wo 2023/178260 A1 |0 0000 KA 00 0 00

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
21 September 2023 (21.09.2023)

(10) International Publication Number

WO 2023/178260 Al

WIPO I PCT

(51) International Patent Classification:

GO6F 8/77 (2018.01) GO6N 3/08 (2023.01)
GO6F 9/54 (2006.01) GO6N 3/04 (2023.01)
GO6F 8/35 (2018.01) GOG6N 20/00 (2019.01)

(21) International Application Number:
PCT/US2023/064558

(22) International Filing Date:
16 March 2023 (16.03.2023)

(72) Inventors: TCHANKOTADZE, David; 1400 Seaport
Boulevard, Redwood City, California 94063 (US). SURE-
KA, Rohit Pawankumar, 1400 Seaport Boulevard, Red-
wood City, California 94063 (US). FITCH, Andrew
Joseph; 1400 Seaport Boulevard, Redwood City, Califor-
nia 94063 (US). JAZRA, Cherif; 1400 Seaport Boule-
vard, Redwood City, California 94063 (US). CHAYES,
Edward Leslie; 1400 Seaport Boulevard, Redwood City,
California 94063 (US). TALUKDAR, Manas; 1400 Sca-

port Boulevard, Redwood City, California 94063 (US).

(25) Filing Language: English JUBAN, Romain F.; 1400 Seaport Boulevard, Redwood

(26) Publication Language: English City, California 94063 (US). DELGOSHAIE, Amir Hos-

L. sein; 1400 Seaport Boulevard, Redwood City, California

(30) Priority Data: 94063 (US). SOMASUNDARAM, Shivasankaran; 1400
63/269,603 18 March 2022 (18.03.2022) UsS

Seaport Boulevard, Redwood City, California 94063 (US).

Agent: DOYLE, David M. et al.; Munck Wilson Mandala,
LLP, 600 Banner Place Tower, 12770 Coit Road, Dallas,
Texas 75251 (US).

(71) Applicant: C3.Al, INC. [US/US]; 1400 Seaport Boule-

74
vard, Redwood City, California 94063 (US). 74

(54) Title: INTELLIGENT DATA PROCESSING SYSTEM WITH METADATA GENERATION FROM ITERATIVE DATA ANA-

LYSIS
522?/7\
i\ ﬁj}
2 N O,
(e 2

Source B

Y
/0;2\ 542
i

500

z 521

511

512

Previous work done

Previous work done by Person B in Env Il

by Person Aiin Env |

Data Model 2

550
513 ?

Intermediate

Current work done .
Representation(s)

byPerson Cin Envill <

createTransformiid)

\ 503 533
20)
T Data Model 3 545
FIG. 5

(57) Abstract: A method includes obtaining (601) a first data model (501) from a data exploration phase performed in a first environment
(511), where the first data model includes first metadata (531). The method also includes obtaining (603) a second data model (502)
from the data exploration phase performed in a second environment (512) different from the first environment, where the second data
model includes second metadata (532). The method further includes generating (605) a third data model (503) including one or more
software artifacts (545) using the first metadata and the second metadata. Each of the one or more software artifacts is configured as
one or more files that are configured for execution of at least one artificial intelligence (Al)/machine learning (ML) application (320).

[Continued on next page]

WO 2023/178260 A1 |10} 00000 00RO 0TS0 00 O

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CV, CZ, DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN,HR,HU, ID, IL, IN, IQ, IR, IS, IT, JM, JO, JP,KE, KG,
KH, KN, KP, KR, KW,KZ, LA, LC, LK, LR, LS, LU, LY,
MA, MD, MG, MK, MN, MU, MW, MX, MY, MZ, NA,
NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO,
RS, RU,RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
ZA,ZM,ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, CV,
GH, GM, KE,LR,LS, MW, MZ NA,RW, SC, SD, SL, ST,
SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE,
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(ii))

Published:
— with international search report (Art. 21(3))

5

10

15

20

25

30

35

WO 2023/178260 PCT/US2023/064558

INTELLIGENT DATA PROCESSING SYSTEM WITH METADATA GENERATION FROM
ITERATIVE DATA ANALYSIS

TECHNICAL FIELD
[0001] This disclosure is generally directed to data processing systems. More specifically, this
disclosure is directed to an intelligent data processing system with metadata generation from

iterative data analysis.

BACKGROUND

[0002] Many data science tools such as Pandas are designed to solve challenges and
requirements during a preliminary “data exploration” phase of a project. A goal of such tools is to
provide a good interactive experience and quick turn-around of experiments on data. While such
tools are adequate during the data exploration phase of a project, the “production” phase of the
project usually has completely different requirements. For example, scale and performance are
often key for building a software application. When the time comes to build a software application
and take it into production, code written for initial data exploration with data science tools may
become unsuitable for production for multiple reasons. One reason is that the code may not be
designed to scale. Another reason is that the syntax and artifacts around a software application may

be very different from those of data exploration.

SUMMARY

[0003] This disclosure relates to an intelligent data processing system with metadata
generation from iterative data analysis.

[0004] In a first embodiment, a method includes obtaining a first data model from a data
exploration phase performed in a first environment, where the first data model includes first
metadata. The method also includes obtaining a second data model from the data exploration phase
performed in a second environment different from the first environment, where the second data
model includes second metadata. The method further includes generating a third data model
including one or more software artifacts using the first metadata and the second metadata. Each of
the one or more software artifacts is configured as one or more files that are configured for
execution of at least one artificial intelligence (Al)/machine learning (ML) application.

[0005] In a second embodiment, an apparatus includes at least one processing device
configured to obtain a first data model from a data exploration phase performed in a first
environment, where the first data model includes first metadata. The at least one processing device

is also configured to obtain a second data model from the data exploration phase performed in a

10

15

20

25

30

WO 2023/178260 PCT/US2023/064558
2

second environment different from the first environment, where the second data model includes
second metadata. The at least one processing device is further configured to generate a third data
model including one or more software artifacts using the first metadata and the second metadata.
Each of the one or more software artifacts is configured as one or more files that are configured
for execution of at least one AI/ML application.

[0006] In a third embodiment, a non-transitory computer readable medium contains computer
readable program code that when executed causes one or more processors to obtain a first data
model from a data exploration phase performed in a first environment, where the first data model
includes first metadata. The non-transitory computer readable medium also contains computer
readable program code that when executed causes the one or more processors to obtain a second
data model from the data exploration phase performed in a second environment different from the
first environment, where the second data model includes second metadata. The non-transitory
computer readable medium further contains computer readable program code that when executed
causes the one or more processors to generate a third data model including one or more software
artifacts using the first metadata and the second metadata. Each of the one or more software
artifacts is configured as one or more files that are configured for execution of at least one AI/ML
application.

[0007] Other technical features may be readily apparent to one skilled in the art from the

following figures, descriptions, and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] For a more complete understanding of this disclosure, reference is now made to the
following description, taken in conjunction with the accompanying drawings, in which:

[0009] FIGURE 1 illustrates an example system supporting intelligent data processing with
metadata generation from iterative data analysis according to this disclosure;

[0010] FIGURE 2 illustrates an example device supporting intelligent data processing with
metadata generation from iterative data analysis according to this disclosure;

[0011] FIGURE 3 illustrates an example architecture of an intelligent data processing system
with a multi-interface frontend and backend according to this disclosure;

[0012] FIGURE 4 illustrates an example process for generating execution engine-specific
code for execution by a selected backend according to this disclosure;

[0013] FIGURE 5 illustrates an example workflow for intelligent data processing with
metadata generation from iterative data analysis according to this disclosure; and

[0014] FIGURE 6 illustrates an example method for intelligent data processing with metadata

10

15

20

25

30

WO 2023/178260 PCT/US2023/064558

generation from iterative data analysis according to this disclosure.

DETAILED DESCRIPTION

[0015] FIGURES 1 through 6, described below, and the various embodiments used to describe
the principles of the present invention in this patent document are by way of illustration only and
should not be construed in any way to limit the scope of the invention. Those skilled in the art will
understand that the principles of the present invention may be implemented in any type of suitably
arranged device or system.

[0016] As noted above, many data science tools such as Pandas are designed to solve
challenges and requirements during a preliminary “data exploration” phase of a project. A goal of
such tools is to provide a good interactive experience and quick turn-around of experiments on
data. While such tools are adequate during the data exploration phase of a project, the “production”
phase of the project usually has completely different requirements. For example, scale and
performance are often key for building a software application. When the time comes to build a
software application and take it into production, code written for initial data exploration with data
science tools may become unsuitable for production for multiple reasons. One reason is that the
code may not be designed to scale. Another reason is that the syntax and artifacts around a software
application may be very different from those of data exploration.

[0017] Building applications that are powered by artificial intelligence (AI) or machine
learning (ML) models typically involves designing multiple components that are used together,
such as data exploration components, data integration components, feature store(s), ML
pipeline(s), ML model(s), and the like. However, existing AI/ML tools are often characterized in
that each of their components operates in a different language, and such tools usually have different
(and often incompatible) hand-offs between the different components. There is typically no
common thread that links all of the components together.

[0018] This disclosure provides an intelligent data processing system capable of metadata
generation from iterative data analysis. As described in more detail below, the disclosed intelligent
data processing system includes a multi-interface frontend and backend. For example, the data
processing system can support at least one frontend (interface), which can be used by one or more
users to identify data and transformations (code) to be applied to the data. Depending on the
implementation, the data processing system may support the use of a single frontend or multiple
frontends. The data processing system can capture the transformations and store information
identifying the transformations, such as in a database. The data processing system can also use the

information and a context associated with the data to perform the data processing operations. For

10

15

20

25

30

WO 2023/178260 PCT/US2023/064358
4

instance, the data processing system can select a specific execution engine from among multiple
execution engines (which represent multiple backends) depending on the context, and code
implementing the transformations to be performed can be generated or otherwise obtained for that
specific execution engine. The specific execution engine can execute the code in order to perform
the data processing operations on the data. The specific context can vary based on a number of
factors, examples of which are provided below. The specific execution engine that is selected for
use can also vary, such as when different users or applications are associated with different contexts
or when the context associated with the same user or application changes over time. Different code
for performing the data transformations can be generated or otherwise obtained based on the stored
information, and the different code can be executed by different execution engines. This allows
the same sequence of transformations to subsequently be requested one or multiple times and
performed using one or more execution engines. Moreover, the disclosed embodiments enable the
building of a data model on top of an existing data model without asking a user to redo any previous
work. The disclosed embodiments thus mitigate some of the drawbacks of reusing existing data
transformations.

[0019] Collaborative workflow allows the intelligent data processing system to auto-generate
application files (or artifacts) that are used for running production-grade enterprise-level AI/ML
applications or other AI/ML applications. These artifacts can be auto-generated from data
exploration work performed in any tool of choice by a user. The resulting generated artifacts are
configured such that they can run at scale. Also, the data exploration work performed by a user
can be in a different environment from the environment in which the application is going to be run.
In addition, there is no tie-in to a particular user. That is, the auto-generation of production-grade
software application artifacts can be performed by a different user than the user who initially
authored the data model. The workflow also enables the composition of data models from one
schema to another schema. The ability to take data models from multiple different environments
and create a data model in yet another environment (considering the connectors, data sources, and
systems that are related to the other data models) is advantageous.

[0020] FIGURE 1 illustrates an example system 100 supporting intelligent data processing
with metadata generation from iterative data analysis according to this disclosure. For example,
the system 100 shown here can be used to support one or more metadata generation techniques
described below. As shown in FIGURE 1, the system 100 includes user devices 102a-102d, one
or more networks 104, one or more application servers 106, and one or more database servers 108
associated with one or more databases 110. Each user device 102a-102d communicates over the

network 104, such as via a wired or wireless connection. Each user device 102a-102d represents

10

15

20

25

30

WO 2023/178260 PCT/US2023/064558

any suitable device or system used by at least one user to provide or receive information, such as
a desktop computer, a laptop computer, a smartphone, and a tablet computer. However, any other
or additional types of user devices may be used in the system 100.

[0021] The network 104 facilitates communication between various components of the
system 100. For example, the network 104 may communicate Internet Protocol (IP) packets, frame
relay frames, Asynchronous Transfer Mode (ATM) cells, or other suitable information between
network addresses. The network 104 may include one or more local area networks (LANS),
metropolitan area networks (MANs), wide area networks (WANSs), all or a portion of a global
network such as the Internet, or any other communication system or systems at one or more
locations.

[0022] The application server 106 is coupled to the network 104 and is coupled to or otherwise
communicates with the database server 108. The application server 106 supports techniques for
intelligent data processing with metadata generation from iterative data analysis as described
below. For example, the application server 106 may execute one or more applications 112 that use
data from the database 110 to perform metadata generation. Note that the database server 108 may
also be used within the application server 106 to store information, in which case the application
server 106 may store the information itself used to perform metadata generation.

[0023] The database server 108 operates to store and facilitate retrieval of various information
used, generated, or collected by the application server 106 and the user devices 102a-102d in the
database 110. For example, the database server 108 may store various information related to
intelligent data processing with metadata generation from iterative data analysis.

[0024] Although FIGURE 1 illustrates one example of a system 100 supporting intelligent
data processing with metadata generation from iterative data analysis, various changes may be
made to FIGURE 1. For example, the system 100 may include any number of user devices 102a-
102d, networks 104, application servers 106, database servers 108, and databases 110. Also, these
components may be located in any suitable locations and might be distributed over a large area. In
addition, while FIGURE 1 illustrates one example operational environment in which intelligent
data processing with metadata generation from iterative data analysis may be used, this
functionality may be used in any other suitable system.

[0025] FIGURE 2 illustrates an example device 200 supporting intelligent data processing
with metadata generation from iterative data analysis according to this disclosure. One or more
instances of the device 200 may, for example, be used to at least partially implement the
functionality of the application server 106 of FIGURE 1. However, the functionality of the

application server 106 may be implemented in any other suitable manner. In some embodiments,

10

15

20

25

30

WO 2023/178260 PCT/US2023/064558
6

the device 200 shown in FIGURE 2 may form at least part of a user device 102a-102d, application
server 106, or database server 108 in FIGURE 1. However, each of these components may be
implemented in any other suitable manner.

[0026] As shown in FIGURE 2, the device 200 denotes a computing device or system that
includes at least one processing device 202, at least one storage device 204, at least one
communications unit 206, and at least one input/output (I/O) unit 208. The processing device 202
may execute instructions that can be loaded into a memory 210. The processing device 202
includes any suitable number(s) and type(s) of processors or other processing devices in any
suitable arrangement. Example types of processing devices 202 include one or more
microprocessors, microcontrollers, reduced instruction set computers (RISCs), complex
instruction set computers (CISCs), graphics processing units (GPUs), data processing units
(DPUs), virtual processing units, associative process units (APUs), tensor processing units (TPUs),
vision processing units (VPUs), neuromorphic chips, Al chips, quantum processing units (QPUs),
cerebras wafer-scale engines (WSEs), digital signal processors (DSPs), application-specific
integrated circuits (ASICs), field programmable gate arrays (FPGAs), or discrete circuitry.

[0027] The memory 210 and a persistent storage 212 are examples of storage devices 204,
which represent any structure(s) capable of storing and facilitating retrieval of information (such
as data, program code, and/or other suitable information on a temporary or permanent basis). The
memory 210 may represent a random access memory or any other suitable volatile or non-volatile
storage device(s). The persistent storage 212 may contain one or more components or devices
supporting longer-term storage of data, such as a read only memory, hard drive, Flash memory, or
optical disc.

[0028] The communications unit 206 supports communications with other systems or devices.
For example, the communications unit 206 can include a network interface card or a wireless
transceiver facilitating communications over a wired or wireless network, such as the network 104.
The communications unit 206 may support communications through any suitable physical or
wireless communication link(s).

[0029] The I/O unit 208 allows for input and output of data. For example, the I/O unit 208
may provide a connection for user input through a keyboard, mouse, keypad, touchscreen, or other
suitable input device. The I/O unit 208 may also send output to a display, printer, or other suitable
output device. Note, however, that the I/O unit 208 may be omitted if the device 200 does not
require local I/O, such as when the device 200 represents a server or other device that can be
accessed remotely.

[0030] Although FIGURE 2 illustrates one example of a device 200 supporting intelligent

10

15

20

25

30

WO 2023/178260 PCT/US2023/064558
7

data processing with metadata generation from iterative data analysis, various changes may be
made to FIGURE 2. For example, computing and communication devices and systems come in a
wide variety of configurations, and FIGURE 2 does not limit this disclosure to any particular
computing or communication device or system.

[0031] FIGURE 3 illustrates an example architecture 300 of an intelligent data processing
system with a multi-interface frontend and backend according to this disclosure. For ease of
explanation, the architecture 300 shown in FIGURE 3 is described as being implemented on or
supported by the application server 106 in the system 100 shown in FIGURE 1, where the
application server 106 may be implemented using one or more instances of the device 200 shown
in FIGURE 2. However, the architecture 300 shown in FIGURE 3 could be used with any other
suitable device and in any other suitable system.

[0032] As shown in FIGURE 3, the architecture 300 is generally divided into functions
associated with an authoring environment 302 and functions associated with an execution
environment 304. The authoring environment 302 generally includes functions that allow data and
data transformations (code) to be defined, where information associated with the data
transformations can be stored in the database 110 or other suitable storage location(s). The
execution environment 304 generally includes functions that allow the code to be converted (if
necessary) and executed in order to perform the data transformations upon request.

[0033] In this example embodiment, the authoring environment 302 can be used by one or
more users 306 to define at least one set of data transformations to be applied to at least one input
dataset 308. For example, the authoring environment 302 may include one or more interfaces 310
representing one or more frontends that are available for use. Each interface 310 can allow at least
one user 306 to load a dataset 308 and define operations to be performed on the dataset 308. Note
that a single interface 310 or multiple interfaces 310 may be provided in the architecture 300
depending on the implementation. Each interface 310 includes any suitable logic configured to
receive data and information defining transformations to be applied to the data, such as an
application programming interface (API). Specific example types of interfaces 310 that may be
used here could include the Pandas API and the Structured Query Language (SQL) APL

[0034] A tracking module 312 is used in conjunction with the interface(s) 310 in order to track
each sequence of transformations being applied to each dataset 308 by one or more users 306 using
the interface(s) 310. In other words, the tracking module 312 can identify how each user modifies
a dataset 308 using an interface 310, and the tracking module 312 can store this information in the
database 110. The tracking module 312 may generate information identifying a sequence of

transformations and store the information associated with each sequence of transformations in the

10

15

20

25

30

WO 2023/178260 PCT/US2023/064558

database 110 in any suitable manner. For instance, in some cases, the tracking module 312 may
generate a directed acyclic graph (DAG) that identifies each sequence of transformations applied
to a dataset 308.

[0035] A context module 314 is also used within the authoring environment 302 to identify
information about each context in which a user 306 is performing a sequence of transformations,
and this information can also be stored in the database 110 or can be provided to the execution
environment 304. Example types of information that may be identified or generated by the context
module 314 are described below. In this example, the tracking module 312 and the context module
314 are shown as collectively storing data 316 associated with the sequence of transformations and
optionally the context as part of a “save transformations” action. In some cases, the stored data
316 for each sequence of transformations may be associated with a user-defined identifier (ID) or
other type of identification. Also, in some cases, the context module 314 may provide the context
information to the tracking module 312 for storage in the database 110, the tracking module 312
may provide the sequence of transformations information to the context module 314 for storage in
the database 110, or the context module 314 may provide the context information directly to the
execution environment 304,

[0036] Note that the users 306 here are free to use any supported interface 310 when defining
sequences of transformations to be applied to datasets 308. In some embodiments, for example,
the authoring environment 302 may include one or more predefined or preinstalled interfaces 310,
and the users 306 may be limited to using those specific interfaces 310. In other embodiments, one
or more interfaces 310 may be installed in the authoring environment 302 as needed or desired
(with or without one or more predefined or preinstalled interfaces 310 being used in the authoring
environment 302). In general, the authoring environment 302 may include any suitable numbers
and types of interfaces 310, regardless of how or when the interface or interfaces 310 are made
available to users 306. Thus, this approach may allow different users 306 to use various interfaces
310 as needed or desired to define the sequences of transformations and other information
performed on input datasets 308.

[0037] Once one or more sequences of transformations have been defined using at least one
interface 310 within the authoring environment 302, each sequence of transformations can be
subsequently applied within the execution environment 304. In this example embodiment, the
execution environment 304 can be used to execute the sequences of transformations and process
the input datasets 308 defined by the users 306 (during the first time each defined sequence of
transformations is being executed). One or more users 318 and/or one or more applications 320

may also request that the same sequences of transformations be performed to their input data 322

10

15

20

25

30

WO 2023/178260 PCT/US2023/064558
9

(during subsequent executions of the sequences of transformations is being executed). The one or
more users 318 represent users who wish to apply previously-defined data transformations to the
input data 322, and the one or more applications 320 represent logic (executed by one or more
computing devices or other devices) that requests application of previously-defined data
transformations to the input data 322. Note that the one or more users 318 may or may not be the
same as the one or more users 306. In this example, the application of a previously-defined data
transformation may be requested using a “run_transformations” request 324. In some cases, a
previously-defined data transformation can be requested by including the user-defined identifier
or other type of identification associated with the previously-defined data transformation in the
request 324.

[0038] An execution module 326 generally operates to control the executions of the sequences
of transformations for the users 306 and their input datasets 308 and the executions of the
sequences of transformations for the users 318/applications 320 and their input data 322. For each
sequence of transformations to be performed, the execution module 326 can receive information
identifying a current context 328 associated with the data to be processed. Each current context
328 is identified using the context module 314. For example, the context module 314 can be used
to identify information about the context for each user 306 as described above, and the context
module 314 can be used to identify information about the context in which a user 318 or application
320 is requesting performance of a sequence of transformations for each request 324.

[0039] The context module 314 may be used to identify any suitable characteristic(s)
associated with the context in which data transformations are occurring. For example, the context
module 314 may determine values for different contextual dimensions associated with each
sequence of data transformations. In some embodiments, examples of different contextual
dimensions that may be used by the context module 314 can include any single one or any
combination of the following contextual dimensions. An interactivity context dimension can
represent the amount or level of user or application interactions during the processing of data in a
sequence of transformations. A data size context dimension can approximate the size or amount of
data to be processed during a sequence of transformations. A data type context dimension can
represent the type of data to be processed during a sequence of transformations, such as real-time,
batch, or streaming data. A data shape context dimension can represent whether data to be
processed during a sequence of transformations is structured or unstructured and, if unstructured,
a specific type of unstructured data to be processed (such as image data, video data, audio data,
etc.). A security profile context dimension can represent the level of security that is needed while

processing data during a sequence of transformations. A resource availability context dimension

10

15

20

25

30

WO 2023/178260 PCT/US2023/064558
10

can represent the amount or level of processing resources, memory resources, or other resources
that might be needed to process data during a sequence of transformations. A personal identifiable
information (PII) context dimension can represent whether data to be processed during a sequence
of transformations includes personal identifiable information and, if so, how that data needs to be
handled. A retention policy context dimension can represent how long data being processed during
a sequence of transformations or its results may need to be retained. A computation
comprehensiveness context dimension can represent an overall quantity or level of data to be
included in computations during a sequence of transformations. Depending on the implementation,
a context may be defined along each of one or more of these context dimensions using discrete
values or values that are continuous within a given range of values.

[0040] For each sequence of transformations to be performed (either for a user 306, a user
318, or an application 320), the execution module 326 can receive information identifying the
current context 328 associated with the data to be processed. The execution module 326 can also
obtain information about the specific sequence of transformations to be performed from the
database 110, such as by retrieving information defining the sequence of transformations
associated with the identifier contained in the request 324 or the sequence of transformations that
was defined by the user 306. In some cases, for instance, the database 110 can be queried using a
“retrieve_transformations” request 330, which can be used to obtain information (such as a
directed acyclic graph) associated with the sequence of transformations to be performed.

[0041] For each sequence of transformations to be performed, the execution module 326 can
use at least some of the obtained information to select one of multiple execution engines 332 to be
used to perform the sequence of transformations. The execution engines 332 represent different
backends that can use different tools or technologies to perform requested sequences of
transformations. Any suitable execution engines 332 may be used here to perform data
transformations, such as backends that support different types of machine learning or artificial
intelligence (ML/AI) algorithms or other data processing algorithms. In some cases, the execution
module 326 may select the particular execution engine 332 to be used for each sequence of
transformations to be performed based on the current context 328 of the data to be processed. As
a particular example, the execution module 326 may use an in-memory data structure or other
mechanism that maps different combinations of values of the contextual dimensions to different
ones of the execution engines 332. Thus, the execution module 326 can take the values of a current
context 328 and select the execution engine 332 that is mapped to those values.

[0042] For each sequence of transformations to be performed, the execution module 326 can

further generate execution engine-specific code 334 to be executed by the selected execution

10

15

20

25

30

WO 2023/178260 PCT/US2023/064558
11

engine 332. For example, the execution module 326 may traverse the directed acyclic graph
associated with the sequence of transformations to be performed and modify the directed acyclic
graph in a suitable manner that enables code 334 to be generated for the selected execution engine
332. Example types of modifications that may be performed to a directed acyclic graph can include
removing one or more nodes from the directed acyclic graph, replacing one or more nodes in the
directed acyclic graph with one or more other nodes, and/or shuffling the position(s) or order(s) of
one or more nodes in the directed acyclic graph. Each node in a directed acyclic graph may
generally represent a data operation to be performed as part of a sequence of transformations. The
specific ways in which nodes of a directed acyclic graph are modified can vary based on a number
of factors, such as the specific execution engine 332 on which the code 334 is to be executed, and
no modifications may be needed to a directed acyclic graph in some cases. A modified or
unmodified directed acyclic graph may be used by a compiler to generate code 334 for the selected
execution engine 332. The compiler may also be used to produce execution engine-specific
artifacts based on more-generic artifacts received in response to the request 330. In whatever
manner the code 334 is generated, the code 334 can be executed by the selected execution engine
332 in order to perform the desired sequence of transformations.

[0043] Note that while the generation of the code 334 for the execution engines 332 is
described above as being performed during run-time (such as after the users 306, 318 or
applications 320 request execution of the sequences of transformations), other approaches may
also be used to generate the code 334. For instance, code 334 for each execution engine 332 may
be generated after data 316 associated with each sequence of transformations is obtained and stored
in the database 110. In some cases, the code 334 for each execution engine 332 may also be stored
in the database 110. Once a specific execution engine 332 is identified (such as in response to a
specific request 324), the pre-generated code 334 for the appropriate sequence of transformations
can be obtained and provided to that specific execution engine 332 for execution (without further
compiling). In general, this disclosure is not limited to any particular order of request receipt and
code generation.

[0044] As can be seen here, this approach allows the authoring environment 302 to be used to
define any desired sequences of data transformations, where information defining the sequences
of data transformations can be stored in the database 110 or other location(s) for later use. This can
be accomplished using any suitable interface(s) 310 in the authoring environment 302. Also, this
approach allows the execution environment 304 to be used to execute the sequences of
transformations as requested, which is based (at least in part) on the information retrieved from the

database 110 or other location(s). Among other things, the execution engine 332 for each sequence

10

15

20

25

30

WO 2023/178260 PCT/US2023/064558
12

of transformations to be performed can be dynamically selected based on the associated context
328.

[0045] In this way, the architecture 300 is able to provide various benefits or advantages
depending on the implementation. The following are non-limiting examples of various types of
benefits or advantages that might be obtained using the architecture 300. For example, the
architecture 300 can enable code to be developed once and then reused across different use cases
(different contexts). For example, a user 306 may write code for performing a sequence of data
transformations using a dataset 308 within the authoring environment 302, where that sequence of
transformations is associated with one context and is used to generate code for execution by one
execution engine 332. That code can later be translated by the execution module 326 for execution
by any number of other execution engines 332, which can be associated with different contexts.
The specific execution engine 332 selected for original use for the user 306 and the specific
execution engine 332 selected for use with a subsequent request 324 can vary based on the specific
contexts 328 associated with those operations. This allows the contexts and therefore the execution
engines 332 used to execute the same sequence of transformations to vary based on (among other
things) the changing needs of a user 306, 318 or an application 320.

[0046] As another example, the architecture 300 can be used to provide flexibility when
choosing between system-driven backends and user-driven backends. For example, in some
embodiments, the execution module 326 may allow users 306, 318 and/or applications 320 to
select the execution engines 332 to be used to process their data. Among other things, this may
allow a user 306, 318 or application 320 to select a specific execution engine 332 for use with
specific data, which may be useful when the specific execution engine 332 is known to provide
good results when performing specific types of data processing tasks. However, the execution
module 326 can also dynamically select the execution engine 332 to be used, such as when the
user 306, 318 or application 320 does not specifically identify an execution engine 332 or when
the user 306, 318 or application 320 specifically requests dynamic selection of the execution engine
332.

[0047] As yet another example, the architecture 300 can be used to accelerate the time-to-
value for performing data processing tasks. For example, data-intensive workloads may often
involve changing backend needs over time, which would ordinarily involve time-consuming
changes to an execution engine used for the data-intensive workloads. Using the architecture 300,
the complexity of authoring sequences of data transformations can be reduced, and the same
sequence of data transformations can be leveraged and used to execute code 334 on any number

of execution engines 332 (including an execution engine 332 selected by a user 306,

10

15

20

25

30

WO 2023/178260 PCT/US2023/064558
13

318/application 320 or dynamically selected by the architecture 300). In some cases, a user 306 is
able to use a single interface 310 to define a transformation, and the specific backend that is used
to perform the transformation can change depending on the nature of the data processing task being
performed (which can vary dynamically). This can significantly decrease the time needed to
perform data processing tasks.

[0048] As still another example, the architecture 300 can be used to make server-aware and
client-aware decisions when selecting execution engines 332 for use. That is, customers (users
306, 318 and/or applications 320) may implement logic using devices that operate as clients or
servers depending on their particular installations. As a particular example of this, some
installations may support declarative programming, while other installations may support
imperative programming. Different execution engines 332 may therefore be customized for
different types of customer installations. In some embodiments, the architecture 300 uses self-
declarative programming, which can leverage the benefits of both declarative and imperative
programming.

[0049] Note that the architecture 300 can still achieve a high level of performance when
executing code using dynamically-selected execution engines 332. Among other reasons, this is
because the architecture 300 can provide users 306, 318 and/or applications 320 with resource
efficiencies, time efficiencies, and reliabilities when the architecture 300 chooses (and if necessary
switches between) different execution engines 332 that are best suited to the needs of the users
306, 318 and/or applications 320. For example, time efficiencies can be obtained by providing
good trade-offs between interactive and non-interactive contexts. In some cases, for instance, this
may allow for faster outputs at lower reliability or slower outputs at higher reliability. Moreover,
the architecture 300 can be used to perform data transformations on a wide range of data types,
including real-time and streaming data, even when minimal resources are available to process the
data. In addition, security-related aspects of the contexts for the data processing tasks can be
identified and honored within the architecture 300.

[0050] Results that are generated via execution of the code 334 by the selected execution
engine 332 for each sequence of transformations can be used in any suitable manner. For example,
the results generated by each execution engine 332 can be provided via a suitable interface 310 or
other mechanism to the user 306, 318 or application 320 that initiated performance of the sequence
of transformations. Since both data processing tasks and the data being processed by the data
processing tasks can vary widely, the results generated by the execution engines 332 can be used
for any suitable purposes.

[0051] Although FIGURE 3 illustrates one example of an architecture 300 of an intelligent

10

15

20

25

30

WO 2023/178260 PCT/US2023/064558
14

data processing system with a multi-interface frontend and backend, various changes may be made
to FIGURE 3. For example, functions and components can be added, omitted, combined, further
subdivided, replicated, or placed in any other suitable configuration in the architecture 300
according to particular needs. As a particular example, the architecture 300 may include any
suitable number of interfaces 310 and any suitable number of execution engines 332.

[0052] FIGURE 4 illustrates an example process 400 for generating execution engine-specific
code for execution by a selected backend according to this disclosure. The process 400 shown in
FIGURE 4 may, for example, represent the process of collecting user input via an interface 310,
where the user input defines a sequence of data transformations to be performed. The process 400
shown in FIGURE 4 also illustrates how the tracking module 312 can generate information about
the sequence of data transformations and how the execution module 326 can use this information
to produce execution engine-specific code 334 suitable for execution by a selected execution
engine 332.

[0053] Asshown in FIGURE 4, one or more data sources 402 represent one or more interfaces
(such as one or more interfaces 310) that can be used to obtain data from one or more users 306.
In some embodiments, each data source 402 may be associated with a different programming
language and a different data storage mechanism. Depending on the implementation, there may be
a single data source 402 or multiple data sources 402 provided for use here.

[0054] Each user 306 can use one or more tools 404 to write code defining sequences of data
transformations in one or more specific programming languages. In some embodiments, the tool
404 that is accessed and used by each user 306 can vary depending on which data source 402 is
used by the user 306, so different data sources 402 may be associated with different tools 404. In
some cases, for instance, a tool 404 may represent a JUPYTER LAB tool that uses the Pandas
programming language. Of course, different tools 404 can be provided to support different
programming languages if desired.

[0055] Each tool 404 here can be used to define a sequence of operations to be performed,
where the sequence of operations represents a sequence of data transformations being defined by
auser 306. Each operation in the sequence may be represented by a cell 406, and each cell 406 can
identify at least one operation defined by the user 306. In this example, the first cell 406 represents
a request to load one or more source data files. The second cell 406 represents at least one request
to perform one or more data integration operations, which can include any suitable operation(s) to
prepare the source data for processing. The third cell 406 represents at least one request related to
feature engineering, which can include any suitable operation(s) needed to identify features of the

source data that are to be processed further. The fourth cell 406 represents at least one request

10

15

20

25

30

WO 2023/178260 PCT/US2023/064558
15

related to feeding the processed data (such as the identified features) into a machine learning
pipeline or other data processing architecture. The fifth cell 406 represents a request to update a
package that encapsulates the sequence of operations. Of course, the operations represented by the
cells 406 will vary based on the specific sequence of data transformations being defined by a user
306. In some cases, the cells 406 can be digitally signed (such as by using the users’ digital keys)
in order to associate specific users 306 with specific cells 406 and/or to prevent unauthorized
modification of the cells 406.

[0056] Each user-defined sequence of operations generated by a user 306 using a tool 404 is
converted into system-generated code 408, which (when executed) can be used to perform the
user-defined sequence of operations. In some cases, the system-generated code 408 can be defined
using a directed acyclic graph, where the directed acyclic graph includes a number of nodes 410.
Each node 410 in the directed acyclic graph represents one or more operations to be performed,
and each node 410 may correspond to one of the cells 406 generated using the tool 404. For
instance, each node 410 may include one or more data specifications (“data specs”) that identify
the specific operation(s) performed in the corresponding cell 406. The information defined within
the nodes 410 can identify the operations corresponding to every line of code generated by the user
306 using the tool 404. Thus, the nodes 410 of the directed acyclic graph may represent the logic
needed to implement the user-defined sequence of operations. However, the directed acyclic graph
can be generic in that it is not tied to any particular execution engine 332. As can be seen here, the
nodes 410 form a directed acyclic graph since the nodes 410 are ordered in a specific sequence,
which is defined by the arrows to/from/between the nodes 410. In some cases, a directed acyclic
graph is at least one of the items that the tracking module 312 can generate and store in the database
110 when a user 306 uses an interface 310 to define a sequence of transformations.

[0057] After a user 306 issues a terminal transformation (meaning a final transformation
defined by the user 306), the directed acyclic graph may be stored in the database 110. Also, a
specific execution engine 332 can be selected as described above based on the current context
associated with the user 306. In order to execute the sequence of transformations defined by the
directed acyclic graph on the selected execution engine 332, the directed acyclic graph can be
converted into code 412 that is suitable for execution by the selected execution engine 332.
Because the directed acyclic graph generically defines operations to be performed, the directed
acyclic graph can be easily converted into code 412 that is specific to the execution engine 332 on
which the code 412 is to be executed. The code 412 may then be compiled or otherwise prepared
and sent to the selected execution engine 332 for execution. If the same sequence of

transformations is requested again (such as via a request 324) but a different execution engine 332

10

15

20

25

30

WO 2023/178260 PCT/US2023/064558
16

is selected, the directed acyclic graph can again be retrieved and used to generate code 412 for
execution by that selected execution engine 332. Note that after code 412 is generated for a specific
execution engine 332, the code 412 might be stored (such as in the database 110) so that the code
412 can be executed again later if requested without delay.

[0058] Note that the specific operations performed within the code 412 will typically vary
depending on (among other things) the execution engine 332 to be used to execute the code 412.
Because the directed acyclic graph includes data specs or other information that generically defines
the operations to be performed as part of a user-defined sequence of operations, knowledge of a
specific execution engine 332 can be used to generate logic that allows the execution module 326
to convert data specs into execution engine-specific code. By defining suitable logic for all
available execution engines 332, the execution module 326 is able to convert directed acyclic
graphs into suitable code 412 whenever executions of user-defined sequences of operations are
requested.

[0059] Although FIGURE 4 illustrates one example of a process 400 for generating execution
engine-specific code for execution by a selected backend, various changes may be made to
FIGURE 4. For example, the code defined by a user may include any suitable number of
operations, and these operations may be converted into any suitable operations to be executed by
a selected execution engine 332. Also, the specific code 412 shown in FIGURE 4 relates to a
specific execution engine 332, and any other suitable code 412 may be generated depending on the
execution engine 332.

[0060] FIGURE 5 illustrates an example workflow 500 for intelligent data processing with
metadata generation from iterative data analysis according to this disclosure. In some
embodiments, the workflow 500 may be implemented using a data modeling system or application
development system (such as an intelligent data processing system having the architecture 300),
which can be executed using one or more devices (such as the application server 106 or one or
more of the user devices 102a-102d of FIGURE 1 or one or more devices 200 of FIGURE 2).
However, the workflow 500 shown in FIGURE 5 could be implemented using any other suitable
device and in any other suitable system.

[0061] As shown in FIGURE 5, using the workflow 500, various users (such as the users 306
and 318) can collectively work on one or more data models from a single interface (such as the
interface 310) in an iterative manner, thereby accelerating the time to production. One or more
contexts from the data exploration phase can be saved as software artifacts (such as files, code,
and the like) and used for application development. Thus, some users 306, 318 can take advantage

of iterative exploration performed by other users 306, 318 and generate the artifacts just by a

10

15

20

25

30

WO 2023/178260 PCT/US2023/064558
17

function call. In some embodiments, at least some of the artifacts are human-readable, machine-
executable, or both, which can enable continuously integrated and deployable application
development. This is an advantageous benefit over conventional systems that do not generate any
human-readable or machine-executable files or code.

[0062] As shown in FIGURE 5, a first user 306, 318 (“Person A”) can build a data model 501
(“Data Model 1) for a first application 320 in a first environment 511 (“Env 17). For example, the
first user 306, 318 can use the interface 310 in the authoring environment 302 to build the data
model 501. A second user 306, 318 (“Person B”) can build a second data model 502 (“Data Model
27) for a second application 320 in a second environment 512 (“Env 27). The environments 511,
512 can represent (or be represented by) the authoring environment 302, the execution
environment 304, or a combination of the these. Using the workflow 500, the system can
automatically create a graph 521, 522 (such as a directed acyclic graph) for each of the data models
501, 502 and store the graphs 521, 522 (such as in the database 110). As used here, a “data model”
refers to an abstract model that organizes elements of data and relationships between the elements
of data.

[0063] Each data model 501, 502 includes a corresponding group of metadata 531, 532. The
metadata 531, 532 describes actual data generated or used by the corresponding data model 501,
502, their types and relationships, and the source or sources from which the actual data is produced.
In some embodiments, the metadata 531, 532 can additionally or alternatively include information
defining data transformations needed to create one or more features or feature sets for use in a
machine learning model, such as for use by one of the backends described above. Additional details
regarding the use of metadata for creating or identifying features or feature sets is found in U.S.
Patent Application No. 17/699,025 entitled “METADATA-DRIVEN FEATURE STORE FOR
MACHINE LEARNING SYSTEMS” (which is hereby incorporated by reference in its entirety).

[0064] After the data models 501, 502 and the metadata 531, 532 have been developed, a third
user 306, 318 (“Person C”) can operate in a third environment 513 (“Env 3”) and leverage the data
models 501, 502 and the metadata 531, 532 to develop a new data model 503 (“Data Model 37).
The data model 503 includes a group of metadata 533, which is generated using the metadata 531
associated with the data model 501 and the metadata 532 associated with the data model 502. As
a particular example, the third user 306, 318 may request that the system retrieve either or both of
the graphs 521, 522 and the corresponding metadata 531, 532 and load the graph(s) 521, 522 and
the metadata 531, 532 into a separate authoring environment 302 as requested by the third user
306, 318. In some embodiments, the system can propagate actual data (such as machine learning

model features or feature sets) from the metadata 531, 532 for reuse in the data model 503. The

10

15

20

25

30

WO 2023/178260 PCT/US2023/064558
18

system can also or alternatively build on the graphs 521, 522 and the metadata 531, 532 by taking
part or all of each of the graphs 521, 522 and the metadata 531, 532 and combining them to generate
the graph 523 and the metadata 533, which are part of or otherwise associated with the data model
503. Thus, while the data model 503 is being generated, the source of the graph 523 and the
metadata 533 may not be new data but instead may be the existing graphs 521, 522 and metadata
531, 532. The existence of the graphs 521, 522 and the type of system make it possible to have the
same APIs available across multiple run times and multiple environments. In this way, applications
using one of the data models 501-503 in one of the environments 511-513 can use the same data
model 501-503 in a different environment 511-513. Thus, the data models 501-503 themselves are
compatible across different environments 511-513.

[0065] While the third user 306, 318 develops the data model 503, the third user 306, 318 can
provide instructions to the system to perform one or more operations 541-543. Each operation 541-
543 includes one or more definitions for one or more data transformations, which in some cases
can be saved in the database 110. The one or more data transformations can be used by the system
to produce a new set of artifacts 545, which can be included as part of or otherwise associated with
the data model 503. Each of the artifacts 545 represents a file or code that is configured for
execution by an application. The data model 503 can be executed in an execution environment 304
that is the same as or different from the execution environments 304 of the other two data models
501, 502.

[0066] To prepare the data models 501, 502 for generation of the data model 503, the system
can generate an intermediate representation 550 of each of the data models 501, 502. Each
intermediate representation 550 is a data structure that contains information to maintain the
sequence of transformations from each data model 501, 502 that are used to create the artifacts 545
for the data model 503. Each intermediate representation 550 also includes the context in which
these transformations were entered. In some embodiments, the system can perform one or more of
the operations 541-543 using the intermediate representation(s) 550. Also, by using the
intermediate representation(s) 550, the system can perform one or more run-time optimizations
(such as vertex fusion, vertex expansion, subexpression elimination, and the like) on these
transformations. The system can take the intermediate representation(s) 550 and the associated
context(s) and convert them into one or more artifacts 545 for the data model 503.

[0067] In some embodiments, the system can support version control of the data models 501-
503 and their generated artifacts 545 in order to support continuous iterative application
development in each environment 511-513 by one or multiple users 306, 318. With each iteration

that generates a new version, a version identifier can be updated to track progress. Thus, each

10

15

20

25

30

WO 2023/178260 PCT/US2023/064558
19

environment 501-503 can be used for continuous iterative application development. Any suitable
techniques can be used to support version control in the system. In addition, the system can refine
generated artifacts 545 and hence support collaborative application development on top of the
artifacts 545. For example, one user 306, 318 could write a transformation in a user-interface way
and a second user 306, 318 could write the same transformation in a code-interface way, and both
users can collaborate iteratively. Thus, multiple users 306, 318 who are operating in different
contexts can collaborate. Most conventional data science tools (such as Pandas) support
collaboration mainly at the interface level. In contrast, the workflow 500 can enable collaboration
at both the interface level and the generated artifacts level. This improves the overall collaboration
between the multiple users 306, 318.

[0068] Also, in some embodiments, the interface 310 used by the users 306, 318 to develop
one or more of the data models 501-503 could be different than the interface 310 used to develop
another one or more of the data models 501-503. That is, different data models 501-503 could be
developed using different interfaces 310. In some cases, one interface 310 can include an API that
is not found in another interface 310 and that is not supported in certain execution environments
304. The workflow 500 can handle such cases. For example, as the artifacts 545 are generated for
the graph 523 in the environment 513, assume a node in the graph 523 describes an operation not
supported by the environment 513. In that case, the workflow 500 enables the system to take the
outputs of all parent nodes, move the outputs into a different environment that does support the
operation, run the operation in the different environment, and bring the results back into the
environment 513 to continue the process.

[0069] To summarize, the workflow 500 allows the system to auto-generate the artifacts 545,
which can be used for running production-grade enterprise-level AI/ML applications or other
AI/ML applications. The artifacts 545 can be auto-generated from data exploration work
performed by the user(s) 306, 318 using any suitable interface(s) 310. The resulting artifacts 545
are configured such that they can run at scale. Also, the data exploration work performed by the
user(s) 306, 318 can be in completely different environment(s) 511-513 from the environment(s)
511-513 in which the application is going to be executed. In addition, there is no tie-in to a
particular user 306, 318, so the auto-generation of the production-grade software application
artifacts 545 can be performed by different user(s) 306, 318 than the user(s) 306, 318 who initially
authored the data model 501-503.

[0070] Although FIGURE 5 illustrates one example of a workflow 500 for intelligent data
processing with metadata generation from iterative data analysis, various changes may be made to

FIGURE 5. For example, functions and components can be added, omitted, combined, further

10

15

20

25

30

WO 2023/178260 PCT/US2023/064558
20

subdivided, replicated, or placed in any other suitable configuration in the workflow 500 according
to particular needs. As a particular example, the workflow 500 may include or be associated with
any suitable number of data models, environments, users, and operations.

[0071] Note that the functions shown in or described with respect to FIGURES 3 through 5
can be implemented in an electronic device, such as a computing device, in any suitable manner.
For example, in some embodiments, at least some of the functions shown in or described with
respect to FIGURES 3 through 5 can be implemented or supported using one or more software
applications or other software instructions that are executed by one or more processing devices of
an application server 106, device 200, or other device. In other embodiments, at least some of the
functions shown in or described with respect to FIGURES 3 through 5 can be implemented or
supported using dedicated hardware components. In general, the functions shown in or described
with respect to FIGURES 3 through 5 can be performed using any suitable hardware or any suitable
combination of hardware and software/firmware instructions.

[0072] FIGURE 6 illustrates an example method 600 for intelligent data processing with
metadata generation from iterative data analysis according to this disclosure. For ease of
explanation, the method 600 shown in FIGURE 6 is described as involving the use of the
application server 106 shown in FIGURE 1 implemented using one or more devices 200 shown in
FIGURE 2 and supporting the architecture 300 shown in FIGURE 3 and the workflow 500 shown
in FIGURE 5. However, the method 600 shown in FIGURE 6 could be used with any other suitable
electronic device and any other suitable architecture or workflow.

[0073] As shown in FIGURE 6, a first data model is obtained from a data exploration phase
performed in a first environment at step 601. The first data model includes first metadata. This
could include, for example, the server 106 obtaining the data model 501 from a data exploration
phase performed in the environment 511, where the data model 501 includes metadata 531. A
second data model is obtained from the data exploration phase performed in a second environment
different from the first environment at step 603. The second data model includes second metadata.
This could include, for example, the server 106 obtaining the data model 502 from the data
exploration phase performed in the environment 512, where the data model 502 includes metadata
532.

[0074] A third data model including one or more software artifacts is generated using the first
metadata and the second metadata at step 605. Each of the software artifacts is configured as one
or more files that are configured for execution of at least one enterprise-level AI/ML application
or other AI/ML application. Third metadata associated with the third data model is also generated

using the first metadata and the second metadata. This could include, for example, the server 106

10

15

20

25

30

WO 2023/178260 PCT/US2023/064558
21

generating the data model 503 using the metadata 531 and the metadata 532. The data model 503
can include one or more artifacts 545 and can also include the metadata 533.

[0075] Although FIGURE 6 illustrates one example of a method 600 for intelligent data
processing with metadata generation from iterative data analysis, various changes may be made to
FIGURE 6. For example, while shown as a series of steps, various steps in FIGURE 6 could
overlap, occur in parallel, occur in a different order, or occur any number of times.

[0076] In some embodiments, various functions described in this patent document are
implemented or supported by a computer program that is formed from computer readable program
code and that is embodied in a computer readable medium. The phrase “computer readable
program code” includes any type of computer code, including source code, object code, and
executable code. The phrase “computer readable medium” includes any type of medium capable
of being accessed by a computer, such as read only memory (ROM), random access memory
(RAM), a hard disk drive (HDD), a compact disc (CD), a digital video disc (DVD), or any other
type of memory. A “non-transitory” computer readable medium excludes wired, wireless, optical,
or other communication links that transport transitory electrical or other signals. A non-transitory
computer readable medium includes media where data can be permanently stored and media where
data can be stored and later overwritten, such as a rewritable optical disc or an erasable storage
device.

[0077] It may be advantageous to set forth definitions of certain words and phrases used
throughout this patent document. The terms “application” and “program” refer to one or more
computer programs, software components, sets of instructions, procedures, functions, objects,
classes, instances, related data, or a portion thereof adapted for implementation in a suitable
computer code (including source code, object code, or executable code). The term “communicate,”
as well as derivatives thereof, encompasses both direct and indirect communication. The terms
“include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation. The
term “or” is inclusive, meaning and/or. The phrase “associated with,” as well as derivatives thereof,
may mean to include, be included within, interconnect with, contain, be contained within, connect
to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be
proximate to, be bound to or with, have, have a property of, have a relationship to or with, or the
like. The phrase “at least one of,” when used with a list of items, means that different combinations
of one or more of the listed items may be used, and only one item in the list may be needed. For
example, “at least one of: A, B, and C” includes any of the following combinations: A, B, C, A
and B, Aand C, B and C, and A and B and C.

[0078] The description in the present application should not be read as implying that any

10

15

WO 2023/178260 PCT/US2023/064558
22

particular element, step, or function is an essential or critical element that must be included in the
claim scope. The scope of patented subject matter is defined only by the allowed claims. Moreover,
none of the claims invokes 35 U.S.C. § 112(f) with respect to any of the appended claims or claim
elements unless the exact words “means for” or “step for” are explicitly used in the particular

claim, followed by a participle phrase identifying a function. Use of terms such as (but not limited

2% 2% 2% 2% 29 <C 2%

to) “mechanism,” “module,” “device,” “unit,” “component,” “element,” “member,” “apparatus,”

2% 2%

“machine,” “system,” “processor,” or “controller” within a claim is understood and intended to
refer to structures known to those skilled in the relevant art, as further modified or enhanced by
the features of the claims themselves, and is not intended to invoke 35 U.S.C. § 112(f).

[0079] While this disclosure has described certain embodiments and generally associated
methods, alterations and permutations of these embodiments and methods will be apparent to those
skilled in the art. Accordingly, the above description of example embodiments does not define or
constrain this disclosure. Other changes, substitutions, and alterations are also possible without

departing from the spirit and scope of this disclosure, as defined by the following claims.

10

15

20

25

30

WO 2023/178260 PCT/US2023/064558
23

WHAT IS CLAIMED IS:

1. A method comprising:

obtaining a first data model from a data exploration phase performed in a first environment,
the first data model comprising first metadata;

obtaining a second data model from the data exploration phase performed in a second
environment different from the first environment, the second data model comprising second
metadata; and

generating a third data model comprising one or more software artifacts using the first
metadata and the second metadata;

wherein each of the one or more software artifacts is configured as one or more files that
are configured for execution of at least one artificial intelligence (Al)/machine learning (ML)

application.

2. The method of Claim 1, wherein:

generating the third data model comprises generating third metadata associated with the
third data model using the first metadata and the second metadata; and

each of the first, second, and third metadata comprises information defining data
transformations for creating one or more features or feature sets for use in a machine learning

model.

3. The method of Claim 1, wherein generating the third data model comprises:
performing one or more operations on at least one of the first data model and the second
data model, the one or more operations defining one or more data transformations; and

generating the one or more software artifacts using the one or more data transformations.

4. The method of Claim 3, wherein the one or more operations are performed using
an intermediate representation that maintains a sequence of the one or more data transformations,
the intermediate representation comprising a context associated with the one or more data

transformations.

5. The method of Claim 3, wherein generating the third data model further comprises
combining at least a portion of a first graph associated with the first data model and at least a
portion of a second graph associated with the second data model into a third graph associated with

the third data model.

10

15

20

25

30

WO 2023/178260 PCT/US2023/064558
24

6. The method of Claim 1, wherein generating the third data model comprises

iteratively generating multiple versions of the third data model based on input from multiple users.

7. The method of Claim 1, wherein the one or more files are human-readable and

machine-executable.

8. An apparatus comprising:
at least one processing device configured to:
obtain a first data model from a data exploration phase performed in a first
environment, the first data model comprising first metadata;
obtain a second data model from the data exploration phase performed in a second
environment different from the first environment, the second data model comprising second
metadata; and
generate a third data model comprising one or more software artifacts using the first
metadata and the second metadata;
wherein each of the one or more software artifacts is configured as one or more files that
are configured for execution of at least one artificial intelligence (Al)/machine learning (ML)

application.

9. The apparatus of Claim 8, wherein:

to generate the third data model, the at least one processing device is configured to generate
third metadata associated with the third data model using the first metadata and the second
metadata; and

each of the first, second, and third metadata comprises information defining data
transformations for creating one or more features or feature sets for use in a machine learning

model.

10. The apparatus of Claim 8, wherein, to generate the third data model, the at least one
processing device is configured to:

perform one or more operations on at least one of the first data model and the second data
model, the one or more operations defining one or more data transformations; and

generate the one or more software artifacts using the one or more data transformations.

10

15

20

WO 2023/178260 PCT/US2023/064558
25
11. The apparatus of Claim 10, wherein the at least one processing device is configured
to perform the one or more operations using an intermediate representation that maintains a
sequence of the one or more data transformations, the intermediate representation comprising a

context associated with the one or more data transformations.

12. The apparatus of Claim 10, wherein, to generate the third data model, the at least
one processing device is further configured to combine at least a portion of a first graph associated
with the first data model and at least a portion of a second graph associated with the second data

model into a third graph associated with the third data model.

13. The apparatus of Claim 8, wherein, to generate the third data model, the at least one
processing device is configured to iteratively generate multiple versions of the third data model

based on input from multiple users.

14. The apparatus of Claim 8, wherein the one or more files are human-readable and

machine-executable.

15. A non-transitory computer readable medium containing computer readable
program code that when executed causes one or more processors to perform the method of any of

Claims 1-7.

WO 2023/178260

1/6

100

1 061

APPLICATION
SERVER

108

K

104

[FREEEER N

102a

DATABASE
SERVER

(I
102b£ 1020T

FIG. 1

PCT/US2023/064558

110

102d

WO 2023/178260

2/6

PCT/US2023/06

4558

204
202 R
<

PROCESSING DEVICE [——)

2067 I 2087 I

COMMUNICATIONS e
UNIT UNIT

STORAGE DEVICES

5

MEMORY

210

212

5

PERSISTENT
STORAGE

FIG. 2

200

PCT/US2023/064558

WO 2023/178260

3/6

€ 9Old
INIONI NOILND3AXT zze
zee %
|
A
3009 014103dS-ANIONT NOILNDIAXT [pee vivd
< 1743 o3
> 0z<
IXALNOD LNIHNAD 371NAOIN NOILND3X3) _
N (QSNOILYIWHO4ASNVYHL NNy
(A1)SNOILYIWHO4SNVH.L oze 8lLe
gze— IATIYL3IY oce vomw
INIWNOHIANT NOILND3AXT
-4 ITINAOW LXIINQD |--——-—-—--4 = b mmm e
u oLl INIWNOHIANT ONIYOHLNY
A%

; /

A
o1e=] (QSNOILYINHOASNYHL IAVS c0g

Ll

z1e5 JFTNAOIN ONIXOVHL

A

30V4HILNI
OJ%> :
| Moom

13Svlivd 90¢

PCT/US2023/064558

WO 2023/178260

4/6

SS300d4d

HIHHOM NI 300 IHNOANI
Ol JNVYHd Vivd 3SN

0
JNVY
V1va ONISN J04 AXOdd
SV J0.10V 31v3dD

%

4010V M3N 3INIF3d

%

JANVHE4 V1vd 31v3d0

»
(pouyrew ()oigAd “o'r)
MOTd ANVINNOD

IVYNIOIHO ONILVYIHO3Y
33d00 31Vd3INIO

»

(()rso peas “a1)

¥ Old

90v

1407

-

vivda

viva avos

34d00
J1d103dS-aANIONT NOILNO3IX3

ﬂwov %vov
SNOILYY3dO 11V 3OVMOVd
¥04 03dS v1vd 31vadn
d3aNIVHO-ASIVA S 1130
A
NOILYY3dO ANIT3dId OLNI
TIIOHOVE |4 a334 vivd
H04 03dS Vivd | [Lq;p ¥ 1130
A
NOILYY3dO ONIYIINIONT
T1IOHOVE |« 3¥NLY3A
¥04 93dS v1vd €1130
A
NOILYY3dO NOILYYOILNI
T1IOHOVE [« v.iva
¥04 93dS v1vd 21130
A
NOILY¥3dO S3114 v.1va
1130 HOV3 304N0S A0
¥04 93dS v.vd 71130
30090
A3LvHINID-WILSAS 7001

304dN0S

M 0[0)4

PCT/US2023/064558

WO 2023/178260

5/6

G oOld

S10B}IY € [9pOI eleq

GpG—]

elepelain

ces—

epg— | gdo)

(sjuorreluasauday
9leIpawlalu|

L

0Gs

N

80N0
C [°PON Emom e

(..,...;f.a.
o N,
AM.\N C
(ONLICISURI | 180 f Nv

(42

elepelain

L

elepela
g %w < Lees
)
S A

cCcS

c0S
(A%

IlAUg Ul guosidd A
3UOP JJOM SNOIABI(

L

clS

L [VS

10G

LS

vl

T [2PON e1eq

vl

Il AU3 Ul D Uosiad >o_
aUO0pP JJOM Juaain)

4

199 2°,

| AUJ Ul ¢y UOSJad >o_
aUOpP 3}JOM SNOIA3Ud

L

LG

)

009

WO 2023/178260 PCT/US2023/064558

6/6

600

(START)

A4

OBTAIN A FIRST DATA MODEL FROM A DATA EXPLORATION
601 “MPHASE PERFORMED IN A FIRST ENVIRONMENT, THE FIRST DATA
MODEL COMPRISING FIRST METADATA

y
OBTAIN A SECOND DATA MODEL FROM THE DATA EXPLORATION
PHASE PERFORMED IN A SECOND ENVIRONMENT DIFFERENT
FROM THE FIRST ENVIRONMENT, THE SECOND DATA MODEL
COMPRISING SECOND METADATA

603 "M

GENERATE A THIRD DATA MODEL COMPRISING ONE OR MORE
605~ SOFTWARE ARTIFACTS USING THE FIRST METADATA AND THE
SECOND METADATA

END

FIG. 6

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 23/64558

A
IPC

CLASSIFICATION OF SUBJECT MATTER

ADD. GO6N 20/00 (2023.01)

ADD. Go6N 20/00

B. FIELDS SEARCHED

- INV. GOG6F 8/77, GOGF 9/54, GO6F 8/35, GO6N 3/08, GO6N 3/04 (2023.01)

'CPC - INV. GO6F 8/77, GOBF 9/54, GO6F 8/35, GO6N 3/08, GOBN 3/04

- According fo International Patent Classification (IPC) or to both national classification and IPC

See Search History document

Minimum documentation searched (classification system followed by classification symbols)

See Search History document

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

See Search History document

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2019/0265971 A1 (C3 loT, Inc.) 29 August 2019 (29.08.2019) entire document (especially | 1-4, 8-11, 15/(1-4)
- Figs. 1-41 & para [0154], [0156], [0197], [0206],[0212], [0231), [0246], [0341], [0429], [0679), |---—~——=re—rrmo—0 -
Y [0681], 5-7, 12-14. 15/(5-7)
Y US 2021/0263945 A1 (C3.ai, Inc.) 26 August 2021 (26.08.2021) entire document (especially 5, 12, 15/(5)
Abstract & para [0032], [0088]

Y US 2010/0088676 A1 (Yuan et al.) 08 April 2010 (08.04.2010) entire document (especially 6, 13, 15/(6)
Abstract & para [0017], [0023]).

Y US 2021/0326782 A1 (DataRobot, Inc.) 21 October 2021 (21.10.2021) entire document 7,14, 15/(7)
(especially para [0075], [0141]).

A US 2022/0067626 A1 (Honeywell International Inc.) 03 March 2022 (03.03.2022) entire 1-20
document.

A US 2021/0374143 A1 (RN Technologies, LL.C) 02 December 2021 (02.12.2021) entire 1-20
document.

A US 2011/0145286 A1 (LaRowe et al.) 16 June 2011 (16.06.2011) entire document. 1-20

I:l Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“D” document cited by the applicant in the international application

“E” earlier application or patent but published on or after the international
filing date

“L” document which ma 'throwl doubts on priority claim(s) or which
is cited to establish the épubhcauon date of another citation or other
special reason (as specified) .

“0” documentreferring to an oral disclosure, use, exhibition or other means

“P” document published prior to the international filing date but later than

the priority date claimed

“T* later document published after the international filing date or priority
date and not in conflict with the apglication but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot
be considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&" document member of the same patent family

Date of the actual completion of the international search

06 June 2023 (06.06.2023)

Date of mailing of the international search report

JUN 28 2023

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.0O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300

Authorized officer
Kari Rodriquez

Telephone No. PCT Helpdesk: 571-272-4300

Form PCT/ISA/210 (second sheet) (July 2022)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - wo-search-report

