oct. 1, 2015

[0291] The access node may look up the lease information
(e.g., when the lease is set to expire) for the client session
(element 5904), e.g., in the session metadata cache. If the
lease is due to expire within some threshold time interval T (as
determined in element 5907), the access node may transmit
an immediate lease renewal request for CS1 to a metadata
node (element 5913). If, however, the lease is due to expire
after the threshold time interval T, a lease renewal request for
CS1 may be added to a buffered set of pending lease renewal
requests to be sent in a batch to the metadata node. If the
operation request OR1 requires storage operations to be per-
formed (e.g., if the request cannot be satisfied by data or
metadata already cached at the access node), the storage
operations may be requested by the access node (element
5916), regardless of whether an immediate renewal request
was sent or not. In the scenario where CS1’s lease renewal
request is buffered, one or more of the buffered lease renewal
requests may be transmitted to the metadata node asynchro-
nously with respect to the operation request OR1 (element
5919).

[0292] Inatleastsome embodiments in which the buffering
technique for lease renewal requests is implemented, a dif-
ferent validity timeout may be configured or set for the ver-
sion of the session metadata that is cached at the access node
(including for example the session identifier and the LSIs of
the session) than is set for the persistent version of the session
metadata stored at the request of the metadata node. For
example, in one implementation, if the lease timeout is set to
90 seconds in accordance with the file system protocol set-
tings, a validity timeout of 120 seconds may be used for
persistent session metadata records at the metadata sub-
system, while a validity timeout of 30 seconds (e.g., based at
least in part on the difference between the metadata sub-
system’s validity timeout and the protocol’s lease timeout)
may be set for the corresponding records at the access node’s
cache. Using such different timeout combinations, at least
some types of potential failures or delays at the access node
may be accommodated without causing clients to lose the
benefits of their leases prematurely. For example, with the
example timeout settings introduced above, since the access
node would be required to refresh its cached lease informa-
tion once every 30 seconds from the metadata subsystem in
any case, while the client’s actual lease is valid for 90 sec-
onds, a batching delay of a few seconds (e.g., a delay of less
than 30 seconds caused by a failover of the access node to a
replacement node) would typically not be expected to result
in any violations of the protocol lease semantics. Since lease-
renewing operations may be expected to occur fairly fre-
quently, the probability that the access node’s shorter validity
timeout results in extra traffic between the access node and the
metadata subsystem may be kept quite low in such implemen-
tations. It is noted that at least some of the techniques
described earlier, such as the use of conditional writes in
read-modify-write sequences, distributed transactions, and/
or replicated state machines in general, may also be used to
manage client session-related metadata as well. For example,
in one implementation, when a client session lease expires,
and a plurality of session-associated lock state indicators
distributed among various nodes of the service have to be
deleted, a distributed transaction may be used.

Connection Balancing Using Attempt Counts

[0293] At some distributed storage systems expected to
comprise thousands of nodes and expected to handle tens or

US 2015/0278243 Al

hundreds of thousands of concurrent client requests, load
balancing the client workload may be essential to achieving
the targeted performance and resource utilization goals. In at
least some provider network environments, a collection of
load balancing nodes may be established as the intermediar-
ies between various services and the clients that wish to
utilize the services. In some embodiments, such an interme-
diary load balancing layer may be established between client
devices and an access subsystem of a distributed storage
service. Network connections (such as NFS mount connec-
tions) established on behalf of clients to distributed storage
services may typically be fairly long-lived, and as a conse-
quence the problems of workload balancing may become
more complex than in environments in which user sessions
are typically shorter (e.g., some types of web server environ-
ments). A number of different techniques may be used to
manage workload levels of distributed storage service access
nodes, including, for example, a connection balancing tech-
nique described below that takes into account the number of
unsuccessful attempts that have previously been made to
establish a connection on behalf of a particular client. In some
embodiments, connections may be voluntarily terminated by
access nodes under certain workload conditions, as also
described below.

[0294] FIG. 60 illustrates a system in which a load balancer
layer is configured for a distributed storage service, according
to at least some embodiments. In the depicted embodiment,
the load balancer layer 6090 comprises a plurality of load
balancer nodes (LBNs) 6070, such as nodes 6070A, 60708,
and 6070C, implemented using resources of a provider net-
work 6002. The access subsystem 6010 of the distributed
storage subsystem comprises a plurality of access node (AN)
peer groups 6060, such as AN peer group 6060A comprising
ANs 6012A, 6012B and 6012C, and AN peer group 60608
comprising ANs 6012K, 6012[, and 6012M. The members of
an AN peer group may collaborate with each other for con-
nection rebalancing operations in at least some embodiments,
as described below in further detail. The members of an AN
peer group 6060 may be selected from among the plurality of
access subsystem nodes of the storage service based on any
combination of a variety of criteria in different embodi-
ments—e.g., based on availability requirements of the access
subsystem (e.g., such that a single localized power outage or
other infrastructure outage does not cause failures at all the
members of an AN group), latency requirements (e.g., such
that different members of the group are able to support similar
levels of latency), performance capacity requirements (such
that the total throughput that can be handled collectively by an
AN peer group is above some desired minimum). In some
implementations, an AN peer group may comprise a plurality
of'access nodes that are all implemented on hardware servers
mounted at a single rack. In other implementations, AN peer
group boundaries may not coincide with rack boundaries;
instead, other factors such as shared network address prefixes,
resilience-to-failure or the types/numbers of file stores being
handled may be used to define peer groups.

[0295] In at least some embodiments, the TCP/IP (Trans-
mission Control Protocol/Internet Protocol) family of proto-
cols may be used for communications between clients 180
and the storage service. A client 180 may transmit, a connec-
tion establishment request to an LBN 6070 whose network
address (e.g., a virtual IP address) has been exposed as an
endpoint for accessing the storage service. Various types of
physical or virtual networks 6022 may be used by the clients

Oct. 1, 2015

in different embodiments. In one embodiment, as described
earlier, some or all of the clients (such as compute instances
configured as part of an isolated virtual network) may be
instantiated at hosts within the provider network, and may
thus use an internal network to connect to the load balancer
nodes. In at least one embodiment, a load balancer node and
a client of the storage service may both execute at the same
host (e.g., as separate virtual machines), in which case no
off-host network connection may be required. In another
embodiment, a portion of a network external to the provider
network 6002, such as a portion of the Internet may be used.
In some embodiments, a plurality of LBNs may be configured
to respond to traffic directed at a single IP address associated
with the storage service. In one implementation, a particular
LBN 6070 may first tentatively accept the client’s connection
establishment request, and that LBN 6070 may then attempt
to establish a corresponding internal connection via network
fabric 6024 (e.g., an L3 network) of the provider network
6002 to an access node 6012. In at least some embodiments,
as described below, a given access node 6012 may reject the
internal connection request issued by the LBN under certain
workload conditions, and the LBN may consequently attempt
to find another access node 6012 that is willing to establish the
internal connection. In some embodiments, the specific cri-
teria that an access node uses to accept or reject an LBN’s
request may depend on the number of unsuccessful attempts
that the LBN has already made—e.g., the criteria may be
relaxed as the number of unsuccessful attempts increase, so
that the probability of connection establishment may increase
with the number of attempts.

[0296] In the depicted embodiment, each AN 6012 com-
prises two subcomponents: a local load balancer module
(LLBM) 6017 (e.g., LLBMs 6017A, 6017B, 6017C, 6017K,
60171 and 6017M), and an access manager (AM) 6015 (e.g.,
AM 6015A, 6015B, 6015C, 6015K, 6015L and 6015M).
After a connection request has been accepted, in some
embodiments an LLBM may be responsible for receiving
encapsulated TCP packets sent by an LBN on behalf of a
client over the network fabric 6024. In various implementa-
tions, the LBN may encapsulate the client’s TCP packets
using a different protocol (e.g., User Datagram Protocol
(UDP) or some proprietary protocol used internally within
the provider network), or using TCP itself—e.g., a client’s
TCP packet (including its headers) may be included within an
LBN TCP packet for the transmittal between the LBN and the
LLBM. The LLBM may unpack or de-capsulate the packets
before passing the packets on to a TCP processing stack
associated with the local AM. In some implementations the
LLBM may change contents of one or more client packet
headers such as the TCP sequence number before the transfer
to the TCP processing stack. In at least some embodiments,
the manipulations of the client packets (e.g., encapsulation/
unpacking, changing headers, etc.) by the combination of the
LBN and the LLBM may make it appear to the TCP process-
ing stack as though the packet was received on a TCP con-
nection established directly with the client 180 rather than via
the LBN and the LLBM. The AM 6015 may implement
storage service front-end logic, including, for example, cach-
ing metadata, managing interactions with the metadata sub-
system 120 and/or the storage subsystem 130, and so on. In
addition, in some embodiments, the AM 6015 may collect a
set of local workload metrics of various resources of the AN,
such as CPU metrics, network metrics, memory metrics and
the like, that can be used for decisions on accepting additional

US 2015/0278243 Al

connections. In one embodiment, the AMs of different peers
of a peer group 6060 may query each other regarding their
workload levels as described in greater detail below.

[0297] According to at least some embodiments, a connec-
tion request comprising an attempt count parameter may be
received at an access node 6012 from an LBN 6070 on behalf
of'a client 180. The attempt count parameter may indicate the
number of times the load balancer component has attempted
to establish a connection on behalf of that particular client
180. In one embodiment, a client may submit a request to
mount a file system (e.g., and NFS mount command), and the
LBN may generate its connection request in response to
receiving the mount command; the connection established as
aresult may betermed a “mount connection” and may be used
for several subsequent requests from the same client. In other
embodiments, other storage service commands or requests
(i.e., requests other than mount requests) may also or instead
trigger connection establishment requests. Upon receiving
the connection request, the AN may identify one or more
workload threshold levels (e.g., respective threshold levels
Thl, Th2, . .. for a plurality of resources) to be used for an
acceptance decision regarding the connection request. At
least one of the threshold levels may be based on the attempt
count parameter in some embodiments—e.g., for the first
attempt, the CPU workload threshold may be Tc, while for a
second attempt, the CPU workload level may be set to (Tc+
delta), making it more likely that the connection is accepted
on the second attempt. In one example scenario, if threshold
level Tc¢ is identified for CPU workload, and threshold level
Tn is identified for network workload, the connection may be
accepted if a CPU workload metric of the AN is below Tc and
a network workload metric is below Tn. In another scenario,
the connection may be accepted if either the CPU workload
metric or the network workload metric is below the corre-
sponding threshold. The workload metrics used for compari-
son with the thresholds may be computed over some time
interval in some embodiments as discussed below, e.g., in
order to reduce the impact of short-term workload fluctua-
tions on the connection acceptance decision.

[0298] In response to a determination that the local work-
load metric or metrics of the access subsystem node are below
the corresponding workload threshold levels, an indication
that the connection is accepted may be provided to the
requesting LBN 6070. Both the connection request and the
acceptance indication may be formatted in accordance with
the particular protocol being used for communication
between the LBNs and the LLBMs (e.g., UDP, TCP, or some
other protocol). The LBN 6070 may in some embodiments
confirm to the client that the connection has been accepted by
the AN. Ifthe AN 6012 selected by the LBN cannot accept the
connection (e.g., if the local workload metrics are above the
threshold identified), a connection rejection message may be
sent to the LBN. The LBN may then transmit its request (with
the attempt count parameter incremented) to another AN, and
this process may be repeated as illustrated in FIG. 61 and
described below, until either the connection is successfully
established or the number of attempts exceeds some maxi-
mum number of attempts permitted.

[0299] Aftera connectionis successfully established, when
the LBN 6070 receives a client-generated packet indicative of
a storage service request, the LBN may transmit the packet to
the LLBM at the access subsystem node (e.g., in an encapsu-
lated format). The LL.BM may manipulate the contents of the
message received from the LBN (e.g., to unpack the original

Oct. 1, 2015

client-generated packet), and pass the original packet on to
the AM 6015 for processing. Depending on the nature of the
operations that have to be performed in response to the stor-
age request, the AM may in some cases have to contact either
the metadata subsystem 120, the storage subsystem 130, or
both back-end subsystems. An indication of the storage ser-
vice request may be transmitted to the appropriate subsystem
(s). If the client’s service request requires a response, the
response may flow in the opposite direction—e.g., from the
back-end subsystem(s) to the AN, from the AN to the client
via the LBN. In at least some embodiments in which incom-
ing packets are encapsulated by the LBN and unpacked by the
LLBM, the LL.BM may similarly encapsulate outgoing pack-
ets and the LBN may unpack the packets before passing them
on to the client 180.

[0300] FIG. 61 illustrates example interactions between a
load balancer node and a plurality of access subsystem nodes
of a distributed storage service, according to at least some
embodiments. In the depicted embodiment, a virtual IP
address 6105 (e.g., an IP address that can be dynamically
associated with different network interfaces, e.g., at different
compute instances of a provider network’s virtual computing
service, and is not tied to a single network interface) may be
exposed to enable clients to submit connection requests and
other storage service requests to the storage service. One or
more LBNs 6070 may be responsible for accepting traffic
directed at the virtual IP address at any given time. In at least
some embodiments, the LBNs (and/or the ANs) may be
implemented using compute instances—e.g., a given LBN
may comprise a process executing at a compute instance of a
provider network’s virtual computing service, launched at a
commodity hardware server. The client may submit a con-
nection establishment request 6108 to the virtual IP address
6108.

[0301] In the depicted embodiment, the LBN 6070 may
receive the client’s request, and select a particular AN 6012B
as the first AN to which it should send a corresponding inter-
nal connection request. A number of different techniques may
be used to select the AN—e.g., random selection may be used
in some embodiments, round-robin selection may be used in
other embodiments, and so on. In some embodiments, each
LBN may be affiliated with a set of ANs (such as one or more
AN peer groups defined based on availability, latency, capac-
ity, or other criteria mentioned earlier), and the LBN may
cycle through its affiliated ANs in a designated order for its
connection attempts. In some embodiments, some number of
the LBNs and some number of the ANs may both be located
at the same rack, and an LBN may select an AN from within
its own rack first. The LBN may submit the first connection
attempt 6132A to an LLBM 6017B at the selected AN 6012B,
e.g. with the attempt count parameter set to 1 in the depicted
embodiment. (The attempt count parameter may be set to zero
for the first attempt in some implementations.) The decision
regarding acceptance or rejection of the request may be made
either by the AM 6015 at the targeted AN, by the LLBM at the
targeted AN, or by the combination of the LLBM and the AM
at the targeted AN, in different embodiments.

[0302] Ifthe first AN contacted sends a rejection 61234 A to
the LBN (e.g., based at least in part on one or more local
workload metrics 6115B exceeding corresponding thresh-
olds), the LBN may select a second AN (AN 6012A in the
depicted example). The LBN 6070 may submit a second
connection request attempt 6132B, with an incremented
attempt count parameter, to the LLBM 6017A at the second

US 2015/0278243 Al

AN. Ifarejection 6134B is received again (e.g., based on AN
6012A’s local workload metrics 6115A), the LBN 6070 may
select a third AN 6012C, and submit the third attempt 6132C
to its LLBM 6017C. In the depicted example scenario, the
third AN 6012C sends back an acceptance 6136 based on an
analysis of its local workload metrics 6115C, and the connec-
tion is established accordingly between the AM 6015C and
the client 180. After the successful establishment of the con-
nection, network packets between the storage service and the
client 180 flow along path 6157 in the depicted embodiment.
For example, the client may send a packet to the LBN 6070,
the LBN may send the packet (potentially using an encapsu-
lated or modified representation) to the LLBM 6017C, a
packet manipulator 6155 of the LLBM may unpack or modify
the received packet, and send the output of the manipulation
to the AM 6015C. AM 6015C may then initiate the storage
operations required, which may involve interactions with the
metadata and/or storage subsystems.

[0303] FIG. 62 illustrates examples of connection accep-
tance criteria that may vary with the number of connection
attempts made, according to at least some embodiments. In
the depicted embodiment, for a given resource, the native or
baseline capacity 6202 of an AN with respect to that resource
(such as CPU or network bandwidth) may be modified by a
failure overhead factor 6204 to arrive at an adjusted capacity
(AC) 6206 to be used for connection acceptance decisions.
For example, if the native CPU capability of the AN is X
operations per second, in one scenario, one fifth ofthat capac-
ity (0.2x) may be set aside to compensate for temporary
workload increases that might occur in the event of failures of
various kinds Thus, the adjusted CPU capacity would be setto
0.8x(X-0.2x) operations per second in such a scenario.

[0304] The local workload metrics collected for a given
resource at an AN may exhibit short-term variations as well as
long-term trends. Since the connections established for stor-
age service operations (such as mount connections set up for
NFS) may typically be long-lasting, it may not be advisable to
accept/reject the connections on the basis of just the most
recent metrics alone. Accordingly, an adjusted load metric
(AL) 6216 may be obtained from a combination of the most
recent metric 6212 and some set of historical metrics 6214
(e.g., metrics collected for that resource over the last 15
minutes or an hour). In some embodiments, a decay function
6215 (e.g., an exponential decay or a linear decay) may be
applied to historical metrics when computing the adjusted
load, e.g., to represent or model the reduction in the impor-
tance of the metrics over time.

[0305] To accept a connection request with a specified
attempt count parameter at an AN, the adjusted load 6216 for
a given resource may be compared to a threshold (expressed
in terms of the adjusted capacity for that resource) that is
dependent on the attempt count. Thus, as indicated in the
connection acceptance criteria table 6255, a connection
request with an attempt count parameter equal to one may be
accepted if the AL for the resource being considered is less
than or equal to 0.5* AC. If the connection request has failed
once, and the attempt count is accordingly set to 2, the con-
nection may be accepted of the AL is no greater than
0.55*AC. For an attempt count value of 3, the acceptance
criterion may be relaxed further so that the connection is
accepted if AL is no greater than 0.6*AC; for attempt
count=4, AL may have to be no greater than 0.75* AC, and for
attempt count 5, AL may have to be no greater than 0.85*AC.
Thus, the more times that a connection is rejected in the

Oct. 1, 2015

depicted embodiment, the more heavily loaded the AN that
eventually accepts it may be allowed to be. In other embodi-
ments, the opposite approach may be used, in which in order
to accept a connection request with an attempt count K, the
workload level of the accepting node may have to be lower
than the workload level required to accept the connection
request with a lower attempt count (K-L). Such an approach,
in which the relative ease of acceptance of a connection
decreases as the attempt count increases, may be used for
example in a scenario in which new connection attempts are
to be discouraged under heavy load conditions. The threshold
conditions, as well as the parameters and functions (e.g., the
decay function) used for the computation of the AC and the
AL, may all be configurable settings in at least some embodi-
ments. The number of distinct attempt count values for which
acceptance criteria are defined may vary in different embodi-
ments, and may itself be a configurable parameter in at least
one embodiment. In some embodiments, the parameters,
functions and/or thresholds may be dynamically modified
over time, e.g., based on an analysis of the results achieved. In
at least some embodiments, some of the acceptance criteria
may be the same for a range of attempt count values—e.g., for
attempt counts 1 and 2, the same threshold value may be used.

[0306] In some embodiments, as mentioned above, local
workload levels associated with more than one resource may
be taken into account when making connection acceptance
decisions. FIG. 63 illustrates examples of connection accep-
tance criteria that may be dependent on workload levels asso-
ciated with a plurality of resources, as well as on connection
establishment attempt counts, according to at least some
embodiments. Five examples of adjusted load levels and cor-
responding adjusted capacities are shown in array 6312.
AL[CPU] represents the adjusted CPU workload of the
access node, while AC[CPU] represents the adjusted CPU
capacity. AL[Net] represents adjusted network load, and
AC|[Net] represents adjusted network capacity. AL[Mem]
represents adjusted memory load, and AC[Mem] represents
adjusted memory capacity. AL[Dsk] represents adjusted local
storage device capacity load at the access node, and AC[Dsk]
represents adjusted storage device capacity. In at least some
embodiments, adjusted loads and capacities may also be
determined for logical resources such as open sockets that are
represented by operating system structures at the access
nodes. The adjusted workloads (AL[OSS]) and the adjusted
capacities (AC[OSS]) for such operating system structures
may be considered in connection acceptance decisions in at
least some embodiments. For each resource, the adjusted load
and the adjusted capacity may be expressed in the same
units—e.g., if the network load is expressed in packets/sec-
ond, the network capacity may also be expressed in packets/
second.

[0307] Thresholds expressed in terms of the AC array ele-
ments may be determined for each of various attempt count
values, as indicated in multi-resource connection acceptance
criteria table 6355. Different combinations of resources may
be taken into account for different attempt count levels in the
depicted embodiment—e.g., for attempt count=2, thresholds
for CPU, network, and memory may be compared to the
corresponding adjusted loads, while for attempt count=K,
only CPU loads and thresholds may be compared. The “&&”
symbols in table 6355 indicate Boolean “AND” s, so that, for
example, at attempt count=4, both the CPU and network
criteria may have to be met to accept a connection. In various
embodiments, different Boolean combinations of the load vs.

US 2015/0278243 Al

threshold comparisons for different resources may be used—
e.g., either ORs, ANDs, or both ORs and ANDs may be used.

[0308] FIG. 64 is a flow diagram illustrating aspects of
operations that may be performed to implement connection
balancing based on attempt counts at a distributed storage
service, according to at least some embodiments. As shown in
element 6401, a set of load balancer nodes’network addresses
(e.g., virtual IP addresses that may be accessible from within
an isolated virtual network of the type illustrated in FIG. 3)
may be exposed to clients to enable them to submit storage-
related requests to the service. A connection request from a
client may be received at a particular LBN, LBN1 (element
6404). LBN1 may in turn submit a corresponding connection
request, comprising an attempt count parameter indicating
the number of times an attempt to establish the connection has
been made, to a selected access node AN (element 6407).
Various approaches may be used to selecting the next AN to
which a connection establishment attempt is directed—e.g.,
the ANs may be selected at random, using a round-robin
approach, or based on some other factors such as how recently
a connection was established at the AN from LBN1.

[0309] The AN may determine adjusted local workload
metrics (WM) for one or more resources, and the threshold
values (WT) with which those workload metrics are to be
compared to accept/reject the connection (element 6410). At
least some of the thresholds may differ for different attempt
count values. The thresholds may be expressed in terms of
adjusted resource capacities in some embodiments, and the
adjusted resource capacities may in turn derived from native
or baseline resource capacities and failure adjustment factors.
In some embodiments, various Boolean combinations of
resource-specific acceptance conditions may be used, as indi-
cated in FIG. 63. If the acceptance criteria are met, e.g., if
WM<=WT for the resources being considered for the attempt
count value, as determined in element 6413, LBN1 may be
informed that the connection has been accepted (element
6428). After the connection is accepted, a packet representing
a storage request may be received at LBN1 from the client and
transmitted to an LLLBM (local load balancer module) at the
AN to which the connection was established (element 6431).
In some implementations, the client’s packets may be encap-
sulated by LBN1, and unpacked or extracted by the LLBM
(element 6434). The LLBM may transfer the packet to a
network processing stack at the AN, where the packet con-
tents may be analyzed to determine which storage service
operations are needed to respond to the client’s request.
Requests for those operations may be sent to other sub-
systems of the service as needed (e.g., to the metadata sub-
system and/or the storage subsystem) (element 6437).

[0310] If the criteria for accepting the connection are not
met at the AN selected by LBN1 (as also detected in element
6413), the connection attempt may be rejected (element
6417). If LBN1 has already made the maximum number of
attempts permitted (“Max-attempt-count™) to establish the
connection (as detected in element 6419), an error message
may be returned to the client in some embodiments (element
6422) indicating that connection establishment failed. In
many embodiments, the attempt-count-based acceptance cri-
teria may be selected in such a way that the likelihood of
failure to establish a connection is kept very low. The number
of connection establishment failures may be tracked, and
additional ANs may be configured as needed to keep the
number or fraction of failures below a target level.

Oct. 1, 2015

[0311] If LBN1 has not yet submitted the maximum per-
missible number of connection attempts for the client (as also
detected in element 6419), LBN1 may select another AN to
which a connection request should be submitted (element
6425). A new connection attempt, with the attempt count
parameter incremented, may be sent to the selected AN, and
the operations corresponding to elements 6407 onwards may
be repeated. In some embodiments, the same kinds of tech-
niques that were used by LBN1 to select the first AN may be
used for selecting ANs for subsequent attempts. In other
embodiments, LBN1 may change its criteria for selecting
ANs based on attempt count—e.g., the first AN may be
selected at random, while the next AN may be selected based
on how successful LBN1 has been in previous attempts at
connection establishment with various ANs. In one such
embodiment, an LBN may maintain statistics on its connec-
tion establishment success rate with various ANs, and may
use the statistics to select ANs that have been able to accept
connections more frequently in the past.

Connection Re-Balancing Using Peer Group Workload
Information

[0312] Connections established to file storage systems,
such as NFS mount connections, may often persist for a long
time. Information that was relevant to the connection accep-
tance decision at the time the connection request was
received, such as the resource workload levels of one or more
resources during some prior time interval, may not necessar-
ily be indicative of current conditions at the access node at
some later point during the connection’s lifetime. In one
example, an access node may have accepted a connection at a
time when its adjusted CPU load was X, but the connection
may still be in use at a later time when the adjusted CPU load
has remained at 1.5x for some period. Accordingly, in some
embodiments access nodes may attempt to re-balance their
workloads under some circumstances.

[0313] FIG. 65 illustrates an example of an access sub-
system of a distributed storage service at which client con-
nection re-balancing may be attempted based on workload
indicators of members of a peer group of access nodes,
according to at least some embodiments. An access node peer
group comprising three nodes, ANs 6512A, 6512B and
6512C is shown. Membership in a peer group may be deter-
mined based on a variety of factors in different embodiments
as mentioned above, including for example availability,
latency, capacity, co-location, or shared network address pre-
fixes. In the depicted embodiment, each peer group member
may collect at least two types of workload metrics: local
workload metrics 6155 (e.g., 6115A, 6115B or 6115C) such
as the observed loads discussed earlier for CPUs, network,
memory and other resources of the AN, and indicators 6502
of the workload levels at other AN of the peer group. In the
depicted example configuration, AN 6512A may collect peer
workload indicators 6502A from ANs 6512B and 6512C, AN
6512B may collect peer workload indicators 6502B from
ANs 6512A and 6512C, and AN 6512C may collect peer
workload indicators from ANs 6512A and 6512B. The man-
ner in which the workload indicators are collected, and/or the
nature or contents of the workload indicators, may differ in
different embodiments. In some embodiments, for example, a
given AN may simply send a connection establishment query
to each of its peers at some selected points in time, and receive
a response indicating whether the peer is willing to accept a
connection or not. In some embodiments in which connection

US 2015/0278243 Al

acceptance decisions may be affected by attempt count
parameters as discussed earlier, the connection establishment
queries may also include an attempt count parameter (e.g., an
attempt count parameter value of “1”” may be used). The AN
that sends the queries may keep track of how many connec-
tions each of the peers was willing to accept during some time
interval. In embodiments in which each AN is expected to
take its local workload metrics into account when making
connection acceptance decisions, the connection acceptance
rate may serve as an accurate and easy-to-obtain workload
indicator. In other embodiments, the ANs may simply
exchange digests or summaries of their local workload met-
rics periodically or according to some schedule, and such
summaries may be used as workload indicators. In some
embodiments, workload indicators may be sent only in
response to queries, while in other embodiments, workload
indicators may be pushed to a peer group member regardless
of whether a query was received or not. The specific tech-
nique used for sharing workload information may be selected
(or modified) in the depicted embodiment such that the total
traffic and processing overhead associated with queries/re-
sponses 6570 is kept below a threshold.

[0314] Each AN of the peer group has some set of estab-
lished or open connections, such as connections C11, C12, ..
. Cln at AN 6512A, connections C21, C22, ... C2p at AN
6512B, and connections C31, C32, C3n at AN 6512C. The
access nodes may each maintain respective connection sta-
tistics 6504 on their open connections—e.g., statistics 6504A
may be maintained at AN 6512A, statistics 6504B may be
maintained at AN 6512B, and statistics 6504C may be main-
tained at AN 6512C. Connection statistics 6504 maintained
for a particular connection Cjk may include, for example, a
measure of the age of the connections (e.g., when Cjk was
established), the amount and time distribution of traffic on the
connection, the number of storage operations (e.g., file opens,
reads, writes, etc.) that have been requested on the connec-
tion, the sizes of the packets, the number of packets dropped,
and so on. If and when an AN determines that a connection is
to be closed or disconnected for workload rebalancing, the
connection statistics 6504 may be analyzed, and one or more
connections may be closed in accordance with a closure target
selection criterion that may be based on the statistics.
Depending on the network protocol in use, the AN may send
the appropriate messages to initiate the disconnection to the
client; in some embodiments, an exchange of messages may
be required to cleanly close the connection.

[0315] Insomeembodiments, a decision to close a connec-
tion may be made at an access node 6512 if both of the
following conditions are met: (a) at least one local workload
metric 6115 at that access node exceeds a rebalancing thresh-
old and (b) a peer capacity availability criterion derived from
the collected workload indicators is met. For example, in one
scenario, if at least 70% of the peers of an AN 6512 would be
willing to accept a new connection based on the latest avail-
able workload indicators, and AN 6512°s own workload level
has reached a high enough level, AN 6512 may decide to close
or drop a selected connection. The local workload-based cri-
terion may be used so that connection rebalance are only
attempted when the AN’s local resources are heavily utilized
(e.g., so heavily utilized that no new connection would be
accepted). The peer capacity availability criterion may be
taken into account so that, for example, the client at the other

Oct. 1, 2015

end of a closed connection would have a reasonable chance of
establishing a connection and continuing its storage service
request stream.

[0316] Ifadecisionto close some connection (or a plurality
of connections) is made, in at least some embodiments the
particular connection(s) to be closed may be selected based
on an analysis of the connection statistics 6504 as mentioned
earlier. For example, in order to avoid oscillation scenarios in
which the same client’s connections are closed repeatedly at
different ANs, connections that have been in existence for
longer than some threshold time may be preferred as closure
targets. In some embodiments, connections whose traffic has
led to greater resource use (e.g., connections that have been
used for resource intensive storage operations) may be con-
sidered preferred targets for closure, relative to those connec-
tions that have led to more modest resource utilization at the
AN. The AN may then initiate the closure of the selected
connection(s) in accordance with the particular network pro-
tocol (e.g., TCP) that is being used. In response to the closure
of the connection, the client may try to establish another
connection in at least some embodiments. A load balancer
node (which may be the same LBN as the one that partici-
pated in the establishment of the now-closed connection, or a
different LBN) may then issue a connection establishment
request in behalf ofthe client to a selected AN (e.g., belonging
to the peer group of the AN that closed the connection). A
connection establishment protocol similar to that described
earlier may be used until an AN willing to accept the client’s
connection is found (or until the load balancer reaches the
maximum attempt count). If the peer capacity availability
criterion used to make the connection rebalancing decision is
a good indicator of the willingness of ANs to accept connec-
tions, the client may soon be able to establish a new connec-
tion to replace the closed connection. In at least some embodi-
ments in which a session-oriented file system is supported, it
may even be possible for the client to continue with the same
session that was being used before the connection rebalanc-
ing, as described below with reference to FIG. 68. In one
embodiment, after a particular AN has closed a connection
with a particular client C1, if the AN receives a subsequent
connection request on behalf of the same client C1 within a
re-connection threshold time interval, the connection request
may be rejected, e.g., so as to avoid scenarios in which the
same client has its connections closed repeatedly.

[0317] In one embodiment, a load balancer node may be
able to establish a replacement connection transparently with
respect to the client—e.g., without the client being informed
ormade aware that a closing of its connection was initiated by
an AN. The load balancer node may be able to detect (e.g., by
examining packet headers and/or packet body contents
received from the AN) that a rebalancing-related disconnec-
tion has been initiated. Upon discovering this, the load bal-
ancer node may select a different AN, and initiate establish-
ment a different connection to the different AN without
informing or notifying the client. If the load balancer node is
able to find an AN that accepts its request, in at least some
embodiments, from the client’s perspective nothing may
appear to have changed (i.e., no effects of the re-balancing
may be noticed by the client). In order to achieve such trans-
parency, in some implementations the load balancer and the
access subsystem may collectively have to manage connec-
tion state information transfer between the AN that initiated
the disconnection and the replacement AN.

US 2015/0278243 Al

[0318] FIG. 66 illustrates an example of connection accep-
tance and re-balancing criteria that may be used at an access
subsystem node, according to at least some embodiments. In
the depicted embodiment, attempt-count based connection
acceptance thresholds may be used, in a manner similar to
that described earlier. However, it is noted that in at least some
embodiments, the connection rebalancing technique used
may be orthogonal to the connection acceptance criteria—e.
g., connection rebalancing may be used in an embodiment
even if the attempt-count based connection acceptance tech-
niques described above are not used.

[0319] In the embodiment depicted in FIG. 66, as in some
of the examples discussed earlier, the threshold used for dif-
ferent attempt count levels may make it easier for a connec-
tion to be accepted as the attempt count value rises. Thus, for
example, to reject a connection request with attempt count
equal to three, an AN’s adjusted CPU load (AL[CPU]) would
have to exceed 0.6 times the adjusted CPU capacity (AC
[CPU]) and the AN’s adjusted network load (AL[net]) would
have to exceed 0.6 times the adjusted network capacity (AC
[net]). However, to reject a connection request with an
attempt count value of four, the adjusted loads for CPU and
network would each have to be higher (0.8 times AC[CPU]
and 0.8 times AC[net], respectively).

[0320] A combination of several factors contributes to the
example rebalancing criteria illustrated in FIG. 66. First, the
adjusted local load levels for the CPU, the network, or both,
must exceed 0.85 times the corresponding adjusted capacity.
Second, the adjusted memory load must exceed 0.85 times the
adjusted memory capacity. Third, at least 600 seconds must
have elapsed since the previous connection was closed at the
access node due to rebalancing. And fourth, the estimated
probability that a peer access node would be willing to accept
anew connection (which may be obtained from the workload
indicators collected from peer group members) may have to
exceed 70%. Thus, a fairly stringent set of tests may have to be
passed before a connection is terminated by an AN in the
depicted embodiment.

[0321] FIG. 67 is a flow diagram illustrating aspects of
operations that may be performed at an access subsystem of a
distributed storage service to implement connection re-bal-
ancing, according to at least some embodiments. As shown in
element 6701, a number of network connections C1, C2, . ..
, Cn may be established between an access node AN1 of a
multi-tenant distributed storage subsystem and one or more
load balancer nodes (LBNs) on behalf of one or more clients
of the service. As described earlier, in some embodiments a
set of network addresses (e.g., private virtual IP addresses
accessible from within an isolated virtual network of a pro-
vider network, or public accessible IP addresses accessible
from the Internet) may be configured for the load balancers
and exposed to the clients that wish to access the service. In
some embodiments, attempt-count based connection accep-
tance criteria may have been used to set up the connections
C1-Cn, while in other embodiments the connections may
have been established without taking attempt counts into
consideration. In some embodiments, AN1 may comprise a
local load balancer module (LLBM) that intercepts and
manipulates packets sent by LBNs as described earlier, while
in other embodiments AN1 may not include such LLBM:s.
[0322] During some time period T, AN1 may collect two
kinds of workload information (element 6704): local work-
load information pertaining to resources such as AN’s CPU
(s), AN’s networking modules, and the like, and peer group

Oct. 1, 2015

workload indicators obtained from a number of peer ANs. In
some embodiments, AN1 may submit workload-related que-
ries to a selected set of peers (e.g., members of a peer group
selected based on the kinds of criteria mentioned earlier), and
the workload indicators may be received in response; in other
embodiments, the AN of a peer group may proactively push
their workload indicators to each other at various points in
time. In some implementations, AN1 may submit a query to a
peer AN (e.g., AN-k) from time to time to determine whether
AN-k is willing to accept a connection, and AN-k’s response
may be considered an indicator of AN-k’s workload. In at
least one implementation, AN1 may send a connection estab-
lishment request to AN-k (e.g., instead of sending a query
about connection establishment). In some embodiments, an
AN may provide a digest or summary of its current local
workload estimates periodically to peer ANs, either on
demand or proactively. In one embodiment, the workload
indicators may be piggybacked on other types of messages
exchanged between the ANs, e.g., on administrative mes-
sages or heartbeat messages.

[0323] Several criteria may have to be met before a connec-
tion is selected for termination or closure in the depicted
embodiment. AN1 may determine whether its local workload
metrics exceed a first re-balancing threshold (element 6707).
The local workload metrics may be expressed using adjusted
values that take the variation of the raw metrics over time into
account in some embodiments, as described earlier with
respect to adjusted load (AL) calculations for connection
acceptance. The first re-balancing threshold may be
expressed in adjusted capacity units for various resources in
some embodiments, which set aside some of the native
resource capacity as overhead for dealing with possible fail-
ures, as also described earlier with respect to adjusted capaci-
ties (ACs) used for defining connection acceptance criteria. In
other embodiments, different sets of workload metrics and/or
resources may be taken into account for re-balancing deci-
sions than are considered for connection acceptance deci-
sions.

[0324] If the local workload-based criterion for re-balanc-
ing is met, AN1 may determine whether a peer capacity
availability criterion has been met (element 6710). The peer
capacity availability criterion may be determined based on
the workload indicators obtained from the other ANs in the
depicted embodiment. In at least some embodiments, meet-
ing the peer availability criterion may indicate that there is a
reasonably high probability that if AN1 terminates a connec-
tion to a particular client, that client would be able to establish
a connection with another AN. For example, in one scenario
the peer capacity availability criterion may be met if AN1’s
own adjusted loads (for some set of selected resources)
exceed 90% of the corresponding adjusted capacities, while
ANT1 can determine using peer workload indicators that at
least 75% of the members of its peer group have adjusted
loads of less than 40% of the corresponding adjusted capaci-
ties and would therefore be likely to accept new connections.
It is noted that at least in some embodiments, the most recent
workload indicator available at AN1 for a given peer AN-k
may represent AN-K’s state as of some previous point in time,
and that different workload indicators may represent different
points in time. In such embodiments, the peer capacity avail-
ability determination may therefore be based on approximate
rather than exact data.

[0325] Ifthe local workload criterion for re-balancing and
the peer capacity availability criteria are met, in the depicted

US 2015/0278243 Al

embodiment AN1 may also determine whether any of its
connections were closed for re-balancing purposes within the
last Tmin units of time (element 6713). For example, in the
scenario illustrated in FIG. 66, Tmin was set to 600 seconds.
If time greater than the minimum threshold setting Tmin has
expired since a previous rebalancing-related connection ter-
mination (or if this is the first re-balancing being attempted at
AN1), a particular connection Cj may be chosen for termina-
tion (element 6716) based on a closure target selection policy.
The target selection policy may take various factors into
account such as the age of the connection (connections that
were more recently established may be less likely to be
selected in some embodiments to avoid oscillating behavior),
the amount of traffic on the connection, the amount of usage
of'various AN resources (e.g., CPU, memory, etc.) associated
with the connection, and so on. In some embodiments AN1
may utilize the connection statistics 6504 to select a closure
target.

[0326] The termination or closing of the selected target
connection may be initiated from ANI in the depicted
embodiment (element 6719), e.g., in accordance with the
appropriate connection termination syntax of the networking
protocol in use. Upon determining that the connection has
been dropped/closed, the client on whose behalf Cj was estab-
lished may submit another connection establishment request
to a selected LBN (element 6722). The LBN may accordingly
establish a connection, e.g., with some other AN, e.g., AN2 on
behalf of the client (element 6725). It is noted that, depending
on the connection acceptance criteria in use and on the
changes in AN1’s workload, this new connection may in
some situations be accepted by AN1 itself.

[0327] Inthe embodiment depicted in FIG. 67, if the local
workload-based rebalancing threshold is not met (as detected
in element 6707), AN1 may continue its regular operations,
collecting local and peer workload information for subse-
quent time periods as indicated in element 6704. If one of the
other two conditions for re-balancing are not met—e.g., if the
peer capacity availability criterion is not met (element 6710)
or insufficient time has elapsed since the last connection was
terminated for re-balancing—AN1 may take some additional
actions in the depicted embodiment to deal with its excessive
workload. For example, as shown in element 6728, AN1 may
optionally start throttling one or more of'its open connections,
e.g., by delaying the processing of selected packets, or by
dropping packets. Of course, depending on the nature of the
networking protocol in use, such actions may in some cases
lead to retransmissions from the client, and may not be of
much immediate help, at least until enough time elapses that
a connection can be selected for termination. In another
embodiment, if the local workload-based rebalancing thresh-
old of element 6707 is met, AN1 may close a selected con-
nection even if at least one of the other two conditions (cor-
responding to elements 6710 and 6713) is not met. It is noted
that the three conditions that are considered to determine
whether to close a connection in FIG. 67 may be checked in a
different order than that shown in some embodiments, e.g., in
some embodiments it may be the case that the time that has
elapsed since the previous termination may be checked first,
or that the peer capacity availability may be checked first.

[0328] Insomeembodiments, at least one of the file system
protocols supported at a distributed storage service may be
session-oriented as described earlier, e.g., session identifiers
may be generated for clients and associated with resource
leases and/or locks. The termination of a client connection for

Oct. 1, 2015

rebalancing may result in undesired session termination in
such embodiments unless proactive preventive steps are
taken. FIG. 68 is a flow diagram illustrating aspects of opera-
tions that may be performed at a distributed storage service to
preserve client sessions across connection re-balancing
events, according to at least some embodiments. When a
client session CS1 is established for a client C11, e.g., in
response to an explicit session establishment request or when
the client C11 issues a particular type of storage request,
corresponding session metadata may be stored by or at a
metadata subsystem node of the service which receives the
session establishment request from a particular AN. As shown
in element 6801, that session metadata may include a field
identifying the particular access node that is being used for
CS1 (e.g., the AN that submitted the session establishment
request to the metadata node and is intended to be used for
subsequent storage requests from C11). As also illustrated in
FIG. 55, such a field may be referred to as the “responsible
access node” (RAN) field. The client C11 may specify a
session identifier (e.g., an NFS “ClientID” parameter) that is
generated as part of the session metadata in its subsequent
storage-related requests sent via AN1.

[0329] As shown in element 6804, AN1 may subsequently
determine that C11 ’s connection is to be terminated/closed
for rebalancing, e.g., using the kinds of re-balancing criteria
discussed above. Accordingly, the RAN field of the session
metadata may be set to “null” (or to some other value indi-
cating that no AN is responsible) (element 6807). The change
to the metadata may be performed by the metadata node at the
request of AN1 in some embodiments. The connection may
be terminated at the initiative of AN1.

[0330] Eventually, after C11 realizes that the connection is
closed, C11 may send another request, e.g., to aload balancer
node, to try to re-establish connectivity to the storage service
(element 6810). A different access node (AN2) may respond
to the connection establishment request submitted on behalf
of C11 by the LBN to accept the connection (element 6813).
Client C11 may submit a storage service request (e.g., an
open(), read(), or write()) with the same session identifier
that it was using prior to the connection’s termination (ele-
ment 6816). AN2 may receive such a storage service request,
and send a query to the metadata subsystem to determine the
status of the metadata corresponding to the client-specified
session identifier (element 6819). If the metadata subsystem
is able to find session metadata for the specified session
identifier, and if the RAN field of that metadata is set to “null”
(as detected in element 6822), this may indicate to AN2 that
it is acceptable for AN2 to continue CL.1’s session with the
existing metadata, and to assume responsibility for Cl1’s
session. Accordingly, the RAN field of CS1°s metadata may
be set to AN2’s identifier (element 6825) and CS1 may be
resumed. Otherwise, if for some reason CS1’s metadata
records are not found, or if the RAN field in CS1’s metadata
was not set to “null”, a new session may be created for the
client (element 6828) in the depicted embodiment. Establish-
ing the new session may involve the acquisition of one or
more locks/leases in at least some embodiments, and may in
such embodiments require more resources than if the current
session could be resumed with AN2 as the responsible access
node.

[0331] It is noted that in various embodiments, operations
other than those illustrated in the flow diagrams of FIGS. 8a,
85,9,10,15, 20, 21, 22, 23, 27, 28, 32, 38,41, 42, 43, 44, 51,
52,53, 58, 59, 64, 67 and 68 may be used to implement the

US 2015/0278243 Al

distributed file storage service techniques described above.
Some of the operations shown may not be implemented in
some embodiments, or may be implemented in a different
order, or in parallel rather than sequentially. In at least some
embodiments, the techniques described above may be used
for managing workload variations at other types of storage
services than file stores—e.g., similar techniques may be used
for storage devices that expose volume-level block storage
interfaces, unstructured storage devices that allow arbitrary
storage objects to be accessed using web service interfaces
rather than file system interfaces, or for accessing tables or
partitions of relational or non-relational databases.

Use Cases

[0332] The techniques described above, of implementing
highly scalable, available and durable file storage systems
that support one or more industry-standard file system inter-
faces may be useful in a number of scenarios and for a variety
of customers. Many customers of provider networks have
already migrated several of their applications to the cloud to
take advantage of the enormous amount of computing power
that can be harnessed. However, several constraints may
remain for such applications with respect to the ability to store
very large amounts of data (e.g., petabytes) within a single
file, and then to access the file from large numbers of clients
concurrently without impacting performance. Scalability
constraints may also remain with respect to file system direc-
tory hierarchies—e.g., the number of objects a given direc-
tory can store and the number of levels a directory hierarchy
may contain. The ability to seamlessly add nodes to the vari-
ous file storage service subsystems, such as the access sub-
system, the metadata subsystem and the storage subsystem
may help alleviate such scalability limitations. The logical
separation of the metadata from the data may help achieve
desired distinct levels of performance, availability and dura-
bility for both metadata and data, without imposing the
requirements of the metadata (which may have more stringent
needs) on the data. For example, metadata may be preferen-
tially stored on SSDs, while data may be accommodated on
less expensive rotating disk-based devices. Other storage sys-
tems in provider network environments may not support the
familiar file system interfaces and the consistency semantics
of the kinds that many applications are designed to rely on.

[0333] The optimistic concurrency control mechanisms
described, including the conditional write mechanism for
single-page writes and the distributed transaction scheme for
multi-page writes, may help to avoid some of the types of
bottlenecks that typically arise when more traditional lock-
ing-based schemes are used. Extent oversubscription and
variable stripe sizing may be used to manage tradeoffs
between space utilization efficiency and metadata size. The
offset-based congestion control techniques may help improve
overall /O performance for certain types of applications, e.g.,
applications in which a given configuration file may have to
be read by large numbers of concurrent client threads at
application startup. The object renaming technique may help
ensure file system consistency in the event of metadata node
failures that may inevitably arise in large distributed file
stores. The namespace management techniques discussed
earlier may be used to implement file systems with millions of
objects (even within a single directory) while maintaining
relatively flat response times as the number of objects
increases. The client session management caching and lease
renewal techniques may help keep session-related overhead

Oct. 1, 2015

low. The load balancing and rebalancing approaches may
help to reduce the likelihood of overload-induced failures.

Tlustrative Computer System

[0334] In at least some embodiments, a server that imple-
ments a portion or all of one or more of the technologies
described herein, including the techniques to implement the
components of the access, metadata and storage subsystems
of the distributed file storage service and/or load balancer
nodes may include a general-purpose computer system that
includes or is configured to access one or more computer-
accessible media. FIG. 69 illustrates such a general-purpose
computing device 9000. In the illustrated embodiment, com-
puting device 9000 includes one or more processors 9010
coupled to a system memory 9020 (which may comprise both
non-volatile and volatile memory modules) via an input/out-
put (I/0) interface 9030. Computing device 9000 further
includes a network interface 9040 coupled to I/O interface
9030.

[0335] In various embodiments, computing device 9000
may be a uniprocessor system including one processor 9010,
or a multiprocessor system including several processors 9010
(e.g., two, four, eight, or another suitable number). Processors
9010 may be any suitable processors capable of executing
instructions. For example, in various embodiments, proces-
sors 9010 may be general-purpose or embedded processors
implementing any of a variety of instruction set architectures
(ISAs), such as the x86, PowerPC, SPARC, or MIPS ISAs, or
any other suitable ISA. In multiprocessor systems, each of
processors 9010 may commonly, but not necessarily, imple-
ment the same ISA. In some implementations, graphics pro-
cessing units (GPUs) may be used instead of, or in addition to,
conventional processors.

[0336] System memory 9020 may be configured to store
instructions and data accessible by processor(s) 9010. In at
least some embodiments, the system memory 9020 may com-
prise both volatile and non-volatile portions; in other embodi-
ments, only volatile memory may be used. In various embodi-
ments, the volatile portion of system memory 9020 may be
implemented using any suitable memory technology, such as
static random access memory (SRAM), synchronous
dynamic RAM or any other type of memory. For the non-
volatile portion of system memory (which may comprise one
or more NVDIMMs, for example), in some embodiments
flash-based memory devices, including NAND-flash devices,
may be used. In at least some embodiments, the non-volatile
portion of the system memory may include a power source,
such as a supercapacitor or other power storage device (e.g.,
a battery). In various embodiments, memristor based resistive
random access memory (ReRAM), three-dimensional
NAND technologies, Ferroelectric RAM, magnetoresistive
RAM (MRAM), or any of various types of phase change
memory (PCM) may be used at least for the non-volatile
portion of system memory. In the illustrated embodiment,
program instructions and data implementing one or more
desired functions, such as those methods, techniques, and
data described above, are shown stored within system
memory 9020 as code 9025 and data 9026.

[0337] Inone embodiment, [/O interface 9030 may be con-
figured to coordinate 1/O traffic between processor 9010,
system memory 9020, and any peripheral devices in the
device, including network interface 9040 or other peripheral
interfaces such as various types of persistent and/or volatile
storage devices used to store physical replicas of data object

US 2015/0278243 Al

partitions. In some embodiments, I/O interface 9030 may
perform any necessary protocol, timing or other data trans-
formations to convert data signals from one component (e.g.,
system memory 9020) into a format suitable for use by
another component (e.g., processor 9010). In some embodi-
ments, [/O interface 9030 may include support for devices
attached through various types of peripheral buses, such as a
variant of the Peripheral Component Interconnect (PCI) bus
standard or the Universal Serial Bus (USB) standard, for
example. In some embodiments, the function of /O interface
9030 may be split into two or more separate components,
such as a north bridge and a south bridge, for example. Also,
in some embodiments some or all of the functionality of I/O
interface 9030, such as an interface to system memory 9020,
may be incorporated directly into processor 9010.

[0338] Network interface 9040 may be configured to allow
data to be exchanged between computing device 9000 and
other devices 9060 attached to a network or networks 9050,
such as other computer systems or devices as illustrated in
FIG. 1 through FIG. 68, for example. In various embodi-
ments, network interface 9040 may support communication
via any suitable wired or wireless general data networks, such
as types of Ethernet network, for example. Additionally, net-
work interface 9040 may support communication via tele-
communications/telephony networks such as analog voice
networks or digital fiber communications networks, via stor-
age area networks such as Fibre Channel SANs, or via any
other suitable type of network and/or protocol.

[0339] In some embodiments, system memory 9020 may
be one embodiment of a computer-accessible medium con-
figured to store program instructions and data as described
above for FIG. 1 through FIG. 68 for implementing embodi-
ments of the corresponding methods and apparatus. However,
in other embodiments, program instructions and/or data may
be received, sent or stored upon different types of computer-
accessible media. Generally speaking, a computer-accessible
medium may include non-transitory storage media or
memory media such as magnetic or optical media, e.g., disk
or DVD/CD coupled to computing device 9000 via I/O inter-
face 9030. A non-transitory computer-accessible storage
medium may also include any volatile or non-volatile media
such as RAM (e.g. SDRAM, DDR SDRAM, RDRAM,
SRAM, etc.), ROM, etc., that may be included in some
embodiments of computing device 9000 as system memory
9020 or another type of memory. Further, a computer-acces-
sible medium may include transmission media or signals such
as electrical, electromagnetic, or digital signals, conveyed via
a communication medium such as a network and/or a wireless
link, such as may be implemented via network interface 9040.
Portions or all of multiple computing devices such as that
illustrated in F1G. 69 may be used to implement the described
functionality in various embodiments; for example, software
components running on a variety of different devices and
servers may collaborate to provide the functionality. In some
embodiments, portions of the described functionality may be
implemented using storage devices, network devices, or spe-
cial-purpose computer systems, in addition to or instead of
being implemented using general-purpose computer systems.
Theterm “computing device”, as used herein, refers to at least
all these types of devices, and is not limited to these types of
devices.

Oct. 1, 2015

CONCLUSION

[0340] Various embodiments may further include receiv-
ing, sending or storing instructions and/or data implemented
in accordance with the foregoing description upon a com-
puter-accessible medium. Generally speaking, a computer-
accessible medium may include storage media or memory
media such as magnetic or optical media, e.g., disk or DVD/
CD-ROM, volatile or non-volatile media such as RAM (e.g.
SDRAM, DDR, RDRAM, SRAM, etc.), ROM, etc., as well
as transmission media or signals such as electrical, electro-
magnetic, or digital signals, conveyed via a communication
medium such as network and/or a wireless link.

[0341] The various methods as illustrated in the Figures and
described herein represent exemplary embodiments of meth-
ods. The methods may be implemented in software, hard-
ware, or a combination thereof. The order of method may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc.

[0342] Various modifications and changes may be made as
would be obvious to a person skilled in the art having the
benefit of this disclosure. It is intended to embrace all such
modifications and changes and, accordingly, the above
description to be regarded in an illustrative rather than a
restrictive sense.

What is claimed is:

1. A distributed storage service, comprising:

a plurality of computing devices that implement, using
resources of a provider network that includes a plurality
of availability containers with independent failure pro-
files:

a service access subsystem configured to receive client
requests formatted according to one or more industry-
standard file system interfaces from a plurality of
compute instances of a virtual computing service
implemented at the provider network;

a metadata subsystem configured to implement sequen-
tial consistency semantics on at least a subset of file
store operations; and

a storage subsystem configured to store at least respec-
tive data portions of one or more file stores, wherein a
particular data portion of a particular file store of the
one or more file stores is organized as a replica group
comprising a plurality of extent replicas including a
first extent replica at a first availability container of
the provider network and a second extent replica at a
second availability container of the provider network;

wherein, in response to a particular client request received
at the service access subsystem, the plurality of comput-
ing devices is configured to:

perform an atomic metadata operation comprising a
group of file system metadata modifications, includ-
ing a first metadata modification at a first node of the
metadata subsystem and a second metadata modifica-
tion at a second node of the metadata subsystem; and

apply at least one modification at a plurality of extent
replicas at the storage subsystem prior to a transmis-
sion of a response to the particular client request.

2. The system as recited in claim 1, wherein the plurality of

computing devices is configured to:

utilize a replicated state machine to generate a response to
a particular read request for which respective physical
read operations are performed at a plurality of storage
devices.

US 2015/0278243 Al

3. The system as recited in claim 1, wherein the service
access subsystem, the metadata subsystem and the storage
subsystem are each implemented using respective sets of
resources of the provider network, wherein the plurality of
computing devices is further configured to:

detect one or more of: (a) a potential performance bottle-

neck at a particular subsystem of a set of subsystems
comprising the service access subsystem, the metadata
subsystem and the storage subsystem or (b) a node
health state change requiring additional resources to be
deployed at the particular subsystem; and

initiate a deployment of additional resources of the pro-

vider network to the particular subsystem, without
modifying the number of resources used for remaining
subsystems of the set.

4. The system as recited in claim 1, wherein the plurality of
computing devices are further configured to:

utilize a consensus-based protocol to replicate log records

of changes to a state of the particular file store; and
store a representation of the state of the particular file store
as a plurality of erasure-coded replicas.

5. The system as recited in claim 1, wherein the plurality of
computing devices are further configured to:

store, at a particular node of the storage subsystem, a par-

ticular extent replica belonging to a second replica group
that includes at least a subset of data content of one or
more file stores including the particular file store; and

store, at the particular node of the storage subsystem, a

particular extent replica of a different replica group that
includes at least a subset of metadata of one or more file
stores including the particular file store.

6. The system as recited in claim 1, wherein the plurality of
computing devices are further configured to:

distribute metadata and data of the particular file store

among a plurality of physical storage devices including
at least one solid-state disk (SSD device) and one rotat-
ing disk device.

7. A method, comprising:

performing, by one or more computing devices:

receiving a particular client request, formatted in accor-
dance with an industry-standard file system interface,
at an access subsystem of a multi-tenant storage ser-
vice;

determining, at the access subsystem, that the client
request meets authentication and authorization
requirements;

initiating, in response to the particular client request, an
atomic metadata operation comprising a group of file
system metadata modifications, including a first
metadata modification at a first node of a metadata
subsystem of the storage service and a second meta-
data modification at a second node of the metadata
subsystem;

verifying, in response to the particular client request,
that a plurality of replicas of at least one data modifi-
cation at a storage subsystem of the storage service
have been saved; and

storing a record of completion of the particular client
request, wherein the record is to be used, asynchro-
nously with respect to the particular client request, to
generate a billing amount to a customer of the storage
service in accordance with a usage-based pricing
policy.

Oct. 1, 2015

8. The method as recited in claim 7, wherein the access
subsystem, the metadata subsystem and the storage sub-
system are each implemented using respective sets of
resources of a provider network, further comprising perform-
ing, by one or more computing devices of the plurality of
computing devices:

initiating, in response to a detection of a triggering condi-

tion, a deployment of additional resources of the pro-
vider network to a particular subsystem of a set of sub-
systems comprising the access subsystem, the metadata
subsystem and the storage subsystem, without modify-
ing the number of resources used for remaining sub-
systems of the set.

9. The method as recited in claim 7, further comprising
performing, by the plurality of computing devices:

utilizing a consensus-based protocol to replicate log

records of changes to a state of the particular file store;

and

storing a representation of the state of the particular file

store as a plurality of erasure-coded replicas.

10. The method as recited in claim 7, further comprising
performing, by the plurality of computing devices:

storing, at a particular node of the storage subsystem, a

particular replica belonging to a replica group storing

data content of one or more file stores; and

storing, at the particular node of the storage subsystem, a

particular replica of a different replica group storing

metadata associated with one or more file stores.

11. The method as recited in claim 7, further comprising
performing, by the plurality of computing devices:

allocating, in response to one or more write requests

directed to a particular file store object, a first set of
blocks of storage for write contents indicated in the write
requests, and a second set of blocks of storage for meta-
data associated with the file store object, wherein sizes
of blocks of the first set are selected according to a data
block sizing policy, wherein sizes of blocks of the sec-
ond set are selected according to a metadata block sizing
policy, wherein at least one block of the first set differs in
size from at least one block of the second set.

12. The method as recited in claim 11, further comprising
performing, by the plurality of computing devices:

issuing, from the access subsystem, in response to a client

request directed to the particular file store object subse-

quent to said allocating,

a page /O (input/output) request to the storage sub-
system for a particular metadata page to which a
metadata block of the second set is mapped for physi-
cal storage, wherein a size of the metadata page dif-
fers from a size of the metadata block; and

a second page 1/O request to the storage subsystem for a
particular data page to which a data block of the first
set is mapped for physical storage, wherein a size of
the data page differs from a size of the data block, and
wherein the size of the data page differs from the size
of the metadata page.

13. The method as recited in claim 11, wherein the write
request is received from a first client of the multi-tenant
storage service, further comprising performing, by the plu-
rality of computing devices:

determining, corresponding to a particular block of the

second set, a reallocation ineligibility timeout, indica-

US 2015/0278243 Al

tive of a minimum time period for which the particular
block is not to be allocated to store metadata for another
file store object; and

determining, corresponding to the particular block, a cach-

ing timeout indicative of a maximum period for which
the particular block is to be retained at a node of the
access subsystem before being re-validated with the
metadata subsystem, wherein the caching timeout is set
smaller than the reallocation ineligibility timeout.

14. The method as recited in claim 12, further comprising
performing, by the plurality of computing devices:

retrieving, at the access subsystem from the metadata sub-

system, the particular block;

caching, at the access subsystem, the particular block in

accordance with the caching timeout; and
directing, from the access subsystem to the storage sub-
system, one or more I/O requests directed to the particu-
lar file store object generated in response to additional
client requests, without retrieving additional metadata
from the metadata subsystem.
15. The method as recited in claim 7, further comprising
performing, by the plurality of computing devices:
configuring, at the request of a particular client of a pro-
vider network, an isolated virtual network comprising a
plurality of resources of a provider network, wherein
respective private network addresses assigned to the plu-
rality of resources are not accessible from the public
Internet; and

configuring, to receive service requests at one or more
nodes of the access subsystem, a particular private net-
work address accessible from other resources of the
isolated virtual network.

16. The method as recited in claim 7, further comprising
performing, by the plurality of computing devices:

distributing, by the storage subsystem, metadata and data

of the particular file store among a plurality of physical
storage devices including at least one solid-state disk
(SSD device) and one rotating disk device.

17. A non-transitory computer-accessible storage medium
storing program instructions that when executed on one or
more processors implement a node of a storage subsystem of
a distributed storage service, wherein the node is configured
to:

store, at a first data center, a plurality of extent replicas

associated with a set of file stores, including a first extent
replica comprising data of a first file store and a second
extent replica comprising metadata associated with the
first file store, wherein one or more additional extent
replicas corresponding to the first extent replica and the
second extent replica are stored at other data centers, and
wherein the first extent replica is designated as a master
data replica of a particular replica group corresponding
to a particular file store object;

receive a write request directed to the master data replica

from an access subsystem of the distributed storage ser-
vice, wherein the access subsystem implements an
industry-standard file system interface and is configured
to identify the master replica using metadata managed
by a metadata subsystem of the distributed storage ser-
vice; and

coordinate, in response to the write request, respective

updates to a plurality of members of the particular rep-
lica group using a consensus based state management
protocol.

Oct. 1, 2015

18. The non-transitory computer-accessible storage
medium as recited in claim 17, wherein the first file store is
established on behalf of a particular customer of the distrib-
uted storage service, and wherein the node is further config-
ured to store at least one addition extent replica of a different
file store established on behalf of a different customer of the
distributed storage service.

19. A non-transitory computer-accessible storage medium
storing program instructions that when executed on one or
more processors implement a node of a metadata subsystem
of a distributed storage service, wherein the node is config-
ured to:

coordinate storage of metadata associated with one or more

file stores implemented at the distributed storage ser-
vice;
receive, from an access subsystem of the distributed stor-
age service, an internal operation request generated at
the access subsystem in response to a client request
formatted in accordance with an industry-standard file
system interface;
determine that, to respond to the internal operation request,
a plurality of metadata objects associated with the file
store including a first metadata object and a second
metadata object are to be modified in accordance with
sequential consistency semantics, wherein at least a por-
tion of the first metadata object is stored at a first extent
replica group and at least a portion of the second meta-
data object is stored at a second extent replica group;

initiate an update protocol to implement updates to the first
extent replica group and the second extent replica group
in accordance with the sequential consistency seman-
tics.

20. The non-transitory computer-accessible storage
medium as recited in claim 19, wherein the first replica group
comprises a first extent replica at a first data center and a
second extent replica at a second data center, and wherein, in
accordance with a durability policy associated with metadata
of'the file store, the node is further configured to:

verify that a particular modification is complete at the first

and second extent replicas prior to generating a response
to the internal operation request.

21. A non-transitory computer-accessible storage medium
storing program instructions that when executed on one or
more processors implement a node of an access subsystem of
a distributed storage service, wherein the node is configured
to:

expose one or more network addresses to enable a plurality

of clients of the distributed storage service to submit
service requests in accordance with one or more indus-
try-standard file system interfaces;

receive, in accordance with a particular interface of the one

or more file system industry-standard interfaces, an /O
request directed to a particular object of a file store
comprising a plurality of blocks, wherein each block is
mapped to one or more physical pages by the storage
service;

obtain metadata pertaining to the particular object from a

metadata subsystem of the distributed storage service;

determine, using the metadata, (a) a particular node of a

storage subsystem of the distributed storage subsystem
that stores at least one replica of contents of a particular
logical block of the plurality of blocks and interacts with
other nodes of the storage subsystem using a consensus-
based protocol to implement update operations, and (b)

US 2015/0278243 Al

an offset within the particular logical block that is to be
accessed in response to the file I/O request; and transmit
an internal I/O request indicating the offset to the par-
ticular node of the storage subsystem.

22. The non-transitory computer-accessible storage
medium as recited in claim 21, wherein the node is further
configured to:

cache a particular metadata block associated with the par-

ticular object, wherein the particular metadata block is
retrieved from the metadata subsystem, for a time period
in accordance with a caching timeout, wherein a value of
the caching timeout is set smaller than a reallocation
ineligibility timeout associated with the particular meta-
datablock, wherein the reallocation ineligibility timeout
is indicative of a minimum time period for which storage
used for the particular metadata block is not to be re-
allocated; and

utilize the particular metadata block to issue one or more

subsequent internal I/O requests associated with the par-
ticular object.

23. The non-transitory computer-accessible storage
medium as recited in claim 21, wherein the node is configured
with a private network address accessible from devices of an
isolated virtual network established at the request of a par-
ticular client of the distributed storage service, and wherein
the 1/O request is received from a compute instance instanti-
ated in the isolated virtual network.

#* #* #* #* #*

56

Oct. 1, 2015

